xref: /linux/drivers/crypto/ccp/sev-dev.c (revision ef2b6e0317d82731b4d083e53839d966059c5ddd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Secure Encrypted Virtualization (SEV) interface
4  *
5  * Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6  *
7  * Author: Brijesh Singh <brijesh.singh@amd.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/kthread.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/spinlock_types.h>
18 #include <linux/types.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/hw_random.h>
22 #include <linux/ccp.h>
23 #include <linux/firmware.h>
24 #include <linux/panic_notifier.h>
25 #include <linux/gfp.h>
26 #include <linux/cpufeature.h>
27 #include <linux/fs.h>
28 #include <linux/fs_struct.h>
29 #include <linux/psp.h>
30 #include <linux/amd-iommu.h>
31 
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/e820/types.h>
35 #include <asm/sev.h>
36 #include <asm/msr.h>
37 
38 #include "psp-dev.h"
39 #include "sev-dev.h"
40 
41 #define DEVICE_NAME		"sev"
42 #define SEV_FW_FILE		"amd/sev.fw"
43 #define SEV_FW_NAME_SIZE	64
44 
45 /* Minimum firmware version required for the SEV-SNP support */
46 #define SNP_MIN_API_MAJOR	1
47 #define SNP_MIN_API_MINOR	51
48 
49 /*
50  * Maximum number of firmware-writable buffers that might be specified
51  * in the parameters of a legacy SEV command buffer.
52  */
53 #define CMD_BUF_FW_WRITABLE_MAX 2
54 
55 /* Leave room in the descriptor array for an end-of-list indicator. */
56 #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1)
57 
58 static DEFINE_MUTEX(sev_cmd_mutex);
59 static struct sev_misc_dev *misc_dev;
60 
61 static int psp_cmd_timeout = 100;
62 module_param(psp_cmd_timeout, int, 0644);
63 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands");
64 
65 static int psp_probe_timeout = 5;
66 module_param(psp_probe_timeout, int, 0644);
67 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe");
68 
69 static char *init_ex_path;
70 module_param(init_ex_path, charp, 0444);
71 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX");
72 
73 static bool psp_init_on_probe = true;
74 module_param(psp_init_on_probe, bool, 0444);
75 MODULE_PARM_DESC(psp_init_on_probe, "  if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it");
76 
77 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */
78 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */
79 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */
80 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */
81 
82 static bool psp_dead;
83 static int psp_timeout;
84 
85 /* Trusted Memory Region (TMR):
86  *   The TMR is a 1MB area that must be 1MB aligned.  Use the page allocator
87  *   to allocate the memory, which will return aligned memory for the specified
88  *   allocation order.
89  *
90  * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized.
91  */
92 #define SEV_TMR_SIZE		(1024 * 1024)
93 #define SNP_TMR_SIZE		(2 * 1024 * 1024)
94 
95 static void *sev_es_tmr;
96 static size_t sev_es_tmr_size = SEV_TMR_SIZE;
97 
98 /* INIT_EX NV Storage:
99  *   The NV Storage is a 32Kb area and must be 4Kb page aligned.  Use the page
100  *   allocator to allocate the memory, which will return aligned memory for the
101  *   specified allocation order.
102  */
103 #define NV_LENGTH (32 * 1024)
104 static void *sev_init_ex_buffer;
105 
106 /*
107  * SEV_DATA_RANGE_LIST:
108  *   Array containing range of pages that firmware transitions to HV-fixed
109  *   page state.
110  */
111 static struct sev_data_range_list *snp_range_list;
112 
113 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic);
114 
115 static int snp_shutdown_on_panic(struct notifier_block *nb,
116 				 unsigned long reason, void *arg);
117 
118 static struct notifier_block snp_panic_notifier = {
119 	.notifier_call = snp_shutdown_on_panic,
120 };
121 
122 static inline bool sev_version_greater_or_equal(u8 maj, u8 min)
123 {
124 	struct sev_device *sev = psp_master->sev_data;
125 
126 	if (sev->api_major > maj)
127 		return true;
128 
129 	if (sev->api_major == maj && sev->api_minor >= min)
130 		return true;
131 
132 	return false;
133 }
134 
135 static void sev_irq_handler(int irq, void *data, unsigned int status)
136 {
137 	struct sev_device *sev = data;
138 	int reg;
139 
140 	/* Check if it is command completion: */
141 	if (!(status & SEV_CMD_COMPLETE))
142 		return;
143 
144 	/* Check if it is SEV command completion: */
145 	reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
146 	if (FIELD_GET(PSP_CMDRESP_RESP, reg)) {
147 		sev->int_rcvd = 1;
148 		wake_up(&sev->int_queue);
149 	}
150 }
151 
152 static int sev_wait_cmd_ioc(struct sev_device *sev,
153 			    unsigned int *reg, unsigned int timeout)
154 {
155 	int ret;
156 
157 	/*
158 	 * If invoked during panic handling, local interrupts are disabled,
159 	 * so the PSP command completion interrupt can't be used. Poll for
160 	 * PSP command completion instead.
161 	 */
162 	if (irqs_disabled()) {
163 		unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10;
164 
165 		/* Poll for SEV command completion: */
166 		while (timeout_usecs--) {
167 			*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
168 			if (*reg & PSP_CMDRESP_RESP)
169 				return 0;
170 
171 			udelay(10);
172 		}
173 		return -ETIMEDOUT;
174 	}
175 
176 	ret = wait_event_timeout(sev->int_queue,
177 			sev->int_rcvd, timeout * HZ);
178 	if (!ret)
179 		return -ETIMEDOUT;
180 
181 	*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
182 
183 	return 0;
184 }
185 
186 static int sev_cmd_buffer_len(int cmd)
187 {
188 	switch (cmd) {
189 	case SEV_CMD_INIT:			return sizeof(struct sev_data_init);
190 	case SEV_CMD_INIT_EX:                   return sizeof(struct sev_data_init_ex);
191 	case SEV_CMD_SNP_SHUTDOWN_EX:		return sizeof(struct sev_data_snp_shutdown_ex);
192 	case SEV_CMD_SNP_INIT_EX:		return sizeof(struct sev_data_snp_init_ex);
193 	case SEV_CMD_PLATFORM_STATUS:		return sizeof(struct sev_user_data_status);
194 	case SEV_CMD_PEK_CSR:			return sizeof(struct sev_data_pek_csr);
195 	case SEV_CMD_PEK_CERT_IMPORT:		return sizeof(struct sev_data_pek_cert_import);
196 	case SEV_CMD_PDH_CERT_EXPORT:		return sizeof(struct sev_data_pdh_cert_export);
197 	case SEV_CMD_LAUNCH_START:		return sizeof(struct sev_data_launch_start);
198 	case SEV_CMD_LAUNCH_UPDATE_DATA:	return sizeof(struct sev_data_launch_update_data);
199 	case SEV_CMD_LAUNCH_UPDATE_VMSA:	return sizeof(struct sev_data_launch_update_vmsa);
200 	case SEV_CMD_LAUNCH_FINISH:		return sizeof(struct sev_data_launch_finish);
201 	case SEV_CMD_LAUNCH_MEASURE:		return sizeof(struct sev_data_launch_measure);
202 	case SEV_CMD_ACTIVATE:			return sizeof(struct sev_data_activate);
203 	case SEV_CMD_DEACTIVATE:		return sizeof(struct sev_data_deactivate);
204 	case SEV_CMD_DECOMMISSION:		return sizeof(struct sev_data_decommission);
205 	case SEV_CMD_GUEST_STATUS:		return sizeof(struct sev_data_guest_status);
206 	case SEV_CMD_DBG_DECRYPT:		return sizeof(struct sev_data_dbg);
207 	case SEV_CMD_DBG_ENCRYPT:		return sizeof(struct sev_data_dbg);
208 	case SEV_CMD_SEND_START:		return sizeof(struct sev_data_send_start);
209 	case SEV_CMD_SEND_UPDATE_DATA:		return sizeof(struct sev_data_send_update_data);
210 	case SEV_CMD_SEND_UPDATE_VMSA:		return sizeof(struct sev_data_send_update_vmsa);
211 	case SEV_CMD_SEND_FINISH:		return sizeof(struct sev_data_send_finish);
212 	case SEV_CMD_RECEIVE_START:		return sizeof(struct sev_data_receive_start);
213 	case SEV_CMD_RECEIVE_FINISH:		return sizeof(struct sev_data_receive_finish);
214 	case SEV_CMD_RECEIVE_UPDATE_DATA:	return sizeof(struct sev_data_receive_update_data);
215 	case SEV_CMD_RECEIVE_UPDATE_VMSA:	return sizeof(struct sev_data_receive_update_vmsa);
216 	case SEV_CMD_LAUNCH_UPDATE_SECRET:	return sizeof(struct sev_data_launch_secret);
217 	case SEV_CMD_DOWNLOAD_FIRMWARE:		return sizeof(struct sev_data_download_firmware);
218 	case SEV_CMD_GET_ID:			return sizeof(struct sev_data_get_id);
219 	case SEV_CMD_ATTESTATION_REPORT:	return sizeof(struct sev_data_attestation_report);
220 	case SEV_CMD_SEND_CANCEL:		return sizeof(struct sev_data_send_cancel);
221 	case SEV_CMD_SNP_GCTX_CREATE:		return sizeof(struct sev_data_snp_addr);
222 	case SEV_CMD_SNP_LAUNCH_START:		return sizeof(struct sev_data_snp_launch_start);
223 	case SEV_CMD_SNP_LAUNCH_UPDATE:		return sizeof(struct sev_data_snp_launch_update);
224 	case SEV_CMD_SNP_ACTIVATE:		return sizeof(struct sev_data_snp_activate);
225 	case SEV_CMD_SNP_DECOMMISSION:		return sizeof(struct sev_data_snp_addr);
226 	case SEV_CMD_SNP_PAGE_RECLAIM:		return sizeof(struct sev_data_snp_page_reclaim);
227 	case SEV_CMD_SNP_GUEST_STATUS:		return sizeof(struct sev_data_snp_guest_status);
228 	case SEV_CMD_SNP_LAUNCH_FINISH:		return sizeof(struct sev_data_snp_launch_finish);
229 	case SEV_CMD_SNP_DBG_DECRYPT:		return sizeof(struct sev_data_snp_dbg);
230 	case SEV_CMD_SNP_DBG_ENCRYPT:		return sizeof(struct sev_data_snp_dbg);
231 	case SEV_CMD_SNP_PAGE_UNSMASH:		return sizeof(struct sev_data_snp_page_unsmash);
232 	case SEV_CMD_SNP_PLATFORM_STATUS:	return sizeof(struct sev_data_snp_addr);
233 	case SEV_CMD_SNP_GUEST_REQUEST:		return sizeof(struct sev_data_snp_guest_request);
234 	case SEV_CMD_SNP_CONFIG:		return sizeof(struct sev_user_data_snp_config);
235 	case SEV_CMD_SNP_COMMIT:		return sizeof(struct sev_data_snp_commit);
236 	case SEV_CMD_SNP_FEATURE_INFO:		return sizeof(struct sev_data_snp_feature_info);
237 	case SEV_CMD_SNP_VLEK_LOAD:		return sizeof(struct sev_user_data_snp_vlek_load);
238 	default:				return 0;
239 	}
240 
241 	return 0;
242 }
243 
244 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode)
245 {
246 	struct file *fp;
247 	struct path root;
248 	struct cred *cred;
249 	const struct cred *old_cred;
250 
251 	task_lock(&init_task);
252 	get_fs_root(init_task.fs, &root);
253 	task_unlock(&init_task);
254 
255 	cred = prepare_creds();
256 	if (!cred)
257 		return ERR_PTR(-ENOMEM);
258 	cred->fsuid = GLOBAL_ROOT_UID;
259 	old_cred = override_creds(cred);
260 
261 	fp = file_open_root(&root, filename, flags, mode);
262 	path_put(&root);
263 
264 	put_cred(revert_creds(old_cred));
265 
266 	return fp;
267 }
268 
269 static int sev_read_init_ex_file(void)
270 {
271 	struct sev_device *sev = psp_master->sev_data;
272 	struct file *fp;
273 	ssize_t nread;
274 
275 	lockdep_assert_held(&sev_cmd_mutex);
276 
277 	if (!sev_init_ex_buffer)
278 		return -EOPNOTSUPP;
279 
280 	fp = open_file_as_root(init_ex_path, O_RDONLY, 0);
281 	if (IS_ERR(fp)) {
282 		int ret = PTR_ERR(fp);
283 
284 		if (ret == -ENOENT) {
285 			dev_info(sev->dev,
286 				"SEV: %s does not exist and will be created later.\n",
287 				init_ex_path);
288 			ret = 0;
289 		} else {
290 			dev_err(sev->dev,
291 				"SEV: could not open %s for read, error %d\n",
292 				init_ex_path, ret);
293 		}
294 		return ret;
295 	}
296 
297 	nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL);
298 	if (nread != NV_LENGTH) {
299 		dev_info(sev->dev,
300 			"SEV: could not read %u bytes to non volatile memory area, ret %ld\n",
301 			NV_LENGTH, nread);
302 	}
303 
304 	dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread);
305 	filp_close(fp, NULL);
306 
307 	return 0;
308 }
309 
310 static int sev_write_init_ex_file(void)
311 {
312 	struct sev_device *sev = psp_master->sev_data;
313 	struct file *fp;
314 	loff_t offset = 0;
315 	ssize_t nwrite;
316 
317 	lockdep_assert_held(&sev_cmd_mutex);
318 
319 	if (!sev_init_ex_buffer)
320 		return 0;
321 
322 	fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600);
323 	if (IS_ERR(fp)) {
324 		int ret = PTR_ERR(fp);
325 
326 		dev_err(sev->dev,
327 			"SEV: could not open file for write, error %d\n",
328 			ret);
329 		return ret;
330 	}
331 
332 	nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset);
333 	vfs_fsync(fp, 0);
334 	filp_close(fp, NULL);
335 
336 	if (nwrite != NV_LENGTH) {
337 		dev_err(sev->dev,
338 			"SEV: failed to write %u bytes to non volatile memory area, ret %ld\n",
339 			NV_LENGTH, nwrite);
340 		return -EIO;
341 	}
342 
343 	dev_dbg(sev->dev, "SEV: write successful to NV file\n");
344 
345 	return 0;
346 }
347 
348 static int sev_write_init_ex_file_if_required(int cmd_id)
349 {
350 	lockdep_assert_held(&sev_cmd_mutex);
351 
352 	if (!sev_init_ex_buffer)
353 		return 0;
354 
355 	/*
356 	 * Only a few platform commands modify the SPI/NV area, but none of the
357 	 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN,
358 	 * PEK_CERT_IMPORT, and PDH_GEN do.
359 	 */
360 	switch (cmd_id) {
361 	case SEV_CMD_FACTORY_RESET:
362 	case SEV_CMD_INIT_EX:
363 	case SEV_CMD_PDH_GEN:
364 	case SEV_CMD_PEK_CERT_IMPORT:
365 	case SEV_CMD_PEK_GEN:
366 		break;
367 	default:
368 		return 0;
369 	}
370 
371 	return sev_write_init_ex_file();
372 }
373 
374 /*
375  * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked()
376  * needs snp_reclaim_pages(), so a forward declaration is needed.
377  */
378 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret);
379 
380 static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked)
381 {
382 	int ret, err, i;
383 
384 	paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE));
385 
386 	for (i = 0; i < npages; i++, paddr += PAGE_SIZE) {
387 		struct sev_data_snp_page_reclaim data = {0};
388 
389 		data.paddr = paddr;
390 
391 		if (locked)
392 			ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
393 		else
394 			ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
395 
396 		if (ret)
397 			goto cleanup;
398 
399 		ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K);
400 		if (ret)
401 			goto cleanup;
402 	}
403 
404 	return 0;
405 
406 cleanup:
407 	/*
408 	 * If there was a failure reclaiming the page then it is no longer safe
409 	 * to release it back to the system; leak it instead.
410 	 */
411 	snp_leak_pages(__phys_to_pfn(paddr), npages - i);
412 	return ret;
413 }
414 
415 static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked)
416 {
417 	unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT;
418 	int rc, i;
419 
420 	for (i = 0; i < npages; i++, pfn++) {
421 		rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true);
422 		if (rc)
423 			goto cleanup;
424 	}
425 
426 	return 0;
427 
428 cleanup:
429 	/*
430 	 * Try unrolling the firmware state changes by
431 	 * reclaiming the pages which were already changed to the
432 	 * firmware state.
433 	 */
434 	snp_reclaim_pages(paddr, i, locked);
435 
436 	return rc;
437 }
438 
439 static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order, bool locked)
440 {
441 	unsigned long npages = 1ul << order, paddr;
442 	struct sev_device *sev;
443 	struct page *page;
444 
445 	if (!psp_master || !psp_master->sev_data)
446 		return NULL;
447 
448 	page = alloc_pages(gfp_mask, order);
449 	if (!page)
450 		return NULL;
451 
452 	/* If SEV-SNP is initialized then add the page in RMP table. */
453 	sev = psp_master->sev_data;
454 	if (!sev->snp_initialized)
455 		return page;
456 
457 	paddr = __pa((unsigned long)page_address(page));
458 	if (rmp_mark_pages_firmware(paddr, npages, locked))
459 		return NULL;
460 
461 	return page;
462 }
463 
464 void *snp_alloc_firmware_page(gfp_t gfp_mask)
465 {
466 	struct page *page;
467 
468 	page = __snp_alloc_firmware_pages(gfp_mask, 0, false);
469 
470 	return page ? page_address(page) : NULL;
471 }
472 EXPORT_SYMBOL_GPL(snp_alloc_firmware_page);
473 
474 static void __snp_free_firmware_pages(struct page *page, int order, bool locked)
475 {
476 	struct sev_device *sev = psp_master->sev_data;
477 	unsigned long paddr, npages = 1ul << order;
478 
479 	if (!page)
480 		return;
481 
482 	paddr = __pa((unsigned long)page_address(page));
483 	if (sev->snp_initialized &&
484 	    snp_reclaim_pages(paddr, npages, locked))
485 		return;
486 
487 	__free_pages(page, order);
488 }
489 
490 void snp_free_firmware_page(void *addr)
491 {
492 	if (!addr)
493 		return;
494 
495 	__snp_free_firmware_pages(virt_to_page(addr), 0, false);
496 }
497 EXPORT_SYMBOL_GPL(snp_free_firmware_page);
498 
499 static void *sev_fw_alloc(unsigned long len)
500 {
501 	struct page *page;
502 
503 	page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len), true);
504 	if (!page)
505 		return NULL;
506 
507 	return page_address(page);
508 }
509 
510 /**
511  * struct cmd_buf_desc - descriptors for managing legacy SEV command address
512  * parameters corresponding to buffers that may be written to by firmware.
513  *
514  * @paddr_ptr:  pointer to the address parameter in the command buffer which may
515  *              need to be saved/restored depending on whether a bounce buffer
516  *              is used. In the case of a bounce buffer, the command buffer
517  *              needs to be updated with the address of the new bounce buffer
518  *              snp_map_cmd_buf_desc() has allocated specifically for it. Must
519  *              be NULL if this descriptor is only an end-of-list indicator.
520  *
521  * @paddr_orig: storage for the original address parameter, which can be used to
522  *              restore the original value in @paddr_ptr in cases where it is
523  *              replaced with the address of a bounce buffer.
524  *
525  * @len: length of buffer located at the address originally stored at @paddr_ptr
526  *
527  * @guest_owned: true if the address corresponds to guest-owned pages, in which
528  *               case bounce buffers are not needed.
529  */
530 struct cmd_buf_desc {
531 	u64 *paddr_ptr;
532 	u64 paddr_orig;
533 	u32 len;
534 	bool guest_owned;
535 };
536 
537 /*
538  * If a legacy SEV command parameter is a memory address, those pages in
539  * turn need to be transitioned to/from firmware-owned before/after
540  * executing the firmware command.
541  *
542  * Additionally, in cases where those pages are not guest-owned, a bounce
543  * buffer is needed in place of the original memory address parameter.
544  *
545  * A set of descriptors are used to keep track of this handling, and
546  * initialized here based on the specific commands being executed.
547  */
548 static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf,
549 					   struct cmd_buf_desc *desc_list)
550 {
551 	switch (cmd) {
552 	case SEV_CMD_PDH_CERT_EXPORT: {
553 		struct sev_data_pdh_cert_export *data = cmd_buf;
554 
555 		desc_list[0].paddr_ptr = &data->pdh_cert_address;
556 		desc_list[0].len = data->pdh_cert_len;
557 		desc_list[1].paddr_ptr = &data->cert_chain_address;
558 		desc_list[1].len = data->cert_chain_len;
559 		break;
560 	}
561 	case SEV_CMD_GET_ID: {
562 		struct sev_data_get_id *data = cmd_buf;
563 
564 		desc_list[0].paddr_ptr = &data->address;
565 		desc_list[0].len = data->len;
566 		break;
567 	}
568 	case SEV_CMD_PEK_CSR: {
569 		struct sev_data_pek_csr *data = cmd_buf;
570 
571 		desc_list[0].paddr_ptr = &data->address;
572 		desc_list[0].len = data->len;
573 		break;
574 	}
575 	case SEV_CMD_LAUNCH_UPDATE_DATA: {
576 		struct sev_data_launch_update_data *data = cmd_buf;
577 
578 		desc_list[0].paddr_ptr = &data->address;
579 		desc_list[0].len = data->len;
580 		desc_list[0].guest_owned = true;
581 		break;
582 	}
583 	case SEV_CMD_LAUNCH_UPDATE_VMSA: {
584 		struct sev_data_launch_update_vmsa *data = cmd_buf;
585 
586 		desc_list[0].paddr_ptr = &data->address;
587 		desc_list[0].len = data->len;
588 		desc_list[0].guest_owned = true;
589 		break;
590 	}
591 	case SEV_CMD_LAUNCH_MEASURE: {
592 		struct sev_data_launch_measure *data = cmd_buf;
593 
594 		desc_list[0].paddr_ptr = &data->address;
595 		desc_list[0].len = data->len;
596 		break;
597 	}
598 	case SEV_CMD_LAUNCH_UPDATE_SECRET: {
599 		struct sev_data_launch_secret *data = cmd_buf;
600 
601 		desc_list[0].paddr_ptr = &data->guest_address;
602 		desc_list[0].len = data->guest_len;
603 		desc_list[0].guest_owned = true;
604 		break;
605 	}
606 	case SEV_CMD_DBG_DECRYPT: {
607 		struct sev_data_dbg *data = cmd_buf;
608 
609 		desc_list[0].paddr_ptr = &data->dst_addr;
610 		desc_list[0].len = data->len;
611 		desc_list[0].guest_owned = true;
612 		break;
613 	}
614 	case SEV_CMD_DBG_ENCRYPT: {
615 		struct sev_data_dbg *data = cmd_buf;
616 
617 		desc_list[0].paddr_ptr = &data->dst_addr;
618 		desc_list[0].len = data->len;
619 		desc_list[0].guest_owned = true;
620 		break;
621 	}
622 	case SEV_CMD_ATTESTATION_REPORT: {
623 		struct sev_data_attestation_report *data = cmd_buf;
624 
625 		desc_list[0].paddr_ptr = &data->address;
626 		desc_list[0].len = data->len;
627 		break;
628 	}
629 	case SEV_CMD_SEND_START: {
630 		struct sev_data_send_start *data = cmd_buf;
631 
632 		desc_list[0].paddr_ptr = &data->session_address;
633 		desc_list[0].len = data->session_len;
634 		break;
635 	}
636 	case SEV_CMD_SEND_UPDATE_DATA: {
637 		struct sev_data_send_update_data *data = cmd_buf;
638 
639 		desc_list[0].paddr_ptr = &data->hdr_address;
640 		desc_list[0].len = data->hdr_len;
641 		desc_list[1].paddr_ptr = &data->trans_address;
642 		desc_list[1].len = data->trans_len;
643 		break;
644 	}
645 	case SEV_CMD_SEND_UPDATE_VMSA: {
646 		struct sev_data_send_update_vmsa *data = cmd_buf;
647 
648 		desc_list[0].paddr_ptr = &data->hdr_address;
649 		desc_list[0].len = data->hdr_len;
650 		desc_list[1].paddr_ptr = &data->trans_address;
651 		desc_list[1].len = data->trans_len;
652 		break;
653 	}
654 	case SEV_CMD_RECEIVE_UPDATE_DATA: {
655 		struct sev_data_receive_update_data *data = cmd_buf;
656 
657 		desc_list[0].paddr_ptr = &data->guest_address;
658 		desc_list[0].len = data->guest_len;
659 		desc_list[0].guest_owned = true;
660 		break;
661 	}
662 	case SEV_CMD_RECEIVE_UPDATE_VMSA: {
663 		struct sev_data_receive_update_vmsa *data = cmd_buf;
664 
665 		desc_list[0].paddr_ptr = &data->guest_address;
666 		desc_list[0].len = data->guest_len;
667 		desc_list[0].guest_owned = true;
668 		break;
669 	}
670 	default:
671 		break;
672 	}
673 }
674 
675 static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc)
676 {
677 	unsigned int npages;
678 
679 	if (!desc->len)
680 		return 0;
681 
682 	/* Allocate a bounce buffer if this isn't a guest owned page. */
683 	if (!desc->guest_owned) {
684 		struct page *page;
685 
686 		page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len));
687 		if (!page) {
688 			pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n");
689 			return -ENOMEM;
690 		}
691 
692 		desc->paddr_orig = *desc->paddr_ptr;
693 		*desc->paddr_ptr = __psp_pa(page_to_virt(page));
694 	}
695 
696 	npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
697 
698 	/* Transition the buffer to firmware-owned. */
699 	if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) {
700 		pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n");
701 		return -EFAULT;
702 	}
703 
704 	return 0;
705 }
706 
707 static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc)
708 {
709 	unsigned int npages;
710 
711 	if (!desc->len)
712 		return 0;
713 
714 	npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
715 
716 	/* Transition the buffers back to hypervisor-owned. */
717 	if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) {
718 		pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n");
719 		return -EFAULT;
720 	}
721 
722 	/* Copy data from bounce buffer and then free it. */
723 	if (!desc->guest_owned) {
724 		void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr));
725 		void *dst_buf = __va(__sme_clr(desc->paddr_orig));
726 
727 		memcpy(dst_buf, bounce_buf, desc->len);
728 		__free_pages(virt_to_page(bounce_buf), get_order(desc->len));
729 
730 		/* Restore the original address in the command buffer. */
731 		*desc->paddr_ptr = desc->paddr_orig;
732 	}
733 
734 	return 0;
735 }
736 
737 static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
738 {
739 	int i;
740 
741 	snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list);
742 
743 	for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
744 		struct cmd_buf_desc *desc = &desc_list[i];
745 
746 		if (!desc->paddr_ptr)
747 			break;
748 
749 		if (snp_map_cmd_buf_desc(desc))
750 			goto err_unmap;
751 	}
752 
753 	return 0;
754 
755 err_unmap:
756 	for (i--; i >= 0; i--)
757 		snp_unmap_cmd_buf_desc(&desc_list[i]);
758 
759 	return -EFAULT;
760 }
761 
762 static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list)
763 {
764 	int i, ret = 0;
765 
766 	for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
767 		struct cmd_buf_desc *desc = &desc_list[i];
768 
769 		if (!desc->paddr_ptr)
770 			break;
771 
772 		if (snp_unmap_cmd_buf_desc(&desc_list[i]))
773 			ret = -EFAULT;
774 	}
775 
776 	return ret;
777 }
778 
779 static bool sev_cmd_buf_writable(int cmd)
780 {
781 	switch (cmd) {
782 	case SEV_CMD_PLATFORM_STATUS:
783 	case SEV_CMD_GUEST_STATUS:
784 	case SEV_CMD_LAUNCH_START:
785 	case SEV_CMD_RECEIVE_START:
786 	case SEV_CMD_LAUNCH_MEASURE:
787 	case SEV_CMD_SEND_START:
788 	case SEV_CMD_SEND_UPDATE_DATA:
789 	case SEV_CMD_SEND_UPDATE_VMSA:
790 	case SEV_CMD_PEK_CSR:
791 	case SEV_CMD_PDH_CERT_EXPORT:
792 	case SEV_CMD_GET_ID:
793 	case SEV_CMD_ATTESTATION_REPORT:
794 		return true;
795 	default:
796 		return false;
797 	}
798 }
799 
800 /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */
801 static bool snp_legacy_handling_needed(int cmd)
802 {
803 	struct sev_device *sev = psp_master->sev_data;
804 
805 	return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized;
806 }
807 
808 static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
809 {
810 	if (!snp_legacy_handling_needed(cmd))
811 		return 0;
812 
813 	if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list))
814 		return -EFAULT;
815 
816 	/*
817 	 * Before command execution, the command buffer needs to be put into
818 	 * the firmware-owned state.
819 	 */
820 	if (sev_cmd_buf_writable(cmd)) {
821 		if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true))
822 			return -EFAULT;
823 	}
824 
825 	return 0;
826 }
827 
828 static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf)
829 {
830 	if (!snp_legacy_handling_needed(cmd))
831 		return 0;
832 
833 	/*
834 	 * After command completion, the command buffer needs to be put back
835 	 * into the hypervisor-owned state.
836 	 */
837 	if (sev_cmd_buf_writable(cmd))
838 		if (snp_reclaim_pages(__pa(cmd_buf), 1, true))
839 			return -EFAULT;
840 
841 	return 0;
842 }
843 
844 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret)
845 {
846 	struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0};
847 	struct psp_device *psp = psp_master;
848 	struct sev_device *sev;
849 	unsigned int cmdbuff_hi, cmdbuff_lo;
850 	unsigned int phys_lsb, phys_msb;
851 	unsigned int reg;
852 	void *cmd_buf;
853 	int buf_len;
854 	int ret = 0;
855 
856 	if (!psp || !psp->sev_data)
857 		return -ENODEV;
858 
859 	if (psp_dead)
860 		return -EBUSY;
861 
862 	sev = psp->sev_data;
863 
864 	buf_len = sev_cmd_buffer_len(cmd);
865 	if (WARN_ON_ONCE(!data != !buf_len))
866 		return -EINVAL;
867 
868 	/*
869 	 * Copy the incoming data to driver's scratch buffer as __pa() will not
870 	 * work for some memory, e.g. vmalloc'd addresses, and @data may not be
871 	 * physically contiguous.
872 	 */
873 	if (data) {
874 		/*
875 		 * Commands are generally issued one at a time and require the
876 		 * sev_cmd_mutex, but there could be recursive firmware requests
877 		 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while
878 		 * preparing buffers for another command. This is the only known
879 		 * case of nesting in the current code, so exactly one
880 		 * additional command buffer is available for that purpose.
881 		 */
882 		if (!sev->cmd_buf_active) {
883 			cmd_buf = sev->cmd_buf;
884 			sev->cmd_buf_active = true;
885 		} else if (!sev->cmd_buf_backup_active) {
886 			cmd_buf = sev->cmd_buf_backup;
887 			sev->cmd_buf_backup_active = true;
888 		} else {
889 			dev_err(sev->dev,
890 				"SEV: too many firmware commands in progress, no command buffers available.\n");
891 			return -EBUSY;
892 		}
893 
894 		memcpy(cmd_buf, data, buf_len);
895 
896 		/*
897 		 * The behavior of the SEV-legacy commands is altered when the
898 		 * SNP firmware is in the INIT state.
899 		 */
900 		ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list);
901 		if (ret) {
902 			dev_err(sev->dev,
903 				"SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n",
904 				cmd, ret);
905 			return ret;
906 		}
907 	} else {
908 		cmd_buf = sev->cmd_buf;
909 	}
910 
911 	/* Get the physical address of the command buffer */
912 	phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0;
913 	phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0;
914 
915 	dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n",
916 		cmd, phys_msb, phys_lsb, psp_timeout);
917 
918 	print_hex_dump_debug("(in):  ", DUMP_PREFIX_OFFSET, 16, 2, data,
919 			     buf_len, false);
920 
921 	iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
922 	iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
923 
924 	sev->int_rcvd = 0;
925 
926 	reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd);
927 
928 	/*
929 	 * If invoked during panic handling, local interrupts are disabled so
930 	 * the PSP command completion interrupt can't be used.
931 	 * sev_wait_cmd_ioc() already checks for interrupts disabled and
932 	 * polls for PSP command completion.  Ensure we do not request an
933 	 * interrupt from the PSP if irqs disabled.
934 	 */
935 	if (!irqs_disabled())
936 		reg |= SEV_CMDRESP_IOC;
937 
938 	iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg);
939 
940 	/* wait for command completion */
941 	ret = sev_wait_cmd_ioc(sev, &reg, psp_timeout);
942 	if (ret) {
943 		if (psp_ret)
944 			*psp_ret = 0;
945 
946 		dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd);
947 		psp_dead = true;
948 
949 		return ret;
950 	}
951 
952 	psp_timeout = psp_cmd_timeout;
953 
954 	if (psp_ret)
955 		*psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg);
956 
957 	if (FIELD_GET(PSP_CMDRESP_STS, reg)) {
958 		dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n",
959 			cmd, FIELD_GET(PSP_CMDRESP_STS, reg));
960 
961 		/*
962 		 * PSP firmware may report additional error information in the
963 		 * command buffer registers on error. Print contents of command
964 		 * buffer registers if they changed.
965 		 */
966 		cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
967 		cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
968 		if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) {
969 			dev_dbg(sev->dev, "Additional error information reported in cmdbuff:");
970 			dev_dbg(sev->dev, "  cmdbuff hi: %#010x\n", cmdbuff_hi);
971 			dev_dbg(sev->dev, "  cmdbuff lo: %#010x\n", cmdbuff_lo);
972 		}
973 		ret = -EIO;
974 	} else {
975 		ret = sev_write_init_ex_file_if_required(cmd);
976 	}
977 
978 	/*
979 	 * Copy potential output from the PSP back to data.  Do this even on
980 	 * failure in case the caller wants to glean something from the error.
981 	 */
982 	if (data) {
983 		int ret_reclaim;
984 		/*
985 		 * Restore the page state after the command completes.
986 		 */
987 		ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf);
988 		if (ret_reclaim) {
989 			dev_err(sev->dev,
990 				"SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n",
991 				cmd, ret_reclaim);
992 			return ret_reclaim;
993 		}
994 
995 		memcpy(data, cmd_buf, buf_len);
996 
997 		if (sev->cmd_buf_backup_active)
998 			sev->cmd_buf_backup_active = false;
999 		else
1000 			sev->cmd_buf_active = false;
1001 
1002 		if (snp_unmap_cmd_buf_desc_list(desc_list))
1003 			return -EFAULT;
1004 	}
1005 
1006 	print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data,
1007 			     buf_len, false);
1008 
1009 	return ret;
1010 }
1011 
1012 int sev_do_cmd(int cmd, void *data, int *psp_ret)
1013 {
1014 	int rc;
1015 
1016 	mutex_lock(&sev_cmd_mutex);
1017 	rc = __sev_do_cmd_locked(cmd, data, psp_ret);
1018 	mutex_unlock(&sev_cmd_mutex);
1019 
1020 	return rc;
1021 }
1022 EXPORT_SYMBOL_GPL(sev_do_cmd);
1023 
1024 static int __sev_init_locked(int *error)
1025 {
1026 	struct sev_data_init data;
1027 
1028 	memset(&data, 0, sizeof(data));
1029 	if (sev_es_tmr) {
1030 		/*
1031 		 * Do not include the encryption mask on the physical
1032 		 * address of the TMR (firmware should clear it anyway).
1033 		 */
1034 		data.tmr_address = __pa(sev_es_tmr);
1035 
1036 		data.flags |= SEV_INIT_FLAGS_SEV_ES;
1037 		data.tmr_len = sev_es_tmr_size;
1038 	}
1039 
1040 	return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error);
1041 }
1042 
1043 static int __sev_init_ex_locked(int *error)
1044 {
1045 	struct sev_data_init_ex data;
1046 
1047 	memset(&data, 0, sizeof(data));
1048 	data.length = sizeof(data);
1049 	data.nv_address = __psp_pa(sev_init_ex_buffer);
1050 	data.nv_len = NV_LENGTH;
1051 
1052 	if (sev_es_tmr) {
1053 		/*
1054 		 * Do not include the encryption mask on the physical
1055 		 * address of the TMR (firmware should clear it anyway).
1056 		 */
1057 		data.tmr_address = __pa(sev_es_tmr);
1058 
1059 		data.flags |= SEV_INIT_FLAGS_SEV_ES;
1060 		data.tmr_len = sev_es_tmr_size;
1061 	}
1062 
1063 	return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error);
1064 }
1065 
1066 static inline int __sev_do_init_locked(int *psp_ret)
1067 {
1068 	if (sev_init_ex_buffer)
1069 		return __sev_init_ex_locked(psp_ret);
1070 	else
1071 		return __sev_init_locked(psp_ret);
1072 }
1073 
1074 static void snp_set_hsave_pa(void *arg)
1075 {
1076 	wrmsrq(MSR_VM_HSAVE_PA, 0);
1077 }
1078 
1079 bool sev_is_snp_ciphertext_hiding_supported(void)
1080 {
1081 	struct psp_device *psp = psp_master;
1082 	struct sev_device *sev;
1083 
1084 	if (!psp || !psp->sev_data)
1085 		return false;
1086 
1087 	sev = psp->sev_data;
1088 
1089 	/*
1090 	 * Feature information indicates if CipherTextHiding feature is
1091 	 * supported by the SEV firmware and additionally platform status
1092 	 * indicates if CipherTextHiding feature is enabled in the
1093 	 * Platform BIOS.
1094 	 */
1095 	return ((sev->snp_feat_info_0.ecx & SNP_CIPHER_TEXT_HIDING_SUPPORTED) &&
1096 		 sev->snp_plat_status.ciphertext_hiding_cap);
1097 }
1098 EXPORT_SYMBOL_GPL(sev_is_snp_ciphertext_hiding_supported);
1099 
1100 static int snp_get_platform_data(struct sev_device *sev, int *error)
1101 {
1102 	struct sev_data_snp_feature_info snp_feat_info;
1103 	struct snp_feature_info *feat_info;
1104 	struct sev_data_snp_addr buf;
1105 	struct page *page;
1106 	int rc;
1107 
1108 	/*
1109 	 * This function is expected to be called before SNP is
1110 	 * initialized.
1111 	 */
1112 	if (sev->snp_initialized)
1113 		return -EINVAL;
1114 
1115 	buf.address = __psp_pa(&sev->snp_plat_status);
1116 	rc = sev_do_cmd(SEV_CMD_SNP_PLATFORM_STATUS, &buf, error);
1117 	if (rc) {
1118 		dev_err(sev->dev, "SNP PLATFORM_STATUS command failed, ret = %d, error = %#x\n",
1119 			rc, *error);
1120 		return rc;
1121 	}
1122 
1123 	sev->api_major = sev->snp_plat_status.api_major;
1124 	sev->api_minor = sev->snp_plat_status.api_minor;
1125 	sev->build = sev->snp_plat_status.build_id;
1126 
1127 	/*
1128 	 * Do feature discovery of the currently loaded firmware,
1129 	 * and cache feature information from CPUID 0x8000_0024,
1130 	 * sub-function 0.
1131 	 */
1132 	if (!sev->snp_plat_status.feature_info)
1133 		return 0;
1134 
1135 	/*
1136 	 * Use dynamically allocated structure for the SNP_FEATURE_INFO
1137 	 * command to ensure structure is 8-byte aligned, and does not
1138 	 * cross a page boundary.
1139 	 */
1140 	page = alloc_page(GFP_KERNEL);
1141 	if (!page)
1142 		return -ENOMEM;
1143 
1144 	feat_info = page_address(page);
1145 	snp_feat_info.length = sizeof(snp_feat_info);
1146 	snp_feat_info.ecx_in = 0;
1147 	snp_feat_info.feature_info_paddr = __psp_pa(feat_info);
1148 
1149 	rc = sev_do_cmd(SEV_CMD_SNP_FEATURE_INFO, &snp_feat_info, error);
1150 	if (!rc)
1151 		sev->snp_feat_info_0 = *feat_info;
1152 	else
1153 		dev_err(sev->dev, "SNP FEATURE_INFO command failed, ret = %d, error = %#x\n",
1154 			rc, *error);
1155 
1156 	__free_page(page);
1157 
1158 	return rc;
1159 }
1160 
1161 static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg)
1162 {
1163 	struct sev_data_range_list *range_list = arg;
1164 	struct sev_data_range *range = &range_list->ranges[range_list->num_elements];
1165 	size_t size;
1166 
1167 	/*
1168 	 * Ensure the list of HV_FIXED pages that will be passed to firmware
1169 	 * do not exceed the page-sized argument buffer.
1170 	 */
1171 	if ((range_list->num_elements * sizeof(struct sev_data_range) +
1172 	     sizeof(struct sev_data_range_list)) > PAGE_SIZE)
1173 		return -E2BIG;
1174 
1175 	switch (rs->desc) {
1176 	case E820_TYPE_RESERVED:
1177 	case E820_TYPE_PMEM:
1178 	case E820_TYPE_ACPI:
1179 		range->base = rs->start & PAGE_MASK;
1180 		size = PAGE_ALIGN((rs->end + 1) - rs->start);
1181 		range->page_count = size >> PAGE_SHIFT;
1182 		range_list->num_elements++;
1183 		break;
1184 	default:
1185 		break;
1186 	}
1187 
1188 	return 0;
1189 }
1190 
1191 static int __sev_snp_init_locked(int *error, unsigned int max_snp_asid)
1192 {
1193 	struct psp_device *psp = psp_master;
1194 	struct sev_data_snp_init_ex data;
1195 	struct sev_device *sev;
1196 	void *arg = &data;
1197 	int cmd, rc = 0;
1198 
1199 	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
1200 		return -ENODEV;
1201 
1202 	sev = psp->sev_data;
1203 
1204 	if (sev->snp_initialized)
1205 		return 0;
1206 
1207 	if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) {
1208 		dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n",
1209 			SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR);
1210 		return -EOPNOTSUPP;
1211 	}
1212 
1213 	/* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */
1214 	on_each_cpu(snp_set_hsave_pa, NULL, 1);
1215 
1216 	/*
1217 	 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list
1218 	 * of system physical address ranges to convert into HV-fixed page
1219 	 * states during the RMP initialization.  For instance, the memory that
1220 	 * UEFI reserves should be included in the that list. This allows system
1221 	 * components that occasionally write to memory (e.g. logging to UEFI
1222 	 * reserved regions) to not fail due to RMP initialization and SNP
1223 	 * enablement.
1224 	 *
1225 	 */
1226 	if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) {
1227 		/*
1228 		 * Firmware checks that the pages containing the ranges enumerated
1229 		 * in the RANGES structure are either in the default page state or in the
1230 		 * firmware page state.
1231 		 */
1232 		snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL);
1233 		if (!snp_range_list) {
1234 			dev_err(sev->dev,
1235 				"SEV: SNP_INIT_EX range list memory allocation failed\n");
1236 			return -ENOMEM;
1237 		}
1238 
1239 		/*
1240 		 * Retrieve all reserved memory regions from the e820 memory map
1241 		 * to be setup as HV-fixed pages.
1242 		 */
1243 		rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0,
1244 					 snp_range_list, snp_filter_reserved_mem_regions);
1245 		if (rc) {
1246 			dev_err(sev->dev,
1247 				"SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc);
1248 			return rc;
1249 		}
1250 
1251 		memset(&data, 0, sizeof(data));
1252 
1253 		if (max_snp_asid) {
1254 			data.ciphertext_hiding_en = 1;
1255 			data.max_snp_asid = max_snp_asid;
1256 		}
1257 
1258 		data.init_rmp = 1;
1259 		data.list_paddr_en = 1;
1260 		data.list_paddr = __psp_pa(snp_range_list);
1261 		cmd = SEV_CMD_SNP_INIT_EX;
1262 	} else {
1263 		cmd = SEV_CMD_SNP_INIT;
1264 		arg = NULL;
1265 	}
1266 
1267 	/*
1268 	 * The following sequence must be issued before launching the first SNP
1269 	 * guest to ensure all dirty cache lines are flushed, including from
1270 	 * updates to the RMP table itself via the RMPUPDATE instruction:
1271 	 *
1272 	 * - WBINVD on all running CPUs
1273 	 * - SEV_CMD_SNP_INIT[_EX] firmware command
1274 	 * - WBINVD on all running CPUs
1275 	 * - SEV_CMD_SNP_DF_FLUSH firmware command
1276 	 */
1277 	wbinvd_on_all_cpus();
1278 
1279 	rc = __sev_do_cmd_locked(cmd, arg, error);
1280 	if (rc) {
1281 		dev_err(sev->dev, "SEV-SNP: %s failed rc %d, error %#x\n",
1282 			cmd == SEV_CMD_SNP_INIT_EX ? "SNP_INIT_EX" : "SNP_INIT",
1283 			rc, *error);
1284 		return rc;
1285 	}
1286 
1287 	/* Prepare for first SNP guest launch after INIT. */
1288 	wbinvd_on_all_cpus();
1289 	rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error);
1290 	if (rc) {
1291 		dev_err(sev->dev, "SEV-SNP: SNP_DF_FLUSH failed rc %d, error %#x\n",
1292 			rc, *error);
1293 		return rc;
1294 	}
1295 
1296 	sev->snp_initialized = true;
1297 	dev_dbg(sev->dev, "SEV-SNP firmware initialized\n");
1298 
1299 	dev_info(sev->dev, "SEV-SNP API:%d.%d build:%d\n", sev->api_major,
1300 		 sev->api_minor, sev->build);
1301 
1302 	atomic_notifier_chain_register(&panic_notifier_list,
1303 				       &snp_panic_notifier);
1304 
1305 	sev_es_tmr_size = SNP_TMR_SIZE;
1306 
1307 	return 0;
1308 }
1309 
1310 static void __sev_platform_init_handle_tmr(struct sev_device *sev)
1311 {
1312 	if (sev_es_tmr)
1313 		return;
1314 
1315 	/* Obtain the TMR memory area for SEV-ES use */
1316 	sev_es_tmr = sev_fw_alloc(sev_es_tmr_size);
1317 	if (sev_es_tmr) {
1318 		/* Must flush the cache before giving it to the firmware */
1319 		if (!sev->snp_initialized)
1320 			clflush_cache_range(sev_es_tmr, sev_es_tmr_size);
1321 	} else {
1322 			dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n");
1323 	}
1324 }
1325 
1326 /*
1327  * If an init_ex_path is provided allocate a buffer for the file and
1328  * read in the contents. Additionally, if SNP is initialized, convert
1329  * the buffer pages to firmware pages.
1330  */
1331 static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev)
1332 {
1333 	struct page *page;
1334 	int rc;
1335 
1336 	if (!init_ex_path)
1337 		return 0;
1338 
1339 	if (sev_init_ex_buffer)
1340 		return 0;
1341 
1342 	page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH));
1343 	if (!page) {
1344 		dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n");
1345 		return -ENOMEM;
1346 	}
1347 
1348 	sev_init_ex_buffer = page_address(page);
1349 
1350 	rc = sev_read_init_ex_file();
1351 	if (rc)
1352 		return rc;
1353 
1354 	/* If SEV-SNP is initialized, transition to firmware page. */
1355 	if (sev->snp_initialized) {
1356 		unsigned long npages;
1357 
1358 		npages = 1UL << get_order(NV_LENGTH);
1359 		if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) {
1360 			dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n");
1361 			return -ENOMEM;
1362 		}
1363 	}
1364 
1365 	return 0;
1366 }
1367 
1368 static int __sev_platform_init_locked(int *error)
1369 {
1370 	int rc, psp_ret, dfflush_error;
1371 	struct sev_device *sev;
1372 
1373 	psp_ret = dfflush_error = SEV_RET_NO_FW_CALL;
1374 
1375 	if (!psp_master || !psp_master->sev_data)
1376 		return -ENODEV;
1377 
1378 	sev = psp_master->sev_data;
1379 
1380 	if (sev->sev_plat_status.state == SEV_STATE_INIT)
1381 		return 0;
1382 
1383 	__sev_platform_init_handle_tmr(sev);
1384 
1385 	rc = __sev_platform_init_handle_init_ex_path(sev);
1386 	if (rc)
1387 		return rc;
1388 
1389 	rc = __sev_do_init_locked(&psp_ret);
1390 	if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) {
1391 		/*
1392 		 * Initialization command returned an integrity check failure
1393 		 * status code, meaning that firmware load and validation of SEV
1394 		 * related persistent data has failed. Retrying the
1395 		 * initialization function should succeed by replacing the state
1396 		 * with a reset state.
1397 		 */
1398 		dev_err(sev->dev,
1399 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state.");
1400 		rc = __sev_do_init_locked(&psp_ret);
1401 	}
1402 
1403 	if (error)
1404 		*error = psp_ret;
1405 
1406 	if (rc) {
1407 		dev_err(sev->dev, "SEV: %s failed %#x, rc %d\n",
1408 			sev_init_ex_buffer ? "INIT_EX" : "INIT", psp_ret, rc);
1409 		return rc;
1410 	}
1411 
1412 	sev->sev_plat_status.state = SEV_STATE_INIT;
1413 
1414 	/* Prepare for first SEV guest launch after INIT */
1415 	wbinvd_on_all_cpus();
1416 	rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, &dfflush_error);
1417 	if (rc) {
1418 		dev_err(sev->dev, "SEV: DF_FLUSH failed %#x, rc %d\n",
1419 			dfflush_error, rc);
1420 		return rc;
1421 	}
1422 
1423 	dev_dbg(sev->dev, "SEV firmware initialized\n");
1424 
1425 	dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major,
1426 		 sev->api_minor, sev->build);
1427 
1428 	return 0;
1429 }
1430 
1431 static int _sev_platform_init_locked(struct sev_platform_init_args *args)
1432 {
1433 	struct sev_device *sev;
1434 	int rc;
1435 
1436 	if (!psp_master || !psp_master->sev_data)
1437 		return -ENODEV;
1438 
1439 	sev = psp_master->sev_data;
1440 
1441 	if (sev->sev_plat_status.state == SEV_STATE_INIT)
1442 		return 0;
1443 
1444 	rc = __sev_snp_init_locked(&args->error, args->max_snp_asid);
1445 	if (rc && rc != -ENODEV)
1446 		return rc;
1447 
1448 	/* Defer legacy SEV/SEV-ES support if allowed by caller/module. */
1449 	if (args->probe && !psp_init_on_probe)
1450 		return 0;
1451 
1452 	return __sev_platform_init_locked(&args->error);
1453 }
1454 
1455 int sev_platform_init(struct sev_platform_init_args *args)
1456 {
1457 	int rc;
1458 
1459 	mutex_lock(&sev_cmd_mutex);
1460 	rc = _sev_platform_init_locked(args);
1461 	mutex_unlock(&sev_cmd_mutex);
1462 
1463 	return rc;
1464 }
1465 EXPORT_SYMBOL_GPL(sev_platform_init);
1466 
1467 static int __sev_platform_shutdown_locked(int *error)
1468 {
1469 	struct psp_device *psp = psp_master;
1470 	struct sev_device *sev;
1471 	int ret;
1472 
1473 	if (!psp || !psp->sev_data)
1474 		return 0;
1475 
1476 	sev = psp->sev_data;
1477 
1478 	if (sev->sev_plat_status.state == SEV_STATE_UNINIT)
1479 		return 0;
1480 
1481 	ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error);
1482 	if (ret) {
1483 		dev_err(sev->dev, "SEV: failed to SHUTDOWN error %#x, rc %d\n",
1484 			*error, ret);
1485 		return ret;
1486 	}
1487 
1488 	sev->sev_plat_status.state = SEV_STATE_UNINIT;
1489 	dev_dbg(sev->dev, "SEV firmware shutdown\n");
1490 
1491 	return ret;
1492 }
1493 
1494 static int sev_get_platform_state(int *state, int *error)
1495 {
1496 	struct sev_user_data_status data;
1497 	int rc;
1498 
1499 	rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error);
1500 	if (rc)
1501 		return rc;
1502 
1503 	*state = data.state;
1504 	return rc;
1505 }
1506 
1507 static int sev_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required)
1508 {
1509 	struct sev_platform_init_args init_args = {0};
1510 	int rc;
1511 
1512 	rc = _sev_platform_init_locked(&init_args);
1513 	if (rc) {
1514 		argp->error = SEV_RET_INVALID_PLATFORM_STATE;
1515 		return rc;
1516 	}
1517 
1518 	*shutdown_required = true;
1519 
1520 	return 0;
1521 }
1522 
1523 static int snp_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required)
1524 {
1525 	int error, rc;
1526 
1527 	rc = __sev_snp_init_locked(&error, 0);
1528 	if (rc) {
1529 		argp->error = SEV_RET_INVALID_PLATFORM_STATE;
1530 		return rc;
1531 	}
1532 
1533 	*shutdown_required = true;
1534 
1535 	return 0;
1536 }
1537 
1538 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable)
1539 {
1540 	int state, rc;
1541 
1542 	if (!writable)
1543 		return -EPERM;
1544 
1545 	/*
1546 	 * The SEV spec requires that FACTORY_RESET must be issued in
1547 	 * UNINIT state. Before we go further lets check if any guest is
1548 	 * active.
1549 	 *
1550 	 * If FW is in WORKING state then deny the request otherwise issue
1551 	 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET.
1552 	 *
1553 	 */
1554 	rc = sev_get_platform_state(&state, &argp->error);
1555 	if (rc)
1556 		return rc;
1557 
1558 	if (state == SEV_STATE_WORKING)
1559 		return -EBUSY;
1560 
1561 	if (state == SEV_STATE_INIT) {
1562 		rc = __sev_platform_shutdown_locked(&argp->error);
1563 		if (rc)
1564 			return rc;
1565 	}
1566 
1567 	return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error);
1568 }
1569 
1570 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp)
1571 {
1572 	struct sev_user_data_status data;
1573 	int ret;
1574 
1575 	memset(&data, 0, sizeof(data));
1576 
1577 	ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error);
1578 	if (ret)
1579 		return ret;
1580 
1581 	if (copy_to_user((void __user *)argp->data, &data, sizeof(data)))
1582 		ret = -EFAULT;
1583 
1584 	return ret;
1585 }
1586 
1587 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable)
1588 {
1589 	struct sev_device *sev = psp_master->sev_data;
1590 	bool shutdown_required = false;
1591 	int rc;
1592 
1593 	if (!writable)
1594 		return -EPERM;
1595 
1596 	if (sev->sev_plat_status.state == SEV_STATE_UNINIT) {
1597 		rc = sev_move_to_init_state(argp, &shutdown_required);
1598 		if (rc)
1599 			return rc;
1600 	}
1601 
1602 	rc = __sev_do_cmd_locked(cmd, NULL, &argp->error);
1603 
1604 	if (shutdown_required)
1605 		__sev_firmware_shutdown(sev, false);
1606 
1607 	return rc;
1608 }
1609 
1610 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable)
1611 {
1612 	struct sev_device *sev = psp_master->sev_data;
1613 	struct sev_user_data_pek_csr input;
1614 	bool shutdown_required = false;
1615 	struct sev_data_pek_csr data;
1616 	void __user *input_address;
1617 	void *blob = NULL;
1618 	int ret;
1619 
1620 	if (!writable)
1621 		return -EPERM;
1622 
1623 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1624 		return -EFAULT;
1625 
1626 	memset(&data, 0, sizeof(data));
1627 
1628 	/* userspace wants to query CSR length */
1629 	if (!input.address || !input.length)
1630 		goto cmd;
1631 
1632 	/* allocate a physically contiguous buffer to store the CSR blob */
1633 	input_address = (void __user *)input.address;
1634 	if (input.length > SEV_FW_BLOB_MAX_SIZE)
1635 		return -EFAULT;
1636 
1637 	blob = kzalloc(input.length, GFP_KERNEL);
1638 	if (!blob)
1639 		return -ENOMEM;
1640 
1641 	data.address = __psp_pa(blob);
1642 	data.len = input.length;
1643 
1644 cmd:
1645 	if (sev->sev_plat_status.state == SEV_STATE_UNINIT) {
1646 		ret = sev_move_to_init_state(argp, &shutdown_required);
1647 		if (ret)
1648 			goto e_free_blob;
1649 	}
1650 
1651 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error);
1652 
1653 	 /* If we query the CSR length, FW responded with expected data. */
1654 	input.length = data.len;
1655 
1656 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1657 		ret = -EFAULT;
1658 		goto e_free_blob;
1659 	}
1660 
1661 	if (blob) {
1662 		if (copy_to_user(input_address, blob, input.length))
1663 			ret = -EFAULT;
1664 	}
1665 
1666 e_free_blob:
1667 	if (shutdown_required)
1668 		__sev_firmware_shutdown(sev, false);
1669 
1670 	kfree(blob);
1671 	return ret;
1672 }
1673 
1674 void *psp_copy_user_blob(u64 uaddr, u32 len)
1675 {
1676 	if (!uaddr || !len)
1677 		return ERR_PTR(-EINVAL);
1678 
1679 	/* verify that blob length does not exceed our limit */
1680 	if (len > SEV_FW_BLOB_MAX_SIZE)
1681 		return ERR_PTR(-EINVAL);
1682 
1683 	return memdup_user((void __user *)uaddr, len);
1684 }
1685 EXPORT_SYMBOL_GPL(psp_copy_user_blob);
1686 
1687 static int sev_get_api_version(void)
1688 {
1689 	struct sev_device *sev = psp_master->sev_data;
1690 	struct sev_user_data_status status;
1691 	int error = 0, ret;
1692 
1693 	/*
1694 	 * Cache SNP platform status and SNP feature information
1695 	 * if SNP is available.
1696 	 */
1697 	if (cc_platform_has(CC_ATTR_HOST_SEV_SNP)) {
1698 		ret = snp_get_platform_data(sev, &error);
1699 		if (ret)
1700 			return 1;
1701 	}
1702 
1703 	ret = sev_platform_status(&status, &error);
1704 	if (ret) {
1705 		dev_err(sev->dev,
1706 			"SEV: failed to get status. Error: %#x\n", error);
1707 		return 1;
1708 	}
1709 
1710 	/* Cache SEV platform status */
1711 	sev->sev_plat_status = status;
1712 
1713 	sev->api_major = status.api_major;
1714 	sev->api_minor = status.api_minor;
1715 	sev->build = status.build;
1716 
1717 	return 0;
1718 }
1719 
1720 static int sev_get_firmware(struct device *dev,
1721 			    const struct firmware **firmware)
1722 {
1723 	char fw_name_specific[SEV_FW_NAME_SIZE];
1724 	char fw_name_subset[SEV_FW_NAME_SIZE];
1725 
1726 	snprintf(fw_name_specific, sizeof(fw_name_specific),
1727 		 "amd/amd_sev_fam%.2xh_model%.2xh.sbin",
1728 		 boot_cpu_data.x86, boot_cpu_data.x86_model);
1729 
1730 	snprintf(fw_name_subset, sizeof(fw_name_subset),
1731 		 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin",
1732 		 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4);
1733 
1734 	/* Check for SEV FW for a particular model.
1735 	 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h
1736 	 *
1737 	 * or
1738 	 *
1739 	 * Check for SEV FW common to a subset of models.
1740 	 * Ex. amd_sev_fam17h_model0xh.sbin for
1741 	 *     Family 17h Model 00h -- Family 17h Model 0Fh
1742 	 *
1743 	 * or
1744 	 *
1745 	 * Fall-back to using generic name: sev.fw
1746 	 */
1747 	if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) ||
1748 	    (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) ||
1749 	    (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0))
1750 		return 0;
1751 
1752 	return -ENOENT;
1753 }
1754 
1755 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */
1756 static int sev_update_firmware(struct device *dev)
1757 {
1758 	struct sev_data_download_firmware *data;
1759 	const struct firmware *firmware;
1760 	int ret, error, order;
1761 	struct page *p;
1762 	u64 data_size;
1763 
1764 	if (!sev_version_greater_or_equal(0, 15)) {
1765 		dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n");
1766 		return -1;
1767 	}
1768 
1769 	if (sev_get_firmware(dev, &firmware) == -ENOENT) {
1770 		dev_dbg(dev, "No SEV firmware file present\n");
1771 		return -1;
1772 	}
1773 
1774 	/*
1775 	 * SEV FW expects the physical address given to it to be 32
1776 	 * byte aligned. Memory allocated has structure placed at the
1777 	 * beginning followed by the firmware being passed to the SEV
1778 	 * FW. Allocate enough memory for data structure + alignment
1779 	 * padding + SEV FW.
1780 	 */
1781 	data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32);
1782 
1783 	order = get_order(firmware->size + data_size);
1784 	p = alloc_pages(GFP_KERNEL, order);
1785 	if (!p) {
1786 		ret = -1;
1787 		goto fw_err;
1788 	}
1789 
1790 	/*
1791 	 * Copy firmware data to a kernel allocated contiguous
1792 	 * memory region.
1793 	 */
1794 	data = page_address(p);
1795 	memcpy(page_address(p) + data_size, firmware->data, firmware->size);
1796 
1797 	data->address = __psp_pa(page_address(p) + data_size);
1798 	data->len = firmware->size;
1799 
1800 	ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1801 
1802 	/*
1803 	 * A quirk for fixing the committed TCB version, when upgrading from
1804 	 * earlier firmware version than 1.50.
1805 	 */
1806 	if (!ret && !sev_version_greater_or_equal(1, 50))
1807 		ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1808 
1809 	if (ret)
1810 		dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error);
1811 
1812 	__free_pages(p, order);
1813 
1814 fw_err:
1815 	release_firmware(firmware);
1816 
1817 	return ret;
1818 }
1819 
1820 static int __sev_snp_shutdown_locked(int *error, bool panic)
1821 {
1822 	struct psp_device *psp = psp_master;
1823 	struct sev_device *sev;
1824 	struct sev_data_snp_shutdown_ex data;
1825 	int ret;
1826 
1827 	if (!psp || !psp->sev_data)
1828 		return 0;
1829 
1830 	sev = psp->sev_data;
1831 
1832 	if (!sev->snp_initialized)
1833 		return 0;
1834 
1835 	memset(&data, 0, sizeof(data));
1836 	data.len = sizeof(data);
1837 	data.iommu_snp_shutdown = 1;
1838 
1839 	/*
1840 	 * If invoked during panic handling, local interrupts are disabled
1841 	 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called.
1842 	 * In that case, a wbinvd() is done on remote CPUs via the NMI
1843 	 * callback, so only a local wbinvd() is needed here.
1844 	 */
1845 	if (!panic)
1846 		wbinvd_on_all_cpus();
1847 	else
1848 		wbinvd();
1849 
1850 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error);
1851 	/* SHUTDOWN may require DF_FLUSH */
1852 	if (*error == SEV_RET_DFFLUSH_REQUIRED) {
1853 		int dfflush_error = SEV_RET_NO_FW_CALL;
1854 
1855 		ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, &dfflush_error);
1856 		if (ret) {
1857 			dev_err(sev->dev, "SEV-SNP DF_FLUSH failed, ret = %d, error = %#x\n",
1858 				ret, dfflush_error);
1859 			return ret;
1860 		}
1861 		/* reissue the shutdown command */
1862 		ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data,
1863 					  error);
1864 	}
1865 	if (ret) {
1866 		dev_err(sev->dev, "SEV-SNP firmware shutdown failed, rc %d, error %#x\n",
1867 			ret, *error);
1868 		return ret;
1869 	}
1870 
1871 	/*
1872 	 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP
1873 	 * enforcement by the IOMMU and also transitions all pages
1874 	 * associated with the IOMMU to the Reclaim state.
1875 	 * Firmware was transitioning the IOMMU pages to Hypervisor state
1876 	 * before version 1.53. But, accounting for the number of assigned
1877 	 * 4kB pages in a 2M page was done incorrectly by not transitioning
1878 	 * to the Reclaim state. This resulted in RMP #PF when later accessing
1879 	 * the 2M page containing those pages during kexec boot. Hence, the
1880 	 * firmware now transitions these pages to Reclaim state and hypervisor
1881 	 * needs to transition these pages to shared state. SNP Firmware
1882 	 * version 1.53 and above are needed for kexec boot.
1883 	 */
1884 	ret = amd_iommu_snp_disable();
1885 	if (ret) {
1886 		dev_err(sev->dev, "SNP IOMMU shutdown failed\n");
1887 		return ret;
1888 	}
1889 
1890 	sev->snp_initialized = false;
1891 	dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n");
1892 
1893 	/*
1894 	 * __sev_snp_shutdown_locked() deadlocks when it tries to unregister
1895 	 * itself during panic as the panic notifier is called with RCU read
1896 	 * lock held and notifier unregistration does RCU synchronization.
1897 	 */
1898 	if (!panic)
1899 		atomic_notifier_chain_unregister(&panic_notifier_list,
1900 						 &snp_panic_notifier);
1901 
1902 	/* Reset TMR size back to default */
1903 	sev_es_tmr_size = SEV_TMR_SIZE;
1904 
1905 	return ret;
1906 }
1907 
1908 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable)
1909 {
1910 	struct sev_device *sev = psp_master->sev_data;
1911 	struct sev_user_data_pek_cert_import input;
1912 	struct sev_data_pek_cert_import data;
1913 	bool shutdown_required = false;
1914 	void *pek_blob, *oca_blob;
1915 	int ret;
1916 
1917 	if (!writable)
1918 		return -EPERM;
1919 
1920 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1921 		return -EFAULT;
1922 
1923 	/* copy PEK certificate blobs from userspace */
1924 	pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len);
1925 	if (IS_ERR(pek_blob))
1926 		return PTR_ERR(pek_blob);
1927 
1928 	data.reserved = 0;
1929 	data.pek_cert_address = __psp_pa(pek_blob);
1930 	data.pek_cert_len = input.pek_cert_len;
1931 
1932 	/* copy PEK certificate blobs from userspace */
1933 	oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len);
1934 	if (IS_ERR(oca_blob)) {
1935 		ret = PTR_ERR(oca_blob);
1936 		goto e_free_pek;
1937 	}
1938 
1939 	data.oca_cert_address = __psp_pa(oca_blob);
1940 	data.oca_cert_len = input.oca_cert_len;
1941 
1942 	/* If platform is not in INIT state then transition it to INIT */
1943 	if (sev->sev_plat_status.state != SEV_STATE_INIT) {
1944 		ret = sev_move_to_init_state(argp, &shutdown_required);
1945 		if (ret)
1946 			goto e_free_oca;
1947 	}
1948 
1949 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error);
1950 
1951 e_free_oca:
1952 	if (shutdown_required)
1953 		__sev_firmware_shutdown(sev, false);
1954 
1955 	kfree(oca_blob);
1956 e_free_pek:
1957 	kfree(pek_blob);
1958 	return ret;
1959 }
1960 
1961 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp)
1962 {
1963 	struct sev_user_data_get_id2 input;
1964 	struct sev_data_get_id data;
1965 	void __user *input_address;
1966 	void *id_blob = NULL;
1967 	int ret;
1968 
1969 	/* SEV GET_ID is available from SEV API v0.16 and up */
1970 	if (!sev_version_greater_or_equal(0, 16))
1971 		return -ENOTSUPP;
1972 
1973 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1974 		return -EFAULT;
1975 
1976 	input_address = (void __user *)input.address;
1977 
1978 	if (input.address && input.length) {
1979 		/*
1980 		 * The length of the ID shouldn't be assumed by software since
1981 		 * it may change in the future.  The allocation size is limited
1982 		 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator.
1983 		 * If the allocation fails, simply return ENOMEM rather than
1984 		 * warning in the kernel log.
1985 		 */
1986 		id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN);
1987 		if (!id_blob)
1988 			return -ENOMEM;
1989 
1990 		data.address = __psp_pa(id_blob);
1991 		data.len = input.length;
1992 	} else {
1993 		data.address = 0;
1994 		data.len = 0;
1995 	}
1996 
1997 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error);
1998 
1999 	/*
2000 	 * Firmware will return the length of the ID value (either the minimum
2001 	 * required length or the actual length written), return it to the user.
2002 	 */
2003 	input.length = data.len;
2004 
2005 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
2006 		ret = -EFAULT;
2007 		goto e_free;
2008 	}
2009 
2010 	if (id_blob) {
2011 		if (copy_to_user(input_address, id_blob, data.len)) {
2012 			ret = -EFAULT;
2013 			goto e_free;
2014 		}
2015 	}
2016 
2017 e_free:
2018 	kfree(id_blob);
2019 
2020 	return ret;
2021 }
2022 
2023 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp)
2024 {
2025 	struct sev_data_get_id *data;
2026 	u64 data_size, user_size;
2027 	void *id_blob, *mem;
2028 	int ret;
2029 
2030 	/* SEV GET_ID available from SEV API v0.16 and up */
2031 	if (!sev_version_greater_or_equal(0, 16))
2032 		return -ENOTSUPP;
2033 
2034 	/* SEV FW expects the buffer it fills with the ID to be
2035 	 * 8-byte aligned. Memory allocated should be enough to
2036 	 * hold data structure + alignment padding + memory
2037 	 * where SEV FW writes the ID.
2038 	 */
2039 	data_size = ALIGN(sizeof(struct sev_data_get_id), 8);
2040 	user_size = sizeof(struct sev_user_data_get_id);
2041 
2042 	mem = kzalloc(data_size + user_size, GFP_KERNEL);
2043 	if (!mem)
2044 		return -ENOMEM;
2045 
2046 	data = mem;
2047 	id_blob = mem + data_size;
2048 
2049 	data->address = __psp_pa(id_blob);
2050 	data->len = user_size;
2051 
2052 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error);
2053 	if (!ret) {
2054 		if (copy_to_user((void __user *)argp->data, id_blob, data->len))
2055 			ret = -EFAULT;
2056 	}
2057 
2058 	kfree(mem);
2059 
2060 	return ret;
2061 }
2062 
2063 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable)
2064 {
2065 	struct sev_device *sev = psp_master->sev_data;
2066 	struct sev_user_data_pdh_cert_export input;
2067 	void *pdh_blob = NULL, *cert_blob = NULL;
2068 	struct sev_data_pdh_cert_export data;
2069 	void __user *input_cert_chain_address;
2070 	void __user *input_pdh_cert_address;
2071 	bool shutdown_required = false;
2072 	int ret;
2073 
2074 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
2075 		return -EFAULT;
2076 
2077 	memset(&data, 0, sizeof(data));
2078 
2079 	input_pdh_cert_address = (void __user *)input.pdh_cert_address;
2080 	input_cert_chain_address = (void __user *)input.cert_chain_address;
2081 
2082 	/* Userspace wants to query the certificate length. */
2083 	if (!input.pdh_cert_address ||
2084 	    !input.pdh_cert_len ||
2085 	    !input.cert_chain_address)
2086 		goto cmd;
2087 
2088 	/* Allocate a physically contiguous buffer to store the PDH blob. */
2089 	if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE)
2090 		return -EFAULT;
2091 
2092 	/* Allocate a physically contiguous buffer to store the cert chain blob. */
2093 	if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE)
2094 		return -EFAULT;
2095 
2096 	pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL);
2097 	if (!pdh_blob)
2098 		return -ENOMEM;
2099 
2100 	data.pdh_cert_address = __psp_pa(pdh_blob);
2101 	data.pdh_cert_len = input.pdh_cert_len;
2102 
2103 	cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL);
2104 	if (!cert_blob) {
2105 		ret = -ENOMEM;
2106 		goto e_free_pdh;
2107 	}
2108 
2109 	data.cert_chain_address = __psp_pa(cert_blob);
2110 	data.cert_chain_len = input.cert_chain_len;
2111 
2112 cmd:
2113 	/* If platform is not in INIT state then transition it to INIT. */
2114 	if (sev->sev_plat_status.state != SEV_STATE_INIT) {
2115 		if (!writable) {
2116 			ret = -EPERM;
2117 			goto e_free_cert;
2118 		}
2119 		ret = sev_move_to_init_state(argp, &shutdown_required);
2120 		if (ret)
2121 			goto e_free_cert;
2122 	}
2123 
2124 	ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error);
2125 
2126 	/* If we query the length, FW responded with expected data. */
2127 	input.cert_chain_len = data.cert_chain_len;
2128 	input.pdh_cert_len = data.pdh_cert_len;
2129 
2130 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
2131 		ret = -EFAULT;
2132 		goto e_free_cert;
2133 	}
2134 
2135 	if (pdh_blob) {
2136 		if (copy_to_user(input_pdh_cert_address,
2137 				 pdh_blob, input.pdh_cert_len)) {
2138 			ret = -EFAULT;
2139 			goto e_free_cert;
2140 		}
2141 	}
2142 
2143 	if (cert_blob) {
2144 		if (copy_to_user(input_cert_chain_address,
2145 				 cert_blob, input.cert_chain_len))
2146 			ret = -EFAULT;
2147 	}
2148 
2149 e_free_cert:
2150 	if (shutdown_required)
2151 		__sev_firmware_shutdown(sev, false);
2152 
2153 	kfree(cert_blob);
2154 e_free_pdh:
2155 	kfree(pdh_blob);
2156 	return ret;
2157 }
2158 
2159 static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp)
2160 {
2161 	struct sev_device *sev = psp_master->sev_data;
2162 	bool shutdown_required = false;
2163 	struct sev_data_snp_addr buf;
2164 	struct page *status_page;
2165 	int ret, error;
2166 	void *data;
2167 
2168 	if (!argp->data)
2169 		return -EINVAL;
2170 
2171 	status_page = alloc_page(GFP_KERNEL_ACCOUNT);
2172 	if (!status_page)
2173 		return -ENOMEM;
2174 
2175 	data = page_address(status_page);
2176 
2177 	if (!sev->snp_initialized) {
2178 		ret = snp_move_to_init_state(argp, &shutdown_required);
2179 		if (ret)
2180 			goto cleanup;
2181 	}
2182 
2183 	/*
2184 	 * Firmware expects status page to be in firmware-owned state, otherwise
2185 	 * it will report firmware error code INVALID_PAGE_STATE (0x1A).
2186 	 */
2187 	if (rmp_mark_pages_firmware(__pa(data), 1, true)) {
2188 		ret = -EFAULT;
2189 		goto cleanup;
2190 	}
2191 
2192 	buf.address = __psp_pa(data);
2193 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error);
2194 
2195 	/*
2196 	 * Status page will be transitioned to Reclaim state upon success, or
2197 	 * left in Firmware state in failure. Use snp_reclaim_pages() to
2198 	 * transition either case back to Hypervisor-owned state.
2199 	 */
2200 	if (snp_reclaim_pages(__pa(data), 1, true))
2201 		return -EFAULT;
2202 
2203 	if (ret)
2204 		goto cleanup;
2205 
2206 	if (copy_to_user((void __user *)argp->data, data,
2207 			 sizeof(struct sev_user_data_snp_status)))
2208 		ret = -EFAULT;
2209 
2210 cleanup:
2211 	if (shutdown_required)
2212 		__sev_snp_shutdown_locked(&error, false);
2213 
2214 	__free_pages(status_page, 0);
2215 	return ret;
2216 }
2217 
2218 static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp)
2219 {
2220 	struct sev_device *sev = psp_master->sev_data;
2221 	struct sev_data_snp_commit buf;
2222 	bool shutdown_required = false;
2223 	int ret, error;
2224 
2225 	if (!sev->snp_initialized) {
2226 		ret = snp_move_to_init_state(argp, &shutdown_required);
2227 		if (ret)
2228 			return ret;
2229 	}
2230 
2231 	buf.len = sizeof(buf);
2232 
2233 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error);
2234 
2235 	if (shutdown_required)
2236 		__sev_snp_shutdown_locked(&error, false);
2237 
2238 	return ret;
2239 }
2240 
2241 static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable)
2242 {
2243 	struct sev_device *sev = psp_master->sev_data;
2244 	struct sev_user_data_snp_config config;
2245 	bool shutdown_required = false;
2246 	int ret, error;
2247 
2248 	if (!argp->data)
2249 		return -EINVAL;
2250 
2251 	if (!writable)
2252 		return -EPERM;
2253 
2254 	if (copy_from_user(&config, (void __user *)argp->data, sizeof(config)))
2255 		return -EFAULT;
2256 
2257 	if (!sev->snp_initialized) {
2258 		ret = snp_move_to_init_state(argp, &shutdown_required);
2259 		if (ret)
2260 			return ret;
2261 	}
2262 
2263 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error);
2264 
2265 	if (shutdown_required)
2266 		__sev_snp_shutdown_locked(&error, false);
2267 
2268 	return ret;
2269 }
2270 
2271 static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable)
2272 {
2273 	struct sev_device *sev = psp_master->sev_data;
2274 	struct sev_user_data_snp_vlek_load input;
2275 	bool shutdown_required = false;
2276 	int ret, error;
2277 	void *blob;
2278 
2279 	if (!argp->data)
2280 		return -EINVAL;
2281 
2282 	if (!writable)
2283 		return -EPERM;
2284 
2285 	if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input)))
2286 		return -EFAULT;
2287 
2288 	if (input.len != sizeof(input) || input.vlek_wrapped_version != 0)
2289 		return -EINVAL;
2290 
2291 	blob = psp_copy_user_blob(input.vlek_wrapped_address,
2292 				  sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick));
2293 	if (IS_ERR(blob))
2294 		return PTR_ERR(blob);
2295 
2296 	input.vlek_wrapped_address = __psp_pa(blob);
2297 
2298 	if (!sev->snp_initialized) {
2299 		ret = snp_move_to_init_state(argp, &shutdown_required);
2300 		if (ret)
2301 			goto cleanup;
2302 	}
2303 
2304 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error);
2305 
2306 	if (shutdown_required)
2307 		__sev_snp_shutdown_locked(&error, false);
2308 
2309 cleanup:
2310 	kfree(blob);
2311 
2312 	return ret;
2313 }
2314 
2315 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
2316 {
2317 	void __user *argp = (void __user *)arg;
2318 	struct sev_issue_cmd input;
2319 	int ret = -EFAULT;
2320 	bool writable = file->f_mode & FMODE_WRITE;
2321 
2322 	if (!psp_master || !psp_master->sev_data)
2323 		return -ENODEV;
2324 
2325 	if (ioctl != SEV_ISSUE_CMD)
2326 		return -EINVAL;
2327 
2328 	if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd)))
2329 		return -EFAULT;
2330 
2331 	if (input.cmd > SEV_MAX)
2332 		return -EINVAL;
2333 
2334 	mutex_lock(&sev_cmd_mutex);
2335 
2336 	switch (input.cmd) {
2337 
2338 	case SEV_FACTORY_RESET:
2339 		ret = sev_ioctl_do_reset(&input, writable);
2340 		break;
2341 	case SEV_PLATFORM_STATUS:
2342 		ret = sev_ioctl_do_platform_status(&input);
2343 		break;
2344 	case SEV_PEK_GEN:
2345 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable);
2346 		break;
2347 	case SEV_PDH_GEN:
2348 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable);
2349 		break;
2350 	case SEV_PEK_CSR:
2351 		ret = sev_ioctl_do_pek_csr(&input, writable);
2352 		break;
2353 	case SEV_PEK_CERT_IMPORT:
2354 		ret = sev_ioctl_do_pek_import(&input, writable);
2355 		break;
2356 	case SEV_PDH_CERT_EXPORT:
2357 		ret = sev_ioctl_do_pdh_export(&input, writable);
2358 		break;
2359 	case SEV_GET_ID:
2360 		pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n");
2361 		ret = sev_ioctl_do_get_id(&input);
2362 		break;
2363 	case SEV_GET_ID2:
2364 		ret = sev_ioctl_do_get_id2(&input);
2365 		break;
2366 	case SNP_PLATFORM_STATUS:
2367 		ret = sev_ioctl_do_snp_platform_status(&input);
2368 		break;
2369 	case SNP_COMMIT:
2370 		ret = sev_ioctl_do_snp_commit(&input);
2371 		break;
2372 	case SNP_SET_CONFIG:
2373 		ret = sev_ioctl_do_snp_set_config(&input, writable);
2374 		break;
2375 	case SNP_VLEK_LOAD:
2376 		ret = sev_ioctl_do_snp_vlek_load(&input, writable);
2377 		break;
2378 	default:
2379 		ret = -EINVAL;
2380 		goto out;
2381 	}
2382 
2383 	if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd)))
2384 		ret = -EFAULT;
2385 out:
2386 	mutex_unlock(&sev_cmd_mutex);
2387 
2388 	return ret;
2389 }
2390 
2391 static const struct file_operations sev_fops = {
2392 	.owner	= THIS_MODULE,
2393 	.unlocked_ioctl = sev_ioctl,
2394 };
2395 
2396 int sev_platform_status(struct sev_user_data_status *data, int *error)
2397 {
2398 	return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error);
2399 }
2400 EXPORT_SYMBOL_GPL(sev_platform_status);
2401 
2402 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error)
2403 {
2404 	return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error);
2405 }
2406 EXPORT_SYMBOL_GPL(sev_guest_deactivate);
2407 
2408 int sev_guest_activate(struct sev_data_activate *data, int *error)
2409 {
2410 	return sev_do_cmd(SEV_CMD_ACTIVATE, data, error);
2411 }
2412 EXPORT_SYMBOL_GPL(sev_guest_activate);
2413 
2414 int sev_guest_decommission(struct sev_data_decommission *data, int *error)
2415 {
2416 	return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error);
2417 }
2418 EXPORT_SYMBOL_GPL(sev_guest_decommission);
2419 
2420 int sev_guest_df_flush(int *error)
2421 {
2422 	return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error);
2423 }
2424 EXPORT_SYMBOL_GPL(sev_guest_df_flush);
2425 
2426 static void sev_exit(struct kref *ref)
2427 {
2428 	misc_deregister(&misc_dev->misc);
2429 	kfree(misc_dev);
2430 	misc_dev = NULL;
2431 }
2432 
2433 static int sev_misc_init(struct sev_device *sev)
2434 {
2435 	struct device *dev = sev->dev;
2436 	int ret;
2437 
2438 	/*
2439 	 * SEV feature support can be detected on multiple devices but the SEV
2440 	 * FW commands must be issued on the master. During probe, we do not
2441 	 * know the master hence we create /dev/sev on the first device probe.
2442 	 * sev_do_cmd() finds the right master device to which to issue the
2443 	 * command to the firmware.
2444 	 */
2445 	if (!misc_dev) {
2446 		struct miscdevice *misc;
2447 
2448 		misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL);
2449 		if (!misc_dev)
2450 			return -ENOMEM;
2451 
2452 		misc = &misc_dev->misc;
2453 		misc->minor = MISC_DYNAMIC_MINOR;
2454 		misc->name = DEVICE_NAME;
2455 		misc->fops = &sev_fops;
2456 
2457 		ret = misc_register(misc);
2458 		if (ret)
2459 			return ret;
2460 
2461 		kref_init(&misc_dev->refcount);
2462 	} else {
2463 		kref_get(&misc_dev->refcount);
2464 	}
2465 
2466 	init_waitqueue_head(&sev->int_queue);
2467 	sev->misc = misc_dev;
2468 	dev_dbg(dev, "registered SEV device\n");
2469 
2470 	return 0;
2471 }
2472 
2473 int sev_dev_init(struct psp_device *psp)
2474 {
2475 	struct device *dev = psp->dev;
2476 	struct sev_device *sev;
2477 	int ret = -ENOMEM;
2478 
2479 	if (!boot_cpu_has(X86_FEATURE_SEV)) {
2480 		dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n");
2481 		return 0;
2482 	}
2483 
2484 	sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL);
2485 	if (!sev)
2486 		goto e_err;
2487 
2488 	sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1);
2489 	if (!sev->cmd_buf)
2490 		goto e_sev;
2491 
2492 	sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE;
2493 
2494 	psp->sev_data = sev;
2495 
2496 	sev->dev = dev;
2497 	sev->psp = psp;
2498 
2499 	sev->io_regs = psp->io_regs;
2500 
2501 	sev->vdata = (struct sev_vdata *)psp->vdata->sev;
2502 	if (!sev->vdata) {
2503 		ret = -ENODEV;
2504 		dev_err(dev, "sev: missing driver data\n");
2505 		goto e_buf;
2506 	}
2507 
2508 	psp_set_sev_irq_handler(psp, sev_irq_handler, sev);
2509 
2510 	ret = sev_misc_init(sev);
2511 	if (ret)
2512 		goto e_irq;
2513 
2514 	dev_notice(dev, "sev enabled\n");
2515 
2516 	return 0;
2517 
2518 e_irq:
2519 	psp_clear_sev_irq_handler(psp);
2520 e_buf:
2521 	devm_free_pages(dev, (unsigned long)sev->cmd_buf);
2522 e_sev:
2523 	devm_kfree(dev, sev);
2524 e_err:
2525 	psp->sev_data = NULL;
2526 
2527 	dev_notice(dev, "sev initialization failed\n");
2528 
2529 	return ret;
2530 }
2531 
2532 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic)
2533 {
2534 	int error;
2535 
2536 	__sev_platform_shutdown_locked(NULL);
2537 
2538 	if (sev_es_tmr) {
2539 		/*
2540 		 * The TMR area was encrypted, flush it from the cache.
2541 		 *
2542 		 * If invoked during panic handling, local interrupts are
2543 		 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus()
2544 		 * can't be used. In that case, wbinvd() is done on remote CPUs
2545 		 * via the NMI callback, and done for this CPU later during
2546 		 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped.
2547 		 */
2548 		if (!panic)
2549 			wbinvd_on_all_cpus();
2550 
2551 		__snp_free_firmware_pages(virt_to_page(sev_es_tmr),
2552 					  get_order(sev_es_tmr_size),
2553 					  true);
2554 		sev_es_tmr = NULL;
2555 	}
2556 
2557 	if (sev_init_ex_buffer) {
2558 		__snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer),
2559 					  get_order(NV_LENGTH),
2560 					  true);
2561 		sev_init_ex_buffer = NULL;
2562 	}
2563 
2564 	if (snp_range_list) {
2565 		kfree(snp_range_list);
2566 		snp_range_list = NULL;
2567 	}
2568 
2569 	__sev_snp_shutdown_locked(&error, panic);
2570 }
2571 
2572 static void sev_firmware_shutdown(struct sev_device *sev)
2573 {
2574 	mutex_lock(&sev_cmd_mutex);
2575 	__sev_firmware_shutdown(sev, false);
2576 	mutex_unlock(&sev_cmd_mutex);
2577 }
2578 
2579 void sev_platform_shutdown(void)
2580 {
2581 	if (!psp_master || !psp_master->sev_data)
2582 		return;
2583 
2584 	sev_firmware_shutdown(psp_master->sev_data);
2585 }
2586 EXPORT_SYMBOL_GPL(sev_platform_shutdown);
2587 
2588 void sev_dev_destroy(struct psp_device *psp)
2589 {
2590 	struct sev_device *sev = psp->sev_data;
2591 
2592 	if (!sev)
2593 		return;
2594 
2595 	sev_firmware_shutdown(sev);
2596 
2597 	if (sev->misc)
2598 		kref_put(&misc_dev->refcount, sev_exit);
2599 
2600 	psp_clear_sev_irq_handler(psp);
2601 }
2602 
2603 static int snp_shutdown_on_panic(struct notifier_block *nb,
2604 				 unsigned long reason, void *arg)
2605 {
2606 	struct sev_device *sev = psp_master->sev_data;
2607 
2608 	/*
2609 	 * If sev_cmd_mutex is already acquired, then it's likely
2610 	 * another PSP command is in flight and issuing a shutdown
2611 	 * would fail in unexpected ways. Rather than create even
2612 	 * more confusion during a panic, just bail out here.
2613 	 */
2614 	if (mutex_is_locked(&sev_cmd_mutex))
2615 		return NOTIFY_DONE;
2616 
2617 	__sev_firmware_shutdown(sev, true);
2618 
2619 	return NOTIFY_DONE;
2620 }
2621 
2622 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd,
2623 				void *data, int *error)
2624 {
2625 	if (!filep || filep->f_op != &sev_fops)
2626 		return -EBADF;
2627 
2628 	return sev_do_cmd(cmd, data, error);
2629 }
2630 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user);
2631 
2632 void sev_pci_init(void)
2633 {
2634 	struct sev_device *sev = psp_master->sev_data;
2635 	u8 api_major, api_minor, build;
2636 
2637 	if (!sev)
2638 		return;
2639 
2640 	psp_timeout = psp_probe_timeout;
2641 
2642 	if (sev_get_api_version())
2643 		goto err;
2644 
2645 	api_major = sev->api_major;
2646 	api_minor = sev->api_minor;
2647 	build     = sev->build;
2648 
2649 	if (sev_update_firmware(sev->dev) == 0)
2650 		sev_get_api_version();
2651 
2652 	if (api_major != sev->api_major || api_minor != sev->api_minor ||
2653 	    build != sev->build)
2654 		dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n",
2655 			 api_major, api_minor, build,
2656 			 sev->api_major, sev->api_minor, sev->build);
2657 
2658 	return;
2659 
2660 err:
2661 	sev_dev_destroy(psp_master);
2662 
2663 	psp_master->sev_data = NULL;
2664 }
2665 
2666 void sev_pci_exit(void)
2667 {
2668 	struct sev_device *sev = psp_master->sev_data;
2669 
2670 	if (!sev)
2671 		return;
2672 
2673 	sev_firmware_shutdown(sev);
2674 }
2675