xref: /linux/drivers/crypto/ccp/sev-dev.c (revision f5db8841ebe59dbdf07fda797c88ccb51e0c893d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Secure Encrypted Virtualization (SEV) interface
4  *
5  * Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6  *
7  * Author: Brijesh Singh <brijesh.singh@amd.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/kthread.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/spinlock_types.h>
18 #include <linux/types.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/hw_random.h>
22 #include <linux/ccp.h>
23 #include <linux/firmware.h>
24 #include <linux/panic_notifier.h>
25 #include <linux/gfp.h>
26 #include <linux/cpufeature.h>
27 #include <linux/fs.h>
28 #include <linux/fs_struct.h>
29 #include <linux/psp.h>
30 #include <linux/amd-iommu.h>
31 
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/e820/types.h>
35 #include <asm/sev.h>
36 
37 #include "psp-dev.h"
38 #include "sev-dev.h"
39 
40 #define DEVICE_NAME		"sev"
41 #define SEV_FW_FILE		"amd/sev.fw"
42 #define SEV_FW_NAME_SIZE	64
43 
44 /* Minimum firmware version required for the SEV-SNP support */
45 #define SNP_MIN_API_MAJOR	1
46 #define SNP_MIN_API_MINOR	51
47 
48 /*
49  * Maximum number of firmware-writable buffers that might be specified
50  * in the parameters of a legacy SEV command buffer.
51  */
52 #define CMD_BUF_FW_WRITABLE_MAX 2
53 
54 /* Leave room in the descriptor array for an end-of-list indicator. */
55 #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1)
56 
57 static DEFINE_MUTEX(sev_cmd_mutex);
58 static struct sev_misc_dev *misc_dev;
59 
60 static int psp_cmd_timeout = 100;
61 module_param(psp_cmd_timeout, int, 0644);
62 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands");
63 
64 static int psp_probe_timeout = 5;
65 module_param(psp_probe_timeout, int, 0644);
66 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe");
67 
68 static char *init_ex_path;
69 module_param(init_ex_path, charp, 0444);
70 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX");
71 
72 static bool psp_init_on_probe = true;
73 module_param(psp_init_on_probe, bool, 0444);
74 MODULE_PARM_DESC(psp_init_on_probe, "  if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it");
75 
76 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */
77 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */
78 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */
79 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */
80 
81 static bool psp_dead;
82 static int psp_timeout;
83 
84 /* Trusted Memory Region (TMR):
85  *   The TMR is a 1MB area that must be 1MB aligned.  Use the page allocator
86  *   to allocate the memory, which will return aligned memory for the specified
87  *   allocation order.
88  *
89  * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized.
90  */
91 #define SEV_TMR_SIZE		(1024 * 1024)
92 #define SNP_TMR_SIZE		(2 * 1024 * 1024)
93 
94 static void *sev_es_tmr;
95 static size_t sev_es_tmr_size = SEV_TMR_SIZE;
96 
97 /* INIT_EX NV Storage:
98  *   The NV Storage is a 32Kb area and must be 4Kb page aligned.  Use the page
99  *   allocator to allocate the memory, which will return aligned memory for the
100  *   specified allocation order.
101  */
102 #define NV_LENGTH (32 * 1024)
103 static void *sev_init_ex_buffer;
104 
105 /*
106  * SEV_DATA_RANGE_LIST:
107  *   Array containing range of pages that firmware transitions to HV-fixed
108  *   page state.
109  */
110 struct sev_data_range_list *snp_range_list;
111 
112 static inline bool sev_version_greater_or_equal(u8 maj, u8 min)
113 {
114 	struct sev_device *sev = psp_master->sev_data;
115 
116 	if (sev->api_major > maj)
117 		return true;
118 
119 	if (sev->api_major == maj && sev->api_minor >= min)
120 		return true;
121 
122 	return false;
123 }
124 
125 static void sev_irq_handler(int irq, void *data, unsigned int status)
126 {
127 	struct sev_device *sev = data;
128 	int reg;
129 
130 	/* Check if it is command completion: */
131 	if (!(status & SEV_CMD_COMPLETE))
132 		return;
133 
134 	/* Check if it is SEV command completion: */
135 	reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
136 	if (FIELD_GET(PSP_CMDRESP_RESP, reg)) {
137 		sev->int_rcvd = 1;
138 		wake_up(&sev->int_queue);
139 	}
140 }
141 
142 static int sev_wait_cmd_ioc(struct sev_device *sev,
143 			    unsigned int *reg, unsigned int timeout)
144 {
145 	int ret;
146 
147 	/*
148 	 * If invoked during panic handling, local interrupts are disabled,
149 	 * so the PSP command completion interrupt can't be used. Poll for
150 	 * PSP command completion instead.
151 	 */
152 	if (irqs_disabled()) {
153 		unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10;
154 
155 		/* Poll for SEV command completion: */
156 		while (timeout_usecs--) {
157 			*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
158 			if (*reg & PSP_CMDRESP_RESP)
159 				return 0;
160 
161 			udelay(10);
162 		}
163 		return -ETIMEDOUT;
164 	}
165 
166 	ret = wait_event_timeout(sev->int_queue,
167 			sev->int_rcvd, timeout * HZ);
168 	if (!ret)
169 		return -ETIMEDOUT;
170 
171 	*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
172 
173 	return 0;
174 }
175 
176 static int sev_cmd_buffer_len(int cmd)
177 {
178 	switch (cmd) {
179 	case SEV_CMD_INIT:			return sizeof(struct sev_data_init);
180 	case SEV_CMD_INIT_EX:                   return sizeof(struct sev_data_init_ex);
181 	case SEV_CMD_SNP_SHUTDOWN_EX:		return sizeof(struct sev_data_snp_shutdown_ex);
182 	case SEV_CMD_SNP_INIT_EX:		return sizeof(struct sev_data_snp_init_ex);
183 	case SEV_CMD_PLATFORM_STATUS:		return sizeof(struct sev_user_data_status);
184 	case SEV_CMD_PEK_CSR:			return sizeof(struct sev_data_pek_csr);
185 	case SEV_CMD_PEK_CERT_IMPORT:		return sizeof(struct sev_data_pek_cert_import);
186 	case SEV_CMD_PDH_CERT_EXPORT:		return sizeof(struct sev_data_pdh_cert_export);
187 	case SEV_CMD_LAUNCH_START:		return sizeof(struct sev_data_launch_start);
188 	case SEV_CMD_LAUNCH_UPDATE_DATA:	return sizeof(struct sev_data_launch_update_data);
189 	case SEV_CMD_LAUNCH_UPDATE_VMSA:	return sizeof(struct sev_data_launch_update_vmsa);
190 	case SEV_CMD_LAUNCH_FINISH:		return sizeof(struct sev_data_launch_finish);
191 	case SEV_CMD_LAUNCH_MEASURE:		return sizeof(struct sev_data_launch_measure);
192 	case SEV_CMD_ACTIVATE:			return sizeof(struct sev_data_activate);
193 	case SEV_CMD_DEACTIVATE:		return sizeof(struct sev_data_deactivate);
194 	case SEV_CMD_DECOMMISSION:		return sizeof(struct sev_data_decommission);
195 	case SEV_CMD_GUEST_STATUS:		return sizeof(struct sev_data_guest_status);
196 	case SEV_CMD_DBG_DECRYPT:		return sizeof(struct sev_data_dbg);
197 	case SEV_CMD_DBG_ENCRYPT:		return sizeof(struct sev_data_dbg);
198 	case SEV_CMD_SEND_START:		return sizeof(struct sev_data_send_start);
199 	case SEV_CMD_SEND_UPDATE_DATA:		return sizeof(struct sev_data_send_update_data);
200 	case SEV_CMD_SEND_UPDATE_VMSA:		return sizeof(struct sev_data_send_update_vmsa);
201 	case SEV_CMD_SEND_FINISH:		return sizeof(struct sev_data_send_finish);
202 	case SEV_CMD_RECEIVE_START:		return sizeof(struct sev_data_receive_start);
203 	case SEV_CMD_RECEIVE_FINISH:		return sizeof(struct sev_data_receive_finish);
204 	case SEV_CMD_RECEIVE_UPDATE_DATA:	return sizeof(struct sev_data_receive_update_data);
205 	case SEV_CMD_RECEIVE_UPDATE_VMSA:	return sizeof(struct sev_data_receive_update_vmsa);
206 	case SEV_CMD_LAUNCH_UPDATE_SECRET:	return sizeof(struct sev_data_launch_secret);
207 	case SEV_CMD_DOWNLOAD_FIRMWARE:		return sizeof(struct sev_data_download_firmware);
208 	case SEV_CMD_GET_ID:			return sizeof(struct sev_data_get_id);
209 	case SEV_CMD_ATTESTATION_REPORT:	return sizeof(struct sev_data_attestation_report);
210 	case SEV_CMD_SEND_CANCEL:		return sizeof(struct sev_data_send_cancel);
211 	case SEV_CMD_SNP_GCTX_CREATE:		return sizeof(struct sev_data_snp_addr);
212 	case SEV_CMD_SNP_LAUNCH_START:		return sizeof(struct sev_data_snp_launch_start);
213 	case SEV_CMD_SNP_LAUNCH_UPDATE:		return sizeof(struct sev_data_snp_launch_update);
214 	case SEV_CMD_SNP_ACTIVATE:		return sizeof(struct sev_data_snp_activate);
215 	case SEV_CMD_SNP_DECOMMISSION:		return sizeof(struct sev_data_snp_addr);
216 	case SEV_CMD_SNP_PAGE_RECLAIM:		return sizeof(struct sev_data_snp_page_reclaim);
217 	case SEV_CMD_SNP_GUEST_STATUS:		return sizeof(struct sev_data_snp_guest_status);
218 	case SEV_CMD_SNP_LAUNCH_FINISH:		return sizeof(struct sev_data_snp_launch_finish);
219 	case SEV_CMD_SNP_DBG_DECRYPT:		return sizeof(struct sev_data_snp_dbg);
220 	case SEV_CMD_SNP_DBG_ENCRYPT:		return sizeof(struct sev_data_snp_dbg);
221 	case SEV_CMD_SNP_PAGE_UNSMASH:		return sizeof(struct sev_data_snp_page_unsmash);
222 	case SEV_CMD_SNP_PLATFORM_STATUS:	return sizeof(struct sev_data_snp_addr);
223 	case SEV_CMD_SNP_GUEST_REQUEST:		return sizeof(struct sev_data_snp_guest_request);
224 	case SEV_CMD_SNP_CONFIG:		return sizeof(struct sev_user_data_snp_config);
225 	default:				return 0;
226 	}
227 
228 	return 0;
229 }
230 
231 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode)
232 {
233 	struct file *fp;
234 	struct path root;
235 	struct cred *cred;
236 	const struct cred *old_cred;
237 
238 	task_lock(&init_task);
239 	get_fs_root(init_task.fs, &root);
240 	task_unlock(&init_task);
241 
242 	cred = prepare_creds();
243 	if (!cred)
244 		return ERR_PTR(-ENOMEM);
245 	cred->fsuid = GLOBAL_ROOT_UID;
246 	old_cred = override_creds(cred);
247 
248 	fp = file_open_root(&root, filename, flags, mode);
249 	path_put(&root);
250 
251 	revert_creds(old_cred);
252 
253 	return fp;
254 }
255 
256 static int sev_read_init_ex_file(void)
257 {
258 	struct sev_device *sev = psp_master->sev_data;
259 	struct file *fp;
260 	ssize_t nread;
261 
262 	lockdep_assert_held(&sev_cmd_mutex);
263 
264 	if (!sev_init_ex_buffer)
265 		return -EOPNOTSUPP;
266 
267 	fp = open_file_as_root(init_ex_path, O_RDONLY, 0);
268 	if (IS_ERR(fp)) {
269 		int ret = PTR_ERR(fp);
270 
271 		if (ret == -ENOENT) {
272 			dev_info(sev->dev,
273 				"SEV: %s does not exist and will be created later.\n",
274 				init_ex_path);
275 			ret = 0;
276 		} else {
277 			dev_err(sev->dev,
278 				"SEV: could not open %s for read, error %d\n",
279 				init_ex_path, ret);
280 		}
281 		return ret;
282 	}
283 
284 	nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL);
285 	if (nread != NV_LENGTH) {
286 		dev_info(sev->dev,
287 			"SEV: could not read %u bytes to non volatile memory area, ret %ld\n",
288 			NV_LENGTH, nread);
289 	}
290 
291 	dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread);
292 	filp_close(fp, NULL);
293 
294 	return 0;
295 }
296 
297 static int sev_write_init_ex_file(void)
298 {
299 	struct sev_device *sev = psp_master->sev_data;
300 	struct file *fp;
301 	loff_t offset = 0;
302 	ssize_t nwrite;
303 
304 	lockdep_assert_held(&sev_cmd_mutex);
305 
306 	if (!sev_init_ex_buffer)
307 		return 0;
308 
309 	fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600);
310 	if (IS_ERR(fp)) {
311 		int ret = PTR_ERR(fp);
312 
313 		dev_err(sev->dev,
314 			"SEV: could not open file for write, error %d\n",
315 			ret);
316 		return ret;
317 	}
318 
319 	nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset);
320 	vfs_fsync(fp, 0);
321 	filp_close(fp, NULL);
322 
323 	if (nwrite != NV_LENGTH) {
324 		dev_err(sev->dev,
325 			"SEV: failed to write %u bytes to non volatile memory area, ret %ld\n",
326 			NV_LENGTH, nwrite);
327 		return -EIO;
328 	}
329 
330 	dev_dbg(sev->dev, "SEV: write successful to NV file\n");
331 
332 	return 0;
333 }
334 
335 static int sev_write_init_ex_file_if_required(int cmd_id)
336 {
337 	lockdep_assert_held(&sev_cmd_mutex);
338 
339 	if (!sev_init_ex_buffer)
340 		return 0;
341 
342 	/*
343 	 * Only a few platform commands modify the SPI/NV area, but none of the
344 	 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN,
345 	 * PEK_CERT_IMPORT, and PDH_GEN do.
346 	 */
347 	switch (cmd_id) {
348 	case SEV_CMD_FACTORY_RESET:
349 	case SEV_CMD_INIT_EX:
350 	case SEV_CMD_PDH_GEN:
351 	case SEV_CMD_PEK_CERT_IMPORT:
352 	case SEV_CMD_PEK_GEN:
353 		break;
354 	default:
355 		return 0;
356 	}
357 
358 	return sev_write_init_ex_file();
359 }
360 
361 /*
362  * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked()
363  * needs snp_reclaim_pages(), so a forward declaration is needed.
364  */
365 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret);
366 
367 static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked)
368 {
369 	int ret, err, i;
370 
371 	paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE));
372 
373 	for (i = 0; i < npages; i++, paddr += PAGE_SIZE) {
374 		struct sev_data_snp_page_reclaim data = {0};
375 
376 		data.paddr = paddr;
377 
378 		if (locked)
379 			ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
380 		else
381 			ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
382 
383 		if (ret)
384 			goto cleanup;
385 
386 		ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K);
387 		if (ret)
388 			goto cleanup;
389 	}
390 
391 	return 0;
392 
393 cleanup:
394 	/*
395 	 * If there was a failure reclaiming the page then it is no longer safe
396 	 * to release it back to the system; leak it instead.
397 	 */
398 	snp_leak_pages(__phys_to_pfn(paddr), npages - i);
399 	return ret;
400 }
401 
402 static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked)
403 {
404 	unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT;
405 	int rc, i;
406 
407 	for (i = 0; i < npages; i++, pfn++) {
408 		rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true);
409 		if (rc)
410 			goto cleanup;
411 	}
412 
413 	return 0;
414 
415 cleanup:
416 	/*
417 	 * Try unrolling the firmware state changes by
418 	 * reclaiming the pages which were already changed to the
419 	 * firmware state.
420 	 */
421 	snp_reclaim_pages(paddr, i, locked);
422 
423 	return rc;
424 }
425 
426 static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order)
427 {
428 	unsigned long npages = 1ul << order, paddr;
429 	struct sev_device *sev;
430 	struct page *page;
431 
432 	if (!psp_master || !psp_master->sev_data)
433 		return NULL;
434 
435 	page = alloc_pages(gfp_mask, order);
436 	if (!page)
437 		return NULL;
438 
439 	/* If SEV-SNP is initialized then add the page in RMP table. */
440 	sev = psp_master->sev_data;
441 	if (!sev->snp_initialized)
442 		return page;
443 
444 	paddr = __pa((unsigned long)page_address(page));
445 	if (rmp_mark_pages_firmware(paddr, npages, false))
446 		return NULL;
447 
448 	return page;
449 }
450 
451 void *snp_alloc_firmware_page(gfp_t gfp_mask)
452 {
453 	struct page *page;
454 
455 	page = __snp_alloc_firmware_pages(gfp_mask, 0);
456 
457 	return page ? page_address(page) : NULL;
458 }
459 EXPORT_SYMBOL_GPL(snp_alloc_firmware_page);
460 
461 static void __snp_free_firmware_pages(struct page *page, int order, bool locked)
462 {
463 	struct sev_device *sev = psp_master->sev_data;
464 	unsigned long paddr, npages = 1ul << order;
465 
466 	if (!page)
467 		return;
468 
469 	paddr = __pa((unsigned long)page_address(page));
470 	if (sev->snp_initialized &&
471 	    snp_reclaim_pages(paddr, npages, locked))
472 		return;
473 
474 	__free_pages(page, order);
475 }
476 
477 void snp_free_firmware_page(void *addr)
478 {
479 	if (!addr)
480 		return;
481 
482 	__snp_free_firmware_pages(virt_to_page(addr), 0, false);
483 }
484 EXPORT_SYMBOL_GPL(snp_free_firmware_page);
485 
486 static void *sev_fw_alloc(unsigned long len)
487 {
488 	struct page *page;
489 
490 	page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len));
491 	if (!page)
492 		return NULL;
493 
494 	return page_address(page);
495 }
496 
497 /**
498  * struct cmd_buf_desc - descriptors for managing legacy SEV command address
499  * parameters corresponding to buffers that may be written to by firmware.
500  *
501  * @paddr_ptr:  pointer to the address parameter in the command buffer which may
502  *              need to be saved/restored depending on whether a bounce buffer
503  *              is used. In the case of a bounce buffer, the command buffer
504  *              needs to be updated with the address of the new bounce buffer
505  *              snp_map_cmd_buf_desc() has allocated specifically for it. Must
506  *              be NULL if this descriptor is only an end-of-list indicator.
507  *
508  * @paddr_orig: storage for the original address parameter, which can be used to
509  *              restore the original value in @paddr_ptr in cases where it is
510  *              replaced with the address of a bounce buffer.
511  *
512  * @len: length of buffer located at the address originally stored at @paddr_ptr
513  *
514  * @guest_owned: true if the address corresponds to guest-owned pages, in which
515  *               case bounce buffers are not needed.
516  */
517 struct cmd_buf_desc {
518 	u64 *paddr_ptr;
519 	u64 paddr_orig;
520 	u32 len;
521 	bool guest_owned;
522 };
523 
524 /*
525  * If a legacy SEV command parameter is a memory address, those pages in
526  * turn need to be transitioned to/from firmware-owned before/after
527  * executing the firmware command.
528  *
529  * Additionally, in cases where those pages are not guest-owned, a bounce
530  * buffer is needed in place of the original memory address parameter.
531  *
532  * A set of descriptors are used to keep track of this handling, and
533  * initialized here based on the specific commands being executed.
534  */
535 static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf,
536 					   struct cmd_buf_desc *desc_list)
537 {
538 	switch (cmd) {
539 	case SEV_CMD_PDH_CERT_EXPORT: {
540 		struct sev_data_pdh_cert_export *data = cmd_buf;
541 
542 		desc_list[0].paddr_ptr = &data->pdh_cert_address;
543 		desc_list[0].len = data->pdh_cert_len;
544 		desc_list[1].paddr_ptr = &data->cert_chain_address;
545 		desc_list[1].len = data->cert_chain_len;
546 		break;
547 	}
548 	case SEV_CMD_GET_ID: {
549 		struct sev_data_get_id *data = cmd_buf;
550 
551 		desc_list[0].paddr_ptr = &data->address;
552 		desc_list[0].len = data->len;
553 		break;
554 	}
555 	case SEV_CMD_PEK_CSR: {
556 		struct sev_data_pek_csr *data = cmd_buf;
557 
558 		desc_list[0].paddr_ptr = &data->address;
559 		desc_list[0].len = data->len;
560 		break;
561 	}
562 	case SEV_CMD_LAUNCH_UPDATE_DATA: {
563 		struct sev_data_launch_update_data *data = cmd_buf;
564 
565 		desc_list[0].paddr_ptr = &data->address;
566 		desc_list[0].len = data->len;
567 		desc_list[0].guest_owned = true;
568 		break;
569 	}
570 	case SEV_CMD_LAUNCH_UPDATE_VMSA: {
571 		struct sev_data_launch_update_vmsa *data = cmd_buf;
572 
573 		desc_list[0].paddr_ptr = &data->address;
574 		desc_list[0].len = data->len;
575 		desc_list[0].guest_owned = true;
576 		break;
577 	}
578 	case SEV_CMD_LAUNCH_MEASURE: {
579 		struct sev_data_launch_measure *data = cmd_buf;
580 
581 		desc_list[0].paddr_ptr = &data->address;
582 		desc_list[0].len = data->len;
583 		break;
584 	}
585 	case SEV_CMD_LAUNCH_UPDATE_SECRET: {
586 		struct sev_data_launch_secret *data = cmd_buf;
587 
588 		desc_list[0].paddr_ptr = &data->guest_address;
589 		desc_list[0].len = data->guest_len;
590 		desc_list[0].guest_owned = true;
591 		break;
592 	}
593 	case SEV_CMD_DBG_DECRYPT: {
594 		struct sev_data_dbg *data = cmd_buf;
595 
596 		desc_list[0].paddr_ptr = &data->dst_addr;
597 		desc_list[0].len = data->len;
598 		desc_list[0].guest_owned = true;
599 		break;
600 	}
601 	case SEV_CMD_DBG_ENCRYPT: {
602 		struct sev_data_dbg *data = cmd_buf;
603 
604 		desc_list[0].paddr_ptr = &data->dst_addr;
605 		desc_list[0].len = data->len;
606 		desc_list[0].guest_owned = true;
607 		break;
608 	}
609 	case SEV_CMD_ATTESTATION_REPORT: {
610 		struct sev_data_attestation_report *data = cmd_buf;
611 
612 		desc_list[0].paddr_ptr = &data->address;
613 		desc_list[0].len = data->len;
614 		break;
615 	}
616 	case SEV_CMD_SEND_START: {
617 		struct sev_data_send_start *data = cmd_buf;
618 
619 		desc_list[0].paddr_ptr = &data->session_address;
620 		desc_list[0].len = data->session_len;
621 		break;
622 	}
623 	case SEV_CMD_SEND_UPDATE_DATA: {
624 		struct sev_data_send_update_data *data = cmd_buf;
625 
626 		desc_list[0].paddr_ptr = &data->hdr_address;
627 		desc_list[0].len = data->hdr_len;
628 		desc_list[1].paddr_ptr = &data->trans_address;
629 		desc_list[1].len = data->trans_len;
630 		break;
631 	}
632 	case SEV_CMD_SEND_UPDATE_VMSA: {
633 		struct sev_data_send_update_vmsa *data = cmd_buf;
634 
635 		desc_list[0].paddr_ptr = &data->hdr_address;
636 		desc_list[0].len = data->hdr_len;
637 		desc_list[1].paddr_ptr = &data->trans_address;
638 		desc_list[1].len = data->trans_len;
639 		break;
640 	}
641 	case SEV_CMD_RECEIVE_UPDATE_DATA: {
642 		struct sev_data_receive_update_data *data = cmd_buf;
643 
644 		desc_list[0].paddr_ptr = &data->guest_address;
645 		desc_list[0].len = data->guest_len;
646 		desc_list[0].guest_owned = true;
647 		break;
648 	}
649 	case SEV_CMD_RECEIVE_UPDATE_VMSA: {
650 		struct sev_data_receive_update_vmsa *data = cmd_buf;
651 
652 		desc_list[0].paddr_ptr = &data->guest_address;
653 		desc_list[0].len = data->guest_len;
654 		desc_list[0].guest_owned = true;
655 		break;
656 	}
657 	default:
658 		break;
659 	}
660 }
661 
662 static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc)
663 {
664 	unsigned int npages;
665 
666 	if (!desc->len)
667 		return 0;
668 
669 	/* Allocate a bounce buffer if this isn't a guest owned page. */
670 	if (!desc->guest_owned) {
671 		struct page *page;
672 
673 		page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len));
674 		if (!page) {
675 			pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n");
676 			return -ENOMEM;
677 		}
678 
679 		desc->paddr_orig = *desc->paddr_ptr;
680 		*desc->paddr_ptr = __psp_pa(page_to_virt(page));
681 	}
682 
683 	npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
684 
685 	/* Transition the buffer to firmware-owned. */
686 	if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) {
687 		pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n");
688 		return -EFAULT;
689 	}
690 
691 	return 0;
692 }
693 
694 static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc)
695 {
696 	unsigned int npages;
697 
698 	if (!desc->len)
699 		return 0;
700 
701 	npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
702 
703 	/* Transition the buffers back to hypervisor-owned. */
704 	if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) {
705 		pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n");
706 		return -EFAULT;
707 	}
708 
709 	/* Copy data from bounce buffer and then free it. */
710 	if (!desc->guest_owned) {
711 		void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr));
712 		void *dst_buf = __va(__sme_clr(desc->paddr_orig));
713 
714 		memcpy(dst_buf, bounce_buf, desc->len);
715 		__free_pages(virt_to_page(bounce_buf), get_order(desc->len));
716 
717 		/* Restore the original address in the command buffer. */
718 		*desc->paddr_ptr = desc->paddr_orig;
719 	}
720 
721 	return 0;
722 }
723 
724 static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
725 {
726 	int i;
727 
728 	snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list);
729 
730 	for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
731 		struct cmd_buf_desc *desc = &desc_list[i];
732 
733 		if (!desc->paddr_ptr)
734 			break;
735 
736 		if (snp_map_cmd_buf_desc(desc))
737 			goto err_unmap;
738 	}
739 
740 	return 0;
741 
742 err_unmap:
743 	for (i--; i >= 0; i--)
744 		snp_unmap_cmd_buf_desc(&desc_list[i]);
745 
746 	return -EFAULT;
747 }
748 
749 static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list)
750 {
751 	int i, ret = 0;
752 
753 	for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
754 		struct cmd_buf_desc *desc = &desc_list[i];
755 
756 		if (!desc->paddr_ptr)
757 			break;
758 
759 		if (snp_unmap_cmd_buf_desc(&desc_list[i]))
760 			ret = -EFAULT;
761 	}
762 
763 	return ret;
764 }
765 
766 static bool sev_cmd_buf_writable(int cmd)
767 {
768 	switch (cmd) {
769 	case SEV_CMD_PLATFORM_STATUS:
770 	case SEV_CMD_GUEST_STATUS:
771 	case SEV_CMD_LAUNCH_START:
772 	case SEV_CMD_RECEIVE_START:
773 	case SEV_CMD_LAUNCH_MEASURE:
774 	case SEV_CMD_SEND_START:
775 	case SEV_CMD_SEND_UPDATE_DATA:
776 	case SEV_CMD_SEND_UPDATE_VMSA:
777 	case SEV_CMD_PEK_CSR:
778 	case SEV_CMD_PDH_CERT_EXPORT:
779 	case SEV_CMD_GET_ID:
780 	case SEV_CMD_ATTESTATION_REPORT:
781 		return true;
782 	default:
783 		return false;
784 	}
785 }
786 
787 /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */
788 static bool snp_legacy_handling_needed(int cmd)
789 {
790 	struct sev_device *sev = psp_master->sev_data;
791 
792 	return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized;
793 }
794 
795 static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
796 {
797 	if (!snp_legacy_handling_needed(cmd))
798 		return 0;
799 
800 	if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list))
801 		return -EFAULT;
802 
803 	/*
804 	 * Before command execution, the command buffer needs to be put into
805 	 * the firmware-owned state.
806 	 */
807 	if (sev_cmd_buf_writable(cmd)) {
808 		if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true))
809 			return -EFAULT;
810 	}
811 
812 	return 0;
813 }
814 
815 static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf)
816 {
817 	if (!snp_legacy_handling_needed(cmd))
818 		return 0;
819 
820 	/*
821 	 * After command completion, the command buffer needs to be put back
822 	 * into the hypervisor-owned state.
823 	 */
824 	if (sev_cmd_buf_writable(cmd))
825 		if (snp_reclaim_pages(__pa(cmd_buf), 1, true))
826 			return -EFAULT;
827 
828 	return 0;
829 }
830 
831 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret)
832 {
833 	struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0};
834 	struct psp_device *psp = psp_master;
835 	struct sev_device *sev;
836 	unsigned int cmdbuff_hi, cmdbuff_lo;
837 	unsigned int phys_lsb, phys_msb;
838 	unsigned int reg, ret = 0;
839 	void *cmd_buf;
840 	int buf_len;
841 
842 	if (!psp || !psp->sev_data)
843 		return -ENODEV;
844 
845 	if (psp_dead)
846 		return -EBUSY;
847 
848 	sev = psp->sev_data;
849 
850 	buf_len = sev_cmd_buffer_len(cmd);
851 	if (WARN_ON_ONCE(!data != !buf_len))
852 		return -EINVAL;
853 
854 	/*
855 	 * Copy the incoming data to driver's scratch buffer as __pa() will not
856 	 * work for some memory, e.g. vmalloc'd addresses, and @data may not be
857 	 * physically contiguous.
858 	 */
859 	if (data) {
860 		/*
861 		 * Commands are generally issued one at a time and require the
862 		 * sev_cmd_mutex, but there could be recursive firmware requests
863 		 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while
864 		 * preparing buffers for another command. This is the only known
865 		 * case of nesting in the current code, so exactly one
866 		 * additional command buffer is available for that purpose.
867 		 */
868 		if (!sev->cmd_buf_active) {
869 			cmd_buf = sev->cmd_buf;
870 			sev->cmd_buf_active = true;
871 		} else if (!sev->cmd_buf_backup_active) {
872 			cmd_buf = sev->cmd_buf_backup;
873 			sev->cmd_buf_backup_active = true;
874 		} else {
875 			dev_err(sev->dev,
876 				"SEV: too many firmware commands in progress, no command buffers available.\n");
877 			return -EBUSY;
878 		}
879 
880 		memcpy(cmd_buf, data, buf_len);
881 
882 		/*
883 		 * The behavior of the SEV-legacy commands is altered when the
884 		 * SNP firmware is in the INIT state.
885 		 */
886 		ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list);
887 		if (ret) {
888 			dev_err(sev->dev,
889 				"SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n",
890 				cmd, ret);
891 			return ret;
892 		}
893 	} else {
894 		cmd_buf = sev->cmd_buf;
895 	}
896 
897 	/* Get the physical address of the command buffer */
898 	phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0;
899 	phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0;
900 
901 	dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n",
902 		cmd, phys_msb, phys_lsb, psp_timeout);
903 
904 	print_hex_dump_debug("(in):  ", DUMP_PREFIX_OFFSET, 16, 2, data,
905 			     buf_len, false);
906 
907 	iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
908 	iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
909 
910 	sev->int_rcvd = 0;
911 
912 	reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd) | SEV_CMDRESP_IOC;
913 	iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg);
914 
915 	/* wait for command completion */
916 	ret = sev_wait_cmd_ioc(sev, &reg, psp_timeout);
917 	if (ret) {
918 		if (psp_ret)
919 			*psp_ret = 0;
920 
921 		dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd);
922 		psp_dead = true;
923 
924 		return ret;
925 	}
926 
927 	psp_timeout = psp_cmd_timeout;
928 
929 	if (psp_ret)
930 		*psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg);
931 
932 	if (FIELD_GET(PSP_CMDRESP_STS, reg)) {
933 		dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n",
934 			cmd, FIELD_GET(PSP_CMDRESP_STS, reg));
935 
936 		/*
937 		 * PSP firmware may report additional error information in the
938 		 * command buffer registers on error. Print contents of command
939 		 * buffer registers if they changed.
940 		 */
941 		cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
942 		cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
943 		if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) {
944 			dev_dbg(sev->dev, "Additional error information reported in cmdbuff:");
945 			dev_dbg(sev->dev, "  cmdbuff hi: %#010x\n", cmdbuff_hi);
946 			dev_dbg(sev->dev, "  cmdbuff lo: %#010x\n", cmdbuff_lo);
947 		}
948 		ret = -EIO;
949 	} else {
950 		ret = sev_write_init_ex_file_if_required(cmd);
951 	}
952 
953 	/*
954 	 * Copy potential output from the PSP back to data.  Do this even on
955 	 * failure in case the caller wants to glean something from the error.
956 	 */
957 	if (data) {
958 		int ret_reclaim;
959 		/*
960 		 * Restore the page state after the command completes.
961 		 */
962 		ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf);
963 		if (ret_reclaim) {
964 			dev_err(sev->dev,
965 				"SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n",
966 				cmd, ret_reclaim);
967 			return ret_reclaim;
968 		}
969 
970 		memcpy(data, cmd_buf, buf_len);
971 
972 		if (sev->cmd_buf_backup_active)
973 			sev->cmd_buf_backup_active = false;
974 		else
975 			sev->cmd_buf_active = false;
976 
977 		if (snp_unmap_cmd_buf_desc_list(desc_list))
978 			return -EFAULT;
979 	}
980 
981 	print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data,
982 			     buf_len, false);
983 
984 	return ret;
985 }
986 
987 int sev_do_cmd(int cmd, void *data, int *psp_ret)
988 {
989 	int rc;
990 
991 	mutex_lock(&sev_cmd_mutex);
992 	rc = __sev_do_cmd_locked(cmd, data, psp_ret);
993 	mutex_unlock(&sev_cmd_mutex);
994 
995 	return rc;
996 }
997 EXPORT_SYMBOL_GPL(sev_do_cmd);
998 
999 static int __sev_init_locked(int *error)
1000 {
1001 	struct sev_data_init data;
1002 
1003 	memset(&data, 0, sizeof(data));
1004 	if (sev_es_tmr) {
1005 		/*
1006 		 * Do not include the encryption mask on the physical
1007 		 * address of the TMR (firmware should clear it anyway).
1008 		 */
1009 		data.tmr_address = __pa(sev_es_tmr);
1010 
1011 		data.flags |= SEV_INIT_FLAGS_SEV_ES;
1012 		data.tmr_len = sev_es_tmr_size;
1013 	}
1014 
1015 	return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error);
1016 }
1017 
1018 static int __sev_init_ex_locked(int *error)
1019 {
1020 	struct sev_data_init_ex data;
1021 
1022 	memset(&data, 0, sizeof(data));
1023 	data.length = sizeof(data);
1024 	data.nv_address = __psp_pa(sev_init_ex_buffer);
1025 	data.nv_len = NV_LENGTH;
1026 
1027 	if (sev_es_tmr) {
1028 		/*
1029 		 * Do not include the encryption mask on the physical
1030 		 * address of the TMR (firmware should clear it anyway).
1031 		 */
1032 		data.tmr_address = __pa(sev_es_tmr);
1033 
1034 		data.flags |= SEV_INIT_FLAGS_SEV_ES;
1035 		data.tmr_len = sev_es_tmr_size;
1036 	}
1037 
1038 	return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error);
1039 }
1040 
1041 static inline int __sev_do_init_locked(int *psp_ret)
1042 {
1043 	if (sev_init_ex_buffer)
1044 		return __sev_init_ex_locked(psp_ret);
1045 	else
1046 		return __sev_init_locked(psp_ret);
1047 }
1048 
1049 static void snp_set_hsave_pa(void *arg)
1050 {
1051 	wrmsrl(MSR_VM_HSAVE_PA, 0);
1052 }
1053 
1054 static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg)
1055 {
1056 	struct sev_data_range_list *range_list = arg;
1057 	struct sev_data_range *range = &range_list->ranges[range_list->num_elements];
1058 	size_t size;
1059 
1060 	/*
1061 	 * Ensure the list of HV_FIXED pages that will be passed to firmware
1062 	 * do not exceed the page-sized argument buffer.
1063 	 */
1064 	if ((range_list->num_elements * sizeof(struct sev_data_range) +
1065 	     sizeof(struct sev_data_range_list)) > PAGE_SIZE)
1066 		return -E2BIG;
1067 
1068 	switch (rs->desc) {
1069 	case E820_TYPE_RESERVED:
1070 	case E820_TYPE_PMEM:
1071 	case E820_TYPE_ACPI:
1072 		range->base = rs->start & PAGE_MASK;
1073 		size = PAGE_ALIGN((rs->end + 1) - rs->start);
1074 		range->page_count = size >> PAGE_SHIFT;
1075 		range_list->num_elements++;
1076 		break;
1077 	default:
1078 		break;
1079 	}
1080 
1081 	return 0;
1082 }
1083 
1084 static int __sev_snp_init_locked(int *error)
1085 {
1086 	struct psp_device *psp = psp_master;
1087 	struct sev_data_snp_init_ex data;
1088 	struct sev_device *sev;
1089 	void *arg = &data;
1090 	int cmd, rc = 0;
1091 
1092 	if (!cpu_feature_enabled(X86_FEATURE_SEV_SNP))
1093 		return -ENODEV;
1094 
1095 	sev = psp->sev_data;
1096 
1097 	if (sev->snp_initialized)
1098 		return 0;
1099 
1100 	if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) {
1101 		dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n",
1102 			SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR);
1103 		return 0;
1104 	}
1105 
1106 	/* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */
1107 	on_each_cpu(snp_set_hsave_pa, NULL, 1);
1108 
1109 	/*
1110 	 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list
1111 	 * of system physical address ranges to convert into HV-fixed page
1112 	 * states during the RMP initialization.  For instance, the memory that
1113 	 * UEFI reserves should be included in the that list. This allows system
1114 	 * components that occasionally write to memory (e.g. logging to UEFI
1115 	 * reserved regions) to not fail due to RMP initialization and SNP
1116 	 * enablement.
1117 	 *
1118 	 */
1119 	if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) {
1120 		/*
1121 		 * Firmware checks that the pages containing the ranges enumerated
1122 		 * in the RANGES structure are either in the default page state or in the
1123 		 * firmware page state.
1124 		 */
1125 		snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL);
1126 		if (!snp_range_list) {
1127 			dev_err(sev->dev,
1128 				"SEV: SNP_INIT_EX range list memory allocation failed\n");
1129 			return -ENOMEM;
1130 		}
1131 
1132 		/*
1133 		 * Retrieve all reserved memory regions from the e820 memory map
1134 		 * to be setup as HV-fixed pages.
1135 		 */
1136 		rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0,
1137 					 snp_range_list, snp_filter_reserved_mem_regions);
1138 		if (rc) {
1139 			dev_err(sev->dev,
1140 				"SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc);
1141 			return rc;
1142 		}
1143 
1144 		memset(&data, 0, sizeof(data));
1145 		data.init_rmp = 1;
1146 		data.list_paddr_en = 1;
1147 		data.list_paddr = __psp_pa(snp_range_list);
1148 		cmd = SEV_CMD_SNP_INIT_EX;
1149 	} else {
1150 		cmd = SEV_CMD_SNP_INIT;
1151 		arg = NULL;
1152 	}
1153 
1154 	/*
1155 	 * The following sequence must be issued before launching the first SNP
1156 	 * guest to ensure all dirty cache lines are flushed, including from
1157 	 * updates to the RMP table itself via the RMPUPDATE instruction:
1158 	 *
1159 	 * - WBINVD on all running CPUs
1160 	 * - SEV_CMD_SNP_INIT[_EX] firmware command
1161 	 * - WBINVD on all running CPUs
1162 	 * - SEV_CMD_SNP_DF_FLUSH firmware command
1163 	 */
1164 	wbinvd_on_all_cpus();
1165 
1166 	rc = __sev_do_cmd_locked(cmd, arg, error);
1167 	if (rc)
1168 		return rc;
1169 
1170 	/* Prepare for first SNP guest launch after INIT. */
1171 	wbinvd_on_all_cpus();
1172 	rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error);
1173 	if (rc)
1174 		return rc;
1175 
1176 	sev->snp_initialized = true;
1177 	dev_dbg(sev->dev, "SEV-SNP firmware initialized\n");
1178 
1179 	sev_es_tmr_size = SNP_TMR_SIZE;
1180 
1181 	return rc;
1182 }
1183 
1184 static void __sev_platform_init_handle_tmr(struct sev_device *sev)
1185 {
1186 	if (sev_es_tmr)
1187 		return;
1188 
1189 	/* Obtain the TMR memory area for SEV-ES use */
1190 	sev_es_tmr = sev_fw_alloc(sev_es_tmr_size);
1191 	if (sev_es_tmr) {
1192 		/* Must flush the cache before giving it to the firmware */
1193 		if (!sev->snp_initialized)
1194 			clflush_cache_range(sev_es_tmr, sev_es_tmr_size);
1195 	} else {
1196 			dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n");
1197 	}
1198 }
1199 
1200 /*
1201  * If an init_ex_path is provided allocate a buffer for the file and
1202  * read in the contents. Additionally, if SNP is initialized, convert
1203  * the buffer pages to firmware pages.
1204  */
1205 static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev)
1206 {
1207 	struct page *page;
1208 	int rc;
1209 
1210 	if (!init_ex_path)
1211 		return 0;
1212 
1213 	if (sev_init_ex_buffer)
1214 		return 0;
1215 
1216 	page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH));
1217 	if (!page) {
1218 		dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n");
1219 		return -ENOMEM;
1220 	}
1221 
1222 	sev_init_ex_buffer = page_address(page);
1223 
1224 	rc = sev_read_init_ex_file();
1225 	if (rc)
1226 		return rc;
1227 
1228 	/* If SEV-SNP is initialized, transition to firmware page. */
1229 	if (sev->snp_initialized) {
1230 		unsigned long npages;
1231 
1232 		npages = 1UL << get_order(NV_LENGTH);
1233 		if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) {
1234 			dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n");
1235 			return -ENOMEM;
1236 		}
1237 	}
1238 
1239 	return 0;
1240 }
1241 
1242 static int __sev_platform_init_locked(int *error)
1243 {
1244 	int rc, psp_ret = SEV_RET_NO_FW_CALL;
1245 	struct sev_device *sev;
1246 
1247 	if (!psp_master || !psp_master->sev_data)
1248 		return -ENODEV;
1249 
1250 	sev = psp_master->sev_data;
1251 
1252 	if (sev->state == SEV_STATE_INIT)
1253 		return 0;
1254 
1255 	__sev_platform_init_handle_tmr(sev);
1256 
1257 	rc = __sev_platform_init_handle_init_ex_path(sev);
1258 	if (rc)
1259 		return rc;
1260 
1261 	rc = __sev_do_init_locked(&psp_ret);
1262 	if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) {
1263 		/*
1264 		 * Initialization command returned an integrity check failure
1265 		 * status code, meaning that firmware load and validation of SEV
1266 		 * related persistent data has failed. Retrying the
1267 		 * initialization function should succeed by replacing the state
1268 		 * with a reset state.
1269 		 */
1270 		dev_err(sev->dev,
1271 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state.");
1272 		rc = __sev_do_init_locked(&psp_ret);
1273 	}
1274 
1275 	if (error)
1276 		*error = psp_ret;
1277 
1278 	if (rc)
1279 		return rc;
1280 
1281 	sev->state = SEV_STATE_INIT;
1282 
1283 	/* Prepare for first SEV guest launch after INIT */
1284 	wbinvd_on_all_cpus();
1285 	rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error);
1286 	if (rc)
1287 		return rc;
1288 
1289 	dev_dbg(sev->dev, "SEV firmware initialized\n");
1290 
1291 	dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major,
1292 		 sev->api_minor, sev->build);
1293 
1294 	return 0;
1295 }
1296 
1297 static int _sev_platform_init_locked(struct sev_platform_init_args *args)
1298 {
1299 	struct sev_device *sev;
1300 	int rc;
1301 
1302 	if (!psp_master || !psp_master->sev_data)
1303 		return -ENODEV;
1304 
1305 	sev = psp_master->sev_data;
1306 
1307 	if (sev->state == SEV_STATE_INIT)
1308 		return 0;
1309 
1310 	/*
1311 	 * Legacy guests cannot be running while SNP_INIT(_EX) is executing,
1312 	 * so perform SEV-SNP initialization at probe time.
1313 	 */
1314 	rc = __sev_snp_init_locked(&args->error);
1315 	if (rc && rc != -ENODEV) {
1316 		/*
1317 		 * Don't abort the probe if SNP INIT failed,
1318 		 * continue to initialize the legacy SEV firmware.
1319 		 */
1320 		dev_err(sev->dev, "SEV-SNP: failed to INIT rc %d, error %#x\n",
1321 			rc, args->error);
1322 	}
1323 
1324 	/* Defer legacy SEV/SEV-ES support if allowed by caller/module. */
1325 	if (args->probe && !psp_init_on_probe)
1326 		return 0;
1327 
1328 	return __sev_platform_init_locked(&args->error);
1329 }
1330 
1331 int sev_platform_init(struct sev_platform_init_args *args)
1332 {
1333 	int rc;
1334 
1335 	mutex_lock(&sev_cmd_mutex);
1336 	rc = _sev_platform_init_locked(args);
1337 	mutex_unlock(&sev_cmd_mutex);
1338 
1339 	return rc;
1340 }
1341 EXPORT_SYMBOL_GPL(sev_platform_init);
1342 
1343 static int __sev_platform_shutdown_locked(int *error)
1344 {
1345 	struct sev_device *sev = psp_master->sev_data;
1346 	int ret;
1347 
1348 	if (!sev || sev->state == SEV_STATE_UNINIT)
1349 		return 0;
1350 
1351 	ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error);
1352 	if (ret)
1353 		return ret;
1354 
1355 	sev->state = SEV_STATE_UNINIT;
1356 	dev_dbg(sev->dev, "SEV firmware shutdown\n");
1357 
1358 	return ret;
1359 }
1360 
1361 static int sev_get_platform_state(int *state, int *error)
1362 {
1363 	struct sev_user_data_status data;
1364 	int rc;
1365 
1366 	rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error);
1367 	if (rc)
1368 		return rc;
1369 
1370 	*state = data.state;
1371 	return rc;
1372 }
1373 
1374 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable)
1375 {
1376 	int state, rc;
1377 
1378 	if (!writable)
1379 		return -EPERM;
1380 
1381 	/*
1382 	 * The SEV spec requires that FACTORY_RESET must be issued in
1383 	 * UNINIT state. Before we go further lets check if any guest is
1384 	 * active.
1385 	 *
1386 	 * If FW is in WORKING state then deny the request otherwise issue
1387 	 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET.
1388 	 *
1389 	 */
1390 	rc = sev_get_platform_state(&state, &argp->error);
1391 	if (rc)
1392 		return rc;
1393 
1394 	if (state == SEV_STATE_WORKING)
1395 		return -EBUSY;
1396 
1397 	if (state == SEV_STATE_INIT) {
1398 		rc = __sev_platform_shutdown_locked(&argp->error);
1399 		if (rc)
1400 			return rc;
1401 	}
1402 
1403 	return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error);
1404 }
1405 
1406 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp)
1407 {
1408 	struct sev_user_data_status data;
1409 	int ret;
1410 
1411 	memset(&data, 0, sizeof(data));
1412 
1413 	ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error);
1414 	if (ret)
1415 		return ret;
1416 
1417 	if (copy_to_user((void __user *)argp->data, &data, sizeof(data)))
1418 		ret = -EFAULT;
1419 
1420 	return ret;
1421 }
1422 
1423 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable)
1424 {
1425 	struct sev_device *sev = psp_master->sev_data;
1426 	int rc;
1427 
1428 	if (!writable)
1429 		return -EPERM;
1430 
1431 	if (sev->state == SEV_STATE_UNINIT) {
1432 		rc = __sev_platform_init_locked(&argp->error);
1433 		if (rc)
1434 			return rc;
1435 	}
1436 
1437 	return __sev_do_cmd_locked(cmd, NULL, &argp->error);
1438 }
1439 
1440 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable)
1441 {
1442 	struct sev_device *sev = psp_master->sev_data;
1443 	struct sev_user_data_pek_csr input;
1444 	struct sev_data_pek_csr data;
1445 	void __user *input_address;
1446 	void *blob = NULL;
1447 	int ret;
1448 
1449 	if (!writable)
1450 		return -EPERM;
1451 
1452 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1453 		return -EFAULT;
1454 
1455 	memset(&data, 0, sizeof(data));
1456 
1457 	/* userspace wants to query CSR length */
1458 	if (!input.address || !input.length)
1459 		goto cmd;
1460 
1461 	/* allocate a physically contiguous buffer to store the CSR blob */
1462 	input_address = (void __user *)input.address;
1463 	if (input.length > SEV_FW_BLOB_MAX_SIZE)
1464 		return -EFAULT;
1465 
1466 	blob = kzalloc(input.length, GFP_KERNEL);
1467 	if (!blob)
1468 		return -ENOMEM;
1469 
1470 	data.address = __psp_pa(blob);
1471 	data.len = input.length;
1472 
1473 cmd:
1474 	if (sev->state == SEV_STATE_UNINIT) {
1475 		ret = __sev_platform_init_locked(&argp->error);
1476 		if (ret)
1477 			goto e_free_blob;
1478 	}
1479 
1480 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error);
1481 
1482 	 /* If we query the CSR length, FW responded with expected data. */
1483 	input.length = data.len;
1484 
1485 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1486 		ret = -EFAULT;
1487 		goto e_free_blob;
1488 	}
1489 
1490 	if (blob) {
1491 		if (copy_to_user(input_address, blob, input.length))
1492 			ret = -EFAULT;
1493 	}
1494 
1495 e_free_blob:
1496 	kfree(blob);
1497 	return ret;
1498 }
1499 
1500 void *psp_copy_user_blob(u64 uaddr, u32 len)
1501 {
1502 	if (!uaddr || !len)
1503 		return ERR_PTR(-EINVAL);
1504 
1505 	/* verify that blob length does not exceed our limit */
1506 	if (len > SEV_FW_BLOB_MAX_SIZE)
1507 		return ERR_PTR(-EINVAL);
1508 
1509 	return memdup_user((void __user *)uaddr, len);
1510 }
1511 EXPORT_SYMBOL_GPL(psp_copy_user_blob);
1512 
1513 static int sev_get_api_version(void)
1514 {
1515 	struct sev_device *sev = psp_master->sev_data;
1516 	struct sev_user_data_status status;
1517 	int error = 0, ret;
1518 
1519 	ret = sev_platform_status(&status, &error);
1520 	if (ret) {
1521 		dev_err(sev->dev,
1522 			"SEV: failed to get status. Error: %#x\n", error);
1523 		return 1;
1524 	}
1525 
1526 	sev->api_major = status.api_major;
1527 	sev->api_minor = status.api_minor;
1528 	sev->build = status.build;
1529 	sev->state = status.state;
1530 
1531 	return 0;
1532 }
1533 
1534 static int sev_get_firmware(struct device *dev,
1535 			    const struct firmware **firmware)
1536 {
1537 	char fw_name_specific[SEV_FW_NAME_SIZE];
1538 	char fw_name_subset[SEV_FW_NAME_SIZE];
1539 
1540 	snprintf(fw_name_specific, sizeof(fw_name_specific),
1541 		 "amd/amd_sev_fam%.2xh_model%.2xh.sbin",
1542 		 boot_cpu_data.x86, boot_cpu_data.x86_model);
1543 
1544 	snprintf(fw_name_subset, sizeof(fw_name_subset),
1545 		 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin",
1546 		 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4);
1547 
1548 	/* Check for SEV FW for a particular model.
1549 	 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h
1550 	 *
1551 	 * or
1552 	 *
1553 	 * Check for SEV FW common to a subset of models.
1554 	 * Ex. amd_sev_fam17h_model0xh.sbin for
1555 	 *     Family 17h Model 00h -- Family 17h Model 0Fh
1556 	 *
1557 	 * or
1558 	 *
1559 	 * Fall-back to using generic name: sev.fw
1560 	 */
1561 	if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) ||
1562 	    (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) ||
1563 	    (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0))
1564 		return 0;
1565 
1566 	return -ENOENT;
1567 }
1568 
1569 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */
1570 static int sev_update_firmware(struct device *dev)
1571 {
1572 	struct sev_data_download_firmware *data;
1573 	const struct firmware *firmware;
1574 	int ret, error, order;
1575 	struct page *p;
1576 	u64 data_size;
1577 
1578 	if (!sev_version_greater_or_equal(0, 15)) {
1579 		dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n");
1580 		return -1;
1581 	}
1582 
1583 	if (sev_get_firmware(dev, &firmware) == -ENOENT) {
1584 		dev_dbg(dev, "No SEV firmware file present\n");
1585 		return -1;
1586 	}
1587 
1588 	/*
1589 	 * SEV FW expects the physical address given to it to be 32
1590 	 * byte aligned. Memory allocated has structure placed at the
1591 	 * beginning followed by the firmware being passed to the SEV
1592 	 * FW. Allocate enough memory for data structure + alignment
1593 	 * padding + SEV FW.
1594 	 */
1595 	data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32);
1596 
1597 	order = get_order(firmware->size + data_size);
1598 	p = alloc_pages(GFP_KERNEL, order);
1599 	if (!p) {
1600 		ret = -1;
1601 		goto fw_err;
1602 	}
1603 
1604 	/*
1605 	 * Copy firmware data to a kernel allocated contiguous
1606 	 * memory region.
1607 	 */
1608 	data = page_address(p);
1609 	memcpy(page_address(p) + data_size, firmware->data, firmware->size);
1610 
1611 	data->address = __psp_pa(page_address(p) + data_size);
1612 	data->len = firmware->size;
1613 
1614 	ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1615 
1616 	/*
1617 	 * A quirk for fixing the committed TCB version, when upgrading from
1618 	 * earlier firmware version than 1.50.
1619 	 */
1620 	if (!ret && !sev_version_greater_or_equal(1, 50))
1621 		ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1622 
1623 	if (ret)
1624 		dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error);
1625 	else
1626 		dev_info(dev, "SEV firmware update successful\n");
1627 
1628 	__free_pages(p, order);
1629 
1630 fw_err:
1631 	release_firmware(firmware);
1632 
1633 	return ret;
1634 }
1635 
1636 static int __sev_snp_shutdown_locked(int *error, bool panic)
1637 {
1638 	struct sev_device *sev = psp_master->sev_data;
1639 	struct sev_data_snp_shutdown_ex data;
1640 	int ret;
1641 
1642 	if (!sev->snp_initialized)
1643 		return 0;
1644 
1645 	memset(&data, 0, sizeof(data));
1646 	data.len = sizeof(data);
1647 	data.iommu_snp_shutdown = 1;
1648 
1649 	/*
1650 	 * If invoked during panic handling, local interrupts are disabled
1651 	 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called.
1652 	 * In that case, a wbinvd() is done on remote CPUs via the NMI
1653 	 * callback, so only a local wbinvd() is needed here.
1654 	 */
1655 	if (!panic)
1656 		wbinvd_on_all_cpus();
1657 	else
1658 		wbinvd();
1659 
1660 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error);
1661 	/* SHUTDOWN may require DF_FLUSH */
1662 	if (*error == SEV_RET_DFFLUSH_REQUIRED) {
1663 		ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, NULL);
1664 		if (ret) {
1665 			dev_err(sev->dev, "SEV-SNP DF_FLUSH failed\n");
1666 			return ret;
1667 		}
1668 		/* reissue the shutdown command */
1669 		ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data,
1670 					  error);
1671 	}
1672 	if (ret) {
1673 		dev_err(sev->dev, "SEV-SNP firmware shutdown failed\n");
1674 		return ret;
1675 	}
1676 
1677 	/*
1678 	 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP
1679 	 * enforcement by the IOMMU and also transitions all pages
1680 	 * associated with the IOMMU to the Reclaim state.
1681 	 * Firmware was transitioning the IOMMU pages to Hypervisor state
1682 	 * before version 1.53. But, accounting for the number of assigned
1683 	 * 4kB pages in a 2M page was done incorrectly by not transitioning
1684 	 * to the Reclaim state. This resulted in RMP #PF when later accessing
1685 	 * the 2M page containing those pages during kexec boot. Hence, the
1686 	 * firmware now transitions these pages to Reclaim state and hypervisor
1687 	 * needs to transition these pages to shared state. SNP Firmware
1688 	 * version 1.53 and above are needed for kexec boot.
1689 	 */
1690 	ret = amd_iommu_snp_disable();
1691 	if (ret) {
1692 		dev_err(sev->dev, "SNP IOMMU shutdown failed\n");
1693 		return ret;
1694 	}
1695 
1696 	sev->snp_initialized = false;
1697 	dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n");
1698 
1699 	return ret;
1700 }
1701 
1702 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable)
1703 {
1704 	struct sev_device *sev = psp_master->sev_data;
1705 	struct sev_user_data_pek_cert_import input;
1706 	struct sev_data_pek_cert_import data;
1707 	void *pek_blob, *oca_blob;
1708 	int ret;
1709 
1710 	if (!writable)
1711 		return -EPERM;
1712 
1713 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1714 		return -EFAULT;
1715 
1716 	/* copy PEK certificate blobs from userspace */
1717 	pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len);
1718 	if (IS_ERR(pek_blob))
1719 		return PTR_ERR(pek_blob);
1720 
1721 	data.reserved = 0;
1722 	data.pek_cert_address = __psp_pa(pek_blob);
1723 	data.pek_cert_len = input.pek_cert_len;
1724 
1725 	/* copy PEK certificate blobs from userspace */
1726 	oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len);
1727 	if (IS_ERR(oca_blob)) {
1728 		ret = PTR_ERR(oca_blob);
1729 		goto e_free_pek;
1730 	}
1731 
1732 	data.oca_cert_address = __psp_pa(oca_blob);
1733 	data.oca_cert_len = input.oca_cert_len;
1734 
1735 	/* If platform is not in INIT state then transition it to INIT */
1736 	if (sev->state != SEV_STATE_INIT) {
1737 		ret = __sev_platform_init_locked(&argp->error);
1738 		if (ret)
1739 			goto e_free_oca;
1740 	}
1741 
1742 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error);
1743 
1744 e_free_oca:
1745 	kfree(oca_blob);
1746 e_free_pek:
1747 	kfree(pek_blob);
1748 	return ret;
1749 }
1750 
1751 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp)
1752 {
1753 	struct sev_user_data_get_id2 input;
1754 	struct sev_data_get_id data;
1755 	void __user *input_address;
1756 	void *id_blob = NULL;
1757 	int ret;
1758 
1759 	/* SEV GET_ID is available from SEV API v0.16 and up */
1760 	if (!sev_version_greater_or_equal(0, 16))
1761 		return -ENOTSUPP;
1762 
1763 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1764 		return -EFAULT;
1765 
1766 	input_address = (void __user *)input.address;
1767 
1768 	if (input.address && input.length) {
1769 		/*
1770 		 * The length of the ID shouldn't be assumed by software since
1771 		 * it may change in the future.  The allocation size is limited
1772 		 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator.
1773 		 * If the allocation fails, simply return ENOMEM rather than
1774 		 * warning in the kernel log.
1775 		 */
1776 		id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN);
1777 		if (!id_blob)
1778 			return -ENOMEM;
1779 
1780 		data.address = __psp_pa(id_blob);
1781 		data.len = input.length;
1782 	} else {
1783 		data.address = 0;
1784 		data.len = 0;
1785 	}
1786 
1787 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error);
1788 
1789 	/*
1790 	 * Firmware will return the length of the ID value (either the minimum
1791 	 * required length or the actual length written), return it to the user.
1792 	 */
1793 	input.length = data.len;
1794 
1795 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1796 		ret = -EFAULT;
1797 		goto e_free;
1798 	}
1799 
1800 	if (id_blob) {
1801 		if (copy_to_user(input_address, id_blob, data.len)) {
1802 			ret = -EFAULT;
1803 			goto e_free;
1804 		}
1805 	}
1806 
1807 e_free:
1808 	kfree(id_blob);
1809 
1810 	return ret;
1811 }
1812 
1813 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp)
1814 {
1815 	struct sev_data_get_id *data;
1816 	u64 data_size, user_size;
1817 	void *id_blob, *mem;
1818 	int ret;
1819 
1820 	/* SEV GET_ID available from SEV API v0.16 and up */
1821 	if (!sev_version_greater_or_equal(0, 16))
1822 		return -ENOTSUPP;
1823 
1824 	/* SEV FW expects the buffer it fills with the ID to be
1825 	 * 8-byte aligned. Memory allocated should be enough to
1826 	 * hold data structure + alignment padding + memory
1827 	 * where SEV FW writes the ID.
1828 	 */
1829 	data_size = ALIGN(sizeof(struct sev_data_get_id), 8);
1830 	user_size = sizeof(struct sev_user_data_get_id);
1831 
1832 	mem = kzalloc(data_size + user_size, GFP_KERNEL);
1833 	if (!mem)
1834 		return -ENOMEM;
1835 
1836 	data = mem;
1837 	id_blob = mem + data_size;
1838 
1839 	data->address = __psp_pa(id_blob);
1840 	data->len = user_size;
1841 
1842 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error);
1843 	if (!ret) {
1844 		if (copy_to_user((void __user *)argp->data, id_blob, data->len))
1845 			ret = -EFAULT;
1846 	}
1847 
1848 	kfree(mem);
1849 
1850 	return ret;
1851 }
1852 
1853 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable)
1854 {
1855 	struct sev_device *sev = psp_master->sev_data;
1856 	struct sev_user_data_pdh_cert_export input;
1857 	void *pdh_blob = NULL, *cert_blob = NULL;
1858 	struct sev_data_pdh_cert_export data;
1859 	void __user *input_cert_chain_address;
1860 	void __user *input_pdh_cert_address;
1861 	int ret;
1862 
1863 	/* If platform is not in INIT state then transition it to INIT. */
1864 	if (sev->state != SEV_STATE_INIT) {
1865 		if (!writable)
1866 			return -EPERM;
1867 
1868 		ret = __sev_platform_init_locked(&argp->error);
1869 		if (ret)
1870 			return ret;
1871 	}
1872 
1873 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1874 		return -EFAULT;
1875 
1876 	memset(&data, 0, sizeof(data));
1877 
1878 	/* Userspace wants to query the certificate length. */
1879 	if (!input.pdh_cert_address ||
1880 	    !input.pdh_cert_len ||
1881 	    !input.cert_chain_address)
1882 		goto cmd;
1883 
1884 	input_pdh_cert_address = (void __user *)input.pdh_cert_address;
1885 	input_cert_chain_address = (void __user *)input.cert_chain_address;
1886 
1887 	/* Allocate a physically contiguous buffer to store the PDH blob. */
1888 	if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE)
1889 		return -EFAULT;
1890 
1891 	/* Allocate a physically contiguous buffer to store the cert chain blob. */
1892 	if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE)
1893 		return -EFAULT;
1894 
1895 	pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL);
1896 	if (!pdh_blob)
1897 		return -ENOMEM;
1898 
1899 	data.pdh_cert_address = __psp_pa(pdh_blob);
1900 	data.pdh_cert_len = input.pdh_cert_len;
1901 
1902 	cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL);
1903 	if (!cert_blob) {
1904 		ret = -ENOMEM;
1905 		goto e_free_pdh;
1906 	}
1907 
1908 	data.cert_chain_address = __psp_pa(cert_blob);
1909 	data.cert_chain_len = input.cert_chain_len;
1910 
1911 cmd:
1912 	ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error);
1913 
1914 	/* If we query the length, FW responded with expected data. */
1915 	input.cert_chain_len = data.cert_chain_len;
1916 	input.pdh_cert_len = data.pdh_cert_len;
1917 
1918 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1919 		ret = -EFAULT;
1920 		goto e_free_cert;
1921 	}
1922 
1923 	if (pdh_blob) {
1924 		if (copy_to_user(input_pdh_cert_address,
1925 				 pdh_blob, input.pdh_cert_len)) {
1926 			ret = -EFAULT;
1927 			goto e_free_cert;
1928 		}
1929 	}
1930 
1931 	if (cert_blob) {
1932 		if (copy_to_user(input_cert_chain_address,
1933 				 cert_blob, input.cert_chain_len))
1934 			ret = -EFAULT;
1935 	}
1936 
1937 e_free_cert:
1938 	kfree(cert_blob);
1939 e_free_pdh:
1940 	kfree(pdh_blob);
1941 	return ret;
1942 }
1943 
1944 static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp)
1945 {
1946 	struct sev_device *sev = psp_master->sev_data;
1947 	struct sev_data_snp_addr buf;
1948 	struct page *status_page;
1949 	void *data;
1950 	int ret;
1951 
1952 	if (!sev->snp_initialized || !argp->data)
1953 		return -EINVAL;
1954 
1955 	status_page = alloc_page(GFP_KERNEL_ACCOUNT);
1956 	if (!status_page)
1957 		return -ENOMEM;
1958 
1959 	data = page_address(status_page);
1960 
1961 	/*
1962 	 * Firmware expects status page to be in firmware-owned state, otherwise
1963 	 * it will report firmware error code INVALID_PAGE_STATE (0x1A).
1964 	 */
1965 	if (rmp_mark_pages_firmware(__pa(data), 1, true)) {
1966 		ret = -EFAULT;
1967 		goto cleanup;
1968 	}
1969 
1970 	buf.address = __psp_pa(data);
1971 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error);
1972 
1973 	/*
1974 	 * Status page will be transitioned to Reclaim state upon success, or
1975 	 * left in Firmware state in failure. Use snp_reclaim_pages() to
1976 	 * transition either case back to Hypervisor-owned state.
1977 	 */
1978 	if (snp_reclaim_pages(__pa(data), 1, true))
1979 		return -EFAULT;
1980 
1981 	if (ret)
1982 		goto cleanup;
1983 
1984 	if (copy_to_user((void __user *)argp->data, data,
1985 			 sizeof(struct sev_user_data_snp_status)))
1986 		ret = -EFAULT;
1987 
1988 cleanup:
1989 	__free_pages(status_page, 0);
1990 	return ret;
1991 }
1992 
1993 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
1994 {
1995 	void __user *argp = (void __user *)arg;
1996 	struct sev_issue_cmd input;
1997 	int ret = -EFAULT;
1998 	bool writable = file->f_mode & FMODE_WRITE;
1999 
2000 	if (!psp_master || !psp_master->sev_data)
2001 		return -ENODEV;
2002 
2003 	if (ioctl != SEV_ISSUE_CMD)
2004 		return -EINVAL;
2005 
2006 	if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd)))
2007 		return -EFAULT;
2008 
2009 	if (input.cmd > SEV_MAX)
2010 		return -EINVAL;
2011 
2012 	mutex_lock(&sev_cmd_mutex);
2013 
2014 	switch (input.cmd) {
2015 
2016 	case SEV_FACTORY_RESET:
2017 		ret = sev_ioctl_do_reset(&input, writable);
2018 		break;
2019 	case SEV_PLATFORM_STATUS:
2020 		ret = sev_ioctl_do_platform_status(&input);
2021 		break;
2022 	case SEV_PEK_GEN:
2023 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable);
2024 		break;
2025 	case SEV_PDH_GEN:
2026 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable);
2027 		break;
2028 	case SEV_PEK_CSR:
2029 		ret = sev_ioctl_do_pek_csr(&input, writable);
2030 		break;
2031 	case SEV_PEK_CERT_IMPORT:
2032 		ret = sev_ioctl_do_pek_import(&input, writable);
2033 		break;
2034 	case SEV_PDH_CERT_EXPORT:
2035 		ret = sev_ioctl_do_pdh_export(&input, writable);
2036 		break;
2037 	case SEV_GET_ID:
2038 		pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n");
2039 		ret = sev_ioctl_do_get_id(&input);
2040 		break;
2041 	case SEV_GET_ID2:
2042 		ret = sev_ioctl_do_get_id2(&input);
2043 		break;
2044 	case SNP_PLATFORM_STATUS:
2045 		ret = sev_ioctl_do_snp_platform_status(&input);
2046 		break;
2047 	default:
2048 		ret = -EINVAL;
2049 		goto out;
2050 	}
2051 
2052 	if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd)))
2053 		ret = -EFAULT;
2054 out:
2055 	mutex_unlock(&sev_cmd_mutex);
2056 
2057 	return ret;
2058 }
2059 
2060 static const struct file_operations sev_fops = {
2061 	.owner	= THIS_MODULE,
2062 	.unlocked_ioctl = sev_ioctl,
2063 };
2064 
2065 int sev_platform_status(struct sev_user_data_status *data, int *error)
2066 {
2067 	return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error);
2068 }
2069 EXPORT_SYMBOL_GPL(sev_platform_status);
2070 
2071 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error)
2072 {
2073 	return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error);
2074 }
2075 EXPORT_SYMBOL_GPL(sev_guest_deactivate);
2076 
2077 int sev_guest_activate(struct sev_data_activate *data, int *error)
2078 {
2079 	return sev_do_cmd(SEV_CMD_ACTIVATE, data, error);
2080 }
2081 EXPORT_SYMBOL_GPL(sev_guest_activate);
2082 
2083 int sev_guest_decommission(struct sev_data_decommission *data, int *error)
2084 {
2085 	return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error);
2086 }
2087 EXPORT_SYMBOL_GPL(sev_guest_decommission);
2088 
2089 int sev_guest_df_flush(int *error)
2090 {
2091 	return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error);
2092 }
2093 EXPORT_SYMBOL_GPL(sev_guest_df_flush);
2094 
2095 static void sev_exit(struct kref *ref)
2096 {
2097 	misc_deregister(&misc_dev->misc);
2098 	kfree(misc_dev);
2099 	misc_dev = NULL;
2100 }
2101 
2102 static int sev_misc_init(struct sev_device *sev)
2103 {
2104 	struct device *dev = sev->dev;
2105 	int ret;
2106 
2107 	/*
2108 	 * SEV feature support can be detected on multiple devices but the SEV
2109 	 * FW commands must be issued on the master. During probe, we do not
2110 	 * know the master hence we create /dev/sev on the first device probe.
2111 	 * sev_do_cmd() finds the right master device to which to issue the
2112 	 * command to the firmware.
2113 	 */
2114 	if (!misc_dev) {
2115 		struct miscdevice *misc;
2116 
2117 		misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL);
2118 		if (!misc_dev)
2119 			return -ENOMEM;
2120 
2121 		misc = &misc_dev->misc;
2122 		misc->minor = MISC_DYNAMIC_MINOR;
2123 		misc->name = DEVICE_NAME;
2124 		misc->fops = &sev_fops;
2125 
2126 		ret = misc_register(misc);
2127 		if (ret)
2128 			return ret;
2129 
2130 		kref_init(&misc_dev->refcount);
2131 	} else {
2132 		kref_get(&misc_dev->refcount);
2133 	}
2134 
2135 	init_waitqueue_head(&sev->int_queue);
2136 	sev->misc = misc_dev;
2137 	dev_dbg(dev, "registered SEV device\n");
2138 
2139 	return 0;
2140 }
2141 
2142 int sev_dev_init(struct psp_device *psp)
2143 {
2144 	struct device *dev = psp->dev;
2145 	struct sev_device *sev;
2146 	int ret = -ENOMEM;
2147 
2148 	if (!boot_cpu_has(X86_FEATURE_SEV)) {
2149 		dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n");
2150 		return 0;
2151 	}
2152 
2153 	sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL);
2154 	if (!sev)
2155 		goto e_err;
2156 
2157 	sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1);
2158 	if (!sev->cmd_buf)
2159 		goto e_sev;
2160 
2161 	sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE;
2162 
2163 	psp->sev_data = sev;
2164 
2165 	sev->dev = dev;
2166 	sev->psp = psp;
2167 
2168 	sev->io_regs = psp->io_regs;
2169 
2170 	sev->vdata = (struct sev_vdata *)psp->vdata->sev;
2171 	if (!sev->vdata) {
2172 		ret = -ENODEV;
2173 		dev_err(dev, "sev: missing driver data\n");
2174 		goto e_buf;
2175 	}
2176 
2177 	psp_set_sev_irq_handler(psp, sev_irq_handler, sev);
2178 
2179 	ret = sev_misc_init(sev);
2180 	if (ret)
2181 		goto e_irq;
2182 
2183 	dev_notice(dev, "sev enabled\n");
2184 
2185 	return 0;
2186 
2187 e_irq:
2188 	psp_clear_sev_irq_handler(psp);
2189 e_buf:
2190 	devm_free_pages(dev, (unsigned long)sev->cmd_buf);
2191 e_sev:
2192 	devm_kfree(dev, sev);
2193 e_err:
2194 	psp->sev_data = NULL;
2195 
2196 	dev_notice(dev, "sev initialization failed\n");
2197 
2198 	return ret;
2199 }
2200 
2201 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic)
2202 {
2203 	int error;
2204 
2205 	__sev_platform_shutdown_locked(NULL);
2206 
2207 	if (sev_es_tmr) {
2208 		/*
2209 		 * The TMR area was encrypted, flush it from the cache.
2210 		 *
2211 		 * If invoked during panic handling, local interrupts are
2212 		 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus()
2213 		 * can't be used. In that case, wbinvd() is done on remote CPUs
2214 		 * via the NMI callback, and done for this CPU later during
2215 		 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped.
2216 		 */
2217 		if (!panic)
2218 			wbinvd_on_all_cpus();
2219 
2220 		__snp_free_firmware_pages(virt_to_page(sev_es_tmr),
2221 					  get_order(sev_es_tmr_size),
2222 					  true);
2223 		sev_es_tmr = NULL;
2224 	}
2225 
2226 	if (sev_init_ex_buffer) {
2227 		__snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer),
2228 					  get_order(NV_LENGTH),
2229 					  true);
2230 		sev_init_ex_buffer = NULL;
2231 	}
2232 
2233 	if (snp_range_list) {
2234 		kfree(snp_range_list);
2235 		snp_range_list = NULL;
2236 	}
2237 
2238 	__sev_snp_shutdown_locked(&error, panic);
2239 }
2240 
2241 static void sev_firmware_shutdown(struct sev_device *sev)
2242 {
2243 	mutex_lock(&sev_cmd_mutex);
2244 	__sev_firmware_shutdown(sev, false);
2245 	mutex_unlock(&sev_cmd_mutex);
2246 }
2247 
2248 void sev_dev_destroy(struct psp_device *psp)
2249 {
2250 	struct sev_device *sev = psp->sev_data;
2251 
2252 	if (!sev)
2253 		return;
2254 
2255 	sev_firmware_shutdown(sev);
2256 
2257 	if (sev->misc)
2258 		kref_put(&misc_dev->refcount, sev_exit);
2259 
2260 	psp_clear_sev_irq_handler(psp);
2261 }
2262 
2263 static int snp_shutdown_on_panic(struct notifier_block *nb,
2264 				 unsigned long reason, void *arg)
2265 {
2266 	struct sev_device *sev = psp_master->sev_data;
2267 
2268 	/*
2269 	 * If sev_cmd_mutex is already acquired, then it's likely
2270 	 * another PSP command is in flight and issuing a shutdown
2271 	 * would fail in unexpected ways. Rather than create even
2272 	 * more confusion during a panic, just bail out here.
2273 	 */
2274 	if (mutex_is_locked(&sev_cmd_mutex))
2275 		return NOTIFY_DONE;
2276 
2277 	__sev_firmware_shutdown(sev, true);
2278 
2279 	return NOTIFY_DONE;
2280 }
2281 
2282 static struct notifier_block snp_panic_notifier = {
2283 	.notifier_call = snp_shutdown_on_panic,
2284 };
2285 
2286 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd,
2287 				void *data, int *error)
2288 {
2289 	if (!filep || filep->f_op != &sev_fops)
2290 		return -EBADF;
2291 
2292 	return sev_do_cmd(cmd, data, error);
2293 }
2294 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user);
2295 
2296 void sev_pci_init(void)
2297 {
2298 	struct sev_device *sev = psp_master->sev_data;
2299 	struct sev_platform_init_args args = {0};
2300 	int rc;
2301 
2302 	if (!sev)
2303 		return;
2304 
2305 	psp_timeout = psp_probe_timeout;
2306 
2307 	if (sev_get_api_version())
2308 		goto err;
2309 
2310 	if (sev_update_firmware(sev->dev) == 0)
2311 		sev_get_api_version();
2312 
2313 	/* Initialize the platform */
2314 	args.probe = true;
2315 	rc = sev_platform_init(&args);
2316 	if (rc)
2317 		dev_err(sev->dev, "SEV: failed to INIT error %#x, rc %d\n",
2318 			args.error, rc);
2319 
2320 	dev_info(sev->dev, "SEV%s API:%d.%d build:%d\n", sev->snp_initialized ?
2321 		"-SNP" : "", sev->api_major, sev->api_minor, sev->build);
2322 
2323 	atomic_notifier_chain_register(&panic_notifier_list,
2324 				       &snp_panic_notifier);
2325 	return;
2326 
2327 err:
2328 	psp_master->sev_data = NULL;
2329 }
2330 
2331 void sev_pci_exit(void)
2332 {
2333 	struct sev_device *sev = psp_master->sev_data;
2334 
2335 	if (!sev)
2336 		return;
2337 
2338 	sev_firmware_shutdown(sev);
2339 
2340 	atomic_notifier_chain_unregister(&panic_notifier_list,
2341 					 &snp_panic_notifier);
2342 }
2343