1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Secure Encrypted Virtualization (SEV) interface 4 * 5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc. 6 * 7 * Author: Brijesh Singh <brijesh.singh@amd.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/kthread.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/spinlock.h> 17 #include <linux/spinlock_types.h> 18 #include <linux/types.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/hw_random.h> 22 #include <linux/ccp.h> 23 #include <linux/firmware.h> 24 #include <linux/panic_notifier.h> 25 #include <linux/gfp.h> 26 #include <linux/cpufeature.h> 27 #include <linux/fs.h> 28 #include <linux/fs_struct.h> 29 #include <linux/psp.h> 30 #include <linux/amd-iommu.h> 31 32 #include <asm/smp.h> 33 #include <asm/cacheflush.h> 34 #include <asm/e820/types.h> 35 #include <asm/sev.h> 36 37 #include "psp-dev.h" 38 #include "sev-dev.h" 39 40 #define DEVICE_NAME "sev" 41 #define SEV_FW_FILE "amd/sev.fw" 42 #define SEV_FW_NAME_SIZE 64 43 44 /* Minimum firmware version required for the SEV-SNP support */ 45 #define SNP_MIN_API_MAJOR 1 46 #define SNP_MIN_API_MINOR 51 47 48 /* 49 * Maximum number of firmware-writable buffers that might be specified 50 * in the parameters of a legacy SEV command buffer. 51 */ 52 #define CMD_BUF_FW_WRITABLE_MAX 2 53 54 /* Leave room in the descriptor array for an end-of-list indicator. */ 55 #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1) 56 57 static DEFINE_MUTEX(sev_cmd_mutex); 58 static struct sev_misc_dev *misc_dev; 59 60 static int psp_cmd_timeout = 100; 61 module_param(psp_cmd_timeout, int, 0644); 62 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands"); 63 64 static int psp_probe_timeout = 5; 65 module_param(psp_probe_timeout, int, 0644); 66 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe"); 67 68 static char *init_ex_path; 69 module_param(init_ex_path, charp, 0444); 70 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX"); 71 72 static bool psp_init_on_probe = true; 73 module_param(psp_init_on_probe, bool, 0444); 74 MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it"); 75 76 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */ 77 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */ 78 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */ 79 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */ 80 81 static bool psp_dead; 82 static int psp_timeout; 83 84 /* Trusted Memory Region (TMR): 85 * The TMR is a 1MB area that must be 1MB aligned. Use the page allocator 86 * to allocate the memory, which will return aligned memory for the specified 87 * allocation order. 88 * 89 * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized. 90 */ 91 #define SEV_TMR_SIZE (1024 * 1024) 92 #define SNP_TMR_SIZE (2 * 1024 * 1024) 93 94 static void *sev_es_tmr; 95 static size_t sev_es_tmr_size = SEV_TMR_SIZE; 96 97 /* INIT_EX NV Storage: 98 * The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page 99 * allocator to allocate the memory, which will return aligned memory for the 100 * specified allocation order. 101 */ 102 #define NV_LENGTH (32 * 1024) 103 static void *sev_init_ex_buffer; 104 105 /* 106 * SEV_DATA_RANGE_LIST: 107 * Array containing range of pages that firmware transitions to HV-fixed 108 * page state. 109 */ 110 static struct sev_data_range_list *snp_range_list; 111 112 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic); 113 114 static int snp_shutdown_on_panic(struct notifier_block *nb, 115 unsigned long reason, void *arg); 116 117 static struct notifier_block snp_panic_notifier = { 118 .notifier_call = snp_shutdown_on_panic, 119 }; 120 121 static inline bool sev_version_greater_or_equal(u8 maj, u8 min) 122 { 123 struct sev_device *sev = psp_master->sev_data; 124 125 if (sev->api_major > maj) 126 return true; 127 128 if (sev->api_major == maj && sev->api_minor >= min) 129 return true; 130 131 return false; 132 } 133 134 static void sev_irq_handler(int irq, void *data, unsigned int status) 135 { 136 struct sev_device *sev = data; 137 int reg; 138 139 /* Check if it is command completion: */ 140 if (!(status & SEV_CMD_COMPLETE)) 141 return; 142 143 /* Check if it is SEV command completion: */ 144 reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 145 if (FIELD_GET(PSP_CMDRESP_RESP, reg)) { 146 sev->int_rcvd = 1; 147 wake_up(&sev->int_queue); 148 } 149 } 150 151 static int sev_wait_cmd_ioc(struct sev_device *sev, 152 unsigned int *reg, unsigned int timeout) 153 { 154 int ret; 155 156 /* 157 * If invoked during panic handling, local interrupts are disabled, 158 * so the PSP command completion interrupt can't be used. Poll for 159 * PSP command completion instead. 160 */ 161 if (irqs_disabled()) { 162 unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10; 163 164 /* Poll for SEV command completion: */ 165 while (timeout_usecs--) { 166 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 167 if (*reg & PSP_CMDRESP_RESP) 168 return 0; 169 170 udelay(10); 171 } 172 return -ETIMEDOUT; 173 } 174 175 ret = wait_event_timeout(sev->int_queue, 176 sev->int_rcvd, timeout * HZ); 177 if (!ret) 178 return -ETIMEDOUT; 179 180 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 181 182 return 0; 183 } 184 185 static int sev_cmd_buffer_len(int cmd) 186 { 187 switch (cmd) { 188 case SEV_CMD_INIT: return sizeof(struct sev_data_init); 189 case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex); 190 case SEV_CMD_SNP_SHUTDOWN_EX: return sizeof(struct sev_data_snp_shutdown_ex); 191 case SEV_CMD_SNP_INIT_EX: return sizeof(struct sev_data_snp_init_ex); 192 case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status); 193 case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr); 194 case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import); 195 case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export); 196 case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start); 197 case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data); 198 case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa); 199 case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish); 200 case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure); 201 case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate); 202 case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate); 203 case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission); 204 case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status); 205 case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg); 206 case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg); 207 case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start); 208 case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data); 209 case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa); 210 case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish); 211 case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start); 212 case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish); 213 case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data); 214 case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa); 215 case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret); 216 case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware); 217 case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id); 218 case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report); 219 case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel); 220 case SEV_CMD_SNP_GCTX_CREATE: return sizeof(struct sev_data_snp_addr); 221 case SEV_CMD_SNP_LAUNCH_START: return sizeof(struct sev_data_snp_launch_start); 222 case SEV_CMD_SNP_LAUNCH_UPDATE: return sizeof(struct sev_data_snp_launch_update); 223 case SEV_CMD_SNP_ACTIVATE: return sizeof(struct sev_data_snp_activate); 224 case SEV_CMD_SNP_DECOMMISSION: return sizeof(struct sev_data_snp_addr); 225 case SEV_CMD_SNP_PAGE_RECLAIM: return sizeof(struct sev_data_snp_page_reclaim); 226 case SEV_CMD_SNP_GUEST_STATUS: return sizeof(struct sev_data_snp_guest_status); 227 case SEV_CMD_SNP_LAUNCH_FINISH: return sizeof(struct sev_data_snp_launch_finish); 228 case SEV_CMD_SNP_DBG_DECRYPT: return sizeof(struct sev_data_snp_dbg); 229 case SEV_CMD_SNP_DBG_ENCRYPT: return sizeof(struct sev_data_snp_dbg); 230 case SEV_CMD_SNP_PAGE_UNSMASH: return sizeof(struct sev_data_snp_page_unsmash); 231 case SEV_CMD_SNP_PLATFORM_STATUS: return sizeof(struct sev_data_snp_addr); 232 case SEV_CMD_SNP_GUEST_REQUEST: return sizeof(struct sev_data_snp_guest_request); 233 case SEV_CMD_SNP_CONFIG: return sizeof(struct sev_user_data_snp_config); 234 case SEV_CMD_SNP_COMMIT: return sizeof(struct sev_data_snp_commit); 235 default: return 0; 236 } 237 238 return 0; 239 } 240 241 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode) 242 { 243 struct file *fp; 244 struct path root; 245 struct cred *cred; 246 const struct cred *old_cred; 247 248 task_lock(&init_task); 249 get_fs_root(init_task.fs, &root); 250 task_unlock(&init_task); 251 252 cred = prepare_creds(); 253 if (!cred) 254 return ERR_PTR(-ENOMEM); 255 cred->fsuid = GLOBAL_ROOT_UID; 256 old_cred = override_creds(cred); 257 258 fp = file_open_root(&root, filename, flags, mode); 259 path_put(&root); 260 261 put_cred(revert_creds(old_cred)); 262 263 return fp; 264 } 265 266 static int sev_read_init_ex_file(void) 267 { 268 struct sev_device *sev = psp_master->sev_data; 269 struct file *fp; 270 ssize_t nread; 271 272 lockdep_assert_held(&sev_cmd_mutex); 273 274 if (!sev_init_ex_buffer) 275 return -EOPNOTSUPP; 276 277 fp = open_file_as_root(init_ex_path, O_RDONLY, 0); 278 if (IS_ERR(fp)) { 279 int ret = PTR_ERR(fp); 280 281 if (ret == -ENOENT) { 282 dev_info(sev->dev, 283 "SEV: %s does not exist and will be created later.\n", 284 init_ex_path); 285 ret = 0; 286 } else { 287 dev_err(sev->dev, 288 "SEV: could not open %s for read, error %d\n", 289 init_ex_path, ret); 290 } 291 return ret; 292 } 293 294 nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL); 295 if (nread != NV_LENGTH) { 296 dev_info(sev->dev, 297 "SEV: could not read %u bytes to non volatile memory area, ret %ld\n", 298 NV_LENGTH, nread); 299 } 300 301 dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread); 302 filp_close(fp, NULL); 303 304 return 0; 305 } 306 307 static int sev_write_init_ex_file(void) 308 { 309 struct sev_device *sev = psp_master->sev_data; 310 struct file *fp; 311 loff_t offset = 0; 312 ssize_t nwrite; 313 314 lockdep_assert_held(&sev_cmd_mutex); 315 316 if (!sev_init_ex_buffer) 317 return 0; 318 319 fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600); 320 if (IS_ERR(fp)) { 321 int ret = PTR_ERR(fp); 322 323 dev_err(sev->dev, 324 "SEV: could not open file for write, error %d\n", 325 ret); 326 return ret; 327 } 328 329 nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset); 330 vfs_fsync(fp, 0); 331 filp_close(fp, NULL); 332 333 if (nwrite != NV_LENGTH) { 334 dev_err(sev->dev, 335 "SEV: failed to write %u bytes to non volatile memory area, ret %ld\n", 336 NV_LENGTH, nwrite); 337 return -EIO; 338 } 339 340 dev_dbg(sev->dev, "SEV: write successful to NV file\n"); 341 342 return 0; 343 } 344 345 static int sev_write_init_ex_file_if_required(int cmd_id) 346 { 347 lockdep_assert_held(&sev_cmd_mutex); 348 349 if (!sev_init_ex_buffer) 350 return 0; 351 352 /* 353 * Only a few platform commands modify the SPI/NV area, but none of the 354 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN, 355 * PEK_CERT_IMPORT, and PDH_GEN do. 356 */ 357 switch (cmd_id) { 358 case SEV_CMD_FACTORY_RESET: 359 case SEV_CMD_INIT_EX: 360 case SEV_CMD_PDH_GEN: 361 case SEV_CMD_PEK_CERT_IMPORT: 362 case SEV_CMD_PEK_GEN: 363 break; 364 default: 365 return 0; 366 } 367 368 return sev_write_init_ex_file(); 369 } 370 371 /* 372 * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked() 373 * needs snp_reclaim_pages(), so a forward declaration is needed. 374 */ 375 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret); 376 377 static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked) 378 { 379 int ret, err, i; 380 381 paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE)); 382 383 for (i = 0; i < npages; i++, paddr += PAGE_SIZE) { 384 struct sev_data_snp_page_reclaim data = {0}; 385 386 data.paddr = paddr; 387 388 if (locked) 389 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 390 else 391 ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 392 393 if (ret) 394 goto cleanup; 395 396 ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K); 397 if (ret) 398 goto cleanup; 399 } 400 401 return 0; 402 403 cleanup: 404 /* 405 * If there was a failure reclaiming the page then it is no longer safe 406 * to release it back to the system; leak it instead. 407 */ 408 snp_leak_pages(__phys_to_pfn(paddr), npages - i); 409 return ret; 410 } 411 412 static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked) 413 { 414 unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT; 415 int rc, i; 416 417 for (i = 0; i < npages; i++, pfn++) { 418 rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true); 419 if (rc) 420 goto cleanup; 421 } 422 423 return 0; 424 425 cleanup: 426 /* 427 * Try unrolling the firmware state changes by 428 * reclaiming the pages which were already changed to the 429 * firmware state. 430 */ 431 snp_reclaim_pages(paddr, i, locked); 432 433 return rc; 434 } 435 436 static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order) 437 { 438 unsigned long npages = 1ul << order, paddr; 439 struct sev_device *sev; 440 struct page *page; 441 442 if (!psp_master || !psp_master->sev_data) 443 return NULL; 444 445 page = alloc_pages(gfp_mask, order); 446 if (!page) 447 return NULL; 448 449 /* If SEV-SNP is initialized then add the page in RMP table. */ 450 sev = psp_master->sev_data; 451 if (!sev->snp_initialized) 452 return page; 453 454 paddr = __pa((unsigned long)page_address(page)); 455 if (rmp_mark_pages_firmware(paddr, npages, false)) 456 return NULL; 457 458 return page; 459 } 460 461 void *snp_alloc_firmware_page(gfp_t gfp_mask) 462 { 463 struct page *page; 464 465 page = __snp_alloc_firmware_pages(gfp_mask, 0); 466 467 return page ? page_address(page) : NULL; 468 } 469 EXPORT_SYMBOL_GPL(snp_alloc_firmware_page); 470 471 static void __snp_free_firmware_pages(struct page *page, int order, bool locked) 472 { 473 struct sev_device *sev = psp_master->sev_data; 474 unsigned long paddr, npages = 1ul << order; 475 476 if (!page) 477 return; 478 479 paddr = __pa((unsigned long)page_address(page)); 480 if (sev->snp_initialized && 481 snp_reclaim_pages(paddr, npages, locked)) 482 return; 483 484 __free_pages(page, order); 485 } 486 487 void snp_free_firmware_page(void *addr) 488 { 489 if (!addr) 490 return; 491 492 __snp_free_firmware_pages(virt_to_page(addr), 0, false); 493 } 494 EXPORT_SYMBOL_GPL(snp_free_firmware_page); 495 496 static void *sev_fw_alloc(unsigned long len) 497 { 498 struct page *page; 499 500 page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len)); 501 if (!page) 502 return NULL; 503 504 return page_address(page); 505 } 506 507 /** 508 * struct cmd_buf_desc - descriptors for managing legacy SEV command address 509 * parameters corresponding to buffers that may be written to by firmware. 510 * 511 * @paddr_ptr: pointer to the address parameter in the command buffer which may 512 * need to be saved/restored depending on whether a bounce buffer 513 * is used. In the case of a bounce buffer, the command buffer 514 * needs to be updated with the address of the new bounce buffer 515 * snp_map_cmd_buf_desc() has allocated specifically for it. Must 516 * be NULL if this descriptor is only an end-of-list indicator. 517 * 518 * @paddr_orig: storage for the original address parameter, which can be used to 519 * restore the original value in @paddr_ptr in cases where it is 520 * replaced with the address of a bounce buffer. 521 * 522 * @len: length of buffer located at the address originally stored at @paddr_ptr 523 * 524 * @guest_owned: true if the address corresponds to guest-owned pages, in which 525 * case bounce buffers are not needed. 526 */ 527 struct cmd_buf_desc { 528 u64 *paddr_ptr; 529 u64 paddr_orig; 530 u32 len; 531 bool guest_owned; 532 }; 533 534 /* 535 * If a legacy SEV command parameter is a memory address, those pages in 536 * turn need to be transitioned to/from firmware-owned before/after 537 * executing the firmware command. 538 * 539 * Additionally, in cases where those pages are not guest-owned, a bounce 540 * buffer is needed in place of the original memory address parameter. 541 * 542 * A set of descriptors are used to keep track of this handling, and 543 * initialized here based on the specific commands being executed. 544 */ 545 static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf, 546 struct cmd_buf_desc *desc_list) 547 { 548 switch (cmd) { 549 case SEV_CMD_PDH_CERT_EXPORT: { 550 struct sev_data_pdh_cert_export *data = cmd_buf; 551 552 desc_list[0].paddr_ptr = &data->pdh_cert_address; 553 desc_list[0].len = data->pdh_cert_len; 554 desc_list[1].paddr_ptr = &data->cert_chain_address; 555 desc_list[1].len = data->cert_chain_len; 556 break; 557 } 558 case SEV_CMD_GET_ID: { 559 struct sev_data_get_id *data = cmd_buf; 560 561 desc_list[0].paddr_ptr = &data->address; 562 desc_list[0].len = data->len; 563 break; 564 } 565 case SEV_CMD_PEK_CSR: { 566 struct sev_data_pek_csr *data = cmd_buf; 567 568 desc_list[0].paddr_ptr = &data->address; 569 desc_list[0].len = data->len; 570 break; 571 } 572 case SEV_CMD_LAUNCH_UPDATE_DATA: { 573 struct sev_data_launch_update_data *data = cmd_buf; 574 575 desc_list[0].paddr_ptr = &data->address; 576 desc_list[0].len = data->len; 577 desc_list[0].guest_owned = true; 578 break; 579 } 580 case SEV_CMD_LAUNCH_UPDATE_VMSA: { 581 struct sev_data_launch_update_vmsa *data = cmd_buf; 582 583 desc_list[0].paddr_ptr = &data->address; 584 desc_list[0].len = data->len; 585 desc_list[0].guest_owned = true; 586 break; 587 } 588 case SEV_CMD_LAUNCH_MEASURE: { 589 struct sev_data_launch_measure *data = cmd_buf; 590 591 desc_list[0].paddr_ptr = &data->address; 592 desc_list[0].len = data->len; 593 break; 594 } 595 case SEV_CMD_LAUNCH_UPDATE_SECRET: { 596 struct sev_data_launch_secret *data = cmd_buf; 597 598 desc_list[0].paddr_ptr = &data->guest_address; 599 desc_list[0].len = data->guest_len; 600 desc_list[0].guest_owned = true; 601 break; 602 } 603 case SEV_CMD_DBG_DECRYPT: { 604 struct sev_data_dbg *data = cmd_buf; 605 606 desc_list[0].paddr_ptr = &data->dst_addr; 607 desc_list[0].len = data->len; 608 desc_list[0].guest_owned = true; 609 break; 610 } 611 case SEV_CMD_DBG_ENCRYPT: { 612 struct sev_data_dbg *data = cmd_buf; 613 614 desc_list[0].paddr_ptr = &data->dst_addr; 615 desc_list[0].len = data->len; 616 desc_list[0].guest_owned = true; 617 break; 618 } 619 case SEV_CMD_ATTESTATION_REPORT: { 620 struct sev_data_attestation_report *data = cmd_buf; 621 622 desc_list[0].paddr_ptr = &data->address; 623 desc_list[0].len = data->len; 624 break; 625 } 626 case SEV_CMD_SEND_START: { 627 struct sev_data_send_start *data = cmd_buf; 628 629 desc_list[0].paddr_ptr = &data->session_address; 630 desc_list[0].len = data->session_len; 631 break; 632 } 633 case SEV_CMD_SEND_UPDATE_DATA: { 634 struct sev_data_send_update_data *data = cmd_buf; 635 636 desc_list[0].paddr_ptr = &data->hdr_address; 637 desc_list[0].len = data->hdr_len; 638 desc_list[1].paddr_ptr = &data->trans_address; 639 desc_list[1].len = data->trans_len; 640 break; 641 } 642 case SEV_CMD_SEND_UPDATE_VMSA: { 643 struct sev_data_send_update_vmsa *data = cmd_buf; 644 645 desc_list[0].paddr_ptr = &data->hdr_address; 646 desc_list[0].len = data->hdr_len; 647 desc_list[1].paddr_ptr = &data->trans_address; 648 desc_list[1].len = data->trans_len; 649 break; 650 } 651 case SEV_CMD_RECEIVE_UPDATE_DATA: { 652 struct sev_data_receive_update_data *data = cmd_buf; 653 654 desc_list[0].paddr_ptr = &data->guest_address; 655 desc_list[0].len = data->guest_len; 656 desc_list[0].guest_owned = true; 657 break; 658 } 659 case SEV_CMD_RECEIVE_UPDATE_VMSA: { 660 struct sev_data_receive_update_vmsa *data = cmd_buf; 661 662 desc_list[0].paddr_ptr = &data->guest_address; 663 desc_list[0].len = data->guest_len; 664 desc_list[0].guest_owned = true; 665 break; 666 } 667 default: 668 break; 669 } 670 } 671 672 static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc) 673 { 674 unsigned int npages; 675 676 if (!desc->len) 677 return 0; 678 679 /* Allocate a bounce buffer if this isn't a guest owned page. */ 680 if (!desc->guest_owned) { 681 struct page *page; 682 683 page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len)); 684 if (!page) { 685 pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n"); 686 return -ENOMEM; 687 } 688 689 desc->paddr_orig = *desc->paddr_ptr; 690 *desc->paddr_ptr = __psp_pa(page_to_virt(page)); 691 } 692 693 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 694 695 /* Transition the buffer to firmware-owned. */ 696 if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) { 697 pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n"); 698 return -EFAULT; 699 } 700 701 return 0; 702 } 703 704 static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc) 705 { 706 unsigned int npages; 707 708 if (!desc->len) 709 return 0; 710 711 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 712 713 /* Transition the buffers back to hypervisor-owned. */ 714 if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) { 715 pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n"); 716 return -EFAULT; 717 } 718 719 /* Copy data from bounce buffer and then free it. */ 720 if (!desc->guest_owned) { 721 void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr)); 722 void *dst_buf = __va(__sme_clr(desc->paddr_orig)); 723 724 memcpy(dst_buf, bounce_buf, desc->len); 725 __free_pages(virt_to_page(bounce_buf), get_order(desc->len)); 726 727 /* Restore the original address in the command buffer. */ 728 *desc->paddr_ptr = desc->paddr_orig; 729 } 730 731 return 0; 732 } 733 734 static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 735 { 736 int i; 737 738 snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list); 739 740 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 741 struct cmd_buf_desc *desc = &desc_list[i]; 742 743 if (!desc->paddr_ptr) 744 break; 745 746 if (snp_map_cmd_buf_desc(desc)) 747 goto err_unmap; 748 } 749 750 return 0; 751 752 err_unmap: 753 for (i--; i >= 0; i--) 754 snp_unmap_cmd_buf_desc(&desc_list[i]); 755 756 return -EFAULT; 757 } 758 759 static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list) 760 { 761 int i, ret = 0; 762 763 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 764 struct cmd_buf_desc *desc = &desc_list[i]; 765 766 if (!desc->paddr_ptr) 767 break; 768 769 if (snp_unmap_cmd_buf_desc(&desc_list[i])) 770 ret = -EFAULT; 771 } 772 773 return ret; 774 } 775 776 static bool sev_cmd_buf_writable(int cmd) 777 { 778 switch (cmd) { 779 case SEV_CMD_PLATFORM_STATUS: 780 case SEV_CMD_GUEST_STATUS: 781 case SEV_CMD_LAUNCH_START: 782 case SEV_CMD_RECEIVE_START: 783 case SEV_CMD_LAUNCH_MEASURE: 784 case SEV_CMD_SEND_START: 785 case SEV_CMD_SEND_UPDATE_DATA: 786 case SEV_CMD_SEND_UPDATE_VMSA: 787 case SEV_CMD_PEK_CSR: 788 case SEV_CMD_PDH_CERT_EXPORT: 789 case SEV_CMD_GET_ID: 790 case SEV_CMD_ATTESTATION_REPORT: 791 return true; 792 default: 793 return false; 794 } 795 } 796 797 /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */ 798 static bool snp_legacy_handling_needed(int cmd) 799 { 800 struct sev_device *sev = psp_master->sev_data; 801 802 return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized; 803 } 804 805 static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 806 { 807 if (!snp_legacy_handling_needed(cmd)) 808 return 0; 809 810 if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list)) 811 return -EFAULT; 812 813 /* 814 * Before command execution, the command buffer needs to be put into 815 * the firmware-owned state. 816 */ 817 if (sev_cmd_buf_writable(cmd)) { 818 if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true)) 819 return -EFAULT; 820 } 821 822 return 0; 823 } 824 825 static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf) 826 { 827 if (!snp_legacy_handling_needed(cmd)) 828 return 0; 829 830 /* 831 * After command completion, the command buffer needs to be put back 832 * into the hypervisor-owned state. 833 */ 834 if (sev_cmd_buf_writable(cmd)) 835 if (snp_reclaim_pages(__pa(cmd_buf), 1, true)) 836 return -EFAULT; 837 838 return 0; 839 } 840 841 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret) 842 { 843 struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0}; 844 struct psp_device *psp = psp_master; 845 struct sev_device *sev; 846 unsigned int cmdbuff_hi, cmdbuff_lo; 847 unsigned int phys_lsb, phys_msb; 848 unsigned int reg, ret = 0; 849 void *cmd_buf; 850 int buf_len; 851 852 if (!psp || !psp->sev_data) 853 return -ENODEV; 854 855 if (psp_dead) 856 return -EBUSY; 857 858 sev = psp->sev_data; 859 860 buf_len = sev_cmd_buffer_len(cmd); 861 if (WARN_ON_ONCE(!data != !buf_len)) 862 return -EINVAL; 863 864 /* 865 * Copy the incoming data to driver's scratch buffer as __pa() will not 866 * work for some memory, e.g. vmalloc'd addresses, and @data may not be 867 * physically contiguous. 868 */ 869 if (data) { 870 /* 871 * Commands are generally issued one at a time and require the 872 * sev_cmd_mutex, but there could be recursive firmware requests 873 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while 874 * preparing buffers for another command. This is the only known 875 * case of nesting in the current code, so exactly one 876 * additional command buffer is available for that purpose. 877 */ 878 if (!sev->cmd_buf_active) { 879 cmd_buf = sev->cmd_buf; 880 sev->cmd_buf_active = true; 881 } else if (!sev->cmd_buf_backup_active) { 882 cmd_buf = sev->cmd_buf_backup; 883 sev->cmd_buf_backup_active = true; 884 } else { 885 dev_err(sev->dev, 886 "SEV: too many firmware commands in progress, no command buffers available.\n"); 887 return -EBUSY; 888 } 889 890 memcpy(cmd_buf, data, buf_len); 891 892 /* 893 * The behavior of the SEV-legacy commands is altered when the 894 * SNP firmware is in the INIT state. 895 */ 896 ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list); 897 if (ret) { 898 dev_err(sev->dev, 899 "SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n", 900 cmd, ret); 901 return ret; 902 } 903 } else { 904 cmd_buf = sev->cmd_buf; 905 } 906 907 /* Get the physical address of the command buffer */ 908 phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0; 909 phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0; 910 911 dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n", 912 cmd, phys_msb, phys_lsb, psp_timeout); 913 914 print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data, 915 buf_len, false); 916 917 iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 918 iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 919 920 sev->int_rcvd = 0; 921 922 reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd); 923 924 /* 925 * If invoked during panic handling, local interrupts are disabled so 926 * the PSP command completion interrupt can't be used. 927 * sev_wait_cmd_ioc() already checks for interrupts disabled and 928 * polls for PSP command completion. Ensure we do not request an 929 * interrupt from the PSP if irqs disabled. 930 */ 931 if (!irqs_disabled()) 932 reg |= SEV_CMDRESP_IOC; 933 934 iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg); 935 936 /* wait for command completion */ 937 ret = sev_wait_cmd_ioc(sev, ®, psp_timeout); 938 if (ret) { 939 if (psp_ret) 940 *psp_ret = 0; 941 942 dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd); 943 psp_dead = true; 944 945 return ret; 946 } 947 948 psp_timeout = psp_cmd_timeout; 949 950 if (psp_ret) 951 *psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg); 952 953 if (FIELD_GET(PSP_CMDRESP_STS, reg)) { 954 dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n", 955 cmd, FIELD_GET(PSP_CMDRESP_STS, reg)); 956 957 /* 958 * PSP firmware may report additional error information in the 959 * command buffer registers on error. Print contents of command 960 * buffer registers if they changed. 961 */ 962 cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 963 cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 964 if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) { 965 dev_dbg(sev->dev, "Additional error information reported in cmdbuff:"); 966 dev_dbg(sev->dev, " cmdbuff hi: %#010x\n", cmdbuff_hi); 967 dev_dbg(sev->dev, " cmdbuff lo: %#010x\n", cmdbuff_lo); 968 } 969 ret = -EIO; 970 } else { 971 ret = sev_write_init_ex_file_if_required(cmd); 972 } 973 974 /* 975 * Copy potential output from the PSP back to data. Do this even on 976 * failure in case the caller wants to glean something from the error. 977 */ 978 if (data) { 979 int ret_reclaim; 980 /* 981 * Restore the page state after the command completes. 982 */ 983 ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf); 984 if (ret_reclaim) { 985 dev_err(sev->dev, 986 "SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n", 987 cmd, ret_reclaim); 988 return ret_reclaim; 989 } 990 991 memcpy(data, cmd_buf, buf_len); 992 993 if (sev->cmd_buf_backup_active) 994 sev->cmd_buf_backup_active = false; 995 else 996 sev->cmd_buf_active = false; 997 998 if (snp_unmap_cmd_buf_desc_list(desc_list)) 999 return -EFAULT; 1000 } 1001 1002 print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data, 1003 buf_len, false); 1004 1005 return ret; 1006 } 1007 1008 int sev_do_cmd(int cmd, void *data, int *psp_ret) 1009 { 1010 int rc; 1011 1012 mutex_lock(&sev_cmd_mutex); 1013 rc = __sev_do_cmd_locked(cmd, data, psp_ret); 1014 mutex_unlock(&sev_cmd_mutex); 1015 1016 return rc; 1017 } 1018 EXPORT_SYMBOL_GPL(sev_do_cmd); 1019 1020 static int __sev_init_locked(int *error) 1021 { 1022 struct sev_data_init data; 1023 1024 memset(&data, 0, sizeof(data)); 1025 if (sev_es_tmr) { 1026 /* 1027 * Do not include the encryption mask on the physical 1028 * address of the TMR (firmware should clear it anyway). 1029 */ 1030 data.tmr_address = __pa(sev_es_tmr); 1031 1032 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1033 data.tmr_len = sev_es_tmr_size; 1034 } 1035 1036 return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error); 1037 } 1038 1039 static int __sev_init_ex_locked(int *error) 1040 { 1041 struct sev_data_init_ex data; 1042 1043 memset(&data, 0, sizeof(data)); 1044 data.length = sizeof(data); 1045 data.nv_address = __psp_pa(sev_init_ex_buffer); 1046 data.nv_len = NV_LENGTH; 1047 1048 if (sev_es_tmr) { 1049 /* 1050 * Do not include the encryption mask on the physical 1051 * address of the TMR (firmware should clear it anyway). 1052 */ 1053 data.tmr_address = __pa(sev_es_tmr); 1054 1055 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1056 data.tmr_len = sev_es_tmr_size; 1057 } 1058 1059 return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error); 1060 } 1061 1062 static inline int __sev_do_init_locked(int *psp_ret) 1063 { 1064 if (sev_init_ex_buffer) 1065 return __sev_init_ex_locked(psp_ret); 1066 else 1067 return __sev_init_locked(psp_ret); 1068 } 1069 1070 static void snp_set_hsave_pa(void *arg) 1071 { 1072 wrmsrl(MSR_VM_HSAVE_PA, 0); 1073 } 1074 1075 static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg) 1076 { 1077 struct sev_data_range_list *range_list = arg; 1078 struct sev_data_range *range = &range_list->ranges[range_list->num_elements]; 1079 size_t size; 1080 1081 /* 1082 * Ensure the list of HV_FIXED pages that will be passed to firmware 1083 * do not exceed the page-sized argument buffer. 1084 */ 1085 if ((range_list->num_elements * sizeof(struct sev_data_range) + 1086 sizeof(struct sev_data_range_list)) > PAGE_SIZE) 1087 return -E2BIG; 1088 1089 switch (rs->desc) { 1090 case E820_TYPE_RESERVED: 1091 case E820_TYPE_PMEM: 1092 case E820_TYPE_ACPI: 1093 range->base = rs->start & PAGE_MASK; 1094 size = PAGE_ALIGN((rs->end + 1) - rs->start); 1095 range->page_count = size >> PAGE_SHIFT; 1096 range_list->num_elements++; 1097 break; 1098 default: 1099 break; 1100 } 1101 1102 return 0; 1103 } 1104 1105 static int __sev_snp_init_locked(int *error) 1106 { 1107 struct psp_device *psp = psp_master; 1108 struct sev_data_snp_init_ex data; 1109 struct sev_device *sev; 1110 void *arg = &data; 1111 int cmd, rc = 0; 1112 1113 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 1114 return -ENODEV; 1115 1116 sev = psp->sev_data; 1117 1118 if (sev->snp_initialized) 1119 return 0; 1120 1121 if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) { 1122 dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n", 1123 SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR); 1124 return -EOPNOTSUPP; 1125 } 1126 1127 /* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */ 1128 on_each_cpu(snp_set_hsave_pa, NULL, 1); 1129 1130 /* 1131 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list 1132 * of system physical address ranges to convert into HV-fixed page 1133 * states during the RMP initialization. For instance, the memory that 1134 * UEFI reserves should be included in the that list. This allows system 1135 * components that occasionally write to memory (e.g. logging to UEFI 1136 * reserved regions) to not fail due to RMP initialization and SNP 1137 * enablement. 1138 * 1139 */ 1140 if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) { 1141 /* 1142 * Firmware checks that the pages containing the ranges enumerated 1143 * in the RANGES structure are either in the default page state or in the 1144 * firmware page state. 1145 */ 1146 snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL); 1147 if (!snp_range_list) { 1148 dev_err(sev->dev, 1149 "SEV: SNP_INIT_EX range list memory allocation failed\n"); 1150 return -ENOMEM; 1151 } 1152 1153 /* 1154 * Retrieve all reserved memory regions from the e820 memory map 1155 * to be setup as HV-fixed pages. 1156 */ 1157 rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0, 1158 snp_range_list, snp_filter_reserved_mem_regions); 1159 if (rc) { 1160 dev_err(sev->dev, 1161 "SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc); 1162 return rc; 1163 } 1164 1165 memset(&data, 0, sizeof(data)); 1166 data.init_rmp = 1; 1167 data.list_paddr_en = 1; 1168 data.list_paddr = __psp_pa(snp_range_list); 1169 cmd = SEV_CMD_SNP_INIT_EX; 1170 } else { 1171 cmd = SEV_CMD_SNP_INIT; 1172 arg = NULL; 1173 } 1174 1175 /* 1176 * The following sequence must be issued before launching the first SNP 1177 * guest to ensure all dirty cache lines are flushed, including from 1178 * updates to the RMP table itself via the RMPUPDATE instruction: 1179 * 1180 * - WBINVD on all running CPUs 1181 * - SEV_CMD_SNP_INIT[_EX] firmware command 1182 * - WBINVD on all running CPUs 1183 * - SEV_CMD_SNP_DF_FLUSH firmware command 1184 */ 1185 wbinvd_on_all_cpus(); 1186 1187 rc = __sev_do_cmd_locked(cmd, arg, error); 1188 if (rc) { 1189 dev_err(sev->dev, "SEV-SNP: %s failed rc %d, error %#x\n", 1190 cmd == SEV_CMD_SNP_INIT_EX ? "SNP_INIT_EX" : "SNP_INIT", 1191 rc, *error); 1192 return rc; 1193 } 1194 1195 /* Prepare for first SNP guest launch after INIT. */ 1196 wbinvd_on_all_cpus(); 1197 rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error); 1198 if (rc) { 1199 dev_err(sev->dev, "SEV-SNP: SNP_DF_FLUSH failed rc %d, error %#x\n", 1200 rc, *error); 1201 return rc; 1202 } 1203 1204 sev->snp_initialized = true; 1205 dev_dbg(sev->dev, "SEV-SNP firmware initialized\n"); 1206 1207 dev_info(sev->dev, "SEV-SNP API:%d.%d build:%d\n", sev->api_major, 1208 sev->api_minor, sev->build); 1209 1210 atomic_notifier_chain_register(&panic_notifier_list, 1211 &snp_panic_notifier); 1212 1213 sev_es_tmr_size = SNP_TMR_SIZE; 1214 1215 return 0; 1216 } 1217 1218 static void __sev_platform_init_handle_tmr(struct sev_device *sev) 1219 { 1220 if (sev_es_tmr) 1221 return; 1222 1223 /* Obtain the TMR memory area for SEV-ES use */ 1224 sev_es_tmr = sev_fw_alloc(sev_es_tmr_size); 1225 if (sev_es_tmr) { 1226 /* Must flush the cache before giving it to the firmware */ 1227 if (!sev->snp_initialized) 1228 clflush_cache_range(sev_es_tmr, sev_es_tmr_size); 1229 } else { 1230 dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n"); 1231 } 1232 } 1233 1234 /* 1235 * If an init_ex_path is provided allocate a buffer for the file and 1236 * read in the contents. Additionally, if SNP is initialized, convert 1237 * the buffer pages to firmware pages. 1238 */ 1239 static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev) 1240 { 1241 struct page *page; 1242 int rc; 1243 1244 if (!init_ex_path) 1245 return 0; 1246 1247 if (sev_init_ex_buffer) 1248 return 0; 1249 1250 page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH)); 1251 if (!page) { 1252 dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n"); 1253 return -ENOMEM; 1254 } 1255 1256 sev_init_ex_buffer = page_address(page); 1257 1258 rc = sev_read_init_ex_file(); 1259 if (rc) 1260 return rc; 1261 1262 /* If SEV-SNP is initialized, transition to firmware page. */ 1263 if (sev->snp_initialized) { 1264 unsigned long npages; 1265 1266 npages = 1UL << get_order(NV_LENGTH); 1267 if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) { 1268 dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n"); 1269 return -ENOMEM; 1270 } 1271 } 1272 1273 return 0; 1274 } 1275 1276 static int __sev_platform_init_locked(int *error) 1277 { 1278 int rc, psp_ret = SEV_RET_NO_FW_CALL; 1279 struct sev_device *sev; 1280 1281 if (!psp_master || !psp_master->sev_data) 1282 return -ENODEV; 1283 1284 sev = psp_master->sev_data; 1285 1286 if (sev->state == SEV_STATE_INIT) 1287 return 0; 1288 1289 __sev_platform_init_handle_tmr(sev); 1290 1291 rc = __sev_platform_init_handle_init_ex_path(sev); 1292 if (rc) 1293 return rc; 1294 1295 rc = __sev_do_init_locked(&psp_ret); 1296 if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) { 1297 /* 1298 * Initialization command returned an integrity check failure 1299 * status code, meaning that firmware load and validation of SEV 1300 * related persistent data has failed. Retrying the 1301 * initialization function should succeed by replacing the state 1302 * with a reset state. 1303 */ 1304 dev_err(sev->dev, 1305 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state."); 1306 rc = __sev_do_init_locked(&psp_ret); 1307 } 1308 1309 if (error) 1310 *error = psp_ret; 1311 1312 if (rc) { 1313 dev_err(sev->dev, "SEV: %s failed %#x, rc %d\n", 1314 sev_init_ex_buffer ? "INIT_EX" : "INIT", psp_ret, rc); 1315 return rc; 1316 } 1317 1318 sev->state = SEV_STATE_INIT; 1319 1320 /* Prepare for first SEV guest launch after INIT */ 1321 wbinvd_on_all_cpus(); 1322 rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error); 1323 if (rc) { 1324 dev_err(sev->dev, "SEV: DF_FLUSH failed %#x, rc %d\n", 1325 *error, rc); 1326 return rc; 1327 } 1328 1329 dev_dbg(sev->dev, "SEV firmware initialized\n"); 1330 1331 dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major, 1332 sev->api_minor, sev->build); 1333 1334 return 0; 1335 } 1336 1337 static int _sev_platform_init_locked(struct sev_platform_init_args *args) 1338 { 1339 struct sev_device *sev; 1340 int rc; 1341 1342 if (!psp_master || !psp_master->sev_data) 1343 return -ENODEV; 1344 1345 sev = psp_master->sev_data; 1346 1347 if (sev->state == SEV_STATE_INIT) 1348 return 0; 1349 1350 rc = __sev_snp_init_locked(&args->error); 1351 if (rc && rc != -ENODEV) 1352 return rc; 1353 1354 /* Defer legacy SEV/SEV-ES support if allowed by caller/module. */ 1355 if (args->probe && !psp_init_on_probe) 1356 return 0; 1357 1358 return __sev_platform_init_locked(&args->error); 1359 } 1360 1361 int sev_platform_init(struct sev_platform_init_args *args) 1362 { 1363 int rc; 1364 1365 mutex_lock(&sev_cmd_mutex); 1366 rc = _sev_platform_init_locked(args); 1367 mutex_unlock(&sev_cmd_mutex); 1368 1369 return rc; 1370 } 1371 EXPORT_SYMBOL_GPL(sev_platform_init); 1372 1373 static int __sev_platform_shutdown_locked(int *error) 1374 { 1375 struct psp_device *psp = psp_master; 1376 struct sev_device *sev; 1377 int ret; 1378 1379 if (!psp || !psp->sev_data) 1380 return 0; 1381 1382 sev = psp->sev_data; 1383 1384 if (sev->state == SEV_STATE_UNINIT) 1385 return 0; 1386 1387 ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error); 1388 if (ret) { 1389 dev_err(sev->dev, "SEV: failed to SHUTDOWN error %#x, rc %d\n", 1390 *error, ret); 1391 return ret; 1392 } 1393 1394 sev->state = SEV_STATE_UNINIT; 1395 dev_dbg(sev->dev, "SEV firmware shutdown\n"); 1396 1397 return ret; 1398 } 1399 1400 static int sev_get_platform_state(int *state, int *error) 1401 { 1402 struct sev_user_data_status data; 1403 int rc; 1404 1405 rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error); 1406 if (rc) 1407 return rc; 1408 1409 *state = data.state; 1410 return rc; 1411 } 1412 1413 static int sev_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required) 1414 { 1415 struct sev_platform_init_args init_args = {0}; 1416 int rc; 1417 1418 rc = _sev_platform_init_locked(&init_args); 1419 if (rc) { 1420 argp->error = SEV_RET_INVALID_PLATFORM_STATE; 1421 return rc; 1422 } 1423 1424 *shutdown_required = true; 1425 1426 return 0; 1427 } 1428 1429 static int snp_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required) 1430 { 1431 int error, rc; 1432 1433 rc = __sev_snp_init_locked(&error); 1434 if (rc) { 1435 argp->error = SEV_RET_INVALID_PLATFORM_STATE; 1436 return rc; 1437 } 1438 1439 *shutdown_required = true; 1440 1441 return 0; 1442 } 1443 1444 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable) 1445 { 1446 int state, rc; 1447 1448 if (!writable) 1449 return -EPERM; 1450 1451 /* 1452 * The SEV spec requires that FACTORY_RESET must be issued in 1453 * UNINIT state. Before we go further lets check if any guest is 1454 * active. 1455 * 1456 * If FW is in WORKING state then deny the request otherwise issue 1457 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET. 1458 * 1459 */ 1460 rc = sev_get_platform_state(&state, &argp->error); 1461 if (rc) 1462 return rc; 1463 1464 if (state == SEV_STATE_WORKING) 1465 return -EBUSY; 1466 1467 if (state == SEV_STATE_INIT) { 1468 rc = __sev_platform_shutdown_locked(&argp->error); 1469 if (rc) 1470 return rc; 1471 } 1472 1473 return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error); 1474 } 1475 1476 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp) 1477 { 1478 struct sev_user_data_status data; 1479 int ret; 1480 1481 memset(&data, 0, sizeof(data)); 1482 1483 ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error); 1484 if (ret) 1485 return ret; 1486 1487 if (copy_to_user((void __user *)argp->data, &data, sizeof(data))) 1488 ret = -EFAULT; 1489 1490 return ret; 1491 } 1492 1493 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable) 1494 { 1495 struct sev_device *sev = psp_master->sev_data; 1496 bool shutdown_required = false; 1497 int rc; 1498 1499 if (!writable) 1500 return -EPERM; 1501 1502 if (sev->state == SEV_STATE_UNINIT) { 1503 rc = sev_move_to_init_state(argp, &shutdown_required); 1504 if (rc) 1505 return rc; 1506 } 1507 1508 rc = __sev_do_cmd_locked(cmd, NULL, &argp->error); 1509 1510 if (shutdown_required) 1511 __sev_firmware_shutdown(sev, false); 1512 1513 return rc; 1514 } 1515 1516 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable) 1517 { 1518 struct sev_device *sev = psp_master->sev_data; 1519 struct sev_user_data_pek_csr input; 1520 bool shutdown_required = false; 1521 struct sev_data_pek_csr data; 1522 void __user *input_address; 1523 void *blob = NULL; 1524 int ret; 1525 1526 if (!writable) 1527 return -EPERM; 1528 1529 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1530 return -EFAULT; 1531 1532 memset(&data, 0, sizeof(data)); 1533 1534 /* userspace wants to query CSR length */ 1535 if (!input.address || !input.length) 1536 goto cmd; 1537 1538 /* allocate a physically contiguous buffer to store the CSR blob */ 1539 input_address = (void __user *)input.address; 1540 if (input.length > SEV_FW_BLOB_MAX_SIZE) 1541 return -EFAULT; 1542 1543 blob = kzalloc(input.length, GFP_KERNEL); 1544 if (!blob) 1545 return -ENOMEM; 1546 1547 data.address = __psp_pa(blob); 1548 data.len = input.length; 1549 1550 cmd: 1551 if (sev->state == SEV_STATE_UNINIT) { 1552 ret = sev_move_to_init_state(argp, &shutdown_required); 1553 if (ret) 1554 goto e_free_blob; 1555 } 1556 1557 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error); 1558 1559 /* If we query the CSR length, FW responded with expected data. */ 1560 input.length = data.len; 1561 1562 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1563 ret = -EFAULT; 1564 goto e_free_blob; 1565 } 1566 1567 if (blob) { 1568 if (copy_to_user(input_address, blob, input.length)) 1569 ret = -EFAULT; 1570 } 1571 1572 e_free_blob: 1573 if (shutdown_required) 1574 __sev_firmware_shutdown(sev, false); 1575 1576 kfree(blob); 1577 return ret; 1578 } 1579 1580 void *psp_copy_user_blob(u64 uaddr, u32 len) 1581 { 1582 if (!uaddr || !len) 1583 return ERR_PTR(-EINVAL); 1584 1585 /* verify that blob length does not exceed our limit */ 1586 if (len > SEV_FW_BLOB_MAX_SIZE) 1587 return ERR_PTR(-EINVAL); 1588 1589 return memdup_user((void __user *)uaddr, len); 1590 } 1591 EXPORT_SYMBOL_GPL(psp_copy_user_blob); 1592 1593 static int sev_get_api_version(void) 1594 { 1595 struct sev_device *sev = psp_master->sev_data; 1596 struct sev_user_data_status status; 1597 int error = 0, ret; 1598 1599 ret = sev_platform_status(&status, &error); 1600 if (ret) { 1601 dev_err(sev->dev, 1602 "SEV: failed to get status. Error: %#x\n", error); 1603 return 1; 1604 } 1605 1606 sev->api_major = status.api_major; 1607 sev->api_minor = status.api_minor; 1608 sev->build = status.build; 1609 sev->state = status.state; 1610 1611 return 0; 1612 } 1613 1614 static int sev_get_firmware(struct device *dev, 1615 const struct firmware **firmware) 1616 { 1617 char fw_name_specific[SEV_FW_NAME_SIZE]; 1618 char fw_name_subset[SEV_FW_NAME_SIZE]; 1619 1620 snprintf(fw_name_specific, sizeof(fw_name_specific), 1621 "amd/amd_sev_fam%.2xh_model%.2xh.sbin", 1622 boot_cpu_data.x86, boot_cpu_data.x86_model); 1623 1624 snprintf(fw_name_subset, sizeof(fw_name_subset), 1625 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin", 1626 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4); 1627 1628 /* Check for SEV FW for a particular model. 1629 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h 1630 * 1631 * or 1632 * 1633 * Check for SEV FW common to a subset of models. 1634 * Ex. amd_sev_fam17h_model0xh.sbin for 1635 * Family 17h Model 00h -- Family 17h Model 0Fh 1636 * 1637 * or 1638 * 1639 * Fall-back to using generic name: sev.fw 1640 */ 1641 if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) || 1642 (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) || 1643 (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0)) 1644 return 0; 1645 1646 return -ENOENT; 1647 } 1648 1649 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */ 1650 static int sev_update_firmware(struct device *dev) 1651 { 1652 struct sev_data_download_firmware *data; 1653 const struct firmware *firmware; 1654 int ret, error, order; 1655 struct page *p; 1656 u64 data_size; 1657 1658 if (!sev_version_greater_or_equal(0, 15)) { 1659 dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n"); 1660 return -1; 1661 } 1662 1663 if (sev_get_firmware(dev, &firmware) == -ENOENT) { 1664 dev_dbg(dev, "No SEV firmware file present\n"); 1665 return -1; 1666 } 1667 1668 /* 1669 * SEV FW expects the physical address given to it to be 32 1670 * byte aligned. Memory allocated has structure placed at the 1671 * beginning followed by the firmware being passed to the SEV 1672 * FW. Allocate enough memory for data structure + alignment 1673 * padding + SEV FW. 1674 */ 1675 data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32); 1676 1677 order = get_order(firmware->size + data_size); 1678 p = alloc_pages(GFP_KERNEL, order); 1679 if (!p) { 1680 ret = -1; 1681 goto fw_err; 1682 } 1683 1684 /* 1685 * Copy firmware data to a kernel allocated contiguous 1686 * memory region. 1687 */ 1688 data = page_address(p); 1689 memcpy(page_address(p) + data_size, firmware->data, firmware->size); 1690 1691 data->address = __psp_pa(page_address(p) + data_size); 1692 data->len = firmware->size; 1693 1694 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1695 1696 /* 1697 * A quirk for fixing the committed TCB version, when upgrading from 1698 * earlier firmware version than 1.50. 1699 */ 1700 if (!ret && !sev_version_greater_or_equal(1, 50)) 1701 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1702 1703 if (ret) 1704 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error); 1705 1706 __free_pages(p, order); 1707 1708 fw_err: 1709 release_firmware(firmware); 1710 1711 return ret; 1712 } 1713 1714 static int __sev_snp_shutdown_locked(int *error, bool panic) 1715 { 1716 struct psp_device *psp = psp_master; 1717 struct sev_device *sev; 1718 struct sev_data_snp_shutdown_ex data; 1719 int ret; 1720 1721 if (!psp || !psp->sev_data) 1722 return 0; 1723 1724 sev = psp->sev_data; 1725 1726 if (!sev->snp_initialized) 1727 return 0; 1728 1729 memset(&data, 0, sizeof(data)); 1730 data.len = sizeof(data); 1731 data.iommu_snp_shutdown = 1; 1732 1733 /* 1734 * If invoked during panic handling, local interrupts are disabled 1735 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called. 1736 * In that case, a wbinvd() is done on remote CPUs via the NMI 1737 * callback, so only a local wbinvd() is needed here. 1738 */ 1739 if (!panic) 1740 wbinvd_on_all_cpus(); 1741 else 1742 wbinvd(); 1743 1744 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error); 1745 /* SHUTDOWN may require DF_FLUSH */ 1746 if (*error == SEV_RET_DFFLUSH_REQUIRED) { 1747 int dfflush_error = SEV_RET_NO_FW_CALL; 1748 1749 ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, &dfflush_error); 1750 if (ret) { 1751 dev_err(sev->dev, "SEV-SNP DF_FLUSH failed, ret = %d, error = %#x\n", 1752 ret, dfflush_error); 1753 return ret; 1754 } 1755 /* reissue the shutdown command */ 1756 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, 1757 error); 1758 } 1759 if (ret) { 1760 dev_err(sev->dev, "SEV-SNP firmware shutdown failed, rc %d, error %#x\n", 1761 ret, *error); 1762 return ret; 1763 } 1764 1765 /* 1766 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP 1767 * enforcement by the IOMMU and also transitions all pages 1768 * associated with the IOMMU to the Reclaim state. 1769 * Firmware was transitioning the IOMMU pages to Hypervisor state 1770 * before version 1.53. But, accounting for the number of assigned 1771 * 4kB pages in a 2M page was done incorrectly by not transitioning 1772 * to the Reclaim state. This resulted in RMP #PF when later accessing 1773 * the 2M page containing those pages during kexec boot. Hence, the 1774 * firmware now transitions these pages to Reclaim state and hypervisor 1775 * needs to transition these pages to shared state. SNP Firmware 1776 * version 1.53 and above are needed for kexec boot. 1777 */ 1778 ret = amd_iommu_snp_disable(); 1779 if (ret) { 1780 dev_err(sev->dev, "SNP IOMMU shutdown failed\n"); 1781 return ret; 1782 } 1783 1784 sev->snp_initialized = false; 1785 dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n"); 1786 1787 atomic_notifier_chain_unregister(&panic_notifier_list, 1788 &snp_panic_notifier); 1789 1790 /* Reset TMR size back to default */ 1791 sev_es_tmr_size = SEV_TMR_SIZE; 1792 1793 return ret; 1794 } 1795 1796 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable) 1797 { 1798 struct sev_device *sev = psp_master->sev_data; 1799 struct sev_user_data_pek_cert_import input; 1800 struct sev_data_pek_cert_import data; 1801 bool shutdown_required = false; 1802 void *pek_blob, *oca_blob; 1803 int ret; 1804 1805 if (!writable) 1806 return -EPERM; 1807 1808 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1809 return -EFAULT; 1810 1811 /* copy PEK certificate blobs from userspace */ 1812 pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len); 1813 if (IS_ERR(pek_blob)) 1814 return PTR_ERR(pek_blob); 1815 1816 data.reserved = 0; 1817 data.pek_cert_address = __psp_pa(pek_blob); 1818 data.pek_cert_len = input.pek_cert_len; 1819 1820 /* copy PEK certificate blobs from userspace */ 1821 oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len); 1822 if (IS_ERR(oca_blob)) { 1823 ret = PTR_ERR(oca_blob); 1824 goto e_free_pek; 1825 } 1826 1827 data.oca_cert_address = __psp_pa(oca_blob); 1828 data.oca_cert_len = input.oca_cert_len; 1829 1830 /* If platform is not in INIT state then transition it to INIT */ 1831 if (sev->state != SEV_STATE_INIT) { 1832 ret = sev_move_to_init_state(argp, &shutdown_required); 1833 if (ret) 1834 goto e_free_oca; 1835 } 1836 1837 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error); 1838 1839 e_free_oca: 1840 if (shutdown_required) 1841 __sev_firmware_shutdown(sev, false); 1842 1843 kfree(oca_blob); 1844 e_free_pek: 1845 kfree(pek_blob); 1846 return ret; 1847 } 1848 1849 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp) 1850 { 1851 struct sev_user_data_get_id2 input; 1852 struct sev_data_get_id data; 1853 void __user *input_address; 1854 void *id_blob = NULL; 1855 int ret; 1856 1857 /* SEV GET_ID is available from SEV API v0.16 and up */ 1858 if (!sev_version_greater_or_equal(0, 16)) 1859 return -ENOTSUPP; 1860 1861 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1862 return -EFAULT; 1863 1864 input_address = (void __user *)input.address; 1865 1866 if (input.address && input.length) { 1867 /* 1868 * The length of the ID shouldn't be assumed by software since 1869 * it may change in the future. The allocation size is limited 1870 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator. 1871 * If the allocation fails, simply return ENOMEM rather than 1872 * warning in the kernel log. 1873 */ 1874 id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN); 1875 if (!id_blob) 1876 return -ENOMEM; 1877 1878 data.address = __psp_pa(id_blob); 1879 data.len = input.length; 1880 } else { 1881 data.address = 0; 1882 data.len = 0; 1883 } 1884 1885 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error); 1886 1887 /* 1888 * Firmware will return the length of the ID value (either the minimum 1889 * required length or the actual length written), return it to the user. 1890 */ 1891 input.length = data.len; 1892 1893 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1894 ret = -EFAULT; 1895 goto e_free; 1896 } 1897 1898 if (id_blob) { 1899 if (copy_to_user(input_address, id_blob, data.len)) { 1900 ret = -EFAULT; 1901 goto e_free; 1902 } 1903 } 1904 1905 e_free: 1906 kfree(id_blob); 1907 1908 return ret; 1909 } 1910 1911 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp) 1912 { 1913 struct sev_data_get_id *data; 1914 u64 data_size, user_size; 1915 void *id_blob, *mem; 1916 int ret; 1917 1918 /* SEV GET_ID available from SEV API v0.16 and up */ 1919 if (!sev_version_greater_or_equal(0, 16)) 1920 return -ENOTSUPP; 1921 1922 /* SEV FW expects the buffer it fills with the ID to be 1923 * 8-byte aligned. Memory allocated should be enough to 1924 * hold data structure + alignment padding + memory 1925 * where SEV FW writes the ID. 1926 */ 1927 data_size = ALIGN(sizeof(struct sev_data_get_id), 8); 1928 user_size = sizeof(struct sev_user_data_get_id); 1929 1930 mem = kzalloc(data_size + user_size, GFP_KERNEL); 1931 if (!mem) 1932 return -ENOMEM; 1933 1934 data = mem; 1935 id_blob = mem + data_size; 1936 1937 data->address = __psp_pa(id_blob); 1938 data->len = user_size; 1939 1940 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); 1941 if (!ret) { 1942 if (copy_to_user((void __user *)argp->data, id_blob, data->len)) 1943 ret = -EFAULT; 1944 } 1945 1946 kfree(mem); 1947 1948 return ret; 1949 } 1950 1951 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable) 1952 { 1953 struct sev_device *sev = psp_master->sev_data; 1954 struct sev_user_data_pdh_cert_export input; 1955 void *pdh_blob = NULL, *cert_blob = NULL; 1956 struct sev_data_pdh_cert_export data; 1957 void __user *input_cert_chain_address; 1958 void __user *input_pdh_cert_address; 1959 bool shutdown_required = false; 1960 int ret; 1961 1962 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1963 return -EFAULT; 1964 1965 memset(&data, 0, sizeof(data)); 1966 1967 input_pdh_cert_address = (void __user *)input.pdh_cert_address; 1968 input_cert_chain_address = (void __user *)input.cert_chain_address; 1969 1970 /* Userspace wants to query the certificate length. */ 1971 if (!input.pdh_cert_address || 1972 !input.pdh_cert_len || 1973 !input.cert_chain_address) 1974 goto cmd; 1975 1976 /* Allocate a physically contiguous buffer to store the PDH blob. */ 1977 if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE) 1978 return -EFAULT; 1979 1980 /* Allocate a physically contiguous buffer to store the cert chain blob. */ 1981 if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE) 1982 return -EFAULT; 1983 1984 pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL); 1985 if (!pdh_blob) 1986 return -ENOMEM; 1987 1988 data.pdh_cert_address = __psp_pa(pdh_blob); 1989 data.pdh_cert_len = input.pdh_cert_len; 1990 1991 cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL); 1992 if (!cert_blob) { 1993 ret = -ENOMEM; 1994 goto e_free_pdh; 1995 } 1996 1997 data.cert_chain_address = __psp_pa(cert_blob); 1998 data.cert_chain_len = input.cert_chain_len; 1999 2000 cmd: 2001 /* If platform is not in INIT state then transition it to INIT. */ 2002 if (sev->state != SEV_STATE_INIT) { 2003 if (!writable) { 2004 ret = -EPERM; 2005 goto e_free_cert; 2006 } 2007 ret = sev_move_to_init_state(argp, &shutdown_required); 2008 if (ret) 2009 goto e_free_cert; 2010 } 2011 2012 ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error); 2013 2014 /* If we query the length, FW responded with expected data. */ 2015 input.cert_chain_len = data.cert_chain_len; 2016 input.pdh_cert_len = data.pdh_cert_len; 2017 2018 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 2019 ret = -EFAULT; 2020 goto e_free_cert; 2021 } 2022 2023 if (pdh_blob) { 2024 if (copy_to_user(input_pdh_cert_address, 2025 pdh_blob, input.pdh_cert_len)) { 2026 ret = -EFAULT; 2027 goto e_free_cert; 2028 } 2029 } 2030 2031 if (cert_blob) { 2032 if (copy_to_user(input_cert_chain_address, 2033 cert_blob, input.cert_chain_len)) 2034 ret = -EFAULT; 2035 } 2036 2037 e_free_cert: 2038 if (shutdown_required) 2039 __sev_firmware_shutdown(sev, false); 2040 2041 kfree(cert_blob); 2042 e_free_pdh: 2043 kfree(pdh_blob); 2044 return ret; 2045 } 2046 2047 static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp) 2048 { 2049 struct sev_device *sev = psp_master->sev_data; 2050 bool shutdown_required = false; 2051 struct sev_data_snp_addr buf; 2052 struct page *status_page; 2053 int ret, error; 2054 void *data; 2055 2056 if (!argp->data) 2057 return -EINVAL; 2058 2059 status_page = alloc_page(GFP_KERNEL_ACCOUNT); 2060 if (!status_page) 2061 return -ENOMEM; 2062 2063 data = page_address(status_page); 2064 2065 if (!sev->snp_initialized) { 2066 ret = snp_move_to_init_state(argp, &shutdown_required); 2067 if (ret) 2068 goto cleanup; 2069 } 2070 2071 /* 2072 * Firmware expects status page to be in firmware-owned state, otherwise 2073 * it will report firmware error code INVALID_PAGE_STATE (0x1A). 2074 */ 2075 if (rmp_mark_pages_firmware(__pa(data), 1, true)) { 2076 ret = -EFAULT; 2077 goto cleanup; 2078 } 2079 2080 buf.address = __psp_pa(data); 2081 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error); 2082 2083 /* 2084 * Status page will be transitioned to Reclaim state upon success, or 2085 * left in Firmware state in failure. Use snp_reclaim_pages() to 2086 * transition either case back to Hypervisor-owned state. 2087 */ 2088 if (snp_reclaim_pages(__pa(data), 1, true)) 2089 return -EFAULT; 2090 2091 if (ret) 2092 goto cleanup; 2093 2094 if (copy_to_user((void __user *)argp->data, data, 2095 sizeof(struct sev_user_data_snp_status))) 2096 ret = -EFAULT; 2097 2098 cleanup: 2099 if (shutdown_required) 2100 __sev_snp_shutdown_locked(&error, false); 2101 2102 __free_pages(status_page, 0); 2103 return ret; 2104 } 2105 2106 static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp) 2107 { 2108 struct sev_device *sev = psp_master->sev_data; 2109 struct sev_data_snp_commit buf; 2110 bool shutdown_required = false; 2111 int ret, error; 2112 2113 if (!sev->snp_initialized) { 2114 ret = snp_move_to_init_state(argp, &shutdown_required); 2115 if (ret) 2116 return ret; 2117 } 2118 2119 buf.len = sizeof(buf); 2120 2121 ret = __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error); 2122 2123 if (shutdown_required) 2124 __sev_snp_shutdown_locked(&error, false); 2125 2126 return ret; 2127 } 2128 2129 static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable) 2130 { 2131 struct sev_device *sev = psp_master->sev_data; 2132 struct sev_user_data_snp_config config; 2133 bool shutdown_required = false; 2134 int ret, error; 2135 2136 if (!argp->data) 2137 return -EINVAL; 2138 2139 if (!writable) 2140 return -EPERM; 2141 2142 if (copy_from_user(&config, (void __user *)argp->data, sizeof(config))) 2143 return -EFAULT; 2144 2145 if (!sev->snp_initialized) { 2146 ret = snp_move_to_init_state(argp, &shutdown_required); 2147 if (ret) 2148 return ret; 2149 } 2150 2151 ret = __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error); 2152 2153 if (shutdown_required) 2154 __sev_snp_shutdown_locked(&error, false); 2155 2156 return ret; 2157 } 2158 2159 static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable) 2160 { 2161 struct sev_device *sev = psp_master->sev_data; 2162 struct sev_user_data_snp_vlek_load input; 2163 bool shutdown_required = false; 2164 int ret, error; 2165 void *blob; 2166 2167 if (!argp->data) 2168 return -EINVAL; 2169 2170 if (!writable) 2171 return -EPERM; 2172 2173 if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input))) 2174 return -EFAULT; 2175 2176 if (input.len != sizeof(input) || input.vlek_wrapped_version != 0) 2177 return -EINVAL; 2178 2179 blob = psp_copy_user_blob(input.vlek_wrapped_address, 2180 sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick)); 2181 if (IS_ERR(blob)) 2182 return PTR_ERR(blob); 2183 2184 input.vlek_wrapped_address = __psp_pa(blob); 2185 2186 if (!sev->snp_initialized) { 2187 ret = snp_move_to_init_state(argp, &shutdown_required); 2188 if (ret) 2189 goto cleanup; 2190 } 2191 2192 ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error); 2193 2194 if (shutdown_required) 2195 __sev_snp_shutdown_locked(&error, false); 2196 2197 cleanup: 2198 kfree(blob); 2199 2200 return ret; 2201 } 2202 2203 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) 2204 { 2205 void __user *argp = (void __user *)arg; 2206 struct sev_issue_cmd input; 2207 int ret = -EFAULT; 2208 bool writable = file->f_mode & FMODE_WRITE; 2209 2210 if (!psp_master || !psp_master->sev_data) 2211 return -ENODEV; 2212 2213 if (ioctl != SEV_ISSUE_CMD) 2214 return -EINVAL; 2215 2216 if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd))) 2217 return -EFAULT; 2218 2219 if (input.cmd > SEV_MAX) 2220 return -EINVAL; 2221 2222 mutex_lock(&sev_cmd_mutex); 2223 2224 switch (input.cmd) { 2225 2226 case SEV_FACTORY_RESET: 2227 ret = sev_ioctl_do_reset(&input, writable); 2228 break; 2229 case SEV_PLATFORM_STATUS: 2230 ret = sev_ioctl_do_platform_status(&input); 2231 break; 2232 case SEV_PEK_GEN: 2233 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable); 2234 break; 2235 case SEV_PDH_GEN: 2236 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable); 2237 break; 2238 case SEV_PEK_CSR: 2239 ret = sev_ioctl_do_pek_csr(&input, writable); 2240 break; 2241 case SEV_PEK_CERT_IMPORT: 2242 ret = sev_ioctl_do_pek_import(&input, writable); 2243 break; 2244 case SEV_PDH_CERT_EXPORT: 2245 ret = sev_ioctl_do_pdh_export(&input, writable); 2246 break; 2247 case SEV_GET_ID: 2248 pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n"); 2249 ret = sev_ioctl_do_get_id(&input); 2250 break; 2251 case SEV_GET_ID2: 2252 ret = sev_ioctl_do_get_id2(&input); 2253 break; 2254 case SNP_PLATFORM_STATUS: 2255 ret = sev_ioctl_do_snp_platform_status(&input); 2256 break; 2257 case SNP_COMMIT: 2258 ret = sev_ioctl_do_snp_commit(&input); 2259 break; 2260 case SNP_SET_CONFIG: 2261 ret = sev_ioctl_do_snp_set_config(&input, writable); 2262 break; 2263 case SNP_VLEK_LOAD: 2264 ret = sev_ioctl_do_snp_vlek_load(&input, writable); 2265 break; 2266 default: 2267 ret = -EINVAL; 2268 goto out; 2269 } 2270 2271 if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd))) 2272 ret = -EFAULT; 2273 out: 2274 mutex_unlock(&sev_cmd_mutex); 2275 2276 return ret; 2277 } 2278 2279 static const struct file_operations sev_fops = { 2280 .owner = THIS_MODULE, 2281 .unlocked_ioctl = sev_ioctl, 2282 }; 2283 2284 int sev_platform_status(struct sev_user_data_status *data, int *error) 2285 { 2286 return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error); 2287 } 2288 EXPORT_SYMBOL_GPL(sev_platform_status); 2289 2290 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error) 2291 { 2292 return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error); 2293 } 2294 EXPORT_SYMBOL_GPL(sev_guest_deactivate); 2295 2296 int sev_guest_activate(struct sev_data_activate *data, int *error) 2297 { 2298 return sev_do_cmd(SEV_CMD_ACTIVATE, data, error); 2299 } 2300 EXPORT_SYMBOL_GPL(sev_guest_activate); 2301 2302 int sev_guest_decommission(struct sev_data_decommission *data, int *error) 2303 { 2304 return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error); 2305 } 2306 EXPORT_SYMBOL_GPL(sev_guest_decommission); 2307 2308 int sev_guest_df_flush(int *error) 2309 { 2310 return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error); 2311 } 2312 EXPORT_SYMBOL_GPL(sev_guest_df_flush); 2313 2314 static void sev_exit(struct kref *ref) 2315 { 2316 misc_deregister(&misc_dev->misc); 2317 kfree(misc_dev); 2318 misc_dev = NULL; 2319 } 2320 2321 static int sev_misc_init(struct sev_device *sev) 2322 { 2323 struct device *dev = sev->dev; 2324 int ret; 2325 2326 /* 2327 * SEV feature support can be detected on multiple devices but the SEV 2328 * FW commands must be issued on the master. During probe, we do not 2329 * know the master hence we create /dev/sev on the first device probe. 2330 * sev_do_cmd() finds the right master device to which to issue the 2331 * command to the firmware. 2332 */ 2333 if (!misc_dev) { 2334 struct miscdevice *misc; 2335 2336 misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL); 2337 if (!misc_dev) 2338 return -ENOMEM; 2339 2340 misc = &misc_dev->misc; 2341 misc->minor = MISC_DYNAMIC_MINOR; 2342 misc->name = DEVICE_NAME; 2343 misc->fops = &sev_fops; 2344 2345 ret = misc_register(misc); 2346 if (ret) 2347 return ret; 2348 2349 kref_init(&misc_dev->refcount); 2350 } else { 2351 kref_get(&misc_dev->refcount); 2352 } 2353 2354 init_waitqueue_head(&sev->int_queue); 2355 sev->misc = misc_dev; 2356 dev_dbg(dev, "registered SEV device\n"); 2357 2358 return 0; 2359 } 2360 2361 int sev_dev_init(struct psp_device *psp) 2362 { 2363 struct device *dev = psp->dev; 2364 struct sev_device *sev; 2365 int ret = -ENOMEM; 2366 2367 if (!boot_cpu_has(X86_FEATURE_SEV)) { 2368 dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n"); 2369 return 0; 2370 } 2371 2372 sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL); 2373 if (!sev) 2374 goto e_err; 2375 2376 sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1); 2377 if (!sev->cmd_buf) 2378 goto e_sev; 2379 2380 sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE; 2381 2382 psp->sev_data = sev; 2383 2384 sev->dev = dev; 2385 sev->psp = psp; 2386 2387 sev->io_regs = psp->io_regs; 2388 2389 sev->vdata = (struct sev_vdata *)psp->vdata->sev; 2390 if (!sev->vdata) { 2391 ret = -ENODEV; 2392 dev_err(dev, "sev: missing driver data\n"); 2393 goto e_buf; 2394 } 2395 2396 psp_set_sev_irq_handler(psp, sev_irq_handler, sev); 2397 2398 ret = sev_misc_init(sev); 2399 if (ret) 2400 goto e_irq; 2401 2402 dev_notice(dev, "sev enabled\n"); 2403 2404 return 0; 2405 2406 e_irq: 2407 psp_clear_sev_irq_handler(psp); 2408 e_buf: 2409 devm_free_pages(dev, (unsigned long)sev->cmd_buf); 2410 e_sev: 2411 devm_kfree(dev, sev); 2412 e_err: 2413 psp->sev_data = NULL; 2414 2415 dev_notice(dev, "sev initialization failed\n"); 2416 2417 return ret; 2418 } 2419 2420 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic) 2421 { 2422 int error; 2423 2424 __sev_platform_shutdown_locked(NULL); 2425 2426 if (sev_es_tmr) { 2427 /* 2428 * The TMR area was encrypted, flush it from the cache. 2429 * 2430 * If invoked during panic handling, local interrupts are 2431 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus() 2432 * can't be used. In that case, wbinvd() is done on remote CPUs 2433 * via the NMI callback, and done for this CPU later during 2434 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped. 2435 */ 2436 if (!panic) 2437 wbinvd_on_all_cpus(); 2438 2439 __snp_free_firmware_pages(virt_to_page(sev_es_tmr), 2440 get_order(sev_es_tmr_size), 2441 true); 2442 sev_es_tmr = NULL; 2443 } 2444 2445 if (sev_init_ex_buffer) { 2446 __snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer), 2447 get_order(NV_LENGTH), 2448 true); 2449 sev_init_ex_buffer = NULL; 2450 } 2451 2452 if (snp_range_list) { 2453 kfree(snp_range_list); 2454 snp_range_list = NULL; 2455 } 2456 2457 __sev_snp_shutdown_locked(&error, panic); 2458 } 2459 2460 static void sev_firmware_shutdown(struct sev_device *sev) 2461 { 2462 mutex_lock(&sev_cmd_mutex); 2463 __sev_firmware_shutdown(sev, false); 2464 mutex_unlock(&sev_cmd_mutex); 2465 } 2466 2467 void sev_platform_shutdown(void) 2468 { 2469 if (!psp_master || !psp_master->sev_data) 2470 return; 2471 2472 sev_firmware_shutdown(psp_master->sev_data); 2473 } 2474 EXPORT_SYMBOL_GPL(sev_platform_shutdown); 2475 2476 void sev_dev_destroy(struct psp_device *psp) 2477 { 2478 struct sev_device *sev = psp->sev_data; 2479 2480 if (!sev) 2481 return; 2482 2483 sev_firmware_shutdown(sev); 2484 2485 if (sev->misc) 2486 kref_put(&misc_dev->refcount, sev_exit); 2487 2488 psp_clear_sev_irq_handler(psp); 2489 } 2490 2491 static int snp_shutdown_on_panic(struct notifier_block *nb, 2492 unsigned long reason, void *arg) 2493 { 2494 struct sev_device *sev = psp_master->sev_data; 2495 2496 /* 2497 * If sev_cmd_mutex is already acquired, then it's likely 2498 * another PSP command is in flight and issuing a shutdown 2499 * would fail in unexpected ways. Rather than create even 2500 * more confusion during a panic, just bail out here. 2501 */ 2502 if (mutex_is_locked(&sev_cmd_mutex)) 2503 return NOTIFY_DONE; 2504 2505 __sev_firmware_shutdown(sev, true); 2506 2507 return NOTIFY_DONE; 2508 } 2509 2510 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd, 2511 void *data, int *error) 2512 { 2513 if (!filep || filep->f_op != &sev_fops) 2514 return -EBADF; 2515 2516 return sev_do_cmd(cmd, data, error); 2517 } 2518 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user); 2519 2520 void sev_pci_init(void) 2521 { 2522 struct sev_device *sev = psp_master->sev_data; 2523 u8 api_major, api_minor, build; 2524 2525 if (!sev) 2526 return; 2527 2528 psp_timeout = psp_probe_timeout; 2529 2530 if (sev_get_api_version()) 2531 goto err; 2532 2533 api_major = sev->api_major; 2534 api_minor = sev->api_minor; 2535 build = sev->build; 2536 2537 if (sev_update_firmware(sev->dev) == 0) 2538 sev_get_api_version(); 2539 2540 if (api_major != sev->api_major || api_minor != sev->api_minor || 2541 build != sev->build) 2542 dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n", 2543 api_major, api_minor, build, 2544 sev->api_major, sev->api_minor, sev->build); 2545 2546 return; 2547 2548 err: 2549 sev_dev_destroy(psp_master); 2550 2551 psp_master->sev_data = NULL; 2552 } 2553 2554 void sev_pci_exit(void) 2555 { 2556 struct sev_device *sev = psp_master->sev_data; 2557 2558 if (!sev) 2559 return; 2560 2561 sev_firmware_shutdown(sev); 2562 } 2563