1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Secure Encrypted Virtualization (SEV) interface 4 * 5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc. 6 * 7 * Author: Brijesh Singh <brijesh.singh@amd.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/kthread.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/spinlock.h> 17 #include <linux/spinlock_types.h> 18 #include <linux/types.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/hw_random.h> 22 #include <linux/ccp.h> 23 #include <linux/firmware.h> 24 #include <linux/panic_notifier.h> 25 #include <linux/gfp.h> 26 #include <linux/cpufeature.h> 27 #include <linux/fs.h> 28 #include <linux/fs_struct.h> 29 #include <linux/psp.h> 30 #include <linux/amd-iommu.h> 31 32 #include <asm/smp.h> 33 #include <asm/cacheflush.h> 34 #include <asm/e820/types.h> 35 #include <asm/sev.h> 36 #include <asm/msr.h> 37 38 #include "psp-dev.h" 39 #include "sev-dev.h" 40 41 #define DEVICE_NAME "sev" 42 #define SEV_FW_FILE "amd/sev.fw" 43 #define SEV_FW_NAME_SIZE 64 44 45 /* Minimum firmware version required for the SEV-SNP support */ 46 #define SNP_MIN_API_MAJOR 1 47 #define SNP_MIN_API_MINOR 51 48 49 /* 50 * Maximum number of firmware-writable buffers that might be specified 51 * in the parameters of a legacy SEV command buffer. 52 */ 53 #define CMD_BUF_FW_WRITABLE_MAX 2 54 55 /* Leave room in the descriptor array for an end-of-list indicator. */ 56 #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1) 57 58 static DEFINE_MUTEX(sev_cmd_mutex); 59 static struct sev_misc_dev *misc_dev; 60 61 static int psp_cmd_timeout = 100; 62 module_param(psp_cmd_timeout, int, 0644); 63 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands"); 64 65 static int psp_probe_timeout = 5; 66 module_param(psp_probe_timeout, int, 0644); 67 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe"); 68 69 static char *init_ex_path; 70 module_param(init_ex_path, charp, 0444); 71 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX"); 72 73 static bool psp_init_on_probe = true; 74 module_param(psp_init_on_probe, bool, 0444); 75 MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it"); 76 77 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */ 78 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */ 79 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */ 80 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */ 81 82 static bool psp_dead; 83 static int psp_timeout; 84 85 /* Trusted Memory Region (TMR): 86 * The TMR is a 1MB area that must be 1MB aligned. Use the page allocator 87 * to allocate the memory, which will return aligned memory for the specified 88 * allocation order. 89 * 90 * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized. 91 */ 92 #define SEV_TMR_SIZE (1024 * 1024) 93 #define SNP_TMR_SIZE (2 * 1024 * 1024) 94 95 static void *sev_es_tmr; 96 static size_t sev_es_tmr_size = SEV_TMR_SIZE; 97 98 /* INIT_EX NV Storage: 99 * The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page 100 * allocator to allocate the memory, which will return aligned memory for the 101 * specified allocation order. 102 */ 103 #define NV_LENGTH (32 * 1024) 104 static void *sev_init_ex_buffer; 105 106 /* 107 * SEV_DATA_RANGE_LIST: 108 * Array containing range of pages that firmware transitions to HV-fixed 109 * page state. 110 */ 111 static struct sev_data_range_list *snp_range_list; 112 113 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic); 114 115 static int snp_shutdown_on_panic(struct notifier_block *nb, 116 unsigned long reason, void *arg); 117 118 static struct notifier_block snp_panic_notifier = { 119 .notifier_call = snp_shutdown_on_panic, 120 }; 121 122 static inline bool sev_version_greater_or_equal(u8 maj, u8 min) 123 { 124 struct sev_device *sev = psp_master->sev_data; 125 126 if (sev->api_major > maj) 127 return true; 128 129 if (sev->api_major == maj && sev->api_minor >= min) 130 return true; 131 132 return false; 133 } 134 135 static void sev_irq_handler(int irq, void *data, unsigned int status) 136 { 137 struct sev_device *sev = data; 138 int reg; 139 140 /* Check if it is command completion: */ 141 if (!(status & SEV_CMD_COMPLETE)) 142 return; 143 144 /* Check if it is SEV command completion: */ 145 reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 146 if (FIELD_GET(PSP_CMDRESP_RESP, reg)) { 147 sev->int_rcvd = 1; 148 wake_up(&sev->int_queue); 149 } 150 } 151 152 static int sev_wait_cmd_ioc(struct sev_device *sev, 153 unsigned int *reg, unsigned int timeout) 154 { 155 int ret; 156 157 /* 158 * If invoked during panic handling, local interrupts are disabled, 159 * so the PSP command completion interrupt can't be used. Poll for 160 * PSP command completion instead. 161 */ 162 if (irqs_disabled()) { 163 unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10; 164 165 /* Poll for SEV command completion: */ 166 while (timeout_usecs--) { 167 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 168 if (*reg & PSP_CMDRESP_RESP) 169 return 0; 170 171 udelay(10); 172 } 173 return -ETIMEDOUT; 174 } 175 176 ret = wait_event_timeout(sev->int_queue, 177 sev->int_rcvd, timeout * HZ); 178 if (!ret) 179 return -ETIMEDOUT; 180 181 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 182 183 return 0; 184 } 185 186 static int sev_cmd_buffer_len(int cmd) 187 { 188 switch (cmd) { 189 case SEV_CMD_INIT: return sizeof(struct sev_data_init); 190 case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex); 191 case SEV_CMD_SNP_SHUTDOWN_EX: return sizeof(struct sev_data_snp_shutdown_ex); 192 case SEV_CMD_SNP_INIT_EX: return sizeof(struct sev_data_snp_init_ex); 193 case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status); 194 case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr); 195 case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import); 196 case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export); 197 case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start); 198 case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data); 199 case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa); 200 case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish); 201 case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure); 202 case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate); 203 case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate); 204 case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission); 205 case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status); 206 case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg); 207 case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg); 208 case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start); 209 case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data); 210 case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa); 211 case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish); 212 case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start); 213 case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish); 214 case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data); 215 case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa); 216 case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret); 217 case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware); 218 case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id); 219 case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report); 220 case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel); 221 case SEV_CMD_SNP_GCTX_CREATE: return sizeof(struct sev_data_snp_addr); 222 case SEV_CMD_SNP_LAUNCH_START: return sizeof(struct sev_data_snp_launch_start); 223 case SEV_CMD_SNP_LAUNCH_UPDATE: return sizeof(struct sev_data_snp_launch_update); 224 case SEV_CMD_SNP_ACTIVATE: return sizeof(struct sev_data_snp_activate); 225 case SEV_CMD_SNP_DECOMMISSION: return sizeof(struct sev_data_snp_addr); 226 case SEV_CMD_SNP_PAGE_RECLAIM: return sizeof(struct sev_data_snp_page_reclaim); 227 case SEV_CMD_SNP_GUEST_STATUS: return sizeof(struct sev_data_snp_guest_status); 228 case SEV_CMD_SNP_LAUNCH_FINISH: return sizeof(struct sev_data_snp_launch_finish); 229 case SEV_CMD_SNP_DBG_DECRYPT: return sizeof(struct sev_data_snp_dbg); 230 case SEV_CMD_SNP_DBG_ENCRYPT: return sizeof(struct sev_data_snp_dbg); 231 case SEV_CMD_SNP_PAGE_UNSMASH: return sizeof(struct sev_data_snp_page_unsmash); 232 case SEV_CMD_SNP_PLATFORM_STATUS: return sizeof(struct sev_data_snp_addr); 233 case SEV_CMD_SNP_GUEST_REQUEST: return sizeof(struct sev_data_snp_guest_request); 234 case SEV_CMD_SNP_CONFIG: return sizeof(struct sev_user_data_snp_config); 235 case SEV_CMD_SNP_COMMIT: return sizeof(struct sev_data_snp_commit); 236 case SEV_CMD_SNP_FEATURE_INFO: return sizeof(struct sev_data_snp_feature_info); 237 case SEV_CMD_SNP_VLEK_LOAD: return sizeof(struct sev_user_data_snp_vlek_load); 238 default: return 0; 239 } 240 241 return 0; 242 } 243 244 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode) 245 { 246 struct file *fp; 247 struct path root; 248 struct cred *cred; 249 const struct cred *old_cred; 250 251 task_lock(&init_task); 252 get_fs_root(init_task.fs, &root); 253 task_unlock(&init_task); 254 255 cred = prepare_creds(); 256 if (!cred) 257 return ERR_PTR(-ENOMEM); 258 cred->fsuid = GLOBAL_ROOT_UID; 259 old_cred = override_creds(cred); 260 261 fp = file_open_root(&root, filename, flags, mode); 262 path_put(&root); 263 264 put_cred(revert_creds(old_cred)); 265 266 return fp; 267 } 268 269 static int sev_read_init_ex_file(void) 270 { 271 struct sev_device *sev = psp_master->sev_data; 272 struct file *fp; 273 ssize_t nread; 274 275 lockdep_assert_held(&sev_cmd_mutex); 276 277 if (!sev_init_ex_buffer) 278 return -EOPNOTSUPP; 279 280 fp = open_file_as_root(init_ex_path, O_RDONLY, 0); 281 if (IS_ERR(fp)) { 282 int ret = PTR_ERR(fp); 283 284 if (ret == -ENOENT) { 285 dev_info(sev->dev, 286 "SEV: %s does not exist and will be created later.\n", 287 init_ex_path); 288 ret = 0; 289 } else { 290 dev_err(sev->dev, 291 "SEV: could not open %s for read, error %d\n", 292 init_ex_path, ret); 293 } 294 return ret; 295 } 296 297 nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL); 298 if (nread != NV_LENGTH) { 299 dev_info(sev->dev, 300 "SEV: could not read %u bytes to non volatile memory area, ret %ld\n", 301 NV_LENGTH, nread); 302 } 303 304 dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread); 305 filp_close(fp, NULL); 306 307 return 0; 308 } 309 310 static int sev_write_init_ex_file(void) 311 { 312 struct sev_device *sev = psp_master->sev_data; 313 struct file *fp; 314 loff_t offset = 0; 315 ssize_t nwrite; 316 317 lockdep_assert_held(&sev_cmd_mutex); 318 319 if (!sev_init_ex_buffer) 320 return 0; 321 322 fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600); 323 if (IS_ERR(fp)) { 324 int ret = PTR_ERR(fp); 325 326 dev_err(sev->dev, 327 "SEV: could not open file for write, error %d\n", 328 ret); 329 return ret; 330 } 331 332 nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset); 333 vfs_fsync(fp, 0); 334 filp_close(fp, NULL); 335 336 if (nwrite != NV_LENGTH) { 337 dev_err(sev->dev, 338 "SEV: failed to write %u bytes to non volatile memory area, ret %ld\n", 339 NV_LENGTH, nwrite); 340 return -EIO; 341 } 342 343 dev_dbg(sev->dev, "SEV: write successful to NV file\n"); 344 345 return 0; 346 } 347 348 static int sev_write_init_ex_file_if_required(int cmd_id) 349 { 350 lockdep_assert_held(&sev_cmd_mutex); 351 352 if (!sev_init_ex_buffer) 353 return 0; 354 355 /* 356 * Only a few platform commands modify the SPI/NV area, but none of the 357 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN, 358 * PEK_CERT_IMPORT, and PDH_GEN do. 359 */ 360 switch (cmd_id) { 361 case SEV_CMD_FACTORY_RESET: 362 case SEV_CMD_INIT_EX: 363 case SEV_CMD_PDH_GEN: 364 case SEV_CMD_PEK_CERT_IMPORT: 365 case SEV_CMD_PEK_GEN: 366 break; 367 default: 368 return 0; 369 } 370 371 return sev_write_init_ex_file(); 372 } 373 374 /* 375 * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked() 376 * needs snp_reclaim_pages(), so a forward declaration is needed. 377 */ 378 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret); 379 380 static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked) 381 { 382 int ret, err, i; 383 384 paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE)); 385 386 for (i = 0; i < npages; i++, paddr += PAGE_SIZE) { 387 struct sev_data_snp_page_reclaim data = {0}; 388 389 data.paddr = paddr; 390 391 if (locked) 392 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 393 else 394 ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 395 396 if (ret) 397 goto cleanup; 398 399 ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K); 400 if (ret) 401 goto cleanup; 402 } 403 404 return 0; 405 406 cleanup: 407 /* 408 * If there was a failure reclaiming the page then it is no longer safe 409 * to release it back to the system; leak it instead. 410 */ 411 snp_leak_pages(__phys_to_pfn(paddr), npages - i); 412 return ret; 413 } 414 415 static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked) 416 { 417 unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT; 418 int rc, i; 419 420 for (i = 0; i < npages; i++, pfn++) { 421 rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true); 422 if (rc) 423 goto cleanup; 424 } 425 426 return 0; 427 428 cleanup: 429 /* 430 * Try unrolling the firmware state changes by 431 * reclaiming the pages which were already changed to the 432 * firmware state. 433 */ 434 snp_reclaim_pages(paddr, i, locked); 435 436 return rc; 437 } 438 439 static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order, bool locked) 440 { 441 unsigned long npages = 1ul << order, paddr; 442 struct sev_device *sev; 443 struct page *page; 444 445 if (!psp_master || !psp_master->sev_data) 446 return NULL; 447 448 page = alloc_pages(gfp_mask, order); 449 if (!page) 450 return NULL; 451 452 /* If SEV-SNP is initialized then add the page in RMP table. */ 453 sev = psp_master->sev_data; 454 if (!sev->snp_initialized) 455 return page; 456 457 paddr = __pa((unsigned long)page_address(page)); 458 if (rmp_mark_pages_firmware(paddr, npages, locked)) 459 return NULL; 460 461 return page; 462 } 463 464 void *snp_alloc_firmware_page(gfp_t gfp_mask) 465 { 466 struct page *page; 467 468 page = __snp_alloc_firmware_pages(gfp_mask, 0, false); 469 470 return page ? page_address(page) : NULL; 471 } 472 EXPORT_SYMBOL_GPL(snp_alloc_firmware_page); 473 474 static void __snp_free_firmware_pages(struct page *page, int order, bool locked) 475 { 476 struct sev_device *sev = psp_master->sev_data; 477 unsigned long paddr, npages = 1ul << order; 478 479 if (!page) 480 return; 481 482 paddr = __pa((unsigned long)page_address(page)); 483 if (sev->snp_initialized && 484 snp_reclaim_pages(paddr, npages, locked)) 485 return; 486 487 __free_pages(page, order); 488 } 489 490 void snp_free_firmware_page(void *addr) 491 { 492 if (!addr) 493 return; 494 495 __snp_free_firmware_pages(virt_to_page(addr), 0, false); 496 } 497 EXPORT_SYMBOL_GPL(snp_free_firmware_page); 498 499 static void *sev_fw_alloc(unsigned long len) 500 { 501 struct page *page; 502 503 page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len), true); 504 if (!page) 505 return NULL; 506 507 return page_address(page); 508 } 509 510 /** 511 * struct cmd_buf_desc - descriptors for managing legacy SEV command address 512 * parameters corresponding to buffers that may be written to by firmware. 513 * 514 * @paddr_ptr: pointer to the address parameter in the command buffer which may 515 * need to be saved/restored depending on whether a bounce buffer 516 * is used. In the case of a bounce buffer, the command buffer 517 * needs to be updated with the address of the new bounce buffer 518 * snp_map_cmd_buf_desc() has allocated specifically for it. Must 519 * be NULL if this descriptor is only an end-of-list indicator. 520 * 521 * @paddr_orig: storage for the original address parameter, which can be used to 522 * restore the original value in @paddr_ptr in cases where it is 523 * replaced with the address of a bounce buffer. 524 * 525 * @len: length of buffer located at the address originally stored at @paddr_ptr 526 * 527 * @guest_owned: true if the address corresponds to guest-owned pages, in which 528 * case bounce buffers are not needed. 529 */ 530 struct cmd_buf_desc { 531 u64 *paddr_ptr; 532 u64 paddr_orig; 533 u32 len; 534 bool guest_owned; 535 }; 536 537 /* 538 * If a legacy SEV command parameter is a memory address, those pages in 539 * turn need to be transitioned to/from firmware-owned before/after 540 * executing the firmware command. 541 * 542 * Additionally, in cases where those pages are not guest-owned, a bounce 543 * buffer is needed in place of the original memory address parameter. 544 * 545 * A set of descriptors are used to keep track of this handling, and 546 * initialized here based on the specific commands being executed. 547 */ 548 static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf, 549 struct cmd_buf_desc *desc_list) 550 { 551 switch (cmd) { 552 case SEV_CMD_PDH_CERT_EXPORT: { 553 struct sev_data_pdh_cert_export *data = cmd_buf; 554 555 desc_list[0].paddr_ptr = &data->pdh_cert_address; 556 desc_list[0].len = data->pdh_cert_len; 557 desc_list[1].paddr_ptr = &data->cert_chain_address; 558 desc_list[1].len = data->cert_chain_len; 559 break; 560 } 561 case SEV_CMD_GET_ID: { 562 struct sev_data_get_id *data = cmd_buf; 563 564 desc_list[0].paddr_ptr = &data->address; 565 desc_list[0].len = data->len; 566 break; 567 } 568 case SEV_CMD_PEK_CSR: { 569 struct sev_data_pek_csr *data = cmd_buf; 570 571 desc_list[0].paddr_ptr = &data->address; 572 desc_list[0].len = data->len; 573 break; 574 } 575 case SEV_CMD_LAUNCH_UPDATE_DATA: { 576 struct sev_data_launch_update_data *data = cmd_buf; 577 578 desc_list[0].paddr_ptr = &data->address; 579 desc_list[0].len = data->len; 580 desc_list[0].guest_owned = true; 581 break; 582 } 583 case SEV_CMD_LAUNCH_UPDATE_VMSA: { 584 struct sev_data_launch_update_vmsa *data = cmd_buf; 585 586 desc_list[0].paddr_ptr = &data->address; 587 desc_list[0].len = data->len; 588 desc_list[0].guest_owned = true; 589 break; 590 } 591 case SEV_CMD_LAUNCH_MEASURE: { 592 struct sev_data_launch_measure *data = cmd_buf; 593 594 desc_list[0].paddr_ptr = &data->address; 595 desc_list[0].len = data->len; 596 break; 597 } 598 case SEV_CMD_LAUNCH_UPDATE_SECRET: { 599 struct sev_data_launch_secret *data = cmd_buf; 600 601 desc_list[0].paddr_ptr = &data->guest_address; 602 desc_list[0].len = data->guest_len; 603 desc_list[0].guest_owned = true; 604 break; 605 } 606 case SEV_CMD_DBG_DECRYPT: { 607 struct sev_data_dbg *data = cmd_buf; 608 609 desc_list[0].paddr_ptr = &data->dst_addr; 610 desc_list[0].len = data->len; 611 desc_list[0].guest_owned = true; 612 break; 613 } 614 case SEV_CMD_DBG_ENCRYPT: { 615 struct sev_data_dbg *data = cmd_buf; 616 617 desc_list[0].paddr_ptr = &data->dst_addr; 618 desc_list[0].len = data->len; 619 desc_list[0].guest_owned = true; 620 break; 621 } 622 case SEV_CMD_ATTESTATION_REPORT: { 623 struct sev_data_attestation_report *data = cmd_buf; 624 625 desc_list[0].paddr_ptr = &data->address; 626 desc_list[0].len = data->len; 627 break; 628 } 629 case SEV_CMD_SEND_START: { 630 struct sev_data_send_start *data = cmd_buf; 631 632 desc_list[0].paddr_ptr = &data->session_address; 633 desc_list[0].len = data->session_len; 634 break; 635 } 636 case SEV_CMD_SEND_UPDATE_DATA: { 637 struct sev_data_send_update_data *data = cmd_buf; 638 639 desc_list[0].paddr_ptr = &data->hdr_address; 640 desc_list[0].len = data->hdr_len; 641 desc_list[1].paddr_ptr = &data->trans_address; 642 desc_list[1].len = data->trans_len; 643 break; 644 } 645 case SEV_CMD_SEND_UPDATE_VMSA: { 646 struct sev_data_send_update_vmsa *data = cmd_buf; 647 648 desc_list[0].paddr_ptr = &data->hdr_address; 649 desc_list[0].len = data->hdr_len; 650 desc_list[1].paddr_ptr = &data->trans_address; 651 desc_list[1].len = data->trans_len; 652 break; 653 } 654 case SEV_CMD_RECEIVE_UPDATE_DATA: { 655 struct sev_data_receive_update_data *data = cmd_buf; 656 657 desc_list[0].paddr_ptr = &data->guest_address; 658 desc_list[0].len = data->guest_len; 659 desc_list[0].guest_owned = true; 660 break; 661 } 662 case SEV_CMD_RECEIVE_UPDATE_VMSA: { 663 struct sev_data_receive_update_vmsa *data = cmd_buf; 664 665 desc_list[0].paddr_ptr = &data->guest_address; 666 desc_list[0].len = data->guest_len; 667 desc_list[0].guest_owned = true; 668 break; 669 } 670 default: 671 break; 672 } 673 } 674 675 static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc) 676 { 677 unsigned int npages; 678 679 if (!desc->len) 680 return 0; 681 682 /* Allocate a bounce buffer if this isn't a guest owned page. */ 683 if (!desc->guest_owned) { 684 struct page *page; 685 686 page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len)); 687 if (!page) { 688 pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n"); 689 return -ENOMEM; 690 } 691 692 desc->paddr_orig = *desc->paddr_ptr; 693 *desc->paddr_ptr = __psp_pa(page_to_virt(page)); 694 } 695 696 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 697 698 /* Transition the buffer to firmware-owned. */ 699 if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) { 700 pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n"); 701 return -EFAULT; 702 } 703 704 return 0; 705 } 706 707 static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc) 708 { 709 unsigned int npages; 710 711 if (!desc->len) 712 return 0; 713 714 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 715 716 /* Transition the buffers back to hypervisor-owned. */ 717 if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) { 718 pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n"); 719 return -EFAULT; 720 } 721 722 /* Copy data from bounce buffer and then free it. */ 723 if (!desc->guest_owned) { 724 void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr)); 725 void *dst_buf = __va(__sme_clr(desc->paddr_orig)); 726 727 memcpy(dst_buf, bounce_buf, desc->len); 728 __free_pages(virt_to_page(bounce_buf), get_order(desc->len)); 729 730 /* Restore the original address in the command buffer. */ 731 *desc->paddr_ptr = desc->paddr_orig; 732 } 733 734 return 0; 735 } 736 737 static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 738 { 739 int i; 740 741 snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list); 742 743 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 744 struct cmd_buf_desc *desc = &desc_list[i]; 745 746 if (!desc->paddr_ptr) 747 break; 748 749 if (snp_map_cmd_buf_desc(desc)) 750 goto err_unmap; 751 } 752 753 return 0; 754 755 err_unmap: 756 for (i--; i >= 0; i--) 757 snp_unmap_cmd_buf_desc(&desc_list[i]); 758 759 return -EFAULT; 760 } 761 762 static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list) 763 { 764 int i, ret = 0; 765 766 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 767 struct cmd_buf_desc *desc = &desc_list[i]; 768 769 if (!desc->paddr_ptr) 770 break; 771 772 if (snp_unmap_cmd_buf_desc(&desc_list[i])) 773 ret = -EFAULT; 774 } 775 776 return ret; 777 } 778 779 static bool sev_cmd_buf_writable(int cmd) 780 { 781 switch (cmd) { 782 case SEV_CMD_PLATFORM_STATUS: 783 case SEV_CMD_GUEST_STATUS: 784 case SEV_CMD_LAUNCH_START: 785 case SEV_CMD_RECEIVE_START: 786 case SEV_CMD_LAUNCH_MEASURE: 787 case SEV_CMD_SEND_START: 788 case SEV_CMD_SEND_UPDATE_DATA: 789 case SEV_CMD_SEND_UPDATE_VMSA: 790 case SEV_CMD_PEK_CSR: 791 case SEV_CMD_PDH_CERT_EXPORT: 792 case SEV_CMD_GET_ID: 793 case SEV_CMD_ATTESTATION_REPORT: 794 return true; 795 default: 796 return false; 797 } 798 } 799 800 /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */ 801 static bool snp_legacy_handling_needed(int cmd) 802 { 803 struct sev_device *sev = psp_master->sev_data; 804 805 return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized; 806 } 807 808 static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 809 { 810 if (!snp_legacy_handling_needed(cmd)) 811 return 0; 812 813 if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list)) 814 return -EFAULT; 815 816 /* 817 * Before command execution, the command buffer needs to be put into 818 * the firmware-owned state. 819 */ 820 if (sev_cmd_buf_writable(cmd)) { 821 if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true)) 822 return -EFAULT; 823 } 824 825 return 0; 826 } 827 828 static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf) 829 { 830 if (!snp_legacy_handling_needed(cmd)) 831 return 0; 832 833 /* 834 * After command completion, the command buffer needs to be put back 835 * into the hypervisor-owned state. 836 */ 837 if (sev_cmd_buf_writable(cmd)) 838 if (snp_reclaim_pages(__pa(cmd_buf), 1, true)) 839 return -EFAULT; 840 841 return 0; 842 } 843 844 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret) 845 { 846 struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0}; 847 struct psp_device *psp = psp_master; 848 struct sev_device *sev; 849 unsigned int cmdbuff_hi, cmdbuff_lo; 850 unsigned int phys_lsb, phys_msb; 851 unsigned int reg; 852 void *cmd_buf; 853 int buf_len; 854 int ret = 0; 855 856 if (!psp || !psp->sev_data) 857 return -ENODEV; 858 859 if (psp_dead) 860 return -EBUSY; 861 862 sev = psp->sev_data; 863 864 buf_len = sev_cmd_buffer_len(cmd); 865 if (WARN_ON_ONCE(!data != !buf_len)) 866 return -EINVAL; 867 868 /* 869 * Copy the incoming data to driver's scratch buffer as __pa() will not 870 * work for some memory, e.g. vmalloc'd addresses, and @data may not be 871 * physically contiguous. 872 */ 873 if (data) { 874 /* 875 * Commands are generally issued one at a time and require the 876 * sev_cmd_mutex, but there could be recursive firmware requests 877 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while 878 * preparing buffers for another command. This is the only known 879 * case of nesting in the current code, so exactly one 880 * additional command buffer is available for that purpose. 881 */ 882 if (!sev->cmd_buf_active) { 883 cmd_buf = sev->cmd_buf; 884 sev->cmd_buf_active = true; 885 } else if (!sev->cmd_buf_backup_active) { 886 cmd_buf = sev->cmd_buf_backup; 887 sev->cmd_buf_backup_active = true; 888 } else { 889 dev_err(sev->dev, 890 "SEV: too many firmware commands in progress, no command buffers available.\n"); 891 return -EBUSY; 892 } 893 894 memcpy(cmd_buf, data, buf_len); 895 896 /* 897 * The behavior of the SEV-legacy commands is altered when the 898 * SNP firmware is in the INIT state. 899 */ 900 ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list); 901 if (ret) { 902 dev_err(sev->dev, 903 "SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n", 904 cmd, ret); 905 return ret; 906 } 907 } else { 908 cmd_buf = sev->cmd_buf; 909 } 910 911 /* Get the physical address of the command buffer */ 912 phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0; 913 phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0; 914 915 dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n", 916 cmd, phys_msb, phys_lsb, psp_timeout); 917 918 print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data, 919 buf_len, false); 920 921 iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 922 iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 923 924 sev->int_rcvd = 0; 925 926 reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd); 927 928 /* 929 * If invoked during panic handling, local interrupts are disabled so 930 * the PSP command completion interrupt can't be used. 931 * sev_wait_cmd_ioc() already checks for interrupts disabled and 932 * polls for PSP command completion. Ensure we do not request an 933 * interrupt from the PSP if irqs disabled. 934 */ 935 if (!irqs_disabled()) 936 reg |= SEV_CMDRESP_IOC; 937 938 iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg); 939 940 /* wait for command completion */ 941 ret = sev_wait_cmd_ioc(sev, ®, psp_timeout); 942 if (ret) { 943 if (psp_ret) 944 *psp_ret = 0; 945 946 dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd); 947 psp_dead = true; 948 949 return ret; 950 } 951 952 psp_timeout = psp_cmd_timeout; 953 954 if (psp_ret) 955 *psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg); 956 957 if (FIELD_GET(PSP_CMDRESP_STS, reg)) { 958 dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n", 959 cmd, FIELD_GET(PSP_CMDRESP_STS, reg)); 960 961 /* 962 * PSP firmware may report additional error information in the 963 * command buffer registers on error. Print contents of command 964 * buffer registers if they changed. 965 */ 966 cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 967 cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 968 if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) { 969 dev_dbg(sev->dev, "Additional error information reported in cmdbuff:"); 970 dev_dbg(sev->dev, " cmdbuff hi: %#010x\n", cmdbuff_hi); 971 dev_dbg(sev->dev, " cmdbuff lo: %#010x\n", cmdbuff_lo); 972 } 973 ret = -EIO; 974 } else { 975 ret = sev_write_init_ex_file_if_required(cmd); 976 } 977 978 /* 979 * Copy potential output from the PSP back to data. Do this even on 980 * failure in case the caller wants to glean something from the error. 981 */ 982 if (data) { 983 int ret_reclaim; 984 /* 985 * Restore the page state after the command completes. 986 */ 987 ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf); 988 if (ret_reclaim) { 989 dev_err(sev->dev, 990 "SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n", 991 cmd, ret_reclaim); 992 return ret_reclaim; 993 } 994 995 memcpy(data, cmd_buf, buf_len); 996 997 if (sev->cmd_buf_backup_active) 998 sev->cmd_buf_backup_active = false; 999 else 1000 sev->cmd_buf_active = false; 1001 1002 if (snp_unmap_cmd_buf_desc_list(desc_list)) 1003 return -EFAULT; 1004 } 1005 1006 print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data, 1007 buf_len, false); 1008 1009 return ret; 1010 } 1011 1012 int sev_do_cmd(int cmd, void *data, int *psp_ret) 1013 { 1014 int rc; 1015 1016 mutex_lock(&sev_cmd_mutex); 1017 rc = __sev_do_cmd_locked(cmd, data, psp_ret); 1018 mutex_unlock(&sev_cmd_mutex); 1019 1020 return rc; 1021 } 1022 EXPORT_SYMBOL_GPL(sev_do_cmd); 1023 1024 static int __sev_init_locked(int *error) 1025 { 1026 struct sev_data_init data; 1027 1028 memset(&data, 0, sizeof(data)); 1029 if (sev_es_tmr) { 1030 /* 1031 * Do not include the encryption mask on the physical 1032 * address of the TMR (firmware should clear it anyway). 1033 */ 1034 data.tmr_address = __pa(sev_es_tmr); 1035 1036 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1037 data.tmr_len = sev_es_tmr_size; 1038 } 1039 1040 return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error); 1041 } 1042 1043 static int __sev_init_ex_locked(int *error) 1044 { 1045 struct sev_data_init_ex data; 1046 1047 memset(&data, 0, sizeof(data)); 1048 data.length = sizeof(data); 1049 data.nv_address = __psp_pa(sev_init_ex_buffer); 1050 data.nv_len = NV_LENGTH; 1051 1052 if (sev_es_tmr) { 1053 /* 1054 * Do not include the encryption mask on the physical 1055 * address of the TMR (firmware should clear it anyway). 1056 */ 1057 data.tmr_address = __pa(sev_es_tmr); 1058 1059 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1060 data.tmr_len = sev_es_tmr_size; 1061 } 1062 1063 return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error); 1064 } 1065 1066 static inline int __sev_do_init_locked(int *psp_ret) 1067 { 1068 if (sev_init_ex_buffer) 1069 return __sev_init_ex_locked(psp_ret); 1070 else 1071 return __sev_init_locked(psp_ret); 1072 } 1073 1074 static void snp_set_hsave_pa(void *arg) 1075 { 1076 wrmsrq(MSR_VM_HSAVE_PA, 0); 1077 } 1078 1079 bool sev_is_snp_ciphertext_hiding_supported(void) 1080 { 1081 struct psp_device *psp = psp_master; 1082 struct sev_device *sev; 1083 1084 if (!psp || !psp->sev_data) 1085 return false; 1086 1087 sev = psp->sev_data; 1088 1089 /* 1090 * Feature information indicates if CipherTextHiding feature is 1091 * supported by the SEV firmware and additionally platform status 1092 * indicates if CipherTextHiding feature is enabled in the 1093 * Platform BIOS. 1094 */ 1095 return ((sev->snp_feat_info_0.ecx & SNP_CIPHER_TEXT_HIDING_SUPPORTED) && 1096 sev->snp_plat_status.ciphertext_hiding_cap); 1097 } 1098 EXPORT_SYMBOL_GPL(sev_is_snp_ciphertext_hiding_supported); 1099 1100 static int snp_get_platform_data(struct sev_device *sev, int *error) 1101 { 1102 struct sev_data_snp_feature_info snp_feat_info; 1103 struct snp_feature_info *feat_info; 1104 struct sev_data_snp_addr buf; 1105 struct page *page; 1106 int rc; 1107 1108 /* 1109 * This function is expected to be called before SNP is 1110 * initialized. 1111 */ 1112 if (sev->snp_initialized) 1113 return -EINVAL; 1114 1115 buf.address = __psp_pa(&sev->snp_plat_status); 1116 rc = sev_do_cmd(SEV_CMD_SNP_PLATFORM_STATUS, &buf, error); 1117 if (rc) { 1118 dev_err(sev->dev, "SNP PLATFORM_STATUS command failed, ret = %d, error = %#x\n", 1119 rc, *error); 1120 return rc; 1121 } 1122 1123 sev->api_major = sev->snp_plat_status.api_major; 1124 sev->api_minor = sev->snp_plat_status.api_minor; 1125 sev->build = sev->snp_plat_status.build_id; 1126 1127 /* 1128 * Do feature discovery of the currently loaded firmware, 1129 * and cache feature information from CPUID 0x8000_0024, 1130 * sub-function 0. 1131 */ 1132 if (!sev->snp_plat_status.feature_info) 1133 return 0; 1134 1135 /* 1136 * Use dynamically allocated structure for the SNP_FEATURE_INFO 1137 * command to ensure structure is 8-byte aligned, and does not 1138 * cross a page boundary. 1139 */ 1140 page = alloc_page(GFP_KERNEL); 1141 if (!page) 1142 return -ENOMEM; 1143 1144 feat_info = page_address(page); 1145 snp_feat_info.length = sizeof(snp_feat_info); 1146 snp_feat_info.ecx_in = 0; 1147 snp_feat_info.feature_info_paddr = __psp_pa(feat_info); 1148 1149 rc = sev_do_cmd(SEV_CMD_SNP_FEATURE_INFO, &snp_feat_info, error); 1150 if (!rc) 1151 sev->snp_feat_info_0 = *feat_info; 1152 else 1153 dev_err(sev->dev, "SNP FEATURE_INFO command failed, ret = %d, error = %#x\n", 1154 rc, *error); 1155 1156 __free_page(page); 1157 1158 return rc; 1159 } 1160 1161 static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg) 1162 { 1163 struct sev_data_range_list *range_list = arg; 1164 struct sev_data_range *range = &range_list->ranges[range_list->num_elements]; 1165 size_t size; 1166 1167 /* 1168 * Ensure the list of HV_FIXED pages that will be passed to firmware 1169 * do not exceed the page-sized argument buffer. 1170 */ 1171 if ((range_list->num_elements * sizeof(struct sev_data_range) + 1172 sizeof(struct sev_data_range_list)) > PAGE_SIZE) 1173 return -E2BIG; 1174 1175 switch (rs->desc) { 1176 case E820_TYPE_RESERVED: 1177 case E820_TYPE_PMEM: 1178 case E820_TYPE_ACPI: 1179 range->base = rs->start & PAGE_MASK; 1180 size = PAGE_ALIGN((rs->end + 1) - rs->start); 1181 range->page_count = size >> PAGE_SHIFT; 1182 range_list->num_elements++; 1183 break; 1184 default: 1185 break; 1186 } 1187 1188 return 0; 1189 } 1190 1191 static int __sev_snp_init_locked(int *error, unsigned int max_snp_asid) 1192 { 1193 struct psp_device *psp = psp_master; 1194 struct sev_data_snp_init_ex data; 1195 struct sev_device *sev; 1196 void *arg = &data; 1197 int cmd, rc = 0; 1198 1199 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 1200 return -ENODEV; 1201 1202 sev = psp->sev_data; 1203 1204 if (sev->snp_initialized) 1205 return 0; 1206 1207 if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) { 1208 dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n", 1209 SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR); 1210 return -EOPNOTSUPP; 1211 } 1212 1213 /* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */ 1214 on_each_cpu(snp_set_hsave_pa, NULL, 1); 1215 1216 /* 1217 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list 1218 * of system physical address ranges to convert into HV-fixed page 1219 * states during the RMP initialization. For instance, the memory that 1220 * UEFI reserves should be included in the that list. This allows system 1221 * components that occasionally write to memory (e.g. logging to UEFI 1222 * reserved regions) to not fail due to RMP initialization and SNP 1223 * enablement. 1224 * 1225 */ 1226 if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) { 1227 /* 1228 * Firmware checks that the pages containing the ranges enumerated 1229 * in the RANGES structure are either in the default page state or in the 1230 * firmware page state. 1231 */ 1232 snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL); 1233 if (!snp_range_list) { 1234 dev_err(sev->dev, 1235 "SEV: SNP_INIT_EX range list memory allocation failed\n"); 1236 return -ENOMEM; 1237 } 1238 1239 /* 1240 * Retrieve all reserved memory regions from the e820 memory map 1241 * to be setup as HV-fixed pages. 1242 */ 1243 rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0, 1244 snp_range_list, snp_filter_reserved_mem_regions); 1245 if (rc) { 1246 dev_err(sev->dev, 1247 "SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc); 1248 return rc; 1249 } 1250 1251 memset(&data, 0, sizeof(data)); 1252 1253 if (max_snp_asid) { 1254 data.ciphertext_hiding_en = 1; 1255 data.max_snp_asid = max_snp_asid; 1256 } 1257 1258 data.init_rmp = 1; 1259 data.list_paddr_en = 1; 1260 data.list_paddr = __psp_pa(snp_range_list); 1261 cmd = SEV_CMD_SNP_INIT_EX; 1262 } else { 1263 cmd = SEV_CMD_SNP_INIT; 1264 arg = NULL; 1265 } 1266 1267 /* 1268 * The following sequence must be issued before launching the first SNP 1269 * guest to ensure all dirty cache lines are flushed, including from 1270 * updates to the RMP table itself via the RMPUPDATE instruction: 1271 * 1272 * - WBINVD on all running CPUs 1273 * - SEV_CMD_SNP_INIT[_EX] firmware command 1274 * - WBINVD on all running CPUs 1275 * - SEV_CMD_SNP_DF_FLUSH firmware command 1276 */ 1277 wbinvd_on_all_cpus(); 1278 1279 rc = __sev_do_cmd_locked(cmd, arg, error); 1280 if (rc) { 1281 dev_err(sev->dev, "SEV-SNP: %s failed rc %d, error %#x\n", 1282 cmd == SEV_CMD_SNP_INIT_EX ? "SNP_INIT_EX" : "SNP_INIT", 1283 rc, *error); 1284 return rc; 1285 } 1286 1287 /* Prepare for first SNP guest launch after INIT. */ 1288 wbinvd_on_all_cpus(); 1289 rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error); 1290 if (rc) { 1291 dev_err(sev->dev, "SEV-SNP: SNP_DF_FLUSH failed rc %d, error %#x\n", 1292 rc, *error); 1293 return rc; 1294 } 1295 1296 sev->snp_initialized = true; 1297 dev_dbg(sev->dev, "SEV-SNP firmware initialized\n"); 1298 1299 dev_info(sev->dev, "SEV-SNP API:%d.%d build:%d\n", sev->api_major, 1300 sev->api_minor, sev->build); 1301 1302 atomic_notifier_chain_register(&panic_notifier_list, 1303 &snp_panic_notifier); 1304 1305 sev_es_tmr_size = SNP_TMR_SIZE; 1306 1307 return 0; 1308 } 1309 1310 static void __sev_platform_init_handle_tmr(struct sev_device *sev) 1311 { 1312 if (sev_es_tmr) 1313 return; 1314 1315 /* Obtain the TMR memory area for SEV-ES use */ 1316 sev_es_tmr = sev_fw_alloc(sev_es_tmr_size); 1317 if (sev_es_tmr) { 1318 /* Must flush the cache before giving it to the firmware */ 1319 if (!sev->snp_initialized) 1320 clflush_cache_range(sev_es_tmr, sev_es_tmr_size); 1321 } else { 1322 dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n"); 1323 } 1324 } 1325 1326 /* 1327 * If an init_ex_path is provided allocate a buffer for the file and 1328 * read in the contents. Additionally, if SNP is initialized, convert 1329 * the buffer pages to firmware pages. 1330 */ 1331 static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev) 1332 { 1333 struct page *page; 1334 int rc; 1335 1336 if (!init_ex_path) 1337 return 0; 1338 1339 if (sev_init_ex_buffer) 1340 return 0; 1341 1342 page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH)); 1343 if (!page) { 1344 dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n"); 1345 return -ENOMEM; 1346 } 1347 1348 sev_init_ex_buffer = page_address(page); 1349 1350 rc = sev_read_init_ex_file(); 1351 if (rc) 1352 return rc; 1353 1354 /* If SEV-SNP is initialized, transition to firmware page. */ 1355 if (sev->snp_initialized) { 1356 unsigned long npages; 1357 1358 npages = 1UL << get_order(NV_LENGTH); 1359 if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) { 1360 dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n"); 1361 return -ENOMEM; 1362 } 1363 } 1364 1365 return 0; 1366 } 1367 1368 static int __sev_platform_init_locked(int *error) 1369 { 1370 int rc, psp_ret, dfflush_error; 1371 struct sev_device *sev; 1372 1373 psp_ret = dfflush_error = SEV_RET_NO_FW_CALL; 1374 1375 if (!psp_master || !psp_master->sev_data) 1376 return -ENODEV; 1377 1378 sev = psp_master->sev_data; 1379 1380 if (sev->sev_plat_status.state == SEV_STATE_INIT) 1381 return 0; 1382 1383 __sev_platform_init_handle_tmr(sev); 1384 1385 rc = __sev_platform_init_handle_init_ex_path(sev); 1386 if (rc) 1387 return rc; 1388 1389 rc = __sev_do_init_locked(&psp_ret); 1390 if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) { 1391 /* 1392 * Initialization command returned an integrity check failure 1393 * status code, meaning that firmware load and validation of SEV 1394 * related persistent data has failed. Retrying the 1395 * initialization function should succeed by replacing the state 1396 * with a reset state. 1397 */ 1398 dev_err(sev->dev, 1399 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state."); 1400 rc = __sev_do_init_locked(&psp_ret); 1401 } 1402 1403 if (error) 1404 *error = psp_ret; 1405 1406 if (rc) { 1407 dev_err(sev->dev, "SEV: %s failed %#x, rc %d\n", 1408 sev_init_ex_buffer ? "INIT_EX" : "INIT", psp_ret, rc); 1409 return rc; 1410 } 1411 1412 sev->sev_plat_status.state = SEV_STATE_INIT; 1413 1414 /* Prepare for first SEV guest launch after INIT */ 1415 wbinvd_on_all_cpus(); 1416 rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, &dfflush_error); 1417 if (rc) { 1418 dev_err(sev->dev, "SEV: DF_FLUSH failed %#x, rc %d\n", 1419 dfflush_error, rc); 1420 return rc; 1421 } 1422 1423 dev_dbg(sev->dev, "SEV firmware initialized\n"); 1424 1425 dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major, 1426 sev->api_minor, sev->build); 1427 1428 return 0; 1429 } 1430 1431 static int _sev_platform_init_locked(struct sev_platform_init_args *args) 1432 { 1433 struct sev_device *sev; 1434 int rc; 1435 1436 if (!psp_master || !psp_master->sev_data) 1437 return -ENODEV; 1438 1439 sev = psp_master->sev_data; 1440 1441 if (sev->sev_plat_status.state == SEV_STATE_INIT) 1442 return 0; 1443 1444 rc = __sev_snp_init_locked(&args->error, args->max_snp_asid); 1445 if (rc && rc != -ENODEV) 1446 return rc; 1447 1448 /* Defer legacy SEV/SEV-ES support if allowed by caller/module. */ 1449 if (args->probe && !psp_init_on_probe) 1450 return 0; 1451 1452 return __sev_platform_init_locked(&args->error); 1453 } 1454 1455 int sev_platform_init(struct sev_platform_init_args *args) 1456 { 1457 int rc; 1458 1459 mutex_lock(&sev_cmd_mutex); 1460 rc = _sev_platform_init_locked(args); 1461 mutex_unlock(&sev_cmd_mutex); 1462 1463 return rc; 1464 } 1465 EXPORT_SYMBOL_GPL(sev_platform_init); 1466 1467 static int __sev_platform_shutdown_locked(int *error) 1468 { 1469 struct psp_device *psp = psp_master; 1470 struct sev_device *sev; 1471 int ret; 1472 1473 if (!psp || !psp->sev_data) 1474 return 0; 1475 1476 sev = psp->sev_data; 1477 1478 if (sev->sev_plat_status.state == SEV_STATE_UNINIT) 1479 return 0; 1480 1481 ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error); 1482 if (ret) { 1483 dev_err(sev->dev, "SEV: failed to SHUTDOWN error %#x, rc %d\n", 1484 *error, ret); 1485 return ret; 1486 } 1487 1488 sev->sev_plat_status.state = SEV_STATE_UNINIT; 1489 dev_dbg(sev->dev, "SEV firmware shutdown\n"); 1490 1491 return ret; 1492 } 1493 1494 static int sev_get_platform_state(int *state, int *error) 1495 { 1496 struct sev_user_data_status data; 1497 int rc; 1498 1499 rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error); 1500 if (rc) 1501 return rc; 1502 1503 *state = data.state; 1504 return rc; 1505 } 1506 1507 static int sev_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required) 1508 { 1509 struct sev_platform_init_args init_args = {0}; 1510 int rc; 1511 1512 rc = _sev_platform_init_locked(&init_args); 1513 if (rc) { 1514 argp->error = SEV_RET_INVALID_PLATFORM_STATE; 1515 return rc; 1516 } 1517 1518 *shutdown_required = true; 1519 1520 return 0; 1521 } 1522 1523 static int snp_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required) 1524 { 1525 int error, rc; 1526 1527 rc = __sev_snp_init_locked(&error, 0); 1528 if (rc) { 1529 argp->error = SEV_RET_INVALID_PLATFORM_STATE; 1530 return rc; 1531 } 1532 1533 *shutdown_required = true; 1534 1535 return 0; 1536 } 1537 1538 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable) 1539 { 1540 int state, rc; 1541 1542 if (!writable) 1543 return -EPERM; 1544 1545 /* 1546 * The SEV spec requires that FACTORY_RESET must be issued in 1547 * UNINIT state. Before we go further lets check if any guest is 1548 * active. 1549 * 1550 * If FW is in WORKING state then deny the request otherwise issue 1551 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET. 1552 * 1553 */ 1554 rc = sev_get_platform_state(&state, &argp->error); 1555 if (rc) 1556 return rc; 1557 1558 if (state == SEV_STATE_WORKING) 1559 return -EBUSY; 1560 1561 if (state == SEV_STATE_INIT) { 1562 rc = __sev_platform_shutdown_locked(&argp->error); 1563 if (rc) 1564 return rc; 1565 } 1566 1567 return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error); 1568 } 1569 1570 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp) 1571 { 1572 struct sev_user_data_status data; 1573 int ret; 1574 1575 memset(&data, 0, sizeof(data)); 1576 1577 ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error); 1578 if (ret) 1579 return ret; 1580 1581 if (copy_to_user((void __user *)argp->data, &data, sizeof(data))) 1582 ret = -EFAULT; 1583 1584 return ret; 1585 } 1586 1587 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable) 1588 { 1589 struct sev_device *sev = psp_master->sev_data; 1590 bool shutdown_required = false; 1591 int rc; 1592 1593 if (!writable) 1594 return -EPERM; 1595 1596 if (sev->sev_plat_status.state == SEV_STATE_UNINIT) { 1597 rc = sev_move_to_init_state(argp, &shutdown_required); 1598 if (rc) 1599 return rc; 1600 } 1601 1602 rc = __sev_do_cmd_locked(cmd, NULL, &argp->error); 1603 1604 if (shutdown_required) 1605 __sev_firmware_shutdown(sev, false); 1606 1607 return rc; 1608 } 1609 1610 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable) 1611 { 1612 struct sev_device *sev = psp_master->sev_data; 1613 struct sev_user_data_pek_csr input; 1614 bool shutdown_required = false; 1615 struct sev_data_pek_csr data; 1616 void __user *input_address; 1617 void *blob = NULL; 1618 int ret; 1619 1620 if (!writable) 1621 return -EPERM; 1622 1623 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1624 return -EFAULT; 1625 1626 memset(&data, 0, sizeof(data)); 1627 1628 /* userspace wants to query CSR length */ 1629 if (!input.address || !input.length) 1630 goto cmd; 1631 1632 /* allocate a physically contiguous buffer to store the CSR blob */ 1633 input_address = (void __user *)input.address; 1634 if (input.length > SEV_FW_BLOB_MAX_SIZE) 1635 return -EFAULT; 1636 1637 blob = kzalloc(input.length, GFP_KERNEL); 1638 if (!blob) 1639 return -ENOMEM; 1640 1641 data.address = __psp_pa(blob); 1642 data.len = input.length; 1643 1644 cmd: 1645 if (sev->sev_plat_status.state == SEV_STATE_UNINIT) { 1646 ret = sev_move_to_init_state(argp, &shutdown_required); 1647 if (ret) 1648 goto e_free_blob; 1649 } 1650 1651 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error); 1652 1653 /* If we query the CSR length, FW responded with expected data. */ 1654 input.length = data.len; 1655 1656 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1657 ret = -EFAULT; 1658 goto e_free_blob; 1659 } 1660 1661 if (blob) { 1662 if (copy_to_user(input_address, blob, input.length)) 1663 ret = -EFAULT; 1664 } 1665 1666 e_free_blob: 1667 if (shutdown_required) 1668 __sev_firmware_shutdown(sev, false); 1669 1670 kfree(blob); 1671 return ret; 1672 } 1673 1674 void *psp_copy_user_blob(u64 uaddr, u32 len) 1675 { 1676 if (!uaddr || !len) 1677 return ERR_PTR(-EINVAL); 1678 1679 /* verify that blob length does not exceed our limit */ 1680 if (len > SEV_FW_BLOB_MAX_SIZE) 1681 return ERR_PTR(-EINVAL); 1682 1683 return memdup_user((void __user *)uaddr, len); 1684 } 1685 EXPORT_SYMBOL_GPL(psp_copy_user_blob); 1686 1687 static int sev_get_api_version(void) 1688 { 1689 struct sev_device *sev = psp_master->sev_data; 1690 struct sev_user_data_status status; 1691 int error = 0, ret; 1692 1693 /* 1694 * Cache SNP platform status and SNP feature information 1695 * if SNP is available. 1696 */ 1697 if (cc_platform_has(CC_ATTR_HOST_SEV_SNP)) { 1698 ret = snp_get_platform_data(sev, &error); 1699 if (ret) 1700 return 1; 1701 } 1702 1703 ret = sev_platform_status(&status, &error); 1704 if (ret) { 1705 dev_err(sev->dev, 1706 "SEV: failed to get status. Error: %#x\n", error); 1707 return 1; 1708 } 1709 1710 /* Cache SEV platform status */ 1711 sev->sev_plat_status = status; 1712 1713 sev->api_major = status.api_major; 1714 sev->api_minor = status.api_minor; 1715 sev->build = status.build; 1716 1717 return 0; 1718 } 1719 1720 static int sev_get_firmware(struct device *dev, 1721 const struct firmware **firmware) 1722 { 1723 char fw_name_specific[SEV_FW_NAME_SIZE]; 1724 char fw_name_subset[SEV_FW_NAME_SIZE]; 1725 1726 snprintf(fw_name_specific, sizeof(fw_name_specific), 1727 "amd/amd_sev_fam%.2xh_model%.2xh.sbin", 1728 boot_cpu_data.x86, boot_cpu_data.x86_model); 1729 1730 snprintf(fw_name_subset, sizeof(fw_name_subset), 1731 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin", 1732 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4); 1733 1734 /* Check for SEV FW for a particular model. 1735 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h 1736 * 1737 * or 1738 * 1739 * Check for SEV FW common to a subset of models. 1740 * Ex. amd_sev_fam17h_model0xh.sbin for 1741 * Family 17h Model 00h -- Family 17h Model 0Fh 1742 * 1743 * or 1744 * 1745 * Fall-back to using generic name: sev.fw 1746 */ 1747 if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) || 1748 (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) || 1749 (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0)) 1750 return 0; 1751 1752 return -ENOENT; 1753 } 1754 1755 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */ 1756 static int sev_update_firmware(struct device *dev) 1757 { 1758 struct sev_data_download_firmware *data; 1759 const struct firmware *firmware; 1760 int ret, error, order; 1761 struct page *p; 1762 u64 data_size; 1763 1764 if (!sev_version_greater_or_equal(0, 15)) { 1765 dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n"); 1766 return -1; 1767 } 1768 1769 if (sev_get_firmware(dev, &firmware) == -ENOENT) { 1770 dev_dbg(dev, "No SEV firmware file present\n"); 1771 return -1; 1772 } 1773 1774 /* 1775 * SEV FW expects the physical address given to it to be 32 1776 * byte aligned. Memory allocated has structure placed at the 1777 * beginning followed by the firmware being passed to the SEV 1778 * FW. Allocate enough memory for data structure + alignment 1779 * padding + SEV FW. 1780 */ 1781 data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32); 1782 1783 order = get_order(firmware->size + data_size); 1784 p = alloc_pages(GFP_KERNEL, order); 1785 if (!p) { 1786 ret = -1; 1787 goto fw_err; 1788 } 1789 1790 /* 1791 * Copy firmware data to a kernel allocated contiguous 1792 * memory region. 1793 */ 1794 data = page_address(p); 1795 memcpy(page_address(p) + data_size, firmware->data, firmware->size); 1796 1797 data->address = __psp_pa(page_address(p) + data_size); 1798 data->len = firmware->size; 1799 1800 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1801 1802 /* 1803 * A quirk for fixing the committed TCB version, when upgrading from 1804 * earlier firmware version than 1.50. 1805 */ 1806 if (!ret && !sev_version_greater_or_equal(1, 50)) 1807 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1808 1809 if (ret) 1810 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error); 1811 1812 __free_pages(p, order); 1813 1814 fw_err: 1815 release_firmware(firmware); 1816 1817 return ret; 1818 } 1819 1820 static int __sev_snp_shutdown_locked(int *error, bool panic) 1821 { 1822 struct psp_device *psp = psp_master; 1823 struct sev_device *sev; 1824 struct sev_data_snp_shutdown_ex data; 1825 int ret; 1826 1827 if (!psp || !psp->sev_data) 1828 return 0; 1829 1830 sev = psp->sev_data; 1831 1832 if (!sev->snp_initialized) 1833 return 0; 1834 1835 memset(&data, 0, sizeof(data)); 1836 data.len = sizeof(data); 1837 data.iommu_snp_shutdown = 1; 1838 1839 /* 1840 * If invoked during panic handling, local interrupts are disabled 1841 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called. 1842 * In that case, a wbinvd() is done on remote CPUs via the NMI 1843 * callback, so only a local wbinvd() is needed here. 1844 */ 1845 if (!panic) 1846 wbinvd_on_all_cpus(); 1847 else 1848 wbinvd(); 1849 1850 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error); 1851 /* SHUTDOWN may require DF_FLUSH */ 1852 if (*error == SEV_RET_DFFLUSH_REQUIRED) { 1853 int dfflush_error = SEV_RET_NO_FW_CALL; 1854 1855 ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, &dfflush_error); 1856 if (ret) { 1857 dev_err(sev->dev, "SEV-SNP DF_FLUSH failed, ret = %d, error = %#x\n", 1858 ret, dfflush_error); 1859 return ret; 1860 } 1861 /* reissue the shutdown command */ 1862 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, 1863 error); 1864 } 1865 if (ret) { 1866 dev_err(sev->dev, "SEV-SNP firmware shutdown failed, rc %d, error %#x\n", 1867 ret, *error); 1868 return ret; 1869 } 1870 1871 /* 1872 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP 1873 * enforcement by the IOMMU and also transitions all pages 1874 * associated with the IOMMU to the Reclaim state. 1875 * Firmware was transitioning the IOMMU pages to Hypervisor state 1876 * before version 1.53. But, accounting for the number of assigned 1877 * 4kB pages in a 2M page was done incorrectly by not transitioning 1878 * to the Reclaim state. This resulted in RMP #PF when later accessing 1879 * the 2M page containing those pages during kexec boot. Hence, the 1880 * firmware now transitions these pages to Reclaim state and hypervisor 1881 * needs to transition these pages to shared state. SNP Firmware 1882 * version 1.53 and above are needed for kexec boot. 1883 */ 1884 ret = amd_iommu_snp_disable(); 1885 if (ret) { 1886 dev_err(sev->dev, "SNP IOMMU shutdown failed\n"); 1887 return ret; 1888 } 1889 1890 sev->snp_initialized = false; 1891 dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n"); 1892 1893 /* 1894 * __sev_snp_shutdown_locked() deadlocks when it tries to unregister 1895 * itself during panic as the panic notifier is called with RCU read 1896 * lock held and notifier unregistration does RCU synchronization. 1897 */ 1898 if (!panic) 1899 atomic_notifier_chain_unregister(&panic_notifier_list, 1900 &snp_panic_notifier); 1901 1902 /* Reset TMR size back to default */ 1903 sev_es_tmr_size = SEV_TMR_SIZE; 1904 1905 return ret; 1906 } 1907 1908 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable) 1909 { 1910 struct sev_device *sev = psp_master->sev_data; 1911 struct sev_user_data_pek_cert_import input; 1912 struct sev_data_pek_cert_import data; 1913 bool shutdown_required = false; 1914 void *pek_blob, *oca_blob; 1915 int ret; 1916 1917 if (!writable) 1918 return -EPERM; 1919 1920 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1921 return -EFAULT; 1922 1923 /* copy PEK certificate blobs from userspace */ 1924 pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len); 1925 if (IS_ERR(pek_blob)) 1926 return PTR_ERR(pek_blob); 1927 1928 data.reserved = 0; 1929 data.pek_cert_address = __psp_pa(pek_blob); 1930 data.pek_cert_len = input.pek_cert_len; 1931 1932 /* copy PEK certificate blobs from userspace */ 1933 oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len); 1934 if (IS_ERR(oca_blob)) { 1935 ret = PTR_ERR(oca_blob); 1936 goto e_free_pek; 1937 } 1938 1939 data.oca_cert_address = __psp_pa(oca_blob); 1940 data.oca_cert_len = input.oca_cert_len; 1941 1942 /* If platform is not in INIT state then transition it to INIT */ 1943 if (sev->sev_plat_status.state != SEV_STATE_INIT) { 1944 ret = sev_move_to_init_state(argp, &shutdown_required); 1945 if (ret) 1946 goto e_free_oca; 1947 } 1948 1949 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error); 1950 1951 e_free_oca: 1952 if (shutdown_required) 1953 __sev_firmware_shutdown(sev, false); 1954 1955 kfree(oca_blob); 1956 e_free_pek: 1957 kfree(pek_blob); 1958 return ret; 1959 } 1960 1961 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp) 1962 { 1963 struct sev_user_data_get_id2 input; 1964 struct sev_data_get_id data; 1965 void __user *input_address; 1966 void *id_blob = NULL; 1967 int ret; 1968 1969 /* SEV GET_ID is available from SEV API v0.16 and up */ 1970 if (!sev_version_greater_or_equal(0, 16)) 1971 return -ENOTSUPP; 1972 1973 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1974 return -EFAULT; 1975 1976 input_address = (void __user *)input.address; 1977 1978 if (input.address && input.length) { 1979 /* 1980 * The length of the ID shouldn't be assumed by software since 1981 * it may change in the future. The allocation size is limited 1982 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator. 1983 * If the allocation fails, simply return ENOMEM rather than 1984 * warning in the kernel log. 1985 */ 1986 id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN); 1987 if (!id_blob) 1988 return -ENOMEM; 1989 1990 data.address = __psp_pa(id_blob); 1991 data.len = input.length; 1992 } else { 1993 data.address = 0; 1994 data.len = 0; 1995 } 1996 1997 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error); 1998 1999 /* 2000 * Firmware will return the length of the ID value (either the minimum 2001 * required length or the actual length written), return it to the user. 2002 */ 2003 input.length = data.len; 2004 2005 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 2006 ret = -EFAULT; 2007 goto e_free; 2008 } 2009 2010 if (id_blob) { 2011 if (copy_to_user(input_address, id_blob, data.len)) { 2012 ret = -EFAULT; 2013 goto e_free; 2014 } 2015 } 2016 2017 e_free: 2018 kfree(id_blob); 2019 2020 return ret; 2021 } 2022 2023 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp) 2024 { 2025 struct sev_data_get_id *data; 2026 u64 data_size, user_size; 2027 void *id_blob, *mem; 2028 int ret; 2029 2030 /* SEV GET_ID available from SEV API v0.16 and up */ 2031 if (!sev_version_greater_or_equal(0, 16)) 2032 return -ENOTSUPP; 2033 2034 /* SEV FW expects the buffer it fills with the ID to be 2035 * 8-byte aligned. Memory allocated should be enough to 2036 * hold data structure + alignment padding + memory 2037 * where SEV FW writes the ID. 2038 */ 2039 data_size = ALIGN(sizeof(struct sev_data_get_id), 8); 2040 user_size = sizeof(struct sev_user_data_get_id); 2041 2042 mem = kzalloc(data_size + user_size, GFP_KERNEL); 2043 if (!mem) 2044 return -ENOMEM; 2045 2046 data = mem; 2047 id_blob = mem + data_size; 2048 2049 data->address = __psp_pa(id_blob); 2050 data->len = user_size; 2051 2052 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); 2053 if (!ret) { 2054 if (copy_to_user((void __user *)argp->data, id_blob, data->len)) 2055 ret = -EFAULT; 2056 } 2057 2058 kfree(mem); 2059 2060 return ret; 2061 } 2062 2063 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable) 2064 { 2065 struct sev_device *sev = psp_master->sev_data; 2066 struct sev_user_data_pdh_cert_export input; 2067 void *pdh_blob = NULL, *cert_blob = NULL; 2068 struct sev_data_pdh_cert_export data; 2069 void __user *input_cert_chain_address; 2070 void __user *input_pdh_cert_address; 2071 bool shutdown_required = false; 2072 int ret; 2073 2074 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 2075 return -EFAULT; 2076 2077 memset(&data, 0, sizeof(data)); 2078 2079 input_pdh_cert_address = (void __user *)input.pdh_cert_address; 2080 input_cert_chain_address = (void __user *)input.cert_chain_address; 2081 2082 /* Userspace wants to query the certificate length. */ 2083 if (!input.pdh_cert_address || 2084 !input.pdh_cert_len || 2085 !input.cert_chain_address) 2086 goto cmd; 2087 2088 /* Allocate a physically contiguous buffer to store the PDH blob. */ 2089 if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE) 2090 return -EFAULT; 2091 2092 /* Allocate a physically contiguous buffer to store the cert chain blob. */ 2093 if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE) 2094 return -EFAULT; 2095 2096 pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL); 2097 if (!pdh_blob) 2098 return -ENOMEM; 2099 2100 data.pdh_cert_address = __psp_pa(pdh_blob); 2101 data.pdh_cert_len = input.pdh_cert_len; 2102 2103 cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL); 2104 if (!cert_blob) { 2105 ret = -ENOMEM; 2106 goto e_free_pdh; 2107 } 2108 2109 data.cert_chain_address = __psp_pa(cert_blob); 2110 data.cert_chain_len = input.cert_chain_len; 2111 2112 cmd: 2113 /* If platform is not in INIT state then transition it to INIT. */ 2114 if (sev->sev_plat_status.state != SEV_STATE_INIT) { 2115 if (!writable) { 2116 ret = -EPERM; 2117 goto e_free_cert; 2118 } 2119 ret = sev_move_to_init_state(argp, &shutdown_required); 2120 if (ret) 2121 goto e_free_cert; 2122 } 2123 2124 ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error); 2125 2126 /* If we query the length, FW responded with expected data. */ 2127 input.cert_chain_len = data.cert_chain_len; 2128 input.pdh_cert_len = data.pdh_cert_len; 2129 2130 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 2131 ret = -EFAULT; 2132 goto e_free_cert; 2133 } 2134 2135 if (pdh_blob) { 2136 if (copy_to_user(input_pdh_cert_address, 2137 pdh_blob, input.pdh_cert_len)) { 2138 ret = -EFAULT; 2139 goto e_free_cert; 2140 } 2141 } 2142 2143 if (cert_blob) { 2144 if (copy_to_user(input_cert_chain_address, 2145 cert_blob, input.cert_chain_len)) 2146 ret = -EFAULT; 2147 } 2148 2149 e_free_cert: 2150 if (shutdown_required) 2151 __sev_firmware_shutdown(sev, false); 2152 2153 kfree(cert_blob); 2154 e_free_pdh: 2155 kfree(pdh_blob); 2156 return ret; 2157 } 2158 2159 static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp) 2160 { 2161 struct sev_device *sev = psp_master->sev_data; 2162 bool shutdown_required = false; 2163 struct sev_data_snp_addr buf; 2164 struct page *status_page; 2165 int ret, error; 2166 void *data; 2167 2168 if (!argp->data) 2169 return -EINVAL; 2170 2171 status_page = alloc_page(GFP_KERNEL_ACCOUNT); 2172 if (!status_page) 2173 return -ENOMEM; 2174 2175 data = page_address(status_page); 2176 2177 if (!sev->snp_initialized) { 2178 ret = snp_move_to_init_state(argp, &shutdown_required); 2179 if (ret) 2180 goto cleanup; 2181 } 2182 2183 /* 2184 * Firmware expects status page to be in firmware-owned state, otherwise 2185 * it will report firmware error code INVALID_PAGE_STATE (0x1A). 2186 */ 2187 if (rmp_mark_pages_firmware(__pa(data), 1, true)) { 2188 ret = -EFAULT; 2189 goto cleanup; 2190 } 2191 2192 buf.address = __psp_pa(data); 2193 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error); 2194 2195 /* 2196 * Status page will be transitioned to Reclaim state upon success, or 2197 * left in Firmware state in failure. Use snp_reclaim_pages() to 2198 * transition either case back to Hypervisor-owned state. 2199 */ 2200 if (snp_reclaim_pages(__pa(data), 1, true)) 2201 return -EFAULT; 2202 2203 if (ret) 2204 goto cleanup; 2205 2206 if (copy_to_user((void __user *)argp->data, data, 2207 sizeof(struct sev_user_data_snp_status))) 2208 ret = -EFAULT; 2209 2210 cleanup: 2211 if (shutdown_required) 2212 __sev_snp_shutdown_locked(&error, false); 2213 2214 __free_pages(status_page, 0); 2215 return ret; 2216 } 2217 2218 static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp) 2219 { 2220 struct sev_device *sev = psp_master->sev_data; 2221 struct sev_data_snp_commit buf; 2222 bool shutdown_required = false; 2223 int ret, error; 2224 2225 if (!sev->snp_initialized) { 2226 ret = snp_move_to_init_state(argp, &shutdown_required); 2227 if (ret) 2228 return ret; 2229 } 2230 2231 buf.len = sizeof(buf); 2232 2233 ret = __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error); 2234 2235 if (shutdown_required) 2236 __sev_snp_shutdown_locked(&error, false); 2237 2238 return ret; 2239 } 2240 2241 static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable) 2242 { 2243 struct sev_device *sev = psp_master->sev_data; 2244 struct sev_user_data_snp_config config; 2245 bool shutdown_required = false; 2246 int ret, error; 2247 2248 if (!argp->data) 2249 return -EINVAL; 2250 2251 if (!writable) 2252 return -EPERM; 2253 2254 if (copy_from_user(&config, (void __user *)argp->data, sizeof(config))) 2255 return -EFAULT; 2256 2257 if (!sev->snp_initialized) { 2258 ret = snp_move_to_init_state(argp, &shutdown_required); 2259 if (ret) 2260 return ret; 2261 } 2262 2263 ret = __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error); 2264 2265 if (shutdown_required) 2266 __sev_snp_shutdown_locked(&error, false); 2267 2268 return ret; 2269 } 2270 2271 static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable) 2272 { 2273 struct sev_device *sev = psp_master->sev_data; 2274 struct sev_user_data_snp_vlek_load input; 2275 bool shutdown_required = false; 2276 int ret, error; 2277 void *blob; 2278 2279 if (!argp->data) 2280 return -EINVAL; 2281 2282 if (!writable) 2283 return -EPERM; 2284 2285 if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input))) 2286 return -EFAULT; 2287 2288 if (input.len != sizeof(input) || input.vlek_wrapped_version != 0) 2289 return -EINVAL; 2290 2291 blob = psp_copy_user_blob(input.vlek_wrapped_address, 2292 sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick)); 2293 if (IS_ERR(blob)) 2294 return PTR_ERR(blob); 2295 2296 input.vlek_wrapped_address = __psp_pa(blob); 2297 2298 if (!sev->snp_initialized) { 2299 ret = snp_move_to_init_state(argp, &shutdown_required); 2300 if (ret) 2301 goto cleanup; 2302 } 2303 2304 ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error); 2305 2306 if (shutdown_required) 2307 __sev_snp_shutdown_locked(&error, false); 2308 2309 cleanup: 2310 kfree(blob); 2311 2312 return ret; 2313 } 2314 2315 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) 2316 { 2317 void __user *argp = (void __user *)arg; 2318 struct sev_issue_cmd input; 2319 int ret = -EFAULT; 2320 bool writable = file->f_mode & FMODE_WRITE; 2321 2322 if (!psp_master || !psp_master->sev_data) 2323 return -ENODEV; 2324 2325 if (ioctl != SEV_ISSUE_CMD) 2326 return -EINVAL; 2327 2328 if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd))) 2329 return -EFAULT; 2330 2331 if (input.cmd > SEV_MAX) 2332 return -EINVAL; 2333 2334 mutex_lock(&sev_cmd_mutex); 2335 2336 switch (input.cmd) { 2337 2338 case SEV_FACTORY_RESET: 2339 ret = sev_ioctl_do_reset(&input, writable); 2340 break; 2341 case SEV_PLATFORM_STATUS: 2342 ret = sev_ioctl_do_platform_status(&input); 2343 break; 2344 case SEV_PEK_GEN: 2345 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable); 2346 break; 2347 case SEV_PDH_GEN: 2348 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable); 2349 break; 2350 case SEV_PEK_CSR: 2351 ret = sev_ioctl_do_pek_csr(&input, writable); 2352 break; 2353 case SEV_PEK_CERT_IMPORT: 2354 ret = sev_ioctl_do_pek_import(&input, writable); 2355 break; 2356 case SEV_PDH_CERT_EXPORT: 2357 ret = sev_ioctl_do_pdh_export(&input, writable); 2358 break; 2359 case SEV_GET_ID: 2360 pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n"); 2361 ret = sev_ioctl_do_get_id(&input); 2362 break; 2363 case SEV_GET_ID2: 2364 ret = sev_ioctl_do_get_id2(&input); 2365 break; 2366 case SNP_PLATFORM_STATUS: 2367 ret = sev_ioctl_do_snp_platform_status(&input); 2368 break; 2369 case SNP_COMMIT: 2370 ret = sev_ioctl_do_snp_commit(&input); 2371 break; 2372 case SNP_SET_CONFIG: 2373 ret = sev_ioctl_do_snp_set_config(&input, writable); 2374 break; 2375 case SNP_VLEK_LOAD: 2376 ret = sev_ioctl_do_snp_vlek_load(&input, writable); 2377 break; 2378 default: 2379 ret = -EINVAL; 2380 goto out; 2381 } 2382 2383 if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd))) 2384 ret = -EFAULT; 2385 out: 2386 mutex_unlock(&sev_cmd_mutex); 2387 2388 return ret; 2389 } 2390 2391 static const struct file_operations sev_fops = { 2392 .owner = THIS_MODULE, 2393 .unlocked_ioctl = sev_ioctl, 2394 }; 2395 2396 int sev_platform_status(struct sev_user_data_status *data, int *error) 2397 { 2398 return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error); 2399 } 2400 EXPORT_SYMBOL_GPL(sev_platform_status); 2401 2402 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error) 2403 { 2404 return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error); 2405 } 2406 EXPORT_SYMBOL_GPL(sev_guest_deactivate); 2407 2408 int sev_guest_activate(struct sev_data_activate *data, int *error) 2409 { 2410 return sev_do_cmd(SEV_CMD_ACTIVATE, data, error); 2411 } 2412 EXPORT_SYMBOL_GPL(sev_guest_activate); 2413 2414 int sev_guest_decommission(struct sev_data_decommission *data, int *error) 2415 { 2416 return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error); 2417 } 2418 EXPORT_SYMBOL_GPL(sev_guest_decommission); 2419 2420 int sev_guest_df_flush(int *error) 2421 { 2422 return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error); 2423 } 2424 EXPORT_SYMBOL_GPL(sev_guest_df_flush); 2425 2426 static void sev_exit(struct kref *ref) 2427 { 2428 misc_deregister(&misc_dev->misc); 2429 kfree(misc_dev); 2430 misc_dev = NULL; 2431 } 2432 2433 static int sev_misc_init(struct sev_device *sev) 2434 { 2435 struct device *dev = sev->dev; 2436 int ret; 2437 2438 /* 2439 * SEV feature support can be detected on multiple devices but the SEV 2440 * FW commands must be issued on the master. During probe, we do not 2441 * know the master hence we create /dev/sev on the first device probe. 2442 * sev_do_cmd() finds the right master device to which to issue the 2443 * command to the firmware. 2444 */ 2445 if (!misc_dev) { 2446 struct miscdevice *misc; 2447 2448 misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL); 2449 if (!misc_dev) 2450 return -ENOMEM; 2451 2452 misc = &misc_dev->misc; 2453 misc->minor = MISC_DYNAMIC_MINOR; 2454 misc->name = DEVICE_NAME; 2455 misc->fops = &sev_fops; 2456 2457 ret = misc_register(misc); 2458 if (ret) 2459 return ret; 2460 2461 kref_init(&misc_dev->refcount); 2462 } else { 2463 kref_get(&misc_dev->refcount); 2464 } 2465 2466 init_waitqueue_head(&sev->int_queue); 2467 sev->misc = misc_dev; 2468 dev_dbg(dev, "registered SEV device\n"); 2469 2470 return 0; 2471 } 2472 2473 int sev_dev_init(struct psp_device *psp) 2474 { 2475 struct device *dev = psp->dev; 2476 struct sev_device *sev; 2477 int ret = -ENOMEM; 2478 2479 if (!boot_cpu_has(X86_FEATURE_SEV)) { 2480 dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n"); 2481 return 0; 2482 } 2483 2484 sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL); 2485 if (!sev) 2486 goto e_err; 2487 2488 sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1); 2489 if (!sev->cmd_buf) 2490 goto e_sev; 2491 2492 sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE; 2493 2494 psp->sev_data = sev; 2495 2496 sev->dev = dev; 2497 sev->psp = psp; 2498 2499 sev->io_regs = psp->io_regs; 2500 2501 sev->vdata = (struct sev_vdata *)psp->vdata->sev; 2502 if (!sev->vdata) { 2503 ret = -ENODEV; 2504 dev_err(dev, "sev: missing driver data\n"); 2505 goto e_buf; 2506 } 2507 2508 psp_set_sev_irq_handler(psp, sev_irq_handler, sev); 2509 2510 ret = sev_misc_init(sev); 2511 if (ret) 2512 goto e_irq; 2513 2514 dev_notice(dev, "sev enabled\n"); 2515 2516 return 0; 2517 2518 e_irq: 2519 psp_clear_sev_irq_handler(psp); 2520 e_buf: 2521 devm_free_pages(dev, (unsigned long)sev->cmd_buf); 2522 e_sev: 2523 devm_kfree(dev, sev); 2524 e_err: 2525 psp->sev_data = NULL; 2526 2527 dev_notice(dev, "sev initialization failed\n"); 2528 2529 return ret; 2530 } 2531 2532 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic) 2533 { 2534 int error; 2535 2536 __sev_platform_shutdown_locked(NULL); 2537 2538 if (sev_es_tmr) { 2539 /* 2540 * The TMR area was encrypted, flush it from the cache. 2541 * 2542 * If invoked during panic handling, local interrupts are 2543 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus() 2544 * can't be used. In that case, wbinvd() is done on remote CPUs 2545 * via the NMI callback, and done for this CPU later during 2546 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped. 2547 */ 2548 if (!panic) 2549 wbinvd_on_all_cpus(); 2550 2551 __snp_free_firmware_pages(virt_to_page(sev_es_tmr), 2552 get_order(sev_es_tmr_size), 2553 true); 2554 sev_es_tmr = NULL; 2555 } 2556 2557 if (sev_init_ex_buffer) { 2558 __snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer), 2559 get_order(NV_LENGTH), 2560 true); 2561 sev_init_ex_buffer = NULL; 2562 } 2563 2564 if (snp_range_list) { 2565 kfree(snp_range_list); 2566 snp_range_list = NULL; 2567 } 2568 2569 __sev_snp_shutdown_locked(&error, panic); 2570 } 2571 2572 static void sev_firmware_shutdown(struct sev_device *sev) 2573 { 2574 mutex_lock(&sev_cmd_mutex); 2575 __sev_firmware_shutdown(sev, false); 2576 mutex_unlock(&sev_cmd_mutex); 2577 } 2578 2579 void sev_platform_shutdown(void) 2580 { 2581 if (!psp_master || !psp_master->sev_data) 2582 return; 2583 2584 sev_firmware_shutdown(psp_master->sev_data); 2585 } 2586 EXPORT_SYMBOL_GPL(sev_platform_shutdown); 2587 2588 void sev_dev_destroy(struct psp_device *psp) 2589 { 2590 struct sev_device *sev = psp->sev_data; 2591 2592 if (!sev) 2593 return; 2594 2595 sev_firmware_shutdown(sev); 2596 2597 if (sev->misc) 2598 kref_put(&misc_dev->refcount, sev_exit); 2599 2600 psp_clear_sev_irq_handler(psp); 2601 } 2602 2603 static int snp_shutdown_on_panic(struct notifier_block *nb, 2604 unsigned long reason, void *arg) 2605 { 2606 struct sev_device *sev = psp_master->sev_data; 2607 2608 /* 2609 * If sev_cmd_mutex is already acquired, then it's likely 2610 * another PSP command is in flight and issuing a shutdown 2611 * would fail in unexpected ways. Rather than create even 2612 * more confusion during a panic, just bail out here. 2613 */ 2614 if (mutex_is_locked(&sev_cmd_mutex)) 2615 return NOTIFY_DONE; 2616 2617 __sev_firmware_shutdown(sev, true); 2618 2619 return NOTIFY_DONE; 2620 } 2621 2622 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd, 2623 void *data, int *error) 2624 { 2625 if (!filep || filep->f_op != &sev_fops) 2626 return -EBADF; 2627 2628 return sev_do_cmd(cmd, data, error); 2629 } 2630 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user); 2631 2632 void sev_pci_init(void) 2633 { 2634 struct sev_device *sev = psp_master->sev_data; 2635 u8 api_major, api_minor, build; 2636 2637 if (!sev) 2638 return; 2639 2640 psp_timeout = psp_probe_timeout; 2641 2642 if (sev_get_api_version()) 2643 goto err; 2644 2645 api_major = sev->api_major; 2646 api_minor = sev->api_minor; 2647 build = sev->build; 2648 2649 if (sev_update_firmware(sev->dev) == 0) 2650 sev_get_api_version(); 2651 2652 if (api_major != sev->api_major || api_minor != sev->api_minor || 2653 build != sev->build) 2654 dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n", 2655 api_major, api_minor, build, 2656 sev->api_major, sev->api_minor, sev->build); 2657 2658 return; 2659 2660 err: 2661 sev_dev_destroy(psp_master); 2662 2663 psp_master->sev_data = NULL; 2664 } 2665 2666 void sev_pci_exit(void) 2667 { 2668 struct sev_device *sev = psp_master->sev_data; 2669 2670 if (!sev) 2671 return; 2672 2673 sev_firmware_shutdown(sev); 2674 } 2675