1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Secure Encrypted Virtualization (SEV) interface 4 * 5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc. 6 * 7 * Author: Brijesh Singh <brijesh.singh@amd.com> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/kthread.h> 13 #include <linux/sched.h> 14 #include <linux/interrupt.h> 15 #include <linux/spinlock.h> 16 #include <linux/spinlock_types.h> 17 #include <linux/types.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/hw_random.h> 21 #include <linux/ccp.h> 22 #include <linux/firmware.h> 23 #include <linux/gfp.h> 24 #include <linux/cpufeature.h> 25 26 #include <asm/smp.h> 27 28 #include "psp-dev.h" 29 #include "sev-dev.h" 30 31 #define DEVICE_NAME "sev" 32 #define SEV_FW_FILE "amd/sev.fw" 33 #define SEV_FW_NAME_SIZE 64 34 35 static DEFINE_MUTEX(sev_cmd_mutex); 36 static struct sev_misc_dev *misc_dev; 37 38 static int psp_cmd_timeout = 100; 39 module_param(psp_cmd_timeout, int, 0644); 40 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands"); 41 42 static int psp_probe_timeout = 5; 43 module_param(psp_probe_timeout, int, 0644); 44 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe"); 45 46 static bool psp_dead; 47 static int psp_timeout; 48 49 /* Trusted Memory Region (TMR): 50 * The TMR is a 1MB area that must be 1MB aligned. Use the page allocator 51 * to allocate the memory, which will return aligned memory for the specified 52 * allocation order. 53 */ 54 #define SEV_ES_TMR_SIZE (1024 * 1024) 55 static void *sev_es_tmr; 56 57 static inline bool sev_version_greater_or_equal(u8 maj, u8 min) 58 { 59 struct sev_device *sev = psp_master->sev_data; 60 61 if (sev->api_major > maj) 62 return true; 63 64 if (sev->api_major == maj && sev->api_minor >= min) 65 return true; 66 67 return false; 68 } 69 70 static void sev_irq_handler(int irq, void *data, unsigned int status) 71 { 72 struct sev_device *sev = data; 73 int reg; 74 75 /* Check if it is command completion: */ 76 if (!(status & SEV_CMD_COMPLETE)) 77 return; 78 79 /* Check if it is SEV command completion: */ 80 reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 81 if (reg & PSP_CMDRESP_RESP) { 82 sev->int_rcvd = 1; 83 wake_up(&sev->int_queue); 84 } 85 } 86 87 static int sev_wait_cmd_ioc(struct sev_device *sev, 88 unsigned int *reg, unsigned int timeout) 89 { 90 int ret; 91 92 ret = wait_event_timeout(sev->int_queue, 93 sev->int_rcvd, timeout * HZ); 94 if (!ret) 95 return -ETIMEDOUT; 96 97 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 98 99 return 0; 100 } 101 102 static int sev_cmd_buffer_len(int cmd) 103 { 104 switch (cmd) { 105 case SEV_CMD_INIT: return sizeof(struct sev_data_init); 106 case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status); 107 case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr); 108 case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import); 109 case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export); 110 case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start); 111 case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data); 112 case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa); 113 case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish); 114 case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure); 115 case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate); 116 case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate); 117 case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission); 118 case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status); 119 case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg); 120 case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg); 121 case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start); 122 case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data); 123 case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa); 124 case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish); 125 case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start); 126 case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish); 127 case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data); 128 case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa); 129 case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret); 130 case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware); 131 case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id); 132 case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report); 133 default: return 0; 134 } 135 136 return 0; 137 } 138 139 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret) 140 { 141 struct psp_device *psp = psp_master; 142 struct sev_device *sev; 143 unsigned int phys_lsb, phys_msb; 144 unsigned int reg, ret = 0; 145 146 if (!psp || !psp->sev_data) 147 return -ENODEV; 148 149 if (psp_dead) 150 return -EBUSY; 151 152 sev = psp->sev_data; 153 154 /* Get the physical address of the command buffer */ 155 phys_lsb = data ? lower_32_bits(__psp_pa(data)) : 0; 156 phys_msb = data ? upper_32_bits(__psp_pa(data)) : 0; 157 158 dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n", 159 cmd, phys_msb, phys_lsb, psp_timeout); 160 161 print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data, 162 sev_cmd_buffer_len(cmd), false); 163 164 iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 165 iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 166 167 sev->int_rcvd = 0; 168 169 reg = cmd; 170 reg <<= SEV_CMDRESP_CMD_SHIFT; 171 reg |= SEV_CMDRESP_IOC; 172 iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg); 173 174 /* wait for command completion */ 175 ret = sev_wait_cmd_ioc(sev, ®, psp_timeout); 176 if (ret) { 177 if (psp_ret) 178 *psp_ret = 0; 179 180 dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd); 181 psp_dead = true; 182 183 return ret; 184 } 185 186 psp_timeout = psp_cmd_timeout; 187 188 if (psp_ret) 189 *psp_ret = reg & PSP_CMDRESP_ERR_MASK; 190 191 if (reg & PSP_CMDRESP_ERR_MASK) { 192 dev_dbg(sev->dev, "sev command %#x failed (%#010x)\n", 193 cmd, reg & PSP_CMDRESP_ERR_MASK); 194 ret = -EIO; 195 } 196 197 print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data, 198 sev_cmd_buffer_len(cmd), false); 199 200 return ret; 201 } 202 203 static int sev_do_cmd(int cmd, void *data, int *psp_ret) 204 { 205 int rc; 206 207 mutex_lock(&sev_cmd_mutex); 208 rc = __sev_do_cmd_locked(cmd, data, psp_ret); 209 mutex_unlock(&sev_cmd_mutex); 210 211 return rc; 212 } 213 214 static int __sev_platform_init_locked(int *error) 215 { 216 struct psp_device *psp = psp_master; 217 struct sev_device *sev; 218 int rc = 0; 219 220 if (!psp || !psp->sev_data) 221 return -ENODEV; 222 223 sev = psp->sev_data; 224 225 if (sev->state == SEV_STATE_INIT) 226 return 0; 227 228 if (sev_es_tmr) { 229 u64 tmr_pa; 230 231 /* 232 * Do not include the encryption mask on the physical 233 * address of the TMR (firmware should clear it anyway). 234 */ 235 tmr_pa = __pa(sev_es_tmr); 236 237 sev->init_cmd_buf.flags |= SEV_INIT_FLAGS_SEV_ES; 238 sev->init_cmd_buf.tmr_address = tmr_pa; 239 sev->init_cmd_buf.tmr_len = SEV_ES_TMR_SIZE; 240 } 241 242 rc = __sev_do_cmd_locked(SEV_CMD_INIT, &sev->init_cmd_buf, error); 243 if (rc) 244 return rc; 245 246 sev->state = SEV_STATE_INIT; 247 248 /* Prepare for first SEV guest launch after INIT */ 249 wbinvd_on_all_cpus(); 250 rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error); 251 if (rc) 252 return rc; 253 254 dev_dbg(sev->dev, "SEV firmware initialized\n"); 255 256 return rc; 257 } 258 259 int sev_platform_init(int *error) 260 { 261 int rc; 262 263 mutex_lock(&sev_cmd_mutex); 264 rc = __sev_platform_init_locked(error); 265 mutex_unlock(&sev_cmd_mutex); 266 267 return rc; 268 } 269 EXPORT_SYMBOL_GPL(sev_platform_init); 270 271 static int __sev_platform_shutdown_locked(int *error) 272 { 273 struct sev_device *sev = psp_master->sev_data; 274 int ret; 275 276 ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error); 277 if (ret) 278 return ret; 279 280 sev->state = SEV_STATE_UNINIT; 281 dev_dbg(sev->dev, "SEV firmware shutdown\n"); 282 283 return ret; 284 } 285 286 static int sev_platform_shutdown(int *error) 287 { 288 int rc; 289 290 mutex_lock(&sev_cmd_mutex); 291 rc = __sev_platform_shutdown_locked(NULL); 292 mutex_unlock(&sev_cmd_mutex); 293 294 return rc; 295 } 296 297 static int sev_get_platform_state(int *state, int *error) 298 { 299 struct sev_device *sev = psp_master->sev_data; 300 int rc; 301 302 rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, 303 &sev->status_cmd_buf, error); 304 if (rc) 305 return rc; 306 307 *state = sev->status_cmd_buf.state; 308 return rc; 309 } 310 311 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable) 312 { 313 int state, rc; 314 315 if (!writable) 316 return -EPERM; 317 318 /* 319 * The SEV spec requires that FACTORY_RESET must be issued in 320 * UNINIT state. Before we go further lets check if any guest is 321 * active. 322 * 323 * If FW is in WORKING state then deny the request otherwise issue 324 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET. 325 * 326 */ 327 rc = sev_get_platform_state(&state, &argp->error); 328 if (rc) 329 return rc; 330 331 if (state == SEV_STATE_WORKING) 332 return -EBUSY; 333 334 if (state == SEV_STATE_INIT) { 335 rc = __sev_platform_shutdown_locked(&argp->error); 336 if (rc) 337 return rc; 338 } 339 340 return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error); 341 } 342 343 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp) 344 { 345 struct sev_device *sev = psp_master->sev_data; 346 struct sev_user_data_status *data = &sev->status_cmd_buf; 347 int ret; 348 349 ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, data, &argp->error); 350 if (ret) 351 return ret; 352 353 if (copy_to_user((void __user *)argp->data, data, sizeof(*data))) 354 ret = -EFAULT; 355 356 return ret; 357 } 358 359 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable) 360 { 361 struct sev_device *sev = psp_master->sev_data; 362 int rc; 363 364 if (!writable) 365 return -EPERM; 366 367 if (sev->state == SEV_STATE_UNINIT) { 368 rc = __sev_platform_init_locked(&argp->error); 369 if (rc) 370 return rc; 371 } 372 373 return __sev_do_cmd_locked(cmd, NULL, &argp->error); 374 } 375 376 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable) 377 { 378 struct sev_device *sev = psp_master->sev_data; 379 struct sev_user_data_pek_csr input; 380 struct sev_data_pek_csr *data; 381 void __user *input_address; 382 void *blob = NULL; 383 int ret; 384 385 if (!writable) 386 return -EPERM; 387 388 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 389 return -EFAULT; 390 391 data = kzalloc(sizeof(*data), GFP_KERNEL); 392 if (!data) 393 return -ENOMEM; 394 395 /* userspace wants to query CSR length */ 396 if (!input.address || !input.length) 397 goto cmd; 398 399 /* allocate a physically contiguous buffer to store the CSR blob */ 400 input_address = (void __user *)input.address; 401 if (input.length > SEV_FW_BLOB_MAX_SIZE) { 402 ret = -EFAULT; 403 goto e_free; 404 } 405 406 blob = kmalloc(input.length, GFP_KERNEL); 407 if (!blob) { 408 ret = -ENOMEM; 409 goto e_free; 410 } 411 412 data->address = __psp_pa(blob); 413 data->len = input.length; 414 415 cmd: 416 if (sev->state == SEV_STATE_UNINIT) { 417 ret = __sev_platform_init_locked(&argp->error); 418 if (ret) 419 goto e_free_blob; 420 } 421 422 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, data, &argp->error); 423 424 /* If we query the CSR length, FW responded with expected data. */ 425 input.length = data->len; 426 427 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 428 ret = -EFAULT; 429 goto e_free_blob; 430 } 431 432 if (blob) { 433 if (copy_to_user(input_address, blob, input.length)) 434 ret = -EFAULT; 435 } 436 437 e_free_blob: 438 kfree(blob); 439 e_free: 440 kfree(data); 441 return ret; 442 } 443 444 void *psp_copy_user_blob(u64 uaddr, u32 len) 445 { 446 if (!uaddr || !len) 447 return ERR_PTR(-EINVAL); 448 449 /* verify that blob length does not exceed our limit */ 450 if (len > SEV_FW_BLOB_MAX_SIZE) 451 return ERR_PTR(-EINVAL); 452 453 return memdup_user((void __user *)uaddr, len); 454 } 455 EXPORT_SYMBOL_GPL(psp_copy_user_blob); 456 457 static int sev_get_api_version(void) 458 { 459 struct sev_device *sev = psp_master->sev_data; 460 struct sev_user_data_status *status; 461 int error = 0, ret; 462 463 status = &sev->status_cmd_buf; 464 ret = sev_platform_status(status, &error); 465 if (ret) { 466 dev_err(sev->dev, 467 "SEV: failed to get status. Error: %#x\n", error); 468 return 1; 469 } 470 471 sev->api_major = status->api_major; 472 sev->api_minor = status->api_minor; 473 sev->build = status->build; 474 sev->state = status->state; 475 476 return 0; 477 } 478 479 static int sev_get_firmware(struct device *dev, 480 const struct firmware **firmware) 481 { 482 char fw_name_specific[SEV_FW_NAME_SIZE]; 483 char fw_name_subset[SEV_FW_NAME_SIZE]; 484 485 snprintf(fw_name_specific, sizeof(fw_name_specific), 486 "amd/amd_sev_fam%.2xh_model%.2xh.sbin", 487 boot_cpu_data.x86, boot_cpu_data.x86_model); 488 489 snprintf(fw_name_subset, sizeof(fw_name_subset), 490 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin", 491 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4); 492 493 /* Check for SEV FW for a particular model. 494 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h 495 * 496 * or 497 * 498 * Check for SEV FW common to a subset of models. 499 * Ex. amd_sev_fam17h_model0xh.sbin for 500 * Family 17h Model 00h -- Family 17h Model 0Fh 501 * 502 * or 503 * 504 * Fall-back to using generic name: sev.fw 505 */ 506 if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) || 507 (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) || 508 (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0)) 509 return 0; 510 511 return -ENOENT; 512 } 513 514 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */ 515 static int sev_update_firmware(struct device *dev) 516 { 517 struct sev_data_download_firmware *data; 518 const struct firmware *firmware; 519 int ret, error, order; 520 struct page *p; 521 u64 data_size; 522 523 if (sev_get_firmware(dev, &firmware) == -ENOENT) { 524 dev_dbg(dev, "No SEV firmware file present\n"); 525 return -1; 526 } 527 528 /* 529 * SEV FW expects the physical address given to it to be 32 530 * byte aligned. Memory allocated has structure placed at the 531 * beginning followed by the firmware being passed to the SEV 532 * FW. Allocate enough memory for data structure + alignment 533 * padding + SEV FW. 534 */ 535 data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32); 536 537 order = get_order(firmware->size + data_size); 538 p = alloc_pages(GFP_KERNEL, order); 539 if (!p) { 540 ret = -1; 541 goto fw_err; 542 } 543 544 /* 545 * Copy firmware data to a kernel allocated contiguous 546 * memory region. 547 */ 548 data = page_address(p); 549 memcpy(page_address(p) + data_size, firmware->data, firmware->size); 550 551 data->address = __psp_pa(page_address(p) + data_size); 552 data->len = firmware->size; 553 554 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 555 if (ret) 556 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error); 557 else 558 dev_info(dev, "SEV firmware update successful\n"); 559 560 __free_pages(p, order); 561 562 fw_err: 563 release_firmware(firmware); 564 565 return ret; 566 } 567 568 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable) 569 { 570 struct sev_device *sev = psp_master->sev_data; 571 struct sev_user_data_pek_cert_import input; 572 struct sev_data_pek_cert_import *data; 573 void *pek_blob, *oca_blob; 574 int ret; 575 576 if (!writable) 577 return -EPERM; 578 579 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 580 return -EFAULT; 581 582 data = kzalloc(sizeof(*data), GFP_KERNEL); 583 if (!data) 584 return -ENOMEM; 585 586 /* copy PEK certificate blobs from userspace */ 587 pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len); 588 if (IS_ERR(pek_blob)) { 589 ret = PTR_ERR(pek_blob); 590 goto e_free; 591 } 592 593 data->pek_cert_address = __psp_pa(pek_blob); 594 data->pek_cert_len = input.pek_cert_len; 595 596 /* copy PEK certificate blobs from userspace */ 597 oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len); 598 if (IS_ERR(oca_blob)) { 599 ret = PTR_ERR(oca_blob); 600 goto e_free_pek; 601 } 602 603 data->oca_cert_address = __psp_pa(oca_blob); 604 data->oca_cert_len = input.oca_cert_len; 605 606 /* If platform is not in INIT state then transition it to INIT */ 607 if (sev->state != SEV_STATE_INIT) { 608 ret = __sev_platform_init_locked(&argp->error); 609 if (ret) 610 goto e_free_oca; 611 } 612 613 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, data, &argp->error); 614 615 e_free_oca: 616 kfree(oca_blob); 617 e_free_pek: 618 kfree(pek_blob); 619 e_free: 620 kfree(data); 621 return ret; 622 } 623 624 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp) 625 { 626 struct sev_user_data_get_id2 input; 627 struct sev_data_get_id *data; 628 void __user *input_address; 629 void *id_blob = NULL; 630 int ret; 631 632 /* SEV GET_ID is available from SEV API v0.16 and up */ 633 if (!sev_version_greater_or_equal(0, 16)) 634 return -ENOTSUPP; 635 636 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 637 return -EFAULT; 638 639 input_address = (void __user *)input.address; 640 641 data = kzalloc(sizeof(*data), GFP_KERNEL); 642 if (!data) 643 return -ENOMEM; 644 645 if (input.address && input.length) { 646 id_blob = kmalloc(input.length, GFP_KERNEL); 647 if (!id_blob) { 648 kfree(data); 649 return -ENOMEM; 650 } 651 652 data->address = __psp_pa(id_blob); 653 data->len = input.length; 654 } 655 656 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); 657 658 /* 659 * Firmware will return the length of the ID value (either the minimum 660 * required length or the actual length written), return it to the user. 661 */ 662 input.length = data->len; 663 664 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 665 ret = -EFAULT; 666 goto e_free; 667 } 668 669 if (id_blob) { 670 if (copy_to_user(input_address, id_blob, data->len)) { 671 ret = -EFAULT; 672 goto e_free; 673 } 674 } 675 676 e_free: 677 kfree(id_blob); 678 kfree(data); 679 680 return ret; 681 } 682 683 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp) 684 { 685 struct sev_data_get_id *data; 686 u64 data_size, user_size; 687 void *id_blob, *mem; 688 int ret; 689 690 /* SEV GET_ID available from SEV API v0.16 and up */ 691 if (!sev_version_greater_or_equal(0, 16)) 692 return -ENOTSUPP; 693 694 /* SEV FW expects the buffer it fills with the ID to be 695 * 8-byte aligned. Memory allocated should be enough to 696 * hold data structure + alignment padding + memory 697 * where SEV FW writes the ID. 698 */ 699 data_size = ALIGN(sizeof(struct sev_data_get_id), 8); 700 user_size = sizeof(struct sev_user_data_get_id); 701 702 mem = kzalloc(data_size + user_size, GFP_KERNEL); 703 if (!mem) 704 return -ENOMEM; 705 706 data = mem; 707 id_blob = mem + data_size; 708 709 data->address = __psp_pa(id_blob); 710 data->len = user_size; 711 712 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); 713 if (!ret) { 714 if (copy_to_user((void __user *)argp->data, id_blob, data->len)) 715 ret = -EFAULT; 716 } 717 718 kfree(mem); 719 720 return ret; 721 } 722 723 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable) 724 { 725 struct sev_device *sev = psp_master->sev_data; 726 struct sev_user_data_pdh_cert_export input; 727 void *pdh_blob = NULL, *cert_blob = NULL; 728 struct sev_data_pdh_cert_export *data; 729 void __user *input_cert_chain_address; 730 void __user *input_pdh_cert_address; 731 int ret; 732 733 /* If platform is not in INIT state then transition it to INIT. */ 734 if (sev->state != SEV_STATE_INIT) { 735 if (!writable) 736 return -EPERM; 737 738 ret = __sev_platform_init_locked(&argp->error); 739 if (ret) 740 return ret; 741 } 742 743 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 744 return -EFAULT; 745 746 data = kzalloc(sizeof(*data), GFP_KERNEL); 747 if (!data) 748 return -ENOMEM; 749 750 /* Userspace wants to query the certificate length. */ 751 if (!input.pdh_cert_address || 752 !input.pdh_cert_len || 753 !input.cert_chain_address) 754 goto cmd; 755 756 input_pdh_cert_address = (void __user *)input.pdh_cert_address; 757 input_cert_chain_address = (void __user *)input.cert_chain_address; 758 759 /* Allocate a physically contiguous buffer to store the PDH blob. */ 760 if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE) { 761 ret = -EFAULT; 762 goto e_free; 763 } 764 765 /* Allocate a physically contiguous buffer to store the cert chain blob. */ 766 if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE) { 767 ret = -EFAULT; 768 goto e_free; 769 } 770 771 pdh_blob = kmalloc(input.pdh_cert_len, GFP_KERNEL); 772 if (!pdh_blob) { 773 ret = -ENOMEM; 774 goto e_free; 775 } 776 777 data->pdh_cert_address = __psp_pa(pdh_blob); 778 data->pdh_cert_len = input.pdh_cert_len; 779 780 cert_blob = kmalloc(input.cert_chain_len, GFP_KERNEL); 781 if (!cert_blob) { 782 ret = -ENOMEM; 783 goto e_free_pdh; 784 } 785 786 data->cert_chain_address = __psp_pa(cert_blob); 787 data->cert_chain_len = input.cert_chain_len; 788 789 cmd: 790 ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, data, &argp->error); 791 792 /* If we query the length, FW responded with expected data. */ 793 input.cert_chain_len = data->cert_chain_len; 794 input.pdh_cert_len = data->pdh_cert_len; 795 796 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 797 ret = -EFAULT; 798 goto e_free_cert; 799 } 800 801 if (pdh_blob) { 802 if (copy_to_user(input_pdh_cert_address, 803 pdh_blob, input.pdh_cert_len)) { 804 ret = -EFAULT; 805 goto e_free_cert; 806 } 807 } 808 809 if (cert_blob) { 810 if (copy_to_user(input_cert_chain_address, 811 cert_blob, input.cert_chain_len)) 812 ret = -EFAULT; 813 } 814 815 e_free_cert: 816 kfree(cert_blob); 817 e_free_pdh: 818 kfree(pdh_blob); 819 e_free: 820 kfree(data); 821 return ret; 822 } 823 824 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) 825 { 826 void __user *argp = (void __user *)arg; 827 struct sev_issue_cmd input; 828 int ret = -EFAULT; 829 bool writable = file->f_mode & FMODE_WRITE; 830 831 if (!psp_master || !psp_master->sev_data) 832 return -ENODEV; 833 834 if (ioctl != SEV_ISSUE_CMD) 835 return -EINVAL; 836 837 if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd))) 838 return -EFAULT; 839 840 if (input.cmd > SEV_MAX) 841 return -EINVAL; 842 843 mutex_lock(&sev_cmd_mutex); 844 845 switch (input.cmd) { 846 847 case SEV_FACTORY_RESET: 848 ret = sev_ioctl_do_reset(&input, writable); 849 break; 850 case SEV_PLATFORM_STATUS: 851 ret = sev_ioctl_do_platform_status(&input); 852 break; 853 case SEV_PEK_GEN: 854 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable); 855 break; 856 case SEV_PDH_GEN: 857 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable); 858 break; 859 case SEV_PEK_CSR: 860 ret = sev_ioctl_do_pek_csr(&input, writable); 861 break; 862 case SEV_PEK_CERT_IMPORT: 863 ret = sev_ioctl_do_pek_import(&input, writable); 864 break; 865 case SEV_PDH_CERT_EXPORT: 866 ret = sev_ioctl_do_pdh_export(&input, writable); 867 break; 868 case SEV_GET_ID: 869 pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n"); 870 ret = sev_ioctl_do_get_id(&input); 871 break; 872 case SEV_GET_ID2: 873 ret = sev_ioctl_do_get_id2(&input); 874 break; 875 default: 876 ret = -EINVAL; 877 goto out; 878 } 879 880 if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd))) 881 ret = -EFAULT; 882 out: 883 mutex_unlock(&sev_cmd_mutex); 884 885 return ret; 886 } 887 888 static const struct file_operations sev_fops = { 889 .owner = THIS_MODULE, 890 .unlocked_ioctl = sev_ioctl, 891 }; 892 893 int sev_platform_status(struct sev_user_data_status *data, int *error) 894 { 895 return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error); 896 } 897 EXPORT_SYMBOL_GPL(sev_platform_status); 898 899 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error) 900 { 901 return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error); 902 } 903 EXPORT_SYMBOL_GPL(sev_guest_deactivate); 904 905 int sev_guest_activate(struct sev_data_activate *data, int *error) 906 { 907 return sev_do_cmd(SEV_CMD_ACTIVATE, data, error); 908 } 909 EXPORT_SYMBOL_GPL(sev_guest_activate); 910 911 int sev_guest_decommission(struct sev_data_decommission *data, int *error) 912 { 913 return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error); 914 } 915 EXPORT_SYMBOL_GPL(sev_guest_decommission); 916 917 int sev_guest_df_flush(int *error) 918 { 919 return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error); 920 } 921 EXPORT_SYMBOL_GPL(sev_guest_df_flush); 922 923 static void sev_exit(struct kref *ref) 924 { 925 misc_deregister(&misc_dev->misc); 926 kfree(misc_dev); 927 misc_dev = NULL; 928 } 929 930 static int sev_misc_init(struct sev_device *sev) 931 { 932 struct device *dev = sev->dev; 933 int ret; 934 935 /* 936 * SEV feature support can be detected on multiple devices but the SEV 937 * FW commands must be issued on the master. During probe, we do not 938 * know the master hence we create /dev/sev on the first device probe. 939 * sev_do_cmd() finds the right master device to which to issue the 940 * command to the firmware. 941 */ 942 if (!misc_dev) { 943 struct miscdevice *misc; 944 945 misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL); 946 if (!misc_dev) 947 return -ENOMEM; 948 949 misc = &misc_dev->misc; 950 misc->minor = MISC_DYNAMIC_MINOR; 951 misc->name = DEVICE_NAME; 952 misc->fops = &sev_fops; 953 954 ret = misc_register(misc); 955 if (ret) 956 return ret; 957 958 kref_init(&misc_dev->refcount); 959 } else { 960 kref_get(&misc_dev->refcount); 961 } 962 963 init_waitqueue_head(&sev->int_queue); 964 sev->misc = misc_dev; 965 dev_dbg(dev, "registered SEV device\n"); 966 967 return 0; 968 } 969 970 int sev_dev_init(struct psp_device *psp) 971 { 972 struct device *dev = psp->dev; 973 struct sev_device *sev; 974 int ret = -ENOMEM; 975 976 if (!boot_cpu_has(X86_FEATURE_SEV)) { 977 dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n"); 978 return 0; 979 } 980 981 sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL); 982 if (!sev) 983 goto e_err; 984 985 psp->sev_data = sev; 986 987 sev->dev = dev; 988 sev->psp = psp; 989 990 sev->io_regs = psp->io_regs; 991 992 sev->vdata = (struct sev_vdata *)psp->vdata->sev; 993 if (!sev->vdata) { 994 ret = -ENODEV; 995 dev_err(dev, "sev: missing driver data\n"); 996 goto e_err; 997 } 998 999 psp_set_sev_irq_handler(psp, sev_irq_handler, sev); 1000 1001 ret = sev_misc_init(sev); 1002 if (ret) 1003 goto e_irq; 1004 1005 dev_notice(dev, "sev enabled\n"); 1006 1007 return 0; 1008 1009 e_irq: 1010 psp_clear_sev_irq_handler(psp); 1011 e_err: 1012 psp->sev_data = NULL; 1013 1014 dev_notice(dev, "sev initialization failed\n"); 1015 1016 return ret; 1017 } 1018 1019 void sev_dev_destroy(struct psp_device *psp) 1020 { 1021 struct sev_device *sev = psp->sev_data; 1022 1023 if (!sev) 1024 return; 1025 1026 if (sev->misc) 1027 kref_put(&misc_dev->refcount, sev_exit); 1028 1029 psp_clear_sev_irq_handler(psp); 1030 } 1031 1032 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd, 1033 void *data, int *error) 1034 { 1035 if (!filep || filep->f_op != &sev_fops) 1036 return -EBADF; 1037 1038 return sev_do_cmd(cmd, data, error); 1039 } 1040 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user); 1041 1042 void sev_pci_init(void) 1043 { 1044 struct sev_device *sev = psp_master->sev_data; 1045 struct page *tmr_page; 1046 int error, rc; 1047 1048 if (!sev) 1049 return; 1050 1051 psp_timeout = psp_probe_timeout; 1052 1053 if (sev_get_api_version()) 1054 goto err; 1055 1056 /* 1057 * If platform is not in UNINIT state then firmware upgrade and/or 1058 * platform INIT command will fail. These command require UNINIT state. 1059 * 1060 * In a normal boot we should never run into case where the firmware 1061 * is not in UNINIT state on boot. But in case of kexec boot, a reboot 1062 * may not go through a typical shutdown sequence and may leave the 1063 * firmware in INIT or WORKING state. 1064 */ 1065 1066 if (sev->state != SEV_STATE_UNINIT) { 1067 sev_platform_shutdown(NULL); 1068 sev->state = SEV_STATE_UNINIT; 1069 } 1070 1071 if (sev_version_greater_or_equal(0, 15) && 1072 sev_update_firmware(sev->dev) == 0) 1073 sev_get_api_version(); 1074 1075 /* Obtain the TMR memory area for SEV-ES use */ 1076 tmr_page = alloc_pages(GFP_KERNEL, get_order(SEV_ES_TMR_SIZE)); 1077 if (tmr_page) { 1078 sev_es_tmr = page_address(tmr_page); 1079 } else { 1080 sev_es_tmr = NULL; 1081 dev_warn(sev->dev, 1082 "SEV: TMR allocation failed, SEV-ES support unavailable\n"); 1083 } 1084 1085 /* Initialize the platform */ 1086 rc = sev_platform_init(&error); 1087 if (rc && (error == SEV_RET_SECURE_DATA_INVALID)) { 1088 /* 1089 * INIT command returned an integrity check failure 1090 * status code, meaning that firmware load and 1091 * validation of SEV related persistent data has 1092 * failed and persistent state has been erased. 1093 * Retrying INIT command here should succeed. 1094 */ 1095 dev_dbg(sev->dev, "SEV: retrying INIT command"); 1096 rc = sev_platform_init(&error); 1097 } 1098 1099 if (rc) { 1100 dev_err(sev->dev, "SEV: failed to INIT error %#x\n", error); 1101 return; 1102 } 1103 1104 dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major, 1105 sev->api_minor, sev->build); 1106 1107 return; 1108 1109 err: 1110 psp_master->sev_data = NULL; 1111 } 1112 1113 void sev_pci_exit(void) 1114 { 1115 if (!psp_master->sev_data) 1116 return; 1117 1118 sev_platform_shutdown(NULL); 1119 1120 if (sev_es_tmr) { 1121 /* The TMR area was encrypted, flush it from the cache */ 1122 wbinvd_on_all_cpus(); 1123 1124 free_pages((unsigned long)sev_es_tmr, 1125 get_order(SEV_ES_TMR_SIZE)); 1126 sev_es_tmr = NULL; 1127 } 1128 } 1129