1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Secure Encrypted Virtualization (SEV) interface 4 * 5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc. 6 * 7 * Author: Brijesh Singh <brijesh.singh@amd.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/kthread.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/spinlock.h> 17 #include <linux/spinlock_types.h> 18 #include <linux/types.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/hw_random.h> 22 #include <linux/ccp.h> 23 #include <linux/firmware.h> 24 #include <linux/panic_notifier.h> 25 #include <linux/gfp.h> 26 #include <linux/cpufeature.h> 27 #include <linux/fs.h> 28 #include <linux/fs_struct.h> 29 #include <linux/psp.h> 30 #include <linux/amd-iommu.h> 31 32 #include <asm/smp.h> 33 #include <asm/cacheflush.h> 34 #include <asm/e820/types.h> 35 #include <asm/sev.h> 36 37 #include "psp-dev.h" 38 #include "sev-dev.h" 39 40 #define DEVICE_NAME "sev" 41 #define SEV_FW_FILE "amd/sev.fw" 42 #define SEV_FW_NAME_SIZE 64 43 44 /* Minimum firmware version required for the SEV-SNP support */ 45 #define SNP_MIN_API_MAJOR 1 46 #define SNP_MIN_API_MINOR 51 47 48 /* 49 * Maximum number of firmware-writable buffers that might be specified 50 * in the parameters of a legacy SEV command buffer. 51 */ 52 #define CMD_BUF_FW_WRITABLE_MAX 2 53 54 /* Leave room in the descriptor array for an end-of-list indicator. */ 55 #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1) 56 57 static DEFINE_MUTEX(sev_cmd_mutex); 58 static struct sev_misc_dev *misc_dev; 59 60 static int psp_cmd_timeout = 100; 61 module_param(psp_cmd_timeout, int, 0644); 62 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands"); 63 64 static int psp_probe_timeout = 5; 65 module_param(psp_probe_timeout, int, 0644); 66 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe"); 67 68 static char *init_ex_path; 69 module_param(init_ex_path, charp, 0444); 70 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX"); 71 72 static bool psp_init_on_probe = true; 73 module_param(psp_init_on_probe, bool, 0444); 74 MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it"); 75 76 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */ 77 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */ 78 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */ 79 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */ 80 81 static bool psp_dead; 82 static int psp_timeout; 83 84 /* Trusted Memory Region (TMR): 85 * The TMR is a 1MB area that must be 1MB aligned. Use the page allocator 86 * to allocate the memory, which will return aligned memory for the specified 87 * allocation order. 88 * 89 * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized. 90 */ 91 #define SEV_TMR_SIZE (1024 * 1024) 92 #define SNP_TMR_SIZE (2 * 1024 * 1024) 93 94 static void *sev_es_tmr; 95 static size_t sev_es_tmr_size = SEV_TMR_SIZE; 96 97 /* INIT_EX NV Storage: 98 * The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page 99 * allocator to allocate the memory, which will return aligned memory for the 100 * specified allocation order. 101 */ 102 #define NV_LENGTH (32 * 1024) 103 static void *sev_init_ex_buffer; 104 105 /* 106 * SEV_DATA_RANGE_LIST: 107 * Array containing range of pages that firmware transitions to HV-fixed 108 * page state. 109 */ 110 struct sev_data_range_list *snp_range_list; 111 112 static inline bool sev_version_greater_or_equal(u8 maj, u8 min) 113 { 114 struct sev_device *sev = psp_master->sev_data; 115 116 if (sev->api_major > maj) 117 return true; 118 119 if (sev->api_major == maj && sev->api_minor >= min) 120 return true; 121 122 return false; 123 } 124 125 static void sev_irq_handler(int irq, void *data, unsigned int status) 126 { 127 struct sev_device *sev = data; 128 int reg; 129 130 /* Check if it is command completion: */ 131 if (!(status & SEV_CMD_COMPLETE)) 132 return; 133 134 /* Check if it is SEV command completion: */ 135 reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 136 if (FIELD_GET(PSP_CMDRESP_RESP, reg)) { 137 sev->int_rcvd = 1; 138 wake_up(&sev->int_queue); 139 } 140 } 141 142 static int sev_wait_cmd_ioc(struct sev_device *sev, 143 unsigned int *reg, unsigned int timeout) 144 { 145 int ret; 146 147 /* 148 * If invoked during panic handling, local interrupts are disabled, 149 * so the PSP command completion interrupt can't be used. Poll for 150 * PSP command completion instead. 151 */ 152 if (irqs_disabled()) { 153 unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10; 154 155 /* Poll for SEV command completion: */ 156 while (timeout_usecs--) { 157 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 158 if (*reg & PSP_CMDRESP_RESP) 159 return 0; 160 161 udelay(10); 162 } 163 return -ETIMEDOUT; 164 } 165 166 ret = wait_event_timeout(sev->int_queue, 167 sev->int_rcvd, timeout * HZ); 168 if (!ret) 169 return -ETIMEDOUT; 170 171 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 172 173 return 0; 174 } 175 176 static int sev_cmd_buffer_len(int cmd) 177 { 178 switch (cmd) { 179 case SEV_CMD_INIT: return sizeof(struct sev_data_init); 180 case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex); 181 case SEV_CMD_SNP_SHUTDOWN_EX: return sizeof(struct sev_data_snp_shutdown_ex); 182 case SEV_CMD_SNP_INIT_EX: return sizeof(struct sev_data_snp_init_ex); 183 case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status); 184 case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr); 185 case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import); 186 case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export); 187 case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start); 188 case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data); 189 case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa); 190 case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish); 191 case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure); 192 case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate); 193 case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate); 194 case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission); 195 case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status); 196 case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg); 197 case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg); 198 case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start); 199 case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data); 200 case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa); 201 case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish); 202 case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start); 203 case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish); 204 case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data); 205 case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa); 206 case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret); 207 case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware); 208 case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id); 209 case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report); 210 case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel); 211 case SEV_CMD_SNP_GCTX_CREATE: return sizeof(struct sev_data_snp_addr); 212 case SEV_CMD_SNP_LAUNCH_START: return sizeof(struct sev_data_snp_launch_start); 213 case SEV_CMD_SNP_LAUNCH_UPDATE: return sizeof(struct sev_data_snp_launch_update); 214 case SEV_CMD_SNP_ACTIVATE: return sizeof(struct sev_data_snp_activate); 215 case SEV_CMD_SNP_DECOMMISSION: return sizeof(struct sev_data_snp_addr); 216 case SEV_CMD_SNP_PAGE_RECLAIM: return sizeof(struct sev_data_snp_page_reclaim); 217 case SEV_CMD_SNP_GUEST_STATUS: return sizeof(struct sev_data_snp_guest_status); 218 case SEV_CMD_SNP_LAUNCH_FINISH: return sizeof(struct sev_data_snp_launch_finish); 219 case SEV_CMD_SNP_DBG_DECRYPT: return sizeof(struct sev_data_snp_dbg); 220 case SEV_CMD_SNP_DBG_ENCRYPT: return sizeof(struct sev_data_snp_dbg); 221 case SEV_CMD_SNP_PAGE_UNSMASH: return sizeof(struct sev_data_snp_page_unsmash); 222 case SEV_CMD_SNP_PLATFORM_STATUS: return sizeof(struct sev_data_snp_addr); 223 case SEV_CMD_SNP_GUEST_REQUEST: return sizeof(struct sev_data_snp_guest_request); 224 case SEV_CMD_SNP_CONFIG: return sizeof(struct sev_user_data_snp_config); 225 default: return 0; 226 } 227 228 return 0; 229 } 230 231 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode) 232 { 233 struct file *fp; 234 struct path root; 235 struct cred *cred; 236 const struct cred *old_cred; 237 238 task_lock(&init_task); 239 get_fs_root(init_task.fs, &root); 240 task_unlock(&init_task); 241 242 cred = prepare_creds(); 243 if (!cred) 244 return ERR_PTR(-ENOMEM); 245 cred->fsuid = GLOBAL_ROOT_UID; 246 old_cred = override_creds(cred); 247 248 fp = file_open_root(&root, filename, flags, mode); 249 path_put(&root); 250 251 revert_creds(old_cred); 252 253 return fp; 254 } 255 256 static int sev_read_init_ex_file(void) 257 { 258 struct sev_device *sev = psp_master->sev_data; 259 struct file *fp; 260 ssize_t nread; 261 262 lockdep_assert_held(&sev_cmd_mutex); 263 264 if (!sev_init_ex_buffer) 265 return -EOPNOTSUPP; 266 267 fp = open_file_as_root(init_ex_path, O_RDONLY, 0); 268 if (IS_ERR(fp)) { 269 int ret = PTR_ERR(fp); 270 271 if (ret == -ENOENT) { 272 dev_info(sev->dev, 273 "SEV: %s does not exist and will be created later.\n", 274 init_ex_path); 275 ret = 0; 276 } else { 277 dev_err(sev->dev, 278 "SEV: could not open %s for read, error %d\n", 279 init_ex_path, ret); 280 } 281 return ret; 282 } 283 284 nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL); 285 if (nread != NV_LENGTH) { 286 dev_info(sev->dev, 287 "SEV: could not read %u bytes to non volatile memory area, ret %ld\n", 288 NV_LENGTH, nread); 289 } 290 291 dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread); 292 filp_close(fp, NULL); 293 294 return 0; 295 } 296 297 static int sev_write_init_ex_file(void) 298 { 299 struct sev_device *sev = psp_master->sev_data; 300 struct file *fp; 301 loff_t offset = 0; 302 ssize_t nwrite; 303 304 lockdep_assert_held(&sev_cmd_mutex); 305 306 if (!sev_init_ex_buffer) 307 return 0; 308 309 fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600); 310 if (IS_ERR(fp)) { 311 int ret = PTR_ERR(fp); 312 313 dev_err(sev->dev, 314 "SEV: could not open file for write, error %d\n", 315 ret); 316 return ret; 317 } 318 319 nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset); 320 vfs_fsync(fp, 0); 321 filp_close(fp, NULL); 322 323 if (nwrite != NV_LENGTH) { 324 dev_err(sev->dev, 325 "SEV: failed to write %u bytes to non volatile memory area, ret %ld\n", 326 NV_LENGTH, nwrite); 327 return -EIO; 328 } 329 330 dev_dbg(sev->dev, "SEV: write successful to NV file\n"); 331 332 return 0; 333 } 334 335 static int sev_write_init_ex_file_if_required(int cmd_id) 336 { 337 lockdep_assert_held(&sev_cmd_mutex); 338 339 if (!sev_init_ex_buffer) 340 return 0; 341 342 /* 343 * Only a few platform commands modify the SPI/NV area, but none of the 344 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN, 345 * PEK_CERT_IMPORT, and PDH_GEN do. 346 */ 347 switch (cmd_id) { 348 case SEV_CMD_FACTORY_RESET: 349 case SEV_CMD_INIT_EX: 350 case SEV_CMD_PDH_GEN: 351 case SEV_CMD_PEK_CERT_IMPORT: 352 case SEV_CMD_PEK_GEN: 353 break; 354 default: 355 return 0; 356 } 357 358 return sev_write_init_ex_file(); 359 } 360 361 /* 362 * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked() 363 * needs snp_reclaim_pages(), so a forward declaration is needed. 364 */ 365 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret); 366 367 static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked) 368 { 369 int ret, err, i; 370 371 paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE)); 372 373 for (i = 0; i < npages; i++, paddr += PAGE_SIZE) { 374 struct sev_data_snp_page_reclaim data = {0}; 375 376 data.paddr = paddr; 377 378 if (locked) 379 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 380 else 381 ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 382 383 if (ret) 384 goto cleanup; 385 386 ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K); 387 if (ret) 388 goto cleanup; 389 } 390 391 return 0; 392 393 cleanup: 394 /* 395 * If there was a failure reclaiming the page then it is no longer safe 396 * to release it back to the system; leak it instead. 397 */ 398 snp_leak_pages(__phys_to_pfn(paddr), npages - i); 399 return ret; 400 } 401 402 static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked) 403 { 404 unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT; 405 int rc, i; 406 407 for (i = 0; i < npages; i++, pfn++) { 408 rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true); 409 if (rc) 410 goto cleanup; 411 } 412 413 return 0; 414 415 cleanup: 416 /* 417 * Try unrolling the firmware state changes by 418 * reclaiming the pages which were already changed to the 419 * firmware state. 420 */ 421 snp_reclaim_pages(paddr, i, locked); 422 423 return rc; 424 } 425 426 static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order) 427 { 428 unsigned long npages = 1ul << order, paddr; 429 struct sev_device *sev; 430 struct page *page; 431 432 if (!psp_master || !psp_master->sev_data) 433 return NULL; 434 435 page = alloc_pages(gfp_mask, order); 436 if (!page) 437 return NULL; 438 439 /* If SEV-SNP is initialized then add the page in RMP table. */ 440 sev = psp_master->sev_data; 441 if (!sev->snp_initialized) 442 return page; 443 444 paddr = __pa((unsigned long)page_address(page)); 445 if (rmp_mark_pages_firmware(paddr, npages, false)) 446 return NULL; 447 448 return page; 449 } 450 451 void *snp_alloc_firmware_page(gfp_t gfp_mask) 452 { 453 struct page *page; 454 455 page = __snp_alloc_firmware_pages(gfp_mask, 0); 456 457 return page ? page_address(page) : NULL; 458 } 459 EXPORT_SYMBOL_GPL(snp_alloc_firmware_page); 460 461 static void __snp_free_firmware_pages(struct page *page, int order, bool locked) 462 { 463 struct sev_device *sev = psp_master->sev_data; 464 unsigned long paddr, npages = 1ul << order; 465 466 if (!page) 467 return; 468 469 paddr = __pa((unsigned long)page_address(page)); 470 if (sev->snp_initialized && 471 snp_reclaim_pages(paddr, npages, locked)) 472 return; 473 474 __free_pages(page, order); 475 } 476 477 void snp_free_firmware_page(void *addr) 478 { 479 if (!addr) 480 return; 481 482 __snp_free_firmware_pages(virt_to_page(addr), 0, false); 483 } 484 EXPORT_SYMBOL_GPL(snp_free_firmware_page); 485 486 static void *sev_fw_alloc(unsigned long len) 487 { 488 struct page *page; 489 490 page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len)); 491 if (!page) 492 return NULL; 493 494 return page_address(page); 495 } 496 497 /** 498 * struct cmd_buf_desc - descriptors for managing legacy SEV command address 499 * parameters corresponding to buffers that may be written to by firmware. 500 * 501 * @paddr_ptr: pointer to the address parameter in the command buffer which may 502 * need to be saved/restored depending on whether a bounce buffer 503 * is used. In the case of a bounce buffer, the command buffer 504 * needs to be updated with the address of the new bounce buffer 505 * snp_map_cmd_buf_desc() has allocated specifically for it. Must 506 * be NULL if this descriptor is only an end-of-list indicator. 507 * 508 * @paddr_orig: storage for the original address parameter, which can be used to 509 * restore the original value in @paddr_ptr in cases where it is 510 * replaced with the address of a bounce buffer. 511 * 512 * @len: length of buffer located at the address originally stored at @paddr_ptr 513 * 514 * @guest_owned: true if the address corresponds to guest-owned pages, in which 515 * case bounce buffers are not needed. 516 */ 517 struct cmd_buf_desc { 518 u64 *paddr_ptr; 519 u64 paddr_orig; 520 u32 len; 521 bool guest_owned; 522 }; 523 524 /* 525 * If a legacy SEV command parameter is a memory address, those pages in 526 * turn need to be transitioned to/from firmware-owned before/after 527 * executing the firmware command. 528 * 529 * Additionally, in cases where those pages are not guest-owned, a bounce 530 * buffer is needed in place of the original memory address parameter. 531 * 532 * A set of descriptors are used to keep track of this handling, and 533 * initialized here based on the specific commands being executed. 534 */ 535 static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf, 536 struct cmd_buf_desc *desc_list) 537 { 538 switch (cmd) { 539 case SEV_CMD_PDH_CERT_EXPORT: { 540 struct sev_data_pdh_cert_export *data = cmd_buf; 541 542 desc_list[0].paddr_ptr = &data->pdh_cert_address; 543 desc_list[0].len = data->pdh_cert_len; 544 desc_list[1].paddr_ptr = &data->cert_chain_address; 545 desc_list[1].len = data->cert_chain_len; 546 break; 547 } 548 case SEV_CMD_GET_ID: { 549 struct sev_data_get_id *data = cmd_buf; 550 551 desc_list[0].paddr_ptr = &data->address; 552 desc_list[0].len = data->len; 553 break; 554 } 555 case SEV_CMD_PEK_CSR: { 556 struct sev_data_pek_csr *data = cmd_buf; 557 558 desc_list[0].paddr_ptr = &data->address; 559 desc_list[0].len = data->len; 560 break; 561 } 562 case SEV_CMD_LAUNCH_UPDATE_DATA: { 563 struct sev_data_launch_update_data *data = cmd_buf; 564 565 desc_list[0].paddr_ptr = &data->address; 566 desc_list[0].len = data->len; 567 desc_list[0].guest_owned = true; 568 break; 569 } 570 case SEV_CMD_LAUNCH_UPDATE_VMSA: { 571 struct sev_data_launch_update_vmsa *data = cmd_buf; 572 573 desc_list[0].paddr_ptr = &data->address; 574 desc_list[0].len = data->len; 575 desc_list[0].guest_owned = true; 576 break; 577 } 578 case SEV_CMD_LAUNCH_MEASURE: { 579 struct sev_data_launch_measure *data = cmd_buf; 580 581 desc_list[0].paddr_ptr = &data->address; 582 desc_list[0].len = data->len; 583 break; 584 } 585 case SEV_CMD_LAUNCH_UPDATE_SECRET: { 586 struct sev_data_launch_secret *data = cmd_buf; 587 588 desc_list[0].paddr_ptr = &data->guest_address; 589 desc_list[0].len = data->guest_len; 590 desc_list[0].guest_owned = true; 591 break; 592 } 593 case SEV_CMD_DBG_DECRYPT: { 594 struct sev_data_dbg *data = cmd_buf; 595 596 desc_list[0].paddr_ptr = &data->dst_addr; 597 desc_list[0].len = data->len; 598 desc_list[0].guest_owned = true; 599 break; 600 } 601 case SEV_CMD_DBG_ENCRYPT: { 602 struct sev_data_dbg *data = cmd_buf; 603 604 desc_list[0].paddr_ptr = &data->dst_addr; 605 desc_list[0].len = data->len; 606 desc_list[0].guest_owned = true; 607 break; 608 } 609 case SEV_CMD_ATTESTATION_REPORT: { 610 struct sev_data_attestation_report *data = cmd_buf; 611 612 desc_list[0].paddr_ptr = &data->address; 613 desc_list[0].len = data->len; 614 break; 615 } 616 case SEV_CMD_SEND_START: { 617 struct sev_data_send_start *data = cmd_buf; 618 619 desc_list[0].paddr_ptr = &data->session_address; 620 desc_list[0].len = data->session_len; 621 break; 622 } 623 case SEV_CMD_SEND_UPDATE_DATA: { 624 struct sev_data_send_update_data *data = cmd_buf; 625 626 desc_list[0].paddr_ptr = &data->hdr_address; 627 desc_list[0].len = data->hdr_len; 628 desc_list[1].paddr_ptr = &data->trans_address; 629 desc_list[1].len = data->trans_len; 630 break; 631 } 632 case SEV_CMD_SEND_UPDATE_VMSA: { 633 struct sev_data_send_update_vmsa *data = cmd_buf; 634 635 desc_list[0].paddr_ptr = &data->hdr_address; 636 desc_list[0].len = data->hdr_len; 637 desc_list[1].paddr_ptr = &data->trans_address; 638 desc_list[1].len = data->trans_len; 639 break; 640 } 641 case SEV_CMD_RECEIVE_UPDATE_DATA: { 642 struct sev_data_receive_update_data *data = cmd_buf; 643 644 desc_list[0].paddr_ptr = &data->guest_address; 645 desc_list[0].len = data->guest_len; 646 desc_list[0].guest_owned = true; 647 break; 648 } 649 case SEV_CMD_RECEIVE_UPDATE_VMSA: { 650 struct sev_data_receive_update_vmsa *data = cmd_buf; 651 652 desc_list[0].paddr_ptr = &data->guest_address; 653 desc_list[0].len = data->guest_len; 654 desc_list[0].guest_owned = true; 655 break; 656 } 657 default: 658 break; 659 } 660 } 661 662 static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc) 663 { 664 unsigned int npages; 665 666 if (!desc->len) 667 return 0; 668 669 /* Allocate a bounce buffer if this isn't a guest owned page. */ 670 if (!desc->guest_owned) { 671 struct page *page; 672 673 page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len)); 674 if (!page) { 675 pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n"); 676 return -ENOMEM; 677 } 678 679 desc->paddr_orig = *desc->paddr_ptr; 680 *desc->paddr_ptr = __psp_pa(page_to_virt(page)); 681 } 682 683 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 684 685 /* Transition the buffer to firmware-owned. */ 686 if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) { 687 pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n"); 688 return -EFAULT; 689 } 690 691 return 0; 692 } 693 694 static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc) 695 { 696 unsigned int npages; 697 698 if (!desc->len) 699 return 0; 700 701 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 702 703 /* Transition the buffers back to hypervisor-owned. */ 704 if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) { 705 pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n"); 706 return -EFAULT; 707 } 708 709 /* Copy data from bounce buffer and then free it. */ 710 if (!desc->guest_owned) { 711 void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr)); 712 void *dst_buf = __va(__sme_clr(desc->paddr_orig)); 713 714 memcpy(dst_buf, bounce_buf, desc->len); 715 __free_pages(virt_to_page(bounce_buf), get_order(desc->len)); 716 717 /* Restore the original address in the command buffer. */ 718 *desc->paddr_ptr = desc->paddr_orig; 719 } 720 721 return 0; 722 } 723 724 static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 725 { 726 int i; 727 728 snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list); 729 730 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 731 struct cmd_buf_desc *desc = &desc_list[i]; 732 733 if (!desc->paddr_ptr) 734 break; 735 736 if (snp_map_cmd_buf_desc(desc)) 737 goto err_unmap; 738 } 739 740 return 0; 741 742 err_unmap: 743 for (i--; i >= 0; i--) 744 snp_unmap_cmd_buf_desc(&desc_list[i]); 745 746 return -EFAULT; 747 } 748 749 static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list) 750 { 751 int i, ret = 0; 752 753 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 754 struct cmd_buf_desc *desc = &desc_list[i]; 755 756 if (!desc->paddr_ptr) 757 break; 758 759 if (snp_unmap_cmd_buf_desc(&desc_list[i])) 760 ret = -EFAULT; 761 } 762 763 return ret; 764 } 765 766 static bool sev_cmd_buf_writable(int cmd) 767 { 768 switch (cmd) { 769 case SEV_CMD_PLATFORM_STATUS: 770 case SEV_CMD_GUEST_STATUS: 771 case SEV_CMD_LAUNCH_START: 772 case SEV_CMD_RECEIVE_START: 773 case SEV_CMD_LAUNCH_MEASURE: 774 case SEV_CMD_SEND_START: 775 case SEV_CMD_SEND_UPDATE_DATA: 776 case SEV_CMD_SEND_UPDATE_VMSA: 777 case SEV_CMD_PEK_CSR: 778 case SEV_CMD_PDH_CERT_EXPORT: 779 case SEV_CMD_GET_ID: 780 case SEV_CMD_ATTESTATION_REPORT: 781 return true; 782 default: 783 return false; 784 } 785 } 786 787 /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */ 788 static bool snp_legacy_handling_needed(int cmd) 789 { 790 struct sev_device *sev = psp_master->sev_data; 791 792 return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized; 793 } 794 795 static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 796 { 797 if (!snp_legacy_handling_needed(cmd)) 798 return 0; 799 800 if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list)) 801 return -EFAULT; 802 803 /* 804 * Before command execution, the command buffer needs to be put into 805 * the firmware-owned state. 806 */ 807 if (sev_cmd_buf_writable(cmd)) { 808 if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true)) 809 return -EFAULT; 810 } 811 812 return 0; 813 } 814 815 static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf) 816 { 817 if (!snp_legacy_handling_needed(cmd)) 818 return 0; 819 820 /* 821 * After command completion, the command buffer needs to be put back 822 * into the hypervisor-owned state. 823 */ 824 if (sev_cmd_buf_writable(cmd)) 825 if (snp_reclaim_pages(__pa(cmd_buf), 1, true)) 826 return -EFAULT; 827 828 return 0; 829 } 830 831 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret) 832 { 833 struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0}; 834 struct psp_device *psp = psp_master; 835 struct sev_device *sev; 836 unsigned int cmdbuff_hi, cmdbuff_lo; 837 unsigned int phys_lsb, phys_msb; 838 unsigned int reg, ret = 0; 839 void *cmd_buf; 840 int buf_len; 841 842 if (!psp || !psp->sev_data) 843 return -ENODEV; 844 845 if (psp_dead) 846 return -EBUSY; 847 848 sev = psp->sev_data; 849 850 buf_len = sev_cmd_buffer_len(cmd); 851 if (WARN_ON_ONCE(!data != !buf_len)) 852 return -EINVAL; 853 854 /* 855 * Copy the incoming data to driver's scratch buffer as __pa() will not 856 * work for some memory, e.g. vmalloc'd addresses, and @data may not be 857 * physically contiguous. 858 */ 859 if (data) { 860 /* 861 * Commands are generally issued one at a time and require the 862 * sev_cmd_mutex, but there could be recursive firmware requests 863 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while 864 * preparing buffers for another command. This is the only known 865 * case of nesting in the current code, so exactly one 866 * additional command buffer is available for that purpose. 867 */ 868 if (!sev->cmd_buf_active) { 869 cmd_buf = sev->cmd_buf; 870 sev->cmd_buf_active = true; 871 } else if (!sev->cmd_buf_backup_active) { 872 cmd_buf = sev->cmd_buf_backup; 873 sev->cmd_buf_backup_active = true; 874 } else { 875 dev_err(sev->dev, 876 "SEV: too many firmware commands in progress, no command buffers available.\n"); 877 return -EBUSY; 878 } 879 880 memcpy(cmd_buf, data, buf_len); 881 882 /* 883 * The behavior of the SEV-legacy commands is altered when the 884 * SNP firmware is in the INIT state. 885 */ 886 ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list); 887 if (ret) { 888 dev_err(sev->dev, 889 "SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n", 890 cmd, ret); 891 return ret; 892 } 893 } else { 894 cmd_buf = sev->cmd_buf; 895 } 896 897 /* Get the physical address of the command buffer */ 898 phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0; 899 phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0; 900 901 dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n", 902 cmd, phys_msb, phys_lsb, psp_timeout); 903 904 print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data, 905 buf_len, false); 906 907 iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 908 iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 909 910 sev->int_rcvd = 0; 911 912 reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd) | SEV_CMDRESP_IOC; 913 iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg); 914 915 /* wait for command completion */ 916 ret = sev_wait_cmd_ioc(sev, ®, psp_timeout); 917 if (ret) { 918 if (psp_ret) 919 *psp_ret = 0; 920 921 dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd); 922 psp_dead = true; 923 924 return ret; 925 } 926 927 psp_timeout = psp_cmd_timeout; 928 929 if (psp_ret) 930 *psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg); 931 932 if (FIELD_GET(PSP_CMDRESP_STS, reg)) { 933 dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n", 934 cmd, FIELD_GET(PSP_CMDRESP_STS, reg)); 935 936 /* 937 * PSP firmware may report additional error information in the 938 * command buffer registers on error. Print contents of command 939 * buffer registers if they changed. 940 */ 941 cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 942 cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 943 if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) { 944 dev_dbg(sev->dev, "Additional error information reported in cmdbuff:"); 945 dev_dbg(sev->dev, " cmdbuff hi: %#010x\n", cmdbuff_hi); 946 dev_dbg(sev->dev, " cmdbuff lo: %#010x\n", cmdbuff_lo); 947 } 948 ret = -EIO; 949 } else { 950 ret = sev_write_init_ex_file_if_required(cmd); 951 } 952 953 /* 954 * Copy potential output from the PSP back to data. Do this even on 955 * failure in case the caller wants to glean something from the error. 956 */ 957 if (data) { 958 int ret_reclaim; 959 /* 960 * Restore the page state after the command completes. 961 */ 962 ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf); 963 if (ret_reclaim) { 964 dev_err(sev->dev, 965 "SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n", 966 cmd, ret_reclaim); 967 return ret_reclaim; 968 } 969 970 memcpy(data, cmd_buf, buf_len); 971 972 if (sev->cmd_buf_backup_active) 973 sev->cmd_buf_backup_active = false; 974 else 975 sev->cmd_buf_active = false; 976 977 if (snp_unmap_cmd_buf_desc_list(desc_list)) 978 return -EFAULT; 979 } 980 981 print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data, 982 buf_len, false); 983 984 return ret; 985 } 986 987 int sev_do_cmd(int cmd, void *data, int *psp_ret) 988 { 989 int rc; 990 991 mutex_lock(&sev_cmd_mutex); 992 rc = __sev_do_cmd_locked(cmd, data, psp_ret); 993 mutex_unlock(&sev_cmd_mutex); 994 995 return rc; 996 } 997 EXPORT_SYMBOL_GPL(sev_do_cmd); 998 999 static int __sev_init_locked(int *error) 1000 { 1001 struct sev_data_init data; 1002 1003 memset(&data, 0, sizeof(data)); 1004 if (sev_es_tmr) { 1005 /* 1006 * Do not include the encryption mask on the physical 1007 * address of the TMR (firmware should clear it anyway). 1008 */ 1009 data.tmr_address = __pa(sev_es_tmr); 1010 1011 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1012 data.tmr_len = sev_es_tmr_size; 1013 } 1014 1015 return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error); 1016 } 1017 1018 static int __sev_init_ex_locked(int *error) 1019 { 1020 struct sev_data_init_ex data; 1021 1022 memset(&data, 0, sizeof(data)); 1023 data.length = sizeof(data); 1024 data.nv_address = __psp_pa(sev_init_ex_buffer); 1025 data.nv_len = NV_LENGTH; 1026 1027 if (sev_es_tmr) { 1028 /* 1029 * Do not include the encryption mask on the physical 1030 * address of the TMR (firmware should clear it anyway). 1031 */ 1032 data.tmr_address = __pa(sev_es_tmr); 1033 1034 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1035 data.tmr_len = sev_es_tmr_size; 1036 } 1037 1038 return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error); 1039 } 1040 1041 static inline int __sev_do_init_locked(int *psp_ret) 1042 { 1043 if (sev_init_ex_buffer) 1044 return __sev_init_ex_locked(psp_ret); 1045 else 1046 return __sev_init_locked(psp_ret); 1047 } 1048 1049 static void snp_set_hsave_pa(void *arg) 1050 { 1051 wrmsrl(MSR_VM_HSAVE_PA, 0); 1052 } 1053 1054 static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg) 1055 { 1056 struct sev_data_range_list *range_list = arg; 1057 struct sev_data_range *range = &range_list->ranges[range_list->num_elements]; 1058 size_t size; 1059 1060 /* 1061 * Ensure the list of HV_FIXED pages that will be passed to firmware 1062 * do not exceed the page-sized argument buffer. 1063 */ 1064 if ((range_list->num_elements * sizeof(struct sev_data_range) + 1065 sizeof(struct sev_data_range_list)) > PAGE_SIZE) 1066 return -E2BIG; 1067 1068 switch (rs->desc) { 1069 case E820_TYPE_RESERVED: 1070 case E820_TYPE_PMEM: 1071 case E820_TYPE_ACPI: 1072 range->base = rs->start & PAGE_MASK; 1073 size = PAGE_ALIGN((rs->end + 1) - rs->start); 1074 range->page_count = size >> PAGE_SHIFT; 1075 range_list->num_elements++; 1076 break; 1077 default: 1078 break; 1079 } 1080 1081 return 0; 1082 } 1083 1084 static int __sev_snp_init_locked(int *error) 1085 { 1086 struct psp_device *psp = psp_master; 1087 struct sev_data_snp_init_ex data; 1088 struct sev_device *sev; 1089 void *arg = &data; 1090 int cmd, rc = 0; 1091 1092 if (!cpu_feature_enabled(X86_FEATURE_SEV_SNP)) 1093 return -ENODEV; 1094 1095 sev = psp->sev_data; 1096 1097 if (sev->snp_initialized) 1098 return 0; 1099 1100 if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) { 1101 dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n", 1102 SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR); 1103 return 0; 1104 } 1105 1106 /* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */ 1107 on_each_cpu(snp_set_hsave_pa, NULL, 1); 1108 1109 /* 1110 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list 1111 * of system physical address ranges to convert into HV-fixed page 1112 * states during the RMP initialization. For instance, the memory that 1113 * UEFI reserves should be included in the that list. This allows system 1114 * components that occasionally write to memory (e.g. logging to UEFI 1115 * reserved regions) to not fail due to RMP initialization and SNP 1116 * enablement. 1117 * 1118 */ 1119 if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) { 1120 /* 1121 * Firmware checks that the pages containing the ranges enumerated 1122 * in the RANGES structure are either in the default page state or in the 1123 * firmware page state. 1124 */ 1125 snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL); 1126 if (!snp_range_list) { 1127 dev_err(sev->dev, 1128 "SEV: SNP_INIT_EX range list memory allocation failed\n"); 1129 return -ENOMEM; 1130 } 1131 1132 /* 1133 * Retrieve all reserved memory regions from the e820 memory map 1134 * to be setup as HV-fixed pages. 1135 */ 1136 rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0, 1137 snp_range_list, snp_filter_reserved_mem_regions); 1138 if (rc) { 1139 dev_err(sev->dev, 1140 "SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc); 1141 return rc; 1142 } 1143 1144 memset(&data, 0, sizeof(data)); 1145 data.init_rmp = 1; 1146 data.list_paddr_en = 1; 1147 data.list_paddr = __psp_pa(snp_range_list); 1148 cmd = SEV_CMD_SNP_INIT_EX; 1149 } else { 1150 cmd = SEV_CMD_SNP_INIT; 1151 arg = NULL; 1152 } 1153 1154 /* 1155 * The following sequence must be issued before launching the first SNP 1156 * guest to ensure all dirty cache lines are flushed, including from 1157 * updates to the RMP table itself via the RMPUPDATE instruction: 1158 * 1159 * - WBINVD on all running CPUs 1160 * - SEV_CMD_SNP_INIT[_EX] firmware command 1161 * - WBINVD on all running CPUs 1162 * - SEV_CMD_SNP_DF_FLUSH firmware command 1163 */ 1164 wbinvd_on_all_cpus(); 1165 1166 rc = __sev_do_cmd_locked(cmd, arg, error); 1167 if (rc) 1168 return rc; 1169 1170 /* Prepare for first SNP guest launch after INIT. */ 1171 wbinvd_on_all_cpus(); 1172 rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error); 1173 if (rc) 1174 return rc; 1175 1176 sev->snp_initialized = true; 1177 dev_dbg(sev->dev, "SEV-SNP firmware initialized\n"); 1178 1179 sev_es_tmr_size = SNP_TMR_SIZE; 1180 1181 return rc; 1182 } 1183 1184 static void __sev_platform_init_handle_tmr(struct sev_device *sev) 1185 { 1186 if (sev_es_tmr) 1187 return; 1188 1189 /* Obtain the TMR memory area for SEV-ES use */ 1190 sev_es_tmr = sev_fw_alloc(sev_es_tmr_size); 1191 if (sev_es_tmr) { 1192 /* Must flush the cache before giving it to the firmware */ 1193 if (!sev->snp_initialized) 1194 clflush_cache_range(sev_es_tmr, sev_es_tmr_size); 1195 } else { 1196 dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n"); 1197 } 1198 } 1199 1200 /* 1201 * If an init_ex_path is provided allocate a buffer for the file and 1202 * read in the contents. Additionally, if SNP is initialized, convert 1203 * the buffer pages to firmware pages. 1204 */ 1205 static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev) 1206 { 1207 struct page *page; 1208 int rc; 1209 1210 if (!init_ex_path) 1211 return 0; 1212 1213 if (sev_init_ex_buffer) 1214 return 0; 1215 1216 page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH)); 1217 if (!page) { 1218 dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n"); 1219 return -ENOMEM; 1220 } 1221 1222 sev_init_ex_buffer = page_address(page); 1223 1224 rc = sev_read_init_ex_file(); 1225 if (rc) 1226 return rc; 1227 1228 /* If SEV-SNP is initialized, transition to firmware page. */ 1229 if (sev->snp_initialized) { 1230 unsigned long npages; 1231 1232 npages = 1UL << get_order(NV_LENGTH); 1233 if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) { 1234 dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n"); 1235 return -ENOMEM; 1236 } 1237 } 1238 1239 return 0; 1240 } 1241 1242 static int __sev_platform_init_locked(int *error) 1243 { 1244 int rc, psp_ret = SEV_RET_NO_FW_CALL; 1245 struct sev_device *sev; 1246 1247 if (!psp_master || !psp_master->sev_data) 1248 return -ENODEV; 1249 1250 sev = psp_master->sev_data; 1251 1252 if (sev->state == SEV_STATE_INIT) 1253 return 0; 1254 1255 __sev_platform_init_handle_tmr(sev); 1256 1257 rc = __sev_platform_init_handle_init_ex_path(sev); 1258 if (rc) 1259 return rc; 1260 1261 rc = __sev_do_init_locked(&psp_ret); 1262 if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) { 1263 /* 1264 * Initialization command returned an integrity check failure 1265 * status code, meaning that firmware load and validation of SEV 1266 * related persistent data has failed. Retrying the 1267 * initialization function should succeed by replacing the state 1268 * with a reset state. 1269 */ 1270 dev_err(sev->dev, 1271 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state."); 1272 rc = __sev_do_init_locked(&psp_ret); 1273 } 1274 1275 if (error) 1276 *error = psp_ret; 1277 1278 if (rc) 1279 return rc; 1280 1281 sev->state = SEV_STATE_INIT; 1282 1283 /* Prepare for first SEV guest launch after INIT */ 1284 wbinvd_on_all_cpus(); 1285 rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error); 1286 if (rc) 1287 return rc; 1288 1289 dev_dbg(sev->dev, "SEV firmware initialized\n"); 1290 1291 dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major, 1292 sev->api_minor, sev->build); 1293 1294 return 0; 1295 } 1296 1297 static int _sev_platform_init_locked(struct sev_platform_init_args *args) 1298 { 1299 struct sev_device *sev; 1300 int rc; 1301 1302 if (!psp_master || !psp_master->sev_data) 1303 return -ENODEV; 1304 1305 sev = psp_master->sev_data; 1306 1307 if (sev->state == SEV_STATE_INIT) 1308 return 0; 1309 1310 /* 1311 * Legacy guests cannot be running while SNP_INIT(_EX) is executing, 1312 * so perform SEV-SNP initialization at probe time. 1313 */ 1314 rc = __sev_snp_init_locked(&args->error); 1315 if (rc && rc != -ENODEV) { 1316 /* 1317 * Don't abort the probe if SNP INIT failed, 1318 * continue to initialize the legacy SEV firmware. 1319 */ 1320 dev_err(sev->dev, "SEV-SNP: failed to INIT rc %d, error %#x\n", 1321 rc, args->error); 1322 } 1323 1324 /* Defer legacy SEV/SEV-ES support if allowed by caller/module. */ 1325 if (args->probe && !psp_init_on_probe) 1326 return 0; 1327 1328 return __sev_platform_init_locked(&args->error); 1329 } 1330 1331 int sev_platform_init(struct sev_platform_init_args *args) 1332 { 1333 int rc; 1334 1335 mutex_lock(&sev_cmd_mutex); 1336 rc = _sev_platform_init_locked(args); 1337 mutex_unlock(&sev_cmd_mutex); 1338 1339 return rc; 1340 } 1341 EXPORT_SYMBOL_GPL(sev_platform_init); 1342 1343 static int __sev_platform_shutdown_locked(int *error) 1344 { 1345 struct sev_device *sev = psp_master->sev_data; 1346 int ret; 1347 1348 if (!sev || sev->state == SEV_STATE_UNINIT) 1349 return 0; 1350 1351 ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error); 1352 if (ret) 1353 return ret; 1354 1355 sev->state = SEV_STATE_UNINIT; 1356 dev_dbg(sev->dev, "SEV firmware shutdown\n"); 1357 1358 return ret; 1359 } 1360 1361 static int sev_get_platform_state(int *state, int *error) 1362 { 1363 struct sev_user_data_status data; 1364 int rc; 1365 1366 rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error); 1367 if (rc) 1368 return rc; 1369 1370 *state = data.state; 1371 return rc; 1372 } 1373 1374 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable) 1375 { 1376 int state, rc; 1377 1378 if (!writable) 1379 return -EPERM; 1380 1381 /* 1382 * The SEV spec requires that FACTORY_RESET must be issued in 1383 * UNINIT state. Before we go further lets check if any guest is 1384 * active. 1385 * 1386 * If FW is in WORKING state then deny the request otherwise issue 1387 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET. 1388 * 1389 */ 1390 rc = sev_get_platform_state(&state, &argp->error); 1391 if (rc) 1392 return rc; 1393 1394 if (state == SEV_STATE_WORKING) 1395 return -EBUSY; 1396 1397 if (state == SEV_STATE_INIT) { 1398 rc = __sev_platform_shutdown_locked(&argp->error); 1399 if (rc) 1400 return rc; 1401 } 1402 1403 return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error); 1404 } 1405 1406 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp) 1407 { 1408 struct sev_user_data_status data; 1409 int ret; 1410 1411 memset(&data, 0, sizeof(data)); 1412 1413 ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error); 1414 if (ret) 1415 return ret; 1416 1417 if (copy_to_user((void __user *)argp->data, &data, sizeof(data))) 1418 ret = -EFAULT; 1419 1420 return ret; 1421 } 1422 1423 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable) 1424 { 1425 struct sev_device *sev = psp_master->sev_data; 1426 int rc; 1427 1428 if (!writable) 1429 return -EPERM; 1430 1431 if (sev->state == SEV_STATE_UNINIT) { 1432 rc = __sev_platform_init_locked(&argp->error); 1433 if (rc) 1434 return rc; 1435 } 1436 1437 return __sev_do_cmd_locked(cmd, NULL, &argp->error); 1438 } 1439 1440 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable) 1441 { 1442 struct sev_device *sev = psp_master->sev_data; 1443 struct sev_user_data_pek_csr input; 1444 struct sev_data_pek_csr data; 1445 void __user *input_address; 1446 void *blob = NULL; 1447 int ret; 1448 1449 if (!writable) 1450 return -EPERM; 1451 1452 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1453 return -EFAULT; 1454 1455 memset(&data, 0, sizeof(data)); 1456 1457 /* userspace wants to query CSR length */ 1458 if (!input.address || !input.length) 1459 goto cmd; 1460 1461 /* allocate a physically contiguous buffer to store the CSR blob */ 1462 input_address = (void __user *)input.address; 1463 if (input.length > SEV_FW_BLOB_MAX_SIZE) 1464 return -EFAULT; 1465 1466 blob = kzalloc(input.length, GFP_KERNEL); 1467 if (!blob) 1468 return -ENOMEM; 1469 1470 data.address = __psp_pa(blob); 1471 data.len = input.length; 1472 1473 cmd: 1474 if (sev->state == SEV_STATE_UNINIT) { 1475 ret = __sev_platform_init_locked(&argp->error); 1476 if (ret) 1477 goto e_free_blob; 1478 } 1479 1480 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error); 1481 1482 /* If we query the CSR length, FW responded with expected data. */ 1483 input.length = data.len; 1484 1485 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1486 ret = -EFAULT; 1487 goto e_free_blob; 1488 } 1489 1490 if (blob) { 1491 if (copy_to_user(input_address, blob, input.length)) 1492 ret = -EFAULT; 1493 } 1494 1495 e_free_blob: 1496 kfree(blob); 1497 return ret; 1498 } 1499 1500 void *psp_copy_user_blob(u64 uaddr, u32 len) 1501 { 1502 if (!uaddr || !len) 1503 return ERR_PTR(-EINVAL); 1504 1505 /* verify that blob length does not exceed our limit */ 1506 if (len > SEV_FW_BLOB_MAX_SIZE) 1507 return ERR_PTR(-EINVAL); 1508 1509 return memdup_user((void __user *)uaddr, len); 1510 } 1511 EXPORT_SYMBOL_GPL(psp_copy_user_blob); 1512 1513 static int sev_get_api_version(void) 1514 { 1515 struct sev_device *sev = psp_master->sev_data; 1516 struct sev_user_data_status status; 1517 int error = 0, ret; 1518 1519 ret = sev_platform_status(&status, &error); 1520 if (ret) { 1521 dev_err(sev->dev, 1522 "SEV: failed to get status. Error: %#x\n", error); 1523 return 1; 1524 } 1525 1526 sev->api_major = status.api_major; 1527 sev->api_minor = status.api_minor; 1528 sev->build = status.build; 1529 sev->state = status.state; 1530 1531 return 0; 1532 } 1533 1534 static int sev_get_firmware(struct device *dev, 1535 const struct firmware **firmware) 1536 { 1537 char fw_name_specific[SEV_FW_NAME_SIZE]; 1538 char fw_name_subset[SEV_FW_NAME_SIZE]; 1539 1540 snprintf(fw_name_specific, sizeof(fw_name_specific), 1541 "amd/amd_sev_fam%.2xh_model%.2xh.sbin", 1542 boot_cpu_data.x86, boot_cpu_data.x86_model); 1543 1544 snprintf(fw_name_subset, sizeof(fw_name_subset), 1545 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin", 1546 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4); 1547 1548 /* Check for SEV FW for a particular model. 1549 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h 1550 * 1551 * or 1552 * 1553 * Check for SEV FW common to a subset of models. 1554 * Ex. amd_sev_fam17h_model0xh.sbin for 1555 * Family 17h Model 00h -- Family 17h Model 0Fh 1556 * 1557 * or 1558 * 1559 * Fall-back to using generic name: sev.fw 1560 */ 1561 if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) || 1562 (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) || 1563 (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0)) 1564 return 0; 1565 1566 return -ENOENT; 1567 } 1568 1569 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */ 1570 static int sev_update_firmware(struct device *dev) 1571 { 1572 struct sev_data_download_firmware *data; 1573 const struct firmware *firmware; 1574 int ret, error, order; 1575 struct page *p; 1576 u64 data_size; 1577 1578 if (!sev_version_greater_or_equal(0, 15)) { 1579 dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n"); 1580 return -1; 1581 } 1582 1583 if (sev_get_firmware(dev, &firmware) == -ENOENT) { 1584 dev_dbg(dev, "No SEV firmware file present\n"); 1585 return -1; 1586 } 1587 1588 /* 1589 * SEV FW expects the physical address given to it to be 32 1590 * byte aligned. Memory allocated has structure placed at the 1591 * beginning followed by the firmware being passed to the SEV 1592 * FW. Allocate enough memory for data structure + alignment 1593 * padding + SEV FW. 1594 */ 1595 data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32); 1596 1597 order = get_order(firmware->size + data_size); 1598 p = alloc_pages(GFP_KERNEL, order); 1599 if (!p) { 1600 ret = -1; 1601 goto fw_err; 1602 } 1603 1604 /* 1605 * Copy firmware data to a kernel allocated contiguous 1606 * memory region. 1607 */ 1608 data = page_address(p); 1609 memcpy(page_address(p) + data_size, firmware->data, firmware->size); 1610 1611 data->address = __psp_pa(page_address(p) + data_size); 1612 data->len = firmware->size; 1613 1614 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1615 1616 /* 1617 * A quirk for fixing the committed TCB version, when upgrading from 1618 * earlier firmware version than 1.50. 1619 */ 1620 if (!ret && !sev_version_greater_or_equal(1, 50)) 1621 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1622 1623 if (ret) 1624 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error); 1625 else 1626 dev_info(dev, "SEV firmware update successful\n"); 1627 1628 __free_pages(p, order); 1629 1630 fw_err: 1631 release_firmware(firmware); 1632 1633 return ret; 1634 } 1635 1636 static int __sev_snp_shutdown_locked(int *error, bool panic) 1637 { 1638 struct sev_device *sev = psp_master->sev_data; 1639 struct sev_data_snp_shutdown_ex data; 1640 int ret; 1641 1642 if (!sev->snp_initialized) 1643 return 0; 1644 1645 memset(&data, 0, sizeof(data)); 1646 data.len = sizeof(data); 1647 data.iommu_snp_shutdown = 1; 1648 1649 /* 1650 * If invoked during panic handling, local interrupts are disabled 1651 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called. 1652 * In that case, a wbinvd() is done on remote CPUs via the NMI 1653 * callback, so only a local wbinvd() is needed here. 1654 */ 1655 if (!panic) 1656 wbinvd_on_all_cpus(); 1657 else 1658 wbinvd(); 1659 1660 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error); 1661 /* SHUTDOWN may require DF_FLUSH */ 1662 if (*error == SEV_RET_DFFLUSH_REQUIRED) { 1663 ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, NULL); 1664 if (ret) { 1665 dev_err(sev->dev, "SEV-SNP DF_FLUSH failed\n"); 1666 return ret; 1667 } 1668 /* reissue the shutdown command */ 1669 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, 1670 error); 1671 } 1672 if (ret) { 1673 dev_err(sev->dev, "SEV-SNP firmware shutdown failed\n"); 1674 return ret; 1675 } 1676 1677 /* 1678 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP 1679 * enforcement by the IOMMU and also transitions all pages 1680 * associated with the IOMMU to the Reclaim state. 1681 * Firmware was transitioning the IOMMU pages to Hypervisor state 1682 * before version 1.53. But, accounting for the number of assigned 1683 * 4kB pages in a 2M page was done incorrectly by not transitioning 1684 * to the Reclaim state. This resulted in RMP #PF when later accessing 1685 * the 2M page containing those pages during kexec boot. Hence, the 1686 * firmware now transitions these pages to Reclaim state and hypervisor 1687 * needs to transition these pages to shared state. SNP Firmware 1688 * version 1.53 and above are needed for kexec boot. 1689 */ 1690 ret = amd_iommu_snp_disable(); 1691 if (ret) { 1692 dev_err(sev->dev, "SNP IOMMU shutdown failed\n"); 1693 return ret; 1694 } 1695 1696 sev->snp_initialized = false; 1697 dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n"); 1698 1699 return ret; 1700 } 1701 1702 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable) 1703 { 1704 struct sev_device *sev = psp_master->sev_data; 1705 struct sev_user_data_pek_cert_import input; 1706 struct sev_data_pek_cert_import data; 1707 void *pek_blob, *oca_blob; 1708 int ret; 1709 1710 if (!writable) 1711 return -EPERM; 1712 1713 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1714 return -EFAULT; 1715 1716 /* copy PEK certificate blobs from userspace */ 1717 pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len); 1718 if (IS_ERR(pek_blob)) 1719 return PTR_ERR(pek_blob); 1720 1721 data.reserved = 0; 1722 data.pek_cert_address = __psp_pa(pek_blob); 1723 data.pek_cert_len = input.pek_cert_len; 1724 1725 /* copy PEK certificate blobs from userspace */ 1726 oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len); 1727 if (IS_ERR(oca_blob)) { 1728 ret = PTR_ERR(oca_blob); 1729 goto e_free_pek; 1730 } 1731 1732 data.oca_cert_address = __psp_pa(oca_blob); 1733 data.oca_cert_len = input.oca_cert_len; 1734 1735 /* If platform is not in INIT state then transition it to INIT */ 1736 if (sev->state != SEV_STATE_INIT) { 1737 ret = __sev_platform_init_locked(&argp->error); 1738 if (ret) 1739 goto e_free_oca; 1740 } 1741 1742 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error); 1743 1744 e_free_oca: 1745 kfree(oca_blob); 1746 e_free_pek: 1747 kfree(pek_blob); 1748 return ret; 1749 } 1750 1751 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp) 1752 { 1753 struct sev_user_data_get_id2 input; 1754 struct sev_data_get_id data; 1755 void __user *input_address; 1756 void *id_blob = NULL; 1757 int ret; 1758 1759 /* SEV GET_ID is available from SEV API v0.16 and up */ 1760 if (!sev_version_greater_or_equal(0, 16)) 1761 return -ENOTSUPP; 1762 1763 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1764 return -EFAULT; 1765 1766 input_address = (void __user *)input.address; 1767 1768 if (input.address && input.length) { 1769 /* 1770 * The length of the ID shouldn't be assumed by software since 1771 * it may change in the future. The allocation size is limited 1772 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator. 1773 * If the allocation fails, simply return ENOMEM rather than 1774 * warning in the kernel log. 1775 */ 1776 id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN); 1777 if (!id_blob) 1778 return -ENOMEM; 1779 1780 data.address = __psp_pa(id_blob); 1781 data.len = input.length; 1782 } else { 1783 data.address = 0; 1784 data.len = 0; 1785 } 1786 1787 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error); 1788 1789 /* 1790 * Firmware will return the length of the ID value (either the minimum 1791 * required length or the actual length written), return it to the user. 1792 */ 1793 input.length = data.len; 1794 1795 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1796 ret = -EFAULT; 1797 goto e_free; 1798 } 1799 1800 if (id_blob) { 1801 if (copy_to_user(input_address, id_blob, data.len)) { 1802 ret = -EFAULT; 1803 goto e_free; 1804 } 1805 } 1806 1807 e_free: 1808 kfree(id_blob); 1809 1810 return ret; 1811 } 1812 1813 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp) 1814 { 1815 struct sev_data_get_id *data; 1816 u64 data_size, user_size; 1817 void *id_blob, *mem; 1818 int ret; 1819 1820 /* SEV GET_ID available from SEV API v0.16 and up */ 1821 if (!sev_version_greater_or_equal(0, 16)) 1822 return -ENOTSUPP; 1823 1824 /* SEV FW expects the buffer it fills with the ID to be 1825 * 8-byte aligned. Memory allocated should be enough to 1826 * hold data structure + alignment padding + memory 1827 * where SEV FW writes the ID. 1828 */ 1829 data_size = ALIGN(sizeof(struct sev_data_get_id), 8); 1830 user_size = sizeof(struct sev_user_data_get_id); 1831 1832 mem = kzalloc(data_size + user_size, GFP_KERNEL); 1833 if (!mem) 1834 return -ENOMEM; 1835 1836 data = mem; 1837 id_blob = mem + data_size; 1838 1839 data->address = __psp_pa(id_blob); 1840 data->len = user_size; 1841 1842 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); 1843 if (!ret) { 1844 if (copy_to_user((void __user *)argp->data, id_blob, data->len)) 1845 ret = -EFAULT; 1846 } 1847 1848 kfree(mem); 1849 1850 return ret; 1851 } 1852 1853 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable) 1854 { 1855 struct sev_device *sev = psp_master->sev_data; 1856 struct sev_user_data_pdh_cert_export input; 1857 void *pdh_blob = NULL, *cert_blob = NULL; 1858 struct sev_data_pdh_cert_export data; 1859 void __user *input_cert_chain_address; 1860 void __user *input_pdh_cert_address; 1861 int ret; 1862 1863 /* If platform is not in INIT state then transition it to INIT. */ 1864 if (sev->state != SEV_STATE_INIT) { 1865 if (!writable) 1866 return -EPERM; 1867 1868 ret = __sev_platform_init_locked(&argp->error); 1869 if (ret) 1870 return ret; 1871 } 1872 1873 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1874 return -EFAULT; 1875 1876 memset(&data, 0, sizeof(data)); 1877 1878 /* Userspace wants to query the certificate length. */ 1879 if (!input.pdh_cert_address || 1880 !input.pdh_cert_len || 1881 !input.cert_chain_address) 1882 goto cmd; 1883 1884 input_pdh_cert_address = (void __user *)input.pdh_cert_address; 1885 input_cert_chain_address = (void __user *)input.cert_chain_address; 1886 1887 /* Allocate a physically contiguous buffer to store the PDH blob. */ 1888 if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE) 1889 return -EFAULT; 1890 1891 /* Allocate a physically contiguous buffer to store the cert chain blob. */ 1892 if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE) 1893 return -EFAULT; 1894 1895 pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL); 1896 if (!pdh_blob) 1897 return -ENOMEM; 1898 1899 data.pdh_cert_address = __psp_pa(pdh_blob); 1900 data.pdh_cert_len = input.pdh_cert_len; 1901 1902 cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL); 1903 if (!cert_blob) { 1904 ret = -ENOMEM; 1905 goto e_free_pdh; 1906 } 1907 1908 data.cert_chain_address = __psp_pa(cert_blob); 1909 data.cert_chain_len = input.cert_chain_len; 1910 1911 cmd: 1912 ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error); 1913 1914 /* If we query the length, FW responded with expected data. */ 1915 input.cert_chain_len = data.cert_chain_len; 1916 input.pdh_cert_len = data.pdh_cert_len; 1917 1918 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1919 ret = -EFAULT; 1920 goto e_free_cert; 1921 } 1922 1923 if (pdh_blob) { 1924 if (copy_to_user(input_pdh_cert_address, 1925 pdh_blob, input.pdh_cert_len)) { 1926 ret = -EFAULT; 1927 goto e_free_cert; 1928 } 1929 } 1930 1931 if (cert_blob) { 1932 if (copy_to_user(input_cert_chain_address, 1933 cert_blob, input.cert_chain_len)) 1934 ret = -EFAULT; 1935 } 1936 1937 e_free_cert: 1938 kfree(cert_blob); 1939 e_free_pdh: 1940 kfree(pdh_blob); 1941 return ret; 1942 } 1943 1944 static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp) 1945 { 1946 struct sev_device *sev = psp_master->sev_data; 1947 struct sev_data_snp_addr buf; 1948 struct page *status_page; 1949 void *data; 1950 int ret; 1951 1952 if (!sev->snp_initialized || !argp->data) 1953 return -EINVAL; 1954 1955 status_page = alloc_page(GFP_KERNEL_ACCOUNT); 1956 if (!status_page) 1957 return -ENOMEM; 1958 1959 data = page_address(status_page); 1960 1961 /* 1962 * Firmware expects status page to be in firmware-owned state, otherwise 1963 * it will report firmware error code INVALID_PAGE_STATE (0x1A). 1964 */ 1965 if (rmp_mark_pages_firmware(__pa(data), 1, true)) { 1966 ret = -EFAULT; 1967 goto cleanup; 1968 } 1969 1970 buf.address = __psp_pa(data); 1971 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error); 1972 1973 /* 1974 * Status page will be transitioned to Reclaim state upon success, or 1975 * left in Firmware state in failure. Use snp_reclaim_pages() to 1976 * transition either case back to Hypervisor-owned state. 1977 */ 1978 if (snp_reclaim_pages(__pa(data), 1, true)) 1979 return -EFAULT; 1980 1981 if (ret) 1982 goto cleanup; 1983 1984 if (copy_to_user((void __user *)argp->data, data, 1985 sizeof(struct sev_user_data_snp_status))) 1986 ret = -EFAULT; 1987 1988 cleanup: 1989 __free_pages(status_page, 0); 1990 return ret; 1991 } 1992 1993 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) 1994 { 1995 void __user *argp = (void __user *)arg; 1996 struct sev_issue_cmd input; 1997 int ret = -EFAULT; 1998 bool writable = file->f_mode & FMODE_WRITE; 1999 2000 if (!psp_master || !psp_master->sev_data) 2001 return -ENODEV; 2002 2003 if (ioctl != SEV_ISSUE_CMD) 2004 return -EINVAL; 2005 2006 if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd))) 2007 return -EFAULT; 2008 2009 if (input.cmd > SEV_MAX) 2010 return -EINVAL; 2011 2012 mutex_lock(&sev_cmd_mutex); 2013 2014 switch (input.cmd) { 2015 2016 case SEV_FACTORY_RESET: 2017 ret = sev_ioctl_do_reset(&input, writable); 2018 break; 2019 case SEV_PLATFORM_STATUS: 2020 ret = sev_ioctl_do_platform_status(&input); 2021 break; 2022 case SEV_PEK_GEN: 2023 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable); 2024 break; 2025 case SEV_PDH_GEN: 2026 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable); 2027 break; 2028 case SEV_PEK_CSR: 2029 ret = sev_ioctl_do_pek_csr(&input, writable); 2030 break; 2031 case SEV_PEK_CERT_IMPORT: 2032 ret = sev_ioctl_do_pek_import(&input, writable); 2033 break; 2034 case SEV_PDH_CERT_EXPORT: 2035 ret = sev_ioctl_do_pdh_export(&input, writable); 2036 break; 2037 case SEV_GET_ID: 2038 pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n"); 2039 ret = sev_ioctl_do_get_id(&input); 2040 break; 2041 case SEV_GET_ID2: 2042 ret = sev_ioctl_do_get_id2(&input); 2043 break; 2044 case SNP_PLATFORM_STATUS: 2045 ret = sev_ioctl_do_snp_platform_status(&input); 2046 break; 2047 default: 2048 ret = -EINVAL; 2049 goto out; 2050 } 2051 2052 if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd))) 2053 ret = -EFAULT; 2054 out: 2055 mutex_unlock(&sev_cmd_mutex); 2056 2057 return ret; 2058 } 2059 2060 static const struct file_operations sev_fops = { 2061 .owner = THIS_MODULE, 2062 .unlocked_ioctl = sev_ioctl, 2063 }; 2064 2065 int sev_platform_status(struct sev_user_data_status *data, int *error) 2066 { 2067 return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error); 2068 } 2069 EXPORT_SYMBOL_GPL(sev_platform_status); 2070 2071 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error) 2072 { 2073 return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error); 2074 } 2075 EXPORT_SYMBOL_GPL(sev_guest_deactivate); 2076 2077 int sev_guest_activate(struct sev_data_activate *data, int *error) 2078 { 2079 return sev_do_cmd(SEV_CMD_ACTIVATE, data, error); 2080 } 2081 EXPORT_SYMBOL_GPL(sev_guest_activate); 2082 2083 int sev_guest_decommission(struct sev_data_decommission *data, int *error) 2084 { 2085 return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error); 2086 } 2087 EXPORT_SYMBOL_GPL(sev_guest_decommission); 2088 2089 int sev_guest_df_flush(int *error) 2090 { 2091 return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error); 2092 } 2093 EXPORT_SYMBOL_GPL(sev_guest_df_flush); 2094 2095 static void sev_exit(struct kref *ref) 2096 { 2097 misc_deregister(&misc_dev->misc); 2098 kfree(misc_dev); 2099 misc_dev = NULL; 2100 } 2101 2102 static int sev_misc_init(struct sev_device *sev) 2103 { 2104 struct device *dev = sev->dev; 2105 int ret; 2106 2107 /* 2108 * SEV feature support can be detected on multiple devices but the SEV 2109 * FW commands must be issued on the master. During probe, we do not 2110 * know the master hence we create /dev/sev on the first device probe. 2111 * sev_do_cmd() finds the right master device to which to issue the 2112 * command to the firmware. 2113 */ 2114 if (!misc_dev) { 2115 struct miscdevice *misc; 2116 2117 misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL); 2118 if (!misc_dev) 2119 return -ENOMEM; 2120 2121 misc = &misc_dev->misc; 2122 misc->minor = MISC_DYNAMIC_MINOR; 2123 misc->name = DEVICE_NAME; 2124 misc->fops = &sev_fops; 2125 2126 ret = misc_register(misc); 2127 if (ret) 2128 return ret; 2129 2130 kref_init(&misc_dev->refcount); 2131 } else { 2132 kref_get(&misc_dev->refcount); 2133 } 2134 2135 init_waitqueue_head(&sev->int_queue); 2136 sev->misc = misc_dev; 2137 dev_dbg(dev, "registered SEV device\n"); 2138 2139 return 0; 2140 } 2141 2142 int sev_dev_init(struct psp_device *psp) 2143 { 2144 struct device *dev = psp->dev; 2145 struct sev_device *sev; 2146 int ret = -ENOMEM; 2147 2148 if (!boot_cpu_has(X86_FEATURE_SEV)) { 2149 dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n"); 2150 return 0; 2151 } 2152 2153 sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL); 2154 if (!sev) 2155 goto e_err; 2156 2157 sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1); 2158 if (!sev->cmd_buf) 2159 goto e_sev; 2160 2161 sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE; 2162 2163 psp->sev_data = sev; 2164 2165 sev->dev = dev; 2166 sev->psp = psp; 2167 2168 sev->io_regs = psp->io_regs; 2169 2170 sev->vdata = (struct sev_vdata *)psp->vdata->sev; 2171 if (!sev->vdata) { 2172 ret = -ENODEV; 2173 dev_err(dev, "sev: missing driver data\n"); 2174 goto e_buf; 2175 } 2176 2177 psp_set_sev_irq_handler(psp, sev_irq_handler, sev); 2178 2179 ret = sev_misc_init(sev); 2180 if (ret) 2181 goto e_irq; 2182 2183 dev_notice(dev, "sev enabled\n"); 2184 2185 return 0; 2186 2187 e_irq: 2188 psp_clear_sev_irq_handler(psp); 2189 e_buf: 2190 devm_free_pages(dev, (unsigned long)sev->cmd_buf); 2191 e_sev: 2192 devm_kfree(dev, sev); 2193 e_err: 2194 psp->sev_data = NULL; 2195 2196 dev_notice(dev, "sev initialization failed\n"); 2197 2198 return ret; 2199 } 2200 2201 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic) 2202 { 2203 int error; 2204 2205 __sev_platform_shutdown_locked(NULL); 2206 2207 if (sev_es_tmr) { 2208 /* 2209 * The TMR area was encrypted, flush it from the cache. 2210 * 2211 * If invoked during panic handling, local interrupts are 2212 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus() 2213 * can't be used. In that case, wbinvd() is done on remote CPUs 2214 * via the NMI callback, and done for this CPU later during 2215 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped. 2216 */ 2217 if (!panic) 2218 wbinvd_on_all_cpus(); 2219 2220 __snp_free_firmware_pages(virt_to_page(sev_es_tmr), 2221 get_order(sev_es_tmr_size), 2222 true); 2223 sev_es_tmr = NULL; 2224 } 2225 2226 if (sev_init_ex_buffer) { 2227 __snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer), 2228 get_order(NV_LENGTH), 2229 true); 2230 sev_init_ex_buffer = NULL; 2231 } 2232 2233 if (snp_range_list) { 2234 kfree(snp_range_list); 2235 snp_range_list = NULL; 2236 } 2237 2238 __sev_snp_shutdown_locked(&error, panic); 2239 } 2240 2241 static void sev_firmware_shutdown(struct sev_device *sev) 2242 { 2243 mutex_lock(&sev_cmd_mutex); 2244 __sev_firmware_shutdown(sev, false); 2245 mutex_unlock(&sev_cmd_mutex); 2246 } 2247 2248 void sev_dev_destroy(struct psp_device *psp) 2249 { 2250 struct sev_device *sev = psp->sev_data; 2251 2252 if (!sev) 2253 return; 2254 2255 sev_firmware_shutdown(sev); 2256 2257 if (sev->misc) 2258 kref_put(&misc_dev->refcount, sev_exit); 2259 2260 psp_clear_sev_irq_handler(psp); 2261 } 2262 2263 static int snp_shutdown_on_panic(struct notifier_block *nb, 2264 unsigned long reason, void *arg) 2265 { 2266 struct sev_device *sev = psp_master->sev_data; 2267 2268 /* 2269 * If sev_cmd_mutex is already acquired, then it's likely 2270 * another PSP command is in flight and issuing a shutdown 2271 * would fail in unexpected ways. Rather than create even 2272 * more confusion during a panic, just bail out here. 2273 */ 2274 if (mutex_is_locked(&sev_cmd_mutex)) 2275 return NOTIFY_DONE; 2276 2277 __sev_firmware_shutdown(sev, true); 2278 2279 return NOTIFY_DONE; 2280 } 2281 2282 static struct notifier_block snp_panic_notifier = { 2283 .notifier_call = snp_shutdown_on_panic, 2284 }; 2285 2286 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd, 2287 void *data, int *error) 2288 { 2289 if (!filep || filep->f_op != &sev_fops) 2290 return -EBADF; 2291 2292 return sev_do_cmd(cmd, data, error); 2293 } 2294 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user); 2295 2296 void sev_pci_init(void) 2297 { 2298 struct sev_device *sev = psp_master->sev_data; 2299 struct sev_platform_init_args args = {0}; 2300 int rc; 2301 2302 if (!sev) 2303 return; 2304 2305 psp_timeout = psp_probe_timeout; 2306 2307 if (sev_get_api_version()) 2308 goto err; 2309 2310 if (sev_update_firmware(sev->dev) == 0) 2311 sev_get_api_version(); 2312 2313 /* Initialize the platform */ 2314 args.probe = true; 2315 rc = sev_platform_init(&args); 2316 if (rc) 2317 dev_err(sev->dev, "SEV: failed to INIT error %#x, rc %d\n", 2318 args.error, rc); 2319 2320 dev_info(sev->dev, "SEV%s API:%d.%d build:%d\n", sev->snp_initialized ? 2321 "-SNP" : "", sev->api_major, sev->api_minor, sev->build); 2322 2323 atomic_notifier_chain_register(&panic_notifier_list, 2324 &snp_panic_notifier); 2325 return; 2326 2327 err: 2328 psp_master->sev_data = NULL; 2329 } 2330 2331 void sev_pci_exit(void) 2332 { 2333 struct sev_device *sev = psp_master->sev_data; 2334 2335 if (!sev) 2336 return; 2337 2338 sev_firmware_shutdown(sev); 2339 2340 atomic_notifier_chain_unregister(&panic_notifier_list, 2341 &snp_panic_notifier); 2342 } 2343