xref: /linux/drivers/crypto/ccp/sev-dev.c (revision 886d6981208263b55a1eb8b39c5d00db1544b9bb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Secure Encrypted Virtualization (SEV) interface
4  *
5  * Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6  *
7  * Author: Brijesh Singh <brijesh.singh@amd.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/kthread.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/spinlock_types.h>
18 #include <linux/types.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/hw_random.h>
22 #include <linux/ccp.h>
23 #include <linux/firmware.h>
24 #include <linux/panic_notifier.h>
25 #include <linux/gfp.h>
26 #include <linux/cpufeature.h>
27 #include <linux/fs.h>
28 #include <linux/fs_struct.h>
29 #include <linux/psp.h>
30 #include <linux/amd-iommu.h>
31 
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/e820/types.h>
35 #include <asm/sev.h>
36 #include <asm/msr.h>
37 
38 #include "psp-dev.h"
39 #include "sev-dev.h"
40 
41 #define DEVICE_NAME		"sev"
42 #define SEV_FW_FILE		"amd/sev.fw"
43 #define SEV_FW_NAME_SIZE	64
44 
45 /* Minimum firmware version required for the SEV-SNP support */
46 #define SNP_MIN_API_MAJOR	1
47 #define SNP_MIN_API_MINOR	51
48 
49 /*
50  * Maximum number of firmware-writable buffers that might be specified
51  * in the parameters of a legacy SEV command buffer.
52  */
53 #define CMD_BUF_FW_WRITABLE_MAX 2
54 
55 /* Leave room in the descriptor array for an end-of-list indicator. */
56 #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1)
57 
58 static DEFINE_MUTEX(sev_cmd_mutex);
59 static struct sev_misc_dev *misc_dev;
60 
61 static int psp_cmd_timeout = 100;
62 module_param(psp_cmd_timeout, int, 0644);
63 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands");
64 
65 static int psp_probe_timeout = 5;
66 module_param(psp_probe_timeout, int, 0644);
67 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe");
68 
69 static char *init_ex_path;
70 module_param(init_ex_path, charp, 0444);
71 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX");
72 
73 static bool psp_init_on_probe = true;
74 module_param(psp_init_on_probe, bool, 0444);
75 MODULE_PARM_DESC(psp_init_on_probe, "  if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it");
76 
77 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */
78 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */
79 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */
80 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */
81 
82 static bool psp_dead;
83 static int psp_timeout;
84 
85 /* Trusted Memory Region (TMR):
86  *   The TMR is a 1MB area that must be 1MB aligned.  Use the page allocator
87  *   to allocate the memory, which will return aligned memory for the specified
88  *   allocation order.
89  *
90  * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized.
91  */
92 #define SEV_TMR_SIZE		(1024 * 1024)
93 #define SNP_TMR_SIZE		(2 * 1024 * 1024)
94 
95 static void *sev_es_tmr;
96 static size_t sev_es_tmr_size = SEV_TMR_SIZE;
97 
98 /* INIT_EX NV Storage:
99  *   The NV Storage is a 32Kb area and must be 4Kb page aligned.  Use the page
100  *   allocator to allocate the memory, which will return aligned memory for the
101  *   specified allocation order.
102  */
103 #define NV_LENGTH (32 * 1024)
104 static void *sev_init_ex_buffer;
105 
106 /*
107  * SEV_DATA_RANGE_LIST:
108  *   Array containing range of pages that firmware transitions to HV-fixed
109  *   page state.
110  */
111 static struct sev_data_range_list *snp_range_list;
112 
113 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic);
114 
115 static int snp_shutdown_on_panic(struct notifier_block *nb,
116 				 unsigned long reason, void *arg);
117 
118 static struct notifier_block snp_panic_notifier = {
119 	.notifier_call = snp_shutdown_on_panic,
120 };
121 
122 static inline bool sev_version_greater_or_equal(u8 maj, u8 min)
123 {
124 	struct sev_device *sev = psp_master->sev_data;
125 
126 	if (sev->api_major > maj)
127 		return true;
128 
129 	if (sev->api_major == maj && sev->api_minor >= min)
130 		return true;
131 
132 	return false;
133 }
134 
135 static void sev_irq_handler(int irq, void *data, unsigned int status)
136 {
137 	struct sev_device *sev = data;
138 	int reg;
139 
140 	/* Check if it is command completion: */
141 	if (!(status & SEV_CMD_COMPLETE))
142 		return;
143 
144 	/* Check if it is SEV command completion: */
145 	reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
146 	if (FIELD_GET(PSP_CMDRESP_RESP, reg)) {
147 		sev->int_rcvd = 1;
148 		wake_up(&sev->int_queue);
149 	}
150 }
151 
152 static int sev_wait_cmd_ioc(struct sev_device *sev,
153 			    unsigned int *reg, unsigned int timeout)
154 {
155 	int ret;
156 
157 	/*
158 	 * If invoked during panic handling, local interrupts are disabled,
159 	 * so the PSP command completion interrupt can't be used. Poll for
160 	 * PSP command completion instead.
161 	 */
162 	if (irqs_disabled()) {
163 		unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10;
164 
165 		/* Poll for SEV command completion: */
166 		while (timeout_usecs--) {
167 			*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
168 			if (*reg & PSP_CMDRESP_RESP)
169 				return 0;
170 
171 			udelay(10);
172 		}
173 		return -ETIMEDOUT;
174 	}
175 
176 	ret = wait_event_timeout(sev->int_queue,
177 			sev->int_rcvd, timeout * HZ);
178 	if (!ret)
179 		return -ETIMEDOUT;
180 
181 	*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
182 
183 	return 0;
184 }
185 
186 static int sev_cmd_buffer_len(int cmd)
187 {
188 	switch (cmd) {
189 	case SEV_CMD_INIT:			return sizeof(struct sev_data_init);
190 	case SEV_CMD_INIT_EX:                   return sizeof(struct sev_data_init_ex);
191 	case SEV_CMD_SNP_SHUTDOWN_EX:		return sizeof(struct sev_data_snp_shutdown_ex);
192 	case SEV_CMD_SNP_INIT_EX:		return sizeof(struct sev_data_snp_init_ex);
193 	case SEV_CMD_PLATFORM_STATUS:		return sizeof(struct sev_user_data_status);
194 	case SEV_CMD_PEK_CSR:			return sizeof(struct sev_data_pek_csr);
195 	case SEV_CMD_PEK_CERT_IMPORT:		return sizeof(struct sev_data_pek_cert_import);
196 	case SEV_CMD_PDH_CERT_EXPORT:		return sizeof(struct sev_data_pdh_cert_export);
197 	case SEV_CMD_LAUNCH_START:		return sizeof(struct sev_data_launch_start);
198 	case SEV_CMD_LAUNCH_UPDATE_DATA:	return sizeof(struct sev_data_launch_update_data);
199 	case SEV_CMD_LAUNCH_UPDATE_VMSA:	return sizeof(struct sev_data_launch_update_vmsa);
200 	case SEV_CMD_LAUNCH_FINISH:		return sizeof(struct sev_data_launch_finish);
201 	case SEV_CMD_LAUNCH_MEASURE:		return sizeof(struct sev_data_launch_measure);
202 	case SEV_CMD_ACTIVATE:			return sizeof(struct sev_data_activate);
203 	case SEV_CMD_DEACTIVATE:		return sizeof(struct sev_data_deactivate);
204 	case SEV_CMD_DECOMMISSION:		return sizeof(struct sev_data_decommission);
205 	case SEV_CMD_GUEST_STATUS:		return sizeof(struct sev_data_guest_status);
206 	case SEV_CMD_DBG_DECRYPT:		return sizeof(struct sev_data_dbg);
207 	case SEV_CMD_DBG_ENCRYPT:		return sizeof(struct sev_data_dbg);
208 	case SEV_CMD_SEND_START:		return sizeof(struct sev_data_send_start);
209 	case SEV_CMD_SEND_UPDATE_DATA:		return sizeof(struct sev_data_send_update_data);
210 	case SEV_CMD_SEND_UPDATE_VMSA:		return sizeof(struct sev_data_send_update_vmsa);
211 	case SEV_CMD_SEND_FINISH:		return sizeof(struct sev_data_send_finish);
212 	case SEV_CMD_RECEIVE_START:		return sizeof(struct sev_data_receive_start);
213 	case SEV_CMD_RECEIVE_FINISH:		return sizeof(struct sev_data_receive_finish);
214 	case SEV_CMD_RECEIVE_UPDATE_DATA:	return sizeof(struct sev_data_receive_update_data);
215 	case SEV_CMD_RECEIVE_UPDATE_VMSA:	return sizeof(struct sev_data_receive_update_vmsa);
216 	case SEV_CMD_LAUNCH_UPDATE_SECRET:	return sizeof(struct sev_data_launch_secret);
217 	case SEV_CMD_DOWNLOAD_FIRMWARE:		return sizeof(struct sev_data_download_firmware);
218 	case SEV_CMD_GET_ID:			return sizeof(struct sev_data_get_id);
219 	case SEV_CMD_ATTESTATION_REPORT:	return sizeof(struct sev_data_attestation_report);
220 	case SEV_CMD_SEND_CANCEL:		return sizeof(struct sev_data_send_cancel);
221 	case SEV_CMD_SNP_GCTX_CREATE:		return sizeof(struct sev_data_snp_addr);
222 	case SEV_CMD_SNP_LAUNCH_START:		return sizeof(struct sev_data_snp_launch_start);
223 	case SEV_CMD_SNP_LAUNCH_UPDATE:		return sizeof(struct sev_data_snp_launch_update);
224 	case SEV_CMD_SNP_ACTIVATE:		return sizeof(struct sev_data_snp_activate);
225 	case SEV_CMD_SNP_DECOMMISSION:		return sizeof(struct sev_data_snp_addr);
226 	case SEV_CMD_SNP_PAGE_RECLAIM:		return sizeof(struct sev_data_snp_page_reclaim);
227 	case SEV_CMD_SNP_GUEST_STATUS:		return sizeof(struct sev_data_snp_guest_status);
228 	case SEV_CMD_SNP_LAUNCH_FINISH:		return sizeof(struct sev_data_snp_launch_finish);
229 	case SEV_CMD_SNP_DBG_DECRYPT:		return sizeof(struct sev_data_snp_dbg);
230 	case SEV_CMD_SNP_DBG_ENCRYPT:		return sizeof(struct sev_data_snp_dbg);
231 	case SEV_CMD_SNP_PAGE_UNSMASH:		return sizeof(struct sev_data_snp_page_unsmash);
232 	case SEV_CMD_SNP_PLATFORM_STATUS:	return sizeof(struct sev_data_snp_addr);
233 	case SEV_CMD_SNP_GUEST_REQUEST:		return sizeof(struct sev_data_snp_guest_request);
234 	case SEV_CMD_SNP_CONFIG:		return sizeof(struct sev_user_data_snp_config);
235 	case SEV_CMD_SNP_COMMIT:		return sizeof(struct sev_data_snp_commit);
236 	case SEV_CMD_SNP_FEATURE_INFO:		return sizeof(struct sev_data_snp_feature_info);
237 	case SEV_CMD_SNP_VLEK_LOAD:		return sizeof(struct sev_user_data_snp_vlek_load);
238 	default:				return 0;
239 	}
240 
241 	return 0;
242 }
243 
244 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode)
245 {
246 	struct file *fp;
247 	struct path root;
248 	struct cred *cred;
249 	const struct cred *old_cred;
250 
251 	task_lock(&init_task);
252 	get_fs_root(init_task.fs, &root);
253 	task_unlock(&init_task);
254 
255 	cred = prepare_creds();
256 	if (!cred)
257 		return ERR_PTR(-ENOMEM);
258 	cred->fsuid = GLOBAL_ROOT_UID;
259 	old_cred = override_creds(cred);
260 
261 	fp = file_open_root(&root, filename, flags, mode);
262 	path_put(&root);
263 
264 	put_cred(revert_creds(old_cred));
265 
266 	return fp;
267 }
268 
269 static int sev_read_init_ex_file(void)
270 {
271 	struct sev_device *sev = psp_master->sev_data;
272 	struct file *fp;
273 	ssize_t nread;
274 
275 	lockdep_assert_held(&sev_cmd_mutex);
276 
277 	if (!sev_init_ex_buffer)
278 		return -EOPNOTSUPP;
279 
280 	fp = open_file_as_root(init_ex_path, O_RDONLY, 0);
281 	if (IS_ERR(fp)) {
282 		int ret = PTR_ERR(fp);
283 
284 		if (ret == -ENOENT) {
285 			dev_info(sev->dev,
286 				"SEV: %s does not exist and will be created later.\n",
287 				init_ex_path);
288 			ret = 0;
289 		} else {
290 			dev_err(sev->dev,
291 				"SEV: could not open %s for read, error %d\n",
292 				init_ex_path, ret);
293 		}
294 		return ret;
295 	}
296 
297 	nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL);
298 	if (nread != NV_LENGTH) {
299 		dev_info(sev->dev,
300 			"SEV: could not read %u bytes to non volatile memory area, ret %ld\n",
301 			NV_LENGTH, nread);
302 	}
303 
304 	dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread);
305 	filp_close(fp, NULL);
306 
307 	return 0;
308 }
309 
310 static int sev_write_init_ex_file(void)
311 {
312 	struct sev_device *sev = psp_master->sev_data;
313 	struct file *fp;
314 	loff_t offset = 0;
315 	ssize_t nwrite;
316 
317 	lockdep_assert_held(&sev_cmd_mutex);
318 
319 	if (!sev_init_ex_buffer)
320 		return 0;
321 
322 	fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600);
323 	if (IS_ERR(fp)) {
324 		int ret = PTR_ERR(fp);
325 
326 		dev_err(sev->dev,
327 			"SEV: could not open file for write, error %d\n",
328 			ret);
329 		return ret;
330 	}
331 
332 	nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset);
333 	vfs_fsync(fp, 0);
334 	filp_close(fp, NULL);
335 
336 	if (nwrite != NV_LENGTH) {
337 		dev_err(sev->dev,
338 			"SEV: failed to write %u bytes to non volatile memory area, ret %ld\n",
339 			NV_LENGTH, nwrite);
340 		return -EIO;
341 	}
342 
343 	dev_dbg(sev->dev, "SEV: write successful to NV file\n");
344 
345 	return 0;
346 }
347 
348 static int sev_write_init_ex_file_if_required(int cmd_id)
349 {
350 	lockdep_assert_held(&sev_cmd_mutex);
351 
352 	if (!sev_init_ex_buffer)
353 		return 0;
354 
355 	/*
356 	 * Only a few platform commands modify the SPI/NV area, but none of the
357 	 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN,
358 	 * PEK_CERT_IMPORT, and PDH_GEN do.
359 	 */
360 	switch (cmd_id) {
361 	case SEV_CMD_FACTORY_RESET:
362 	case SEV_CMD_INIT_EX:
363 	case SEV_CMD_PDH_GEN:
364 	case SEV_CMD_PEK_CERT_IMPORT:
365 	case SEV_CMD_PEK_GEN:
366 		break;
367 	default:
368 		return 0;
369 	}
370 
371 	return sev_write_init_ex_file();
372 }
373 
374 /*
375  * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked()
376  * needs snp_reclaim_pages(), so a forward declaration is needed.
377  */
378 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret);
379 
380 static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked)
381 {
382 	int ret, err, i;
383 
384 	paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE));
385 
386 	for (i = 0; i < npages; i++, paddr += PAGE_SIZE) {
387 		struct sev_data_snp_page_reclaim data = {0};
388 
389 		data.paddr = paddr;
390 
391 		if (locked)
392 			ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
393 		else
394 			ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
395 
396 		if (ret)
397 			goto cleanup;
398 
399 		ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K);
400 		if (ret)
401 			goto cleanup;
402 	}
403 
404 	return 0;
405 
406 cleanup:
407 	/*
408 	 * If there was a failure reclaiming the page then it is no longer safe
409 	 * to release it back to the system; leak it instead.
410 	 */
411 	snp_leak_pages(__phys_to_pfn(paddr), npages - i);
412 	return ret;
413 }
414 
415 static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked)
416 {
417 	unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT;
418 	int rc, i;
419 
420 	for (i = 0; i < npages; i++, pfn++) {
421 		rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true);
422 		if (rc)
423 			goto cleanup;
424 	}
425 
426 	return 0;
427 
428 cleanup:
429 	/*
430 	 * Try unrolling the firmware state changes by
431 	 * reclaiming the pages which were already changed to the
432 	 * firmware state.
433 	 */
434 	snp_reclaim_pages(paddr, i, locked);
435 
436 	return rc;
437 }
438 
439 static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order, bool locked)
440 {
441 	unsigned long npages = 1ul << order, paddr;
442 	struct sev_device *sev;
443 	struct page *page;
444 
445 	if (!psp_master || !psp_master->sev_data)
446 		return NULL;
447 
448 	page = alloc_pages(gfp_mask, order);
449 	if (!page)
450 		return NULL;
451 
452 	/* If SEV-SNP is initialized then add the page in RMP table. */
453 	sev = psp_master->sev_data;
454 	if (!sev->snp_initialized)
455 		return page;
456 
457 	paddr = __pa((unsigned long)page_address(page));
458 	if (rmp_mark_pages_firmware(paddr, npages, locked))
459 		return NULL;
460 
461 	return page;
462 }
463 
464 void *snp_alloc_firmware_page(gfp_t gfp_mask)
465 {
466 	struct page *page;
467 
468 	page = __snp_alloc_firmware_pages(gfp_mask, 0, false);
469 
470 	return page ? page_address(page) : NULL;
471 }
472 EXPORT_SYMBOL_GPL(snp_alloc_firmware_page);
473 
474 static void __snp_free_firmware_pages(struct page *page, int order, bool locked)
475 {
476 	struct sev_device *sev = psp_master->sev_data;
477 	unsigned long paddr, npages = 1ul << order;
478 
479 	if (!page)
480 		return;
481 
482 	paddr = __pa((unsigned long)page_address(page));
483 	if (sev->snp_initialized &&
484 	    snp_reclaim_pages(paddr, npages, locked))
485 		return;
486 
487 	__free_pages(page, order);
488 }
489 
490 void snp_free_firmware_page(void *addr)
491 {
492 	if (!addr)
493 		return;
494 
495 	__snp_free_firmware_pages(virt_to_page(addr), 0, false);
496 }
497 EXPORT_SYMBOL_GPL(snp_free_firmware_page);
498 
499 static void *sev_fw_alloc(unsigned long len)
500 {
501 	struct page *page;
502 
503 	page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len), true);
504 	if (!page)
505 		return NULL;
506 
507 	return page_address(page);
508 }
509 
510 /**
511  * struct cmd_buf_desc - descriptors for managing legacy SEV command address
512  * parameters corresponding to buffers that may be written to by firmware.
513  *
514  * @paddr_ptr:  pointer to the address parameter in the command buffer which may
515  *              need to be saved/restored depending on whether a bounce buffer
516  *              is used. In the case of a bounce buffer, the command buffer
517  *              needs to be updated with the address of the new bounce buffer
518  *              snp_map_cmd_buf_desc() has allocated specifically for it. Must
519  *              be NULL if this descriptor is only an end-of-list indicator.
520  *
521  * @paddr_orig: storage for the original address parameter, which can be used to
522  *              restore the original value in @paddr_ptr in cases where it is
523  *              replaced with the address of a bounce buffer.
524  *
525  * @len: length of buffer located at the address originally stored at @paddr_ptr
526  *
527  * @guest_owned: true if the address corresponds to guest-owned pages, in which
528  *               case bounce buffers are not needed.
529  */
530 struct cmd_buf_desc {
531 	u64 *paddr_ptr;
532 	u64 paddr_orig;
533 	u32 len;
534 	bool guest_owned;
535 };
536 
537 /*
538  * If a legacy SEV command parameter is a memory address, those pages in
539  * turn need to be transitioned to/from firmware-owned before/after
540  * executing the firmware command.
541  *
542  * Additionally, in cases where those pages are not guest-owned, a bounce
543  * buffer is needed in place of the original memory address parameter.
544  *
545  * A set of descriptors are used to keep track of this handling, and
546  * initialized here based on the specific commands being executed.
547  */
548 static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf,
549 					   struct cmd_buf_desc *desc_list)
550 {
551 	switch (cmd) {
552 	case SEV_CMD_PDH_CERT_EXPORT: {
553 		struct sev_data_pdh_cert_export *data = cmd_buf;
554 
555 		desc_list[0].paddr_ptr = &data->pdh_cert_address;
556 		desc_list[0].len = data->pdh_cert_len;
557 		desc_list[1].paddr_ptr = &data->cert_chain_address;
558 		desc_list[1].len = data->cert_chain_len;
559 		break;
560 	}
561 	case SEV_CMD_GET_ID: {
562 		struct sev_data_get_id *data = cmd_buf;
563 
564 		desc_list[0].paddr_ptr = &data->address;
565 		desc_list[0].len = data->len;
566 		break;
567 	}
568 	case SEV_CMD_PEK_CSR: {
569 		struct sev_data_pek_csr *data = cmd_buf;
570 
571 		desc_list[0].paddr_ptr = &data->address;
572 		desc_list[0].len = data->len;
573 		break;
574 	}
575 	case SEV_CMD_LAUNCH_UPDATE_DATA: {
576 		struct sev_data_launch_update_data *data = cmd_buf;
577 
578 		desc_list[0].paddr_ptr = &data->address;
579 		desc_list[0].len = data->len;
580 		desc_list[0].guest_owned = true;
581 		break;
582 	}
583 	case SEV_CMD_LAUNCH_UPDATE_VMSA: {
584 		struct sev_data_launch_update_vmsa *data = cmd_buf;
585 
586 		desc_list[0].paddr_ptr = &data->address;
587 		desc_list[0].len = data->len;
588 		desc_list[0].guest_owned = true;
589 		break;
590 	}
591 	case SEV_CMD_LAUNCH_MEASURE: {
592 		struct sev_data_launch_measure *data = cmd_buf;
593 
594 		desc_list[0].paddr_ptr = &data->address;
595 		desc_list[0].len = data->len;
596 		break;
597 	}
598 	case SEV_CMD_LAUNCH_UPDATE_SECRET: {
599 		struct sev_data_launch_secret *data = cmd_buf;
600 
601 		desc_list[0].paddr_ptr = &data->guest_address;
602 		desc_list[0].len = data->guest_len;
603 		desc_list[0].guest_owned = true;
604 		break;
605 	}
606 	case SEV_CMD_DBG_DECRYPT: {
607 		struct sev_data_dbg *data = cmd_buf;
608 
609 		desc_list[0].paddr_ptr = &data->dst_addr;
610 		desc_list[0].len = data->len;
611 		desc_list[0].guest_owned = true;
612 		break;
613 	}
614 	case SEV_CMD_DBG_ENCRYPT: {
615 		struct sev_data_dbg *data = cmd_buf;
616 
617 		desc_list[0].paddr_ptr = &data->dst_addr;
618 		desc_list[0].len = data->len;
619 		desc_list[0].guest_owned = true;
620 		break;
621 	}
622 	case SEV_CMD_ATTESTATION_REPORT: {
623 		struct sev_data_attestation_report *data = cmd_buf;
624 
625 		desc_list[0].paddr_ptr = &data->address;
626 		desc_list[0].len = data->len;
627 		break;
628 	}
629 	case SEV_CMD_SEND_START: {
630 		struct sev_data_send_start *data = cmd_buf;
631 
632 		desc_list[0].paddr_ptr = &data->session_address;
633 		desc_list[0].len = data->session_len;
634 		break;
635 	}
636 	case SEV_CMD_SEND_UPDATE_DATA: {
637 		struct sev_data_send_update_data *data = cmd_buf;
638 
639 		desc_list[0].paddr_ptr = &data->hdr_address;
640 		desc_list[0].len = data->hdr_len;
641 		desc_list[1].paddr_ptr = &data->trans_address;
642 		desc_list[1].len = data->trans_len;
643 		break;
644 	}
645 	case SEV_CMD_SEND_UPDATE_VMSA: {
646 		struct sev_data_send_update_vmsa *data = cmd_buf;
647 
648 		desc_list[0].paddr_ptr = &data->hdr_address;
649 		desc_list[0].len = data->hdr_len;
650 		desc_list[1].paddr_ptr = &data->trans_address;
651 		desc_list[1].len = data->trans_len;
652 		break;
653 	}
654 	case SEV_CMD_RECEIVE_UPDATE_DATA: {
655 		struct sev_data_receive_update_data *data = cmd_buf;
656 
657 		desc_list[0].paddr_ptr = &data->guest_address;
658 		desc_list[0].len = data->guest_len;
659 		desc_list[0].guest_owned = true;
660 		break;
661 	}
662 	case SEV_CMD_RECEIVE_UPDATE_VMSA: {
663 		struct sev_data_receive_update_vmsa *data = cmd_buf;
664 
665 		desc_list[0].paddr_ptr = &data->guest_address;
666 		desc_list[0].len = data->guest_len;
667 		desc_list[0].guest_owned = true;
668 		break;
669 	}
670 	default:
671 		break;
672 	}
673 }
674 
675 static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc)
676 {
677 	unsigned int npages;
678 
679 	if (!desc->len)
680 		return 0;
681 
682 	/* Allocate a bounce buffer if this isn't a guest owned page. */
683 	if (!desc->guest_owned) {
684 		struct page *page;
685 
686 		page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len));
687 		if (!page) {
688 			pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n");
689 			return -ENOMEM;
690 		}
691 
692 		desc->paddr_orig = *desc->paddr_ptr;
693 		*desc->paddr_ptr = __psp_pa(page_to_virt(page));
694 	}
695 
696 	npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
697 
698 	/* Transition the buffer to firmware-owned. */
699 	if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) {
700 		pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n");
701 		return -EFAULT;
702 	}
703 
704 	return 0;
705 }
706 
707 static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc)
708 {
709 	unsigned int npages;
710 
711 	if (!desc->len)
712 		return 0;
713 
714 	npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
715 
716 	/* Transition the buffers back to hypervisor-owned. */
717 	if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) {
718 		pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n");
719 		return -EFAULT;
720 	}
721 
722 	/* Copy data from bounce buffer and then free it. */
723 	if (!desc->guest_owned) {
724 		void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr));
725 		void *dst_buf = __va(__sme_clr(desc->paddr_orig));
726 
727 		memcpy(dst_buf, bounce_buf, desc->len);
728 		__free_pages(virt_to_page(bounce_buf), get_order(desc->len));
729 
730 		/* Restore the original address in the command buffer. */
731 		*desc->paddr_ptr = desc->paddr_orig;
732 	}
733 
734 	return 0;
735 }
736 
737 static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
738 {
739 	int i;
740 
741 	snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list);
742 
743 	for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
744 		struct cmd_buf_desc *desc = &desc_list[i];
745 
746 		if (!desc->paddr_ptr)
747 			break;
748 
749 		if (snp_map_cmd_buf_desc(desc))
750 			goto err_unmap;
751 	}
752 
753 	return 0;
754 
755 err_unmap:
756 	for (i--; i >= 0; i--)
757 		snp_unmap_cmd_buf_desc(&desc_list[i]);
758 
759 	return -EFAULT;
760 }
761 
762 static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list)
763 {
764 	int i, ret = 0;
765 
766 	for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
767 		struct cmd_buf_desc *desc = &desc_list[i];
768 
769 		if (!desc->paddr_ptr)
770 			break;
771 
772 		if (snp_unmap_cmd_buf_desc(&desc_list[i]))
773 			ret = -EFAULT;
774 	}
775 
776 	return ret;
777 }
778 
779 static bool sev_cmd_buf_writable(int cmd)
780 {
781 	switch (cmd) {
782 	case SEV_CMD_PLATFORM_STATUS:
783 	case SEV_CMD_GUEST_STATUS:
784 	case SEV_CMD_LAUNCH_START:
785 	case SEV_CMD_RECEIVE_START:
786 	case SEV_CMD_LAUNCH_MEASURE:
787 	case SEV_CMD_SEND_START:
788 	case SEV_CMD_SEND_UPDATE_DATA:
789 	case SEV_CMD_SEND_UPDATE_VMSA:
790 	case SEV_CMD_PEK_CSR:
791 	case SEV_CMD_PDH_CERT_EXPORT:
792 	case SEV_CMD_GET_ID:
793 	case SEV_CMD_ATTESTATION_REPORT:
794 		return true;
795 	default:
796 		return false;
797 	}
798 }
799 
800 /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */
801 static bool snp_legacy_handling_needed(int cmd)
802 {
803 	struct sev_device *sev = psp_master->sev_data;
804 
805 	return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized;
806 }
807 
808 static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
809 {
810 	if (!snp_legacy_handling_needed(cmd))
811 		return 0;
812 
813 	if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list))
814 		return -EFAULT;
815 
816 	/*
817 	 * Before command execution, the command buffer needs to be put into
818 	 * the firmware-owned state.
819 	 */
820 	if (sev_cmd_buf_writable(cmd)) {
821 		if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true))
822 			return -EFAULT;
823 	}
824 
825 	return 0;
826 }
827 
828 static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf)
829 {
830 	if (!snp_legacy_handling_needed(cmd))
831 		return 0;
832 
833 	/*
834 	 * After command completion, the command buffer needs to be put back
835 	 * into the hypervisor-owned state.
836 	 */
837 	if (sev_cmd_buf_writable(cmd))
838 		if (snp_reclaim_pages(__pa(cmd_buf), 1, true))
839 			return -EFAULT;
840 
841 	return 0;
842 }
843 
844 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret)
845 {
846 	struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0};
847 	struct psp_device *psp = psp_master;
848 	struct sev_device *sev;
849 	unsigned int cmdbuff_hi, cmdbuff_lo;
850 	unsigned int phys_lsb, phys_msb;
851 	unsigned int reg, ret = 0;
852 	void *cmd_buf;
853 	int buf_len;
854 
855 	if (!psp || !psp->sev_data)
856 		return -ENODEV;
857 
858 	if (psp_dead)
859 		return -EBUSY;
860 
861 	sev = psp->sev_data;
862 
863 	buf_len = sev_cmd_buffer_len(cmd);
864 	if (WARN_ON_ONCE(!data != !buf_len))
865 		return -EINVAL;
866 
867 	/*
868 	 * Copy the incoming data to driver's scratch buffer as __pa() will not
869 	 * work for some memory, e.g. vmalloc'd addresses, and @data may not be
870 	 * physically contiguous.
871 	 */
872 	if (data) {
873 		/*
874 		 * Commands are generally issued one at a time and require the
875 		 * sev_cmd_mutex, but there could be recursive firmware requests
876 		 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while
877 		 * preparing buffers for another command. This is the only known
878 		 * case of nesting in the current code, so exactly one
879 		 * additional command buffer is available for that purpose.
880 		 */
881 		if (!sev->cmd_buf_active) {
882 			cmd_buf = sev->cmd_buf;
883 			sev->cmd_buf_active = true;
884 		} else if (!sev->cmd_buf_backup_active) {
885 			cmd_buf = sev->cmd_buf_backup;
886 			sev->cmd_buf_backup_active = true;
887 		} else {
888 			dev_err(sev->dev,
889 				"SEV: too many firmware commands in progress, no command buffers available.\n");
890 			return -EBUSY;
891 		}
892 
893 		memcpy(cmd_buf, data, buf_len);
894 
895 		/*
896 		 * The behavior of the SEV-legacy commands is altered when the
897 		 * SNP firmware is in the INIT state.
898 		 */
899 		ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list);
900 		if (ret) {
901 			dev_err(sev->dev,
902 				"SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n",
903 				cmd, ret);
904 			return ret;
905 		}
906 	} else {
907 		cmd_buf = sev->cmd_buf;
908 	}
909 
910 	/* Get the physical address of the command buffer */
911 	phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0;
912 	phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0;
913 
914 	dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n",
915 		cmd, phys_msb, phys_lsb, psp_timeout);
916 
917 	print_hex_dump_debug("(in):  ", DUMP_PREFIX_OFFSET, 16, 2, data,
918 			     buf_len, false);
919 
920 	iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
921 	iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
922 
923 	sev->int_rcvd = 0;
924 
925 	reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd);
926 
927 	/*
928 	 * If invoked during panic handling, local interrupts are disabled so
929 	 * the PSP command completion interrupt can't be used.
930 	 * sev_wait_cmd_ioc() already checks for interrupts disabled and
931 	 * polls for PSP command completion.  Ensure we do not request an
932 	 * interrupt from the PSP if irqs disabled.
933 	 */
934 	if (!irqs_disabled())
935 		reg |= SEV_CMDRESP_IOC;
936 
937 	iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg);
938 
939 	/* wait for command completion */
940 	ret = sev_wait_cmd_ioc(sev, &reg, psp_timeout);
941 	if (ret) {
942 		if (psp_ret)
943 			*psp_ret = 0;
944 
945 		dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd);
946 		psp_dead = true;
947 
948 		return ret;
949 	}
950 
951 	psp_timeout = psp_cmd_timeout;
952 
953 	if (psp_ret)
954 		*psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg);
955 
956 	if (FIELD_GET(PSP_CMDRESP_STS, reg)) {
957 		dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n",
958 			cmd, FIELD_GET(PSP_CMDRESP_STS, reg));
959 
960 		/*
961 		 * PSP firmware may report additional error information in the
962 		 * command buffer registers on error. Print contents of command
963 		 * buffer registers if they changed.
964 		 */
965 		cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
966 		cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
967 		if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) {
968 			dev_dbg(sev->dev, "Additional error information reported in cmdbuff:");
969 			dev_dbg(sev->dev, "  cmdbuff hi: %#010x\n", cmdbuff_hi);
970 			dev_dbg(sev->dev, "  cmdbuff lo: %#010x\n", cmdbuff_lo);
971 		}
972 		ret = -EIO;
973 	} else {
974 		ret = sev_write_init_ex_file_if_required(cmd);
975 	}
976 
977 	/*
978 	 * Copy potential output from the PSP back to data.  Do this even on
979 	 * failure in case the caller wants to glean something from the error.
980 	 */
981 	if (data) {
982 		int ret_reclaim;
983 		/*
984 		 * Restore the page state after the command completes.
985 		 */
986 		ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf);
987 		if (ret_reclaim) {
988 			dev_err(sev->dev,
989 				"SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n",
990 				cmd, ret_reclaim);
991 			return ret_reclaim;
992 		}
993 
994 		memcpy(data, cmd_buf, buf_len);
995 
996 		if (sev->cmd_buf_backup_active)
997 			sev->cmd_buf_backup_active = false;
998 		else
999 			sev->cmd_buf_active = false;
1000 
1001 		if (snp_unmap_cmd_buf_desc_list(desc_list))
1002 			return -EFAULT;
1003 	}
1004 
1005 	print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data,
1006 			     buf_len, false);
1007 
1008 	return ret;
1009 }
1010 
1011 int sev_do_cmd(int cmd, void *data, int *psp_ret)
1012 {
1013 	int rc;
1014 
1015 	mutex_lock(&sev_cmd_mutex);
1016 	rc = __sev_do_cmd_locked(cmd, data, psp_ret);
1017 	mutex_unlock(&sev_cmd_mutex);
1018 
1019 	return rc;
1020 }
1021 EXPORT_SYMBOL_GPL(sev_do_cmd);
1022 
1023 static int __sev_init_locked(int *error)
1024 {
1025 	struct sev_data_init data;
1026 
1027 	memset(&data, 0, sizeof(data));
1028 	if (sev_es_tmr) {
1029 		/*
1030 		 * Do not include the encryption mask on the physical
1031 		 * address of the TMR (firmware should clear it anyway).
1032 		 */
1033 		data.tmr_address = __pa(sev_es_tmr);
1034 
1035 		data.flags |= SEV_INIT_FLAGS_SEV_ES;
1036 		data.tmr_len = sev_es_tmr_size;
1037 	}
1038 
1039 	return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error);
1040 }
1041 
1042 static int __sev_init_ex_locked(int *error)
1043 {
1044 	struct sev_data_init_ex data;
1045 
1046 	memset(&data, 0, sizeof(data));
1047 	data.length = sizeof(data);
1048 	data.nv_address = __psp_pa(sev_init_ex_buffer);
1049 	data.nv_len = NV_LENGTH;
1050 
1051 	if (sev_es_tmr) {
1052 		/*
1053 		 * Do not include the encryption mask on the physical
1054 		 * address of the TMR (firmware should clear it anyway).
1055 		 */
1056 		data.tmr_address = __pa(sev_es_tmr);
1057 
1058 		data.flags |= SEV_INIT_FLAGS_SEV_ES;
1059 		data.tmr_len = sev_es_tmr_size;
1060 	}
1061 
1062 	return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error);
1063 }
1064 
1065 static inline int __sev_do_init_locked(int *psp_ret)
1066 {
1067 	if (sev_init_ex_buffer)
1068 		return __sev_init_ex_locked(psp_ret);
1069 	else
1070 		return __sev_init_locked(psp_ret);
1071 }
1072 
1073 static void snp_set_hsave_pa(void *arg)
1074 {
1075 	wrmsrq(MSR_VM_HSAVE_PA, 0);
1076 }
1077 
1078 bool sev_is_snp_ciphertext_hiding_supported(void)
1079 {
1080 	struct psp_device *psp = psp_master;
1081 	struct sev_device *sev;
1082 
1083 	if (!psp || !psp->sev_data)
1084 		return false;
1085 
1086 	sev = psp->sev_data;
1087 
1088 	/*
1089 	 * Feature information indicates if CipherTextHiding feature is
1090 	 * supported by the SEV firmware and additionally platform status
1091 	 * indicates if CipherTextHiding feature is enabled in the
1092 	 * Platform BIOS.
1093 	 */
1094 	return ((sev->snp_feat_info_0.ecx & SNP_CIPHER_TEXT_HIDING_SUPPORTED) &&
1095 		 sev->snp_plat_status.ciphertext_hiding_cap);
1096 }
1097 EXPORT_SYMBOL_GPL(sev_is_snp_ciphertext_hiding_supported);
1098 
1099 static int snp_get_platform_data(struct sev_device *sev, int *error)
1100 {
1101 	struct sev_data_snp_feature_info snp_feat_info;
1102 	struct snp_feature_info *feat_info;
1103 	struct sev_data_snp_addr buf;
1104 	struct page *page;
1105 	int rc;
1106 
1107 	/*
1108 	 * This function is expected to be called before SNP is
1109 	 * initialized.
1110 	 */
1111 	if (sev->snp_initialized)
1112 		return -EINVAL;
1113 
1114 	buf.address = __psp_pa(&sev->snp_plat_status);
1115 	rc = sev_do_cmd(SEV_CMD_SNP_PLATFORM_STATUS, &buf, error);
1116 	if (rc) {
1117 		dev_err(sev->dev, "SNP PLATFORM_STATUS command failed, ret = %d, error = %#x\n",
1118 			rc, *error);
1119 		return rc;
1120 	}
1121 
1122 	sev->api_major = sev->snp_plat_status.api_major;
1123 	sev->api_minor = sev->snp_plat_status.api_minor;
1124 	sev->build = sev->snp_plat_status.build_id;
1125 
1126 	/*
1127 	 * Do feature discovery of the currently loaded firmware,
1128 	 * and cache feature information from CPUID 0x8000_0024,
1129 	 * sub-function 0.
1130 	 */
1131 	if (!sev->snp_plat_status.feature_info)
1132 		return 0;
1133 
1134 	/*
1135 	 * Use dynamically allocated structure for the SNP_FEATURE_INFO
1136 	 * command to ensure structure is 8-byte aligned, and does not
1137 	 * cross a page boundary.
1138 	 */
1139 	page = alloc_page(GFP_KERNEL);
1140 	if (!page)
1141 		return -ENOMEM;
1142 
1143 	feat_info = page_address(page);
1144 	snp_feat_info.length = sizeof(snp_feat_info);
1145 	snp_feat_info.ecx_in = 0;
1146 	snp_feat_info.feature_info_paddr = __psp_pa(feat_info);
1147 
1148 	rc = sev_do_cmd(SEV_CMD_SNP_FEATURE_INFO, &snp_feat_info, error);
1149 	if (!rc)
1150 		sev->snp_feat_info_0 = *feat_info;
1151 	else
1152 		dev_err(sev->dev, "SNP FEATURE_INFO command failed, ret = %d, error = %#x\n",
1153 			rc, *error);
1154 
1155 	__free_page(page);
1156 
1157 	return rc;
1158 }
1159 
1160 static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg)
1161 {
1162 	struct sev_data_range_list *range_list = arg;
1163 	struct sev_data_range *range = &range_list->ranges[range_list->num_elements];
1164 	size_t size;
1165 
1166 	/*
1167 	 * Ensure the list of HV_FIXED pages that will be passed to firmware
1168 	 * do not exceed the page-sized argument buffer.
1169 	 */
1170 	if ((range_list->num_elements * sizeof(struct sev_data_range) +
1171 	     sizeof(struct sev_data_range_list)) > PAGE_SIZE)
1172 		return -E2BIG;
1173 
1174 	switch (rs->desc) {
1175 	case E820_TYPE_RESERVED:
1176 	case E820_TYPE_PMEM:
1177 	case E820_TYPE_ACPI:
1178 		range->base = rs->start & PAGE_MASK;
1179 		size = PAGE_ALIGN((rs->end + 1) - rs->start);
1180 		range->page_count = size >> PAGE_SHIFT;
1181 		range_list->num_elements++;
1182 		break;
1183 	default:
1184 		break;
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 static int __sev_snp_init_locked(int *error, unsigned int max_snp_asid)
1191 {
1192 	struct psp_device *psp = psp_master;
1193 	struct sev_data_snp_init_ex data;
1194 	struct sev_device *sev;
1195 	void *arg = &data;
1196 	int cmd, rc = 0;
1197 
1198 	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
1199 		return -ENODEV;
1200 
1201 	sev = psp->sev_data;
1202 
1203 	if (sev->snp_initialized)
1204 		return 0;
1205 
1206 	if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) {
1207 		dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n",
1208 			SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR);
1209 		return -EOPNOTSUPP;
1210 	}
1211 
1212 	/* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */
1213 	on_each_cpu(snp_set_hsave_pa, NULL, 1);
1214 
1215 	/*
1216 	 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list
1217 	 * of system physical address ranges to convert into HV-fixed page
1218 	 * states during the RMP initialization.  For instance, the memory that
1219 	 * UEFI reserves should be included in the that list. This allows system
1220 	 * components that occasionally write to memory (e.g. logging to UEFI
1221 	 * reserved regions) to not fail due to RMP initialization and SNP
1222 	 * enablement.
1223 	 *
1224 	 */
1225 	if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) {
1226 		/*
1227 		 * Firmware checks that the pages containing the ranges enumerated
1228 		 * in the RANGES structure are either in the default page state or in the
1229 		 * firmware page state.
1230 		 */
1231 		snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL);
1232 		if (!snp_range_list) {
1233 			dev_err(sev->dev,
1234 				"SEV: SNP_INIT_EX range list memory allocation failed\n");
1235 			return -ENOMEM;
1236 		}
1237 
1238 		/*
1239 		 * Retrieve all reserved memory regions from the e820 memory map
1240 		 * to be setup as HV-fixed pages.
1241 		 */
1242 		rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0,
1243 					 snp_range_list, snp_filter_reserved_mem_regions);
1244 		if (rc) {
1245 			dev_err(sev->dev,
1246 				"SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc);
1247 			return rc;
1248 		}
1249 
1250 		memset(&data, 0, sizeof(data));
1251 
1252 		if (max_snp_asid) {
1253 			data.ciphertext_hiding_en = 1;
1254 			data.max_snp_asid = max_snp_asid;
1255 		}
1256 
1257 		data.init_rmp = 1;
1258 		data.list_paddr_en = 1;
1259 		data.list_paddr = __psp_pa(snp_range_list);
1260 		cmd = SEV_CMD_SNP_INIT_EX;
1261 	} else {
1262 		cmd = SEV_CMD_SNP_INIT;
1263 		arg = NULL;
1264 	}
1265 
1266 	/*
1267 	 * The following sequence must be issued before launching the first SNP
1268 	 * guest to ensure all dirty cache lines are flushed, including from
1269 	 * updates to the RMP table itself via the RMPUPDATE instruction:
1270 	 *
1271 	 * - WBINVD on all running CPUs
1272 	 * - SEV_CMD_SNP_INIT[_EX] firmware command
1273 	 * - WBINVD on all running CPUs
1274 	 * - SEV_CMD_SNP_DF_FLUSH firmware command
1275 	 */
1276 	wbinvd_on_all_cpus();
1277 
1278 	rc = __sev_do_cmd_locked(cmd, arg, error);
1279 	if (rc) {
1280 		dev_err(sev->dev, "SEV-SNP: %s failed rc %d, error %#x\n",
1281 			cmd == SEV_CMD_SNP_INIT_EX ? "SNP_INIT_EX" : "SNP_INIT",
1282 			rc, *error);
1283 		return rc;
1284 	}
1285 
1286 	/* Prepare for first SNP guest launch after INIT. */
1287 	wbinvd_on_all_cpus();
1288 	rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error);
1289 	if (rc) {
1290 		dev_err(sev->dev, "SEV-SNP: SNP_DF_FLUSH failed rc %d, error %#x\n",
1291 			rc, *error);
1292 		return rc;
1293 	}
1294 
1295 	sev->snp_initialized = true;
1296 	dev_dbg(sev->dev, "SEV-SNP firmware initialized\n");
1297 
1298 	dev_info(sev->dev, "SEV-SNP API:%d.%d build:%d\n", sev->api_major,
1299 		 sev->api_minor, sev->build);
1300 
1301 	atomic_notifier_chain_register(&panic_notifier_list,
1302 				       &snp_panic_notifier);
1303 
1304 	sev_es_tmr_size = SNP_TMR_SIZE;
1305 
1306 	return 0;
1307 }
1308 
1309 static void __sev_platform_init_handle_tmr(struct sev_device *sev)
1310 {
1311 	if (sev_es_tmr)
1312 		return;
1313 
1314 	/* Obtain the TMR memory area for SEV-ES use */
1315 	sev_es_tmr = sev_fw_alloc(sev_es_tmr_size);
1316 	if (sev_es_tmr) {
1317 		/* Must flush the cache before giving it to the firmware */
1318 		if (!sev->snp_initialized)
1319 			clflush_cache_range(sev_es_tmr, sev_es_tmr_size);
1320 	} else {
1321 			dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n");
1322 	}
1323 }
1324 
1325 /*
1326  * If an init_ex_path is provided allocate a buffer for the file and
1327  * read in the contents. Additionally, if SNP is initialized, convert
1328  * the buffer pages to firmware pages.
1329  */
1330 static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev)
1331 {
1332 	struct page *page;
1333 	int rc;
1334 
1335 	if (!init_ex_path)
1336 		return 0;
1337 
1338 	if (sev_init_ex_buffer)
1339 		return 0;
1340 
1341 	page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH));
1342 	if (!page) {
1343 		dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n");
1344 		return -ENOMEM;
1345 	}
1346 
1347 	sev_init_ex_buffer = page_address(page);
1348 
1349 	rc = sev_read_init_ex_file();
1350 	if (rc)
1351 		return rc;
1352 
1353 	/* If SEV-SNP is initialized, transition to firmware page. */
1354 	if (sev->snp_initialized) {
1355 		unsigned long npages;
1356 
1357 		npages = 1UL << get_order(NV_LENGTH);
1358 		if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) {
1359 			dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n");
1360 			return -ENOMEM;
1361 		}
1362 	}
1363 
1364 	return 0;
1365 }
1366 
1367 static int __sev_platform_init_locked(int *error)
1368 {
1369 	int rc, psp_ret, dfflush_error;
1370 	struct sev_device *sev;
1371 
1372 	psp_ret = dfflush_error = SEV_RET_NO_FW_CALL;
1373 
1374 	if (!psp_master || !psp_master->sev_data)
1375 		return -ENODEV;
1376 
1377 	sev = psp_master->sev_data;
1378 
1379 	if (sev->sev_plat_status.state == SEV_STATE_INIT)
1380 		return 0;
1381 
1382 	__sev_platform_init_handle_tmr(sev);
1383 
1384 	rc = __sev_platform_init_handle_init_ex_path(sev);
1385 	if (rc)
1386 		return rc;
1387 
1388 	rc = __sev_do_init_locked(&psp_ret);
1389 	if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) {
1390 		/*
1391 		 * Initialization command returned an integrity check failure
1392 		 * status code, meaning that firmware load and validation of SEV
1393 		 * related persistent data has failed. Retrying the
1394 		 * initialization function should succeed by replacing the state
1395 		 * with a reset state.
1396 		 */
1397 		dev_err(sev->dev,
1398 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state.");
1399 		rc = __sev_do_init_locked(&psp_ret);
1400 	}
1401 
1402 	if (error)
1403 		*error = psp_ret;
1404 
1405 	if (rc) {
1406 		dev_err(sev->dev, "SEV: %s failed %#x, rc %d\n",
1407 			sev_init_ex_buffer ? "INIT_EX" : "INIT", psp_ret, rc);
1408 		return rc;
1409 	}
1410 
1411 	sev->sev_plat_status.state = SEV_STATE_INIT;
1412 
1413 	/* Prepare for first SEV guest launch after INIT */
1414 	wbinvd_on_all_cpus();
1415 	rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, &dfflush_error);
1416 	if (rc) {
1417 		dev_err(sev->dev, "SEV: DF_FLUSH failed %#x, rc %d\n",
1418 			dfflush_error, rc);
1419 		return rc;
1420 	}
1421 
1422 	dev_dbg(sev->dev, "SEV firmware initialized\n");
1423 
1424 	dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major,
1425 		 sev->api_minor, sev->build);
1426 
1427 	return 0;
1428 }
1429 
1430 static int _sev_platform_init_locked(struct sev_platform_init_args *args)
1431 {
1432 	struct sev_device *sev;
1433 	int rc;
1434 
1435 	if (!psp_master || !psp_master->sev_data)
1436 		return -ENODEV;
1437 
1438 	sev = psp_master->sev_data;
1439 
1440 	if (sev->sev_plat_status.state == SEV_STATE_INIT)
1441 		return 0;
1442 
1443 	rc = __sev_snp_init_locked(&args->error, args->max_snp_asid);
1444 	if (rc && rc != -ENODEV)
1445 		return rc;
1446 
1447 	/* Defer legacy SEV/SEV-ES support if allowed by caller/module. */
1448 	if (args->probe && !psp_init_on_probe)
1449 		return 0;
1450 
1451 	return __sev_platform_init_locked(&args->error);
1452 }
1453 
1454 int sev_platform_init(struct sev_platform_init_args *args)
1455 {
1456 	int rc;
1457 
1458 	mutex_lock(&sev_cmd_mutex);
1459 	rc = _sev_platform_init_locked(args);
1460 	mutex_unlock(&sev_cmd_mutex);
1461 
1462 	return rc;
1463 }
1464 EXPORT_SYMBOL_GPL(sev_platform_init);
1465 
1466 static int __sev_platform_shutdown_locked(int *error)
1467 {
1468 	struct psp_device *psp = psp_master;
1469 	struct sev_device *sev;
1470 	int ret;
1471 
1472 	if (!psp || !psp->sev_data)
1473 		return 0;
1474 
1475 	sev = psp->sev_data;
1476 
1477 	if (sev->sev_plat_status.state == SEV_STATE_UNINIT)
1478 		return 0;
1479 
1480 	ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error);
1481 	if (ret) {
1482 		dev_err(sev->dev, "SEV: failed to SHUTDOWN error %#x, rc %d\n",
1483 			*error, ret);
1484 		return ret;
1485 	}
1486 
1487 	sev->sev_plat_status.state = SEV_STATE_UNINIT;
1488 	dev_dbg(sev->dev, "SEV firmware shutdown\n");
1489 
1490 	return ret;
1491 }
1492 
1493 static int sev_get_platform_state(int *state, int *error)
1494 {
1495 	struct sev_user_data_status data;
1496 	int rc;
1497 
1498 	rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error);
1499 	if (rc)
1500 		return rc;
1501 
1502 	*state = data.state;
1503 	return rc;
1504 }
1505 
1506 static int sev_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required)
1507 {
1508 	struct sev_platform_init_args init_args = {0};
1509 	int rc;
1510 
1511 	rc = _sev_platform_init_locked(&init_args);
1512 	if (rc) {
1513 		argp->error = SEV_RET_INVALID_PLATFORM_STATE;
1514 		return rc;
1515 	}
1516 
1517 	*shutdown_required = true;
1518 
1519 	return 0;
1520 }
1521 
1522 static int snp_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required)
1523 {
1524 	int error, rc;
1525 
1526 	rc = __sev_snp_init_locked(&error, 0);
1527 	if (rc) {
1528 		argp->error = SEV_RET_INVALID_PLATFORM_STATE;
1529 		return rc;
1530 	}
1531 
1532 	*shutdown_required = true;
1533 
1534 	return 0;
1535 }
1536 
1537 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable)
1538 {
1539 	int state, rc;
1540 
1541 	if (!writable)
1542 		return -EPERM;
1543 
1544 	/*
1545 	 * The SEV spec requires that FACTORY_RESET must be issued in
1546 	 * UNINIT state. Before we go further lets check if any guest is
1547 	 * active.
1548 	 *
1549 	 * If FW is in WORKING state then deny the request otherwise issue
1550 	 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET.
1551 	 *
1552 	 */
1553 	rc = sev_get_platform_state(&state, &argp->error);
1554 	if (rc)
1555 		return rc;
1556 
1557 	if (state == SEV_STATE_WORKING)
1558 		return -EBUSY;
1559 
1560 	if (state == SEV_STATE_INIT) {
1561 		rc = __sev_platform_shutdown_locked(&argp->error);
1562 		if (rc)
1563 			return rc;
1564 	}
1565 
1566 	return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error);
1567 }
1568 
1569 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp)
1570 {
1571 	struct sev_user_data_status data;
1572 	int ret;
1573 
1574 	memset(&data, 0, sizeof(data));
1575 
1576 	ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error);
1577 	if (ret)
1578 		return ret;
1579 
1580 	if (copy_to_user((void __user *)argp->data, &data, sizeof(data)))
1581 		ret = -EFAULT;
1582 
1583 	return ret;
1584 }
1585 
1586 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable)
1587 {
1588 	struct sev_device *sev = psp_master->sev_data;
1589 	bool shutdown_required = false;
1590 	int rc;
1591 
1592 	if (!writable)
1593 		return -EPERM;
1594 
1595 	if (sev->sev_plat_status.state == SEV_STATE_UNINIT) {
1596 		rc = sev_move_to_init_state(argp, &shutdown_required);
1597 		if (rc)
1598 			return rc;
1599 	}
1600 
1601 	rc = __sev_do_cmd_locked(cmd, NULL, &argp->error);
1602 
1603 	if (shutdown_required)
1604 		__sev_firmware_shutdown(sev, false);
1605 
1606 	return rc;
1607 }
1608 
1609 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable)
1610 {
1611 	struct sev_device *sev = psp_master->sev_data;
1612 	struct sev_user_data_pek_csr input;
1613 	bool shutdown_required = false;
1614 	struct sev_data_pek_csr data;
1615 	void __user *input_address;
1616 	void *blob = NULL;
1617 	int ret;
1618 
1619 	if (!writable)
1620 		return -EPERM;
1621 
1622 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1623 		return -EFAULT;
1624 
1625 	memset(&data, 0, sizeof(data));
1626 
1627 	/* userspace wants to query CSR length */
1628 	if (!input.address || !input.length)
1629 		goto cmd;
1630 
1631 	/* allocate a physically contiguous buffer to store the CSR blob */
1632 	input_address = (void __user *)input.address;
1633 	if (input.length > SEV_FW_BLOB_MAX_SIZE)
1634 		return -EFAULT;
1635 
1636 	blob = kzalloc(input.length, GFP_KERNEL);
1637 	if (!blob)
1638 		return -ENOMEM;
1639 
1640 	data.address = __psp_pa(blob);
1641 	data.len = input.length;
1642 
1643 cmd:
1644 	if (sev->sev_plat_status.state == SEV_STATE_UNINIT) {
1645 		ret = sev_move_to_init_state(argp, &shutdown_required);
1646 		if (ret)
1647 			goto e_free_blob;
1648 	}
1649 
1650 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error);
1651 
1652 	 /* If we query the CSR length, FW responded with expected data. */
1653 	input.length = data.len;
1654 
1655 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1656 		ret = -EFAULT;
1657 		goto e_free_blob;
1658 	}
1659 
1660 	if (blob) {
1661 		if (copy_to_user(input_address, blob, input.length))
1662 			ret = -EFAULT;
1663 	}
1664 
1665 e_free_blob:
1666 	if (shutdown_required)
1667 		__sev_firmware_shutdown(sev, false);
1668 
1669 	kfree(blob);
1670 	return ret;
1671 }
1672 
1673 void *psp_copy_user_blob(u64 uaddr, u32 len)
1674 {
1675 	if (!uaddr || !len)
1676 		return ERR_PTR(-EINVAL);
1677 
1678 	/* verify that blob length does not exceed our limit */
1679 	if (len > SEV_FW_BLOB_MAX_SIZE)
1680 		return ERR_PTR(-EINVAL);
1681 
1682 	return memdup_user((void __user *)uaddr, len);
1683 }
1684 EXPORT_SYMBOL_GPL(psp_copy_user_blob);
1685 
1686 static int sev_get_api_version(void)
1687 {
1688 	struct sev_device *sev = psp_master->sev_data;
1689 	struct sev_user_data_status status;
1690 	int error = 0, ret;
1691 
1692 	/*
1693 	 * Cache SNP platform status and SNP feature information
1694 	 * if SNP is available.
1695 	 */
1696 	if (cc_platform_has(CC_ATTR_HOST_SEV_SNP)) {
1697 		ret = snp_get_platform_data(sev, &error);
1698 		if (ret)
1699 			return 1;
1700 	}
1701 
1702 	ret = sev_platform_status(&status, &error);
1703 	if (ret) {
1704 		dev_err(sev->dev,
1705 			"SEV: failed to get status. Error: %#x\n", error);
1706 		return 1;
1707 	}
1708 
1709 	/* Cache SEV platform status */
1710 	sev->sev_plat_status = status;
1711 
1712 	sev->api_major = status.api_major;
1713 	sev->api_minor = status.api_minor;
1714 	sev->build = status.build;
1715 
1716 	return 0;
1717 }
1718 
1719 static int sev_get_firmware(struct device *dev,
1720 			    const struct firmware **firmware)
1721 {
1722 	char fw_name_specific[SEV_FW_NAME_SIZE];
1723 	char fw_name_subset[SEV_FW_NAME_SIZE];
1724 
1725 	snprintf(fw_name_specific, sizeof(fw_name_specific),
1726 		 "amd/amd_sev_fam%.2xh_model%.2xh.sbin",
1727 		 boot_cpu_data.x86, boot_cpu_data.x86_model);
1728 
1729 	snprintf(fw_name_subset, sizeof(fw_name_subset),
1730 		 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin",
1731 		 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4);
1732 
1733 	/* Check for SEV FW for a particular model.
1734 	 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h
1735 	 *
1736 	 * or
1737 	 *
1738 	 * Check for SEV FW common to a subset of models.
1739 	 * Ex. amd_sev_fam17h_model0xh.sbin for
1740 	 *     Family 17h Model 00h -- Family 17h Model 0Fh
1741 	 *
1742 	 * or
1743 	 *
1744 	 * Fall-back to using generic name: sev.fw
1745 	 */
1746 	if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) ||
1747 	    (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) ||
1748 	    (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0))
1749 		return 0;
1750 
1751 	return -ENOENT;
1752 }
1753 
1754 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */
1755 static int sev_update_firmware(struct device *dev)
1756 {
1757 	struct sev_data_download_firmware *data;
1758 	const struct firmware *firmware;
1759 	int ret, error, order;
1760 	struct page *p;
1761 	u64 data_size;
1762 
1763 	if (!sev_version_greater_or_equal(0, 15)) {
1764 		dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n");
1765 		return -1;
1766 	}
1767 
1768 	if (sev_get_firmware(dev, &firmware) == -ENOENT) {
1769 		dev_dbg(dev, "No SEV firmware file present\n");
1770 		return -1;
1771 	}
1772 
1773 	/*
1774 	 * SEV FW expects the physical address given to it to be 32
1775 	 * byte aligned. Memory allocated has structure placed at the
1776 	 * beginning followed by the firmware being passed to the SEV
1777 	 * FW. Allocate enough memory for data structure + alignment
1778 	 * padding + SEV FW.
1779 	 */
1780 	data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32);
1781 
1782 	order = get_order(firmware->size + data_size);
1783 	p = alloc_pages(GFP_KERNEL, order);
1784 	if (!p) {
1785 		ret = -1;
1786 		goto fw_err;
1787 	}
1788 
1789 	/*
1790 	 * Copy firmware data to a kernel allocated contiguous
1791 	 * memory region.
1792 	 */
1793 	data = page_address(p);
1794 	memcpy(page_address(p) + data_size, firmware->data, firmware->size);
1795 
1796 	data->address = __psp_pa(page_address(p) + data_size);
1797 	data->len = firmware->size;
1798 
1799 	ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1800 
1801 	/*
1802 	 * A quirk for fixing the committed TCB version, when upgrading from
1803 	 * earlier firmware version than 1.50.
1804 	 */
1805 	if (!ret && !sev_version_greater_or_equal(1, 50))
1806 		ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1807 
1808 	if (ret)
1809 		dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error);
1810 
1811 	__free_pages(p, order);
1812 
1813 fw_err:
1814 	release_firmware(firmware);
1815 
1816 	return ret;
1817 }
1818 
1819 static int __sev_snp_shutdown_locked(int *error, bool panic)
1820 {
1821 	struct psp_device *psp = psp_master;
1822 	struct sev_device *sev;
1823 	struct sev_data_snp_shutdown_ex data;
1824 	int ret;
1825 
1826 	if (!psp || !psp->sev_data)
1827 		return 0;
1828 
1829 	sev = psp->sev_data;
1830 
1831 	if (!sev->snp_initialized)
1832 		return 0;
1833 
1834 	memset(&data, 0, sizeof(data));
1835 	data.len = sizeof(data);
1836 	data.iommu_snp_shutdown = 1;
1837 
1838 	/*
1839 	 * If invoked during panic handling, local interrupts are disabled
1840 	 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called.
1841 	 * In that case, a wbinvd() is done on remote CPUs via the NMI
1842 	 * callback, so only a local wbinvd() is needed here.
1843 	 */
1844 	if (!panic)
1845 		wbinvd_on_all_cpus();
1846 	else
1847 		wbinvd();
1848 
1849 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error);
1850 	/* SHUTDOWN may require DF_FLUSH */
1851 	if (*error == SEV_RET_DFFLUSH_REQUIRED) {
1852 		int dfflush_error = SEV_RET_NO_FW_CALL;
1853 
1854 		ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, &dfflush_error);
1855 		if (ret) {
1856 			dev_err(sev->dev, "SEV-SNP DF_FLUSH failed, ret = %d, error = %#x\n",
1857 				ret, dfflush_error);
1858 			return ret;
1859 		}
1860 		/* reissue the shutdown command */
1861 		ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data,
1862 					  error);
1863 	}
1864 	if (ret) {
1865 		dev_err(sev->dev, "SEV-SNP firmware shutdown failed, rc %d, error %#x\n",
1866 			ret, *error);
1867 		return ret;
1868 	}
1869 
1870 	/*
1871 	 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP
1872 	 * enforcement by the IOMMU and also transitions all pages
1873 	 * associated with the IOMMU to the Reclaim state.
1874 	 * Firmware was transitioning the IOMMU pages to Hypervisor state
1875 	 * before version 1.53. But, accounting for the number of assigned
1876 	 * 4kB pages in a 2M page was done incorrectly by not transitioning
1877 	 * to the Reclaim state. This resulted in RMP #PF when later accessing
1878 	 * the 2M page containing those pages during kexec boot. Hence, the
1879 	 * firmware now transitions these pages to Reclaim state and hypervisor
1880 	 * needs to transition these pages to shared state. SNP Firmware
1881 	 * version 1.53 and above are needed for kexec boot.
1882 	 */
1883 	ret = amd_iommu_snp_disable();
1884 	if (ret) {
1885 		dev_err(sev->dev, "SNP IOMMU shutdown failed\n");
1886 		return ret;
1887 	}
1888 
1889 	sev->snp_initialized = false;
1890 	dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n");
1891 
1892 	/*
1893 	 * __sev_snp_shutdown_locked() deadlocks when it tries to unregister
1894 	 * itself during panic as the panic notifier is called with RCU read
1895 	 * lock held and notifier unregistration does RCU synchronization.
1896 	 */
1897 	if (!panic)
1898 		atomic_notifier_chain_unregister(&panic_notifier_list,
1899 						 &snp_panic_notifier);
1900 
1901 	/* Reset TMR size back to default */
1902 	sev_es_tmr_size = SEV_TMR_SIZE;
1903 
1904 	return ret;
1905 }
1906 
1907 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable)
1908 {
1909 	struct sev_device *sev = psp_master->sev_data;
1910 	struct sev_user_data_pek_cert_import input;
1911 	struct sev_data_pek_cert_import data;
1912 	bool shutdown_required = false;
1913 	void *pek_blob, *oca_blob;
1914 	int ret;
1915 
1916 	if (!writable)
1917 		return -EPERM;
1918 
1919 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1920 		return -EFAULT;
1921 
1922 	/* copy PEK certificate blobs from userspace */
1923 	pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len);
1924 	if (IS_ERR(pek_blob))
1925 		return PTR_ERR(pek_blob);
1926 
1927 	data.reserved = 0;
1928 	data.pek_cert_address = __psp_pa(pek_blob);
1929 	data.pek_cert_len = input.pek_cert_len;
1930 
1931 	/* copy PEK certificate blobs from userspace */
1932 	oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len);
1933 	if (IS_ERR(oca_blob)) {
1934 		ret = PTR_ERR(oca_blob);
1935 		goto e_free_pek;
1936 	}
1937 
1938 	data.oca_cert_address = __psp_pa(oca_blob);
1939 	data.oca_cert_len = input.oca_cert_len;
1940 
1941 	/* If platform is not in INIT state then transition it to INIT */
1942 	if (sev->sev_plat_status.state != SEV_STATE_INIT) {
1943 		ret = sev_move_to_init_state(argp, &shutdown_required);
1944 		if (ret)
1945 			goto e_free_oca;
1946 	}
1947 
1948 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error);
1949 
1950 e_free_oca:
1951 	if (shutdown_required)
1952 		__sev_firmware_shutdown(sev, false);
1953 
1954 	kfree(oca_blob);
1955 e_free_pek:
1956 	kfree(pek_blob);
1957 	return ret;
1958 }
1959 
1960 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp)
1961 {
1962 	struct sev_user_data_get_id2 input;
1963 	struct sev_data_get_id data;
1964 	void __user *input_address;
1965 	void *id_blob = NULL;
1966 	int ret;
1967 
1968 	/* SEV GET_ID is available from SEV API v0.16 and up */
1969 	if (!sev_version_greater_or_equal(0, 16))
1970 		return -ENOTSUPP;
1971 
1972 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1973 		return -EFAULT;
1974 
1975 	input_address = (void __user *)input.address;
1976 
1977 	if (input.address && input.length) {
1978 		/*
1979 		 * The length of the ID shouldn't be assumed by software since
1980 		 * it may change in the future.  The allocation size is limited
1981 		 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator.
1982 		 * If the allocation fails, simply return ENOMEM rather than
1983 		 * warning in the kernel log.
1984 		 */
1985 		id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN);
1986 		if (!id_blob)
1987 			return -ENOMEM;
1988 
1989 		data.address = __psp_pa(id_blob);
1990 		data.len = input.length;
1991 	} else {
1992 		data.address = 0;
1993 		data.len = 0;
1994 	}
1995 
1996 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error);
1997 
1998 	/*
1999 	 * Firmware will return the length of the ID value (either the minimum
2000 	 * required length or the actual length written), return it to the user.
2001 	 */
2002 	input.length = data.len;
2003 
2004 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
2005 		ret = -EFAULT;
2006 		goto e_free;
2007 	}
2008 
2009 	if (id_blob) {
2010 		if (copy_to_user(input_address, id_blob, data.len)) {
2011 			ret = -EFAULT;
2012 			goto e_free;
2013 		}
2014 	}
2015 
2016 e_free:
2017 	kfree(id_blob);
2018 
2019 	return ret;
2020 }
2021 
2022 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp)
2023 {
2024 	struct sev_data_get_id *data;
2025 	u64 data_size, user_size;
2026 	void *id_blob, *mem;
2027 	int ret;
2028 
2029 	/* SEV GET_ID available from SEV API v0.16 and up */
2030 	if (!sev_version_greater_or_equal(0, 16))
2031 		return -ENOTSUPP;
2032 
2033 	/* SEV FW expects the buffer it fills with the ID to be
2034 	 * 8-byte aligned. Memory allocated should be enough to
2035 	 * hold data structure + alignment padding + memory
2036 	 * where SEV FW writes the ID.
2037 	 */
2038 	data_size = ALIGN(sizeof(struct sev_data_get_id), 8);
2039 	user_size = sizeof(struct sev_user_data_get_id);
2040 
2041 	mem = kzalloc(data_size + user_size, GFP_KERNEL);
2042 	if (!mem)
2043 		return -ENOMEM;
2044 
2045 	data = mem;
2046 	id_blob = mem + data_size;
2047 
2048 	data->address = __psp_pa(id_blob);
2049 	data->len = user_size;
2050 
2051 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error);
2052 	if (!ret) {
2053 		if (copy_to_user((void __user *)argp->data, id_blob, data->len))
2054 			ret = -EFAULT;
2055 	}
2056 
2057 	kfree(mem);
2058 
2059 	return ret;
2060 }
2061 
2062 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable)
2063 {
2064 	struct sev_device *sev = psp_master->sev_data;
2065 	struct sev_user_data_pdh_cert_export input;
2066 	void *pdh_blob = NULL, *cert_blob = NULL;
2067 	struct sev_data_pdh_cert_export data;
2068 	void __user *input_cert_chain_address;
2069 	void __user *input_pdh_cert_address;
2070 	bool shutdown_required = false;
2071 	int ret;
2072 
2073 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
2074 		return -EFAULT;
2075 
2076 	memset(&data, 0, sizeof(data));
2077 
2078 	input_pdh_cert_address = (void __user *)input.pdh_cert_address;
2079 	input_cert_chain_address = (void __user *)input.cert_chain_address;
2080 
2081 	/* Userspace wants to query the certificate length. */
2082 	if (!input.pdh_cert_address ||
2083 	    !input.pdh_cert_len ||
2084 	    !input.cert_chain_address)
2085 		goto cmd;
2086 
2087 	/* Allocate a physically contiguous buffer to store the PDH blob. */
2088 	if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE)
2089 		return -EFAULT;
2090 
2091 	/* Allocate a physically contiguous buffer to store the cert chain blob. */
2092 	if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE)
2093 		return -EFAULT;
2094 
2095 	pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL);
2096 	if (!pdh_blob)
2097 		return -ENOMEM;
2098 
2099 	data.pdh_cert_address = __psp_pa(pdh_blob);
2100 	data.pdh_cert_len = input.pdh_cert_len;
2101 
2102 	cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL);
2103 	if (!cert_blob) {
2104 		ret = -ENOMEM;
2105 		goto e_free_pdh;
2106 	}
2107 
2108 	data.cert_chain_address = __psp_pa(cert_blob);
2109 	data.cert_chain_len = input.cert_chain_len;
2110 
2111 cmd:
2112 	/* If platform is not in INIT state then transition it to INIT. */
2113 	if (sev->sev_plat_status.state != SEV_STATE_INIT) {
2114 		if (!writable) {
2115 			ret = -EPERM;
2116 			goto e_free_cert;
2117 		}
2118 		ret = sev_move_to_init_state(argp, &shutdown_required);
2119 		if (ret)
2120 			goto e_free_cert;
2121 	}
2122 
2123 	ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error);
2124 
2125 	/* If we query the length, FW responded with expected data. */
2126 	input.cert_chain_len = data.cert_chain_len;
2127 	input.pdh_cert_len = data.pdh_cert_len;
2128 
2129 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
2130 		ret = -EFAULT;
2131 		goto e_free_cert;
2132 	}
2133 
2134 	if (pdh_blob) {
2135 		if (copy_to_user(input_pdh_cert_address,
2136 				 pdh_blob, input.pdh_cert_len)) {
2137 			ret = -EFAULT;
2138 			goto e_free_cert;
2139 		}
2140 	}
2141 
2142 	if (cert_blob) {
2143 		if (copy_to_user(input_cert_chain_address,
2144 				 cert_blob, input.cert_chain_len))
2145 			ret = -EFAULT;
2146 	}
2147 
2148 e_free_cert:
2149 	if (shutdown_required)
2150 		__sev_firmware_shutdown(sev, false);
2151 
2152 	kfree(cert_blob);
2153 e_free_pdh:
2154 	kfree(pdh_blob);
2155 	return ret;
2156 }
2157 
2158 static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp)
2159 {
2160 	struct sev_device *sev = psp_master->sev_data;
2161 	bool shutdown_required = false;
2162 	struct sev_data_snp_addr buf;
2163 	struct page *status_page;
2164 	int ret, error;
2165 	void *data;
2166 
2167 	if (!argp->data)
2168 		return -EINVAL;
2169 
2170 	status_page = alloc_page(GFP_KERNEL_ACCOUNT);
2171 	if (!status_page)
2172 		return -ENOMEM;
2173 
2174 	data = page_address(status_page);
2175 
2176 	if (!sev->snp_initialized) {
2177 		ret = snp_move_to_init_state(argp, &shutdown_required);
2178 		if (ret)
2179 			goto cleanup;
2180 	}
2181 
2182 	/*
2183 	 * Firmware expects status page to be in firmware-owned state, otherwise
2184 	 * it will report firmware error code INVALID_PAGE_STATE (0x1A).
2185 	 */
2186 	if (rmp_mark_pages_firmware(__pa(data), 1, true)) {
2187 		ret = -EFAULT;
2188 		goto cleanup;
2189 	}
2190 
2191 	buf.address = __psp_pa(data);
2192 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error);
2193 
2194 	/*
2195 	 * Status page will be transitioned to Reclaim state upon success, or
2196 	 * left in Firmware state in failure. Use snp_reclaim_pages() to
2197 	 * transition either case back to Hypervisor-owned state.
2198 	 */
2199 	if (snp_reclaim_pages(__pa(data), 1, true))
2200 		return -EFAULT;
2201 
2202 	if (ret)
2203 		goto cleanup;
2204 
2205 	if (copy_to_user((void __user *)argp->data, data,
2206 			 sizeof(struct sev_user_data_snp_status)))
2207 		ret = -EFAULT;
2208 
2209 cleanup:
2210 	if (shutdown_required)
2211 		__sev_snp_shutdown_locked(&error, false);
2212 
2213 	__free_pages(status_page, 0);
2214 	return ret;
2215 }
2216 
2217 static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp)
2218 {
2219 	struct sev_device *sev = psp_master->sev_data;
2220 	struct sev_data_snp_commit buf;
2221 	bool shutdown_required = false;
2222 	int ret, error;
2223 
2224 	if (!sev->snp_initialized) {
2225 		ret = snp_move_to_init_state(argp, &shutdown_required);
2226 		if (ret)
2227 			return ret;
2228 	}
2229 
2230 	buf.len = sizeof(buf);
2231 
2232 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error);
2233 
2234 	if (shutdown_required)
2235 		__sev_snp_shutdown_locked(&error, false);
2236 
2237 	return ret;
2238 }
2239 
2240 static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable)
2241 {
2242 	struct sev_device *sev = psp_master->sev_data;
2243 	struct sev_user_data_snp_config config;
2244 	bool shutdown_required = false;
2245 	int ret, error;
2246 
2247 	if (!argp->data)
2248 		return -EINVAL;
2249 
2250 	if (!writable)
2251 		return -EPERM;
2252 
2253 	if (copy_from_user(&config, (void __user *)argp->data, sizeof(config)))
2254 		return -EFAULT;
2255 
2256 	if (!sev->snp_initialized) {
2257 		ret = snp_move_to_init_state(argp, &shutdown_required);
2258 		if (ret)
2259 			return ret;
2260 	}
2261 
2262 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error);
2263 
2264 	if (shutdown_required)
2265 		__sev_snp_shutdown_locked(&error, false);
2266 
2267 	return ret;
2268 }
2269 
2270 static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable)
2271 {
2272 	struct sev_device *sev = psp_master->sev_data;
2273 	struct sev_user_data_snp_vlek_load input;
2274 	bool shutdown_required = false;
2275 	int ret, error;
2276 	void *blob;
2277 
2278 	if (!argp->data)
2279 		return -EINVAL;
2280 
2281 	if (!writable)
2282 		return -EPERM;
2283 
2284 	if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input)))
2285 		return -EFAULT;
2286 
2287 	if (input.len != sizeof(input) || input.vlek_wrapped_version != 0)
2288 		return -EINVAL;
2289 
2290 	blob = psp_copy_user_blob(input.vlek_wrapped_address,
2291 				  sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick));
2292 	if (IS_ERR(blob))
2293 		return PTR_ERR(blob);
2294 
2295 	input.vlek_wrapped_address = __psp_pa(blob);
2296 
2297 	if (!sev->snp_initialized) {
2298 		ret = snp_move_to_init_state(argp, &shutdown_required);
2299 		if (ret)
2300 			goto cleanup;
2301 	}
2302 
2303 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error);
2304 
2305 	if (shutdown_required)
2306 		__sev_snp_shutdown_locked(&error, false);
2307 
2308 cleanup:
2309 	kfree(blob);
2310 
2311 	return ret;
2312 }
2313 
2314 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
2315 {
2316 	void __user *argp = (void __user *)arg;
2317 	struct sev_issue_cmd input;
2318 	int ret = -EFAULT;
2319 	bool writable = file->f_mode & FMODE_WRITE;
2320 
2321 	if (!psp_master || !psp_master->sev_data)
2322 		return -ENODEV;
2323 
2324 	if (ioctl != SEV_ISSUE_CMD)
2325 		return -EINVAL;
2326 
2327 	if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd)))
2328 		return -EFAULT;
2329 
2330 	if (input.cmd > SEV_MAX)
2331 		return -EINVAL;
2332 
2333 	mutex_lock(&sev_cmd_mutex);
2334 
2335 	switch (input.cmd) {
2336 
2337 	case SEV_FACTORY_RESET:
2338 		ret = sev_ioctl_do_reset(&input, writable);
2339 		break;
2340 	case SEV_PLATFORM_STATUS:
2341 		ret = sev_ioctl_do_platform_status(&input);
2342 		break;
2343 	case SEV_PEK_GEN:
2344 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable);
2345 		break;
2346 	case SEV_PDH_GEN:
2347 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable);
2348 		break;
2349 	case SEV_PEK_CSR:
2350 		ret = sev_ioctl_do_pek_csr(&input, writable);
2351 		break;
2352 	case SEV_PEK_CERT_IMPORT:
2353 		ret = sev_ioctl_do_pek_import(&input, writable);
2354 		break;
2355 	case SEV_PDH_CERT_EXPORT:
2356 		ret = sev_ioctl_do_pdh_export(&input, writable);
2357 		break;
2358 	case SEV_GET_ID:
2359 		pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n");
2360 		ret = sev_ioctl_do_get_id(&input);
2361 		break;
2362 	case SEV_GET_ID2:
2363 		ret = sev_ioctl_do_get_id2(&input);
2364 		break;
2365 	case SNP_PLATFORM_STATUS:
2366 		ret = sev_ioctl_do_snp_platform_status(&input);
2367 		break;
2368 	case SNP_COMMIT:
2369 		ret = sev_ioctl_do_snp_commit(&input);
2370 		break;
2371 	case SNP_SET_CONFIG:
2372 		ret = sev_ioctl_do_snp_set_config(&input, writable);
2373 		break;
2374 	case SNP_VLEK_LOAD:
2375 		ret = sev_ioctl_do_snp_vlek_load(&input, writable);
2376 		break;
2377 	default:
2378 		ret = -EINVAL;
2379 		goto out;
2380 	}
2381 
2382 	if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd)))
2383 		ret = -EFAULT;
2384 out:
2385 	mutex_unlock(&sev_cmd_mutex);
2386 
2387 	return ret;
2388 }
2389 
2390 static const struct file_operations sev_fops = {
2391 	.owner	= THIS_MODULE,
2392 	.unlocked_ioctl = sev_ioctl,
2393 };
2394 
2395 int sev_platform_status(struct sev_user_data_status *data, int *error)
2396 {
2397 	return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error);
2398 }
2399 EXPORT_SYMBOL_GPL(sev_platform_status);
2400 
2401 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error)
2402 {
2403 	return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error);
2404 }
2405 EXPORT_SYMBOL_GPL(sev_guest_deactivate);
2406 
2407 int sev_guest_activate(struct sev_data_activate *data, int *error)
2408 {
2409 	return sev_do_cmd(SEV_CMD_ACTIVATE, data, error);
2410 }
2411 EXPORT_SYMBOL_GPL(sev_guest_activate);
2412 
2413 int sev_guest_decommission(struct sev_data_decommission *data, int *error)
2414 {
2415 	return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error);
2416 }
2417 EXPORT_SYMBOL_GPL(sev_guest_decommission);
2418 
2419 int sev_guest_df_flush(int *error)
2420 {
2421 	return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error);
2422 }
2423 EXPORT_SYMBOL_GPL(sev_guest_df_flush);
2424 
2425 static void sev_exit(struct kref *ref)
2426 {
2427 	misc_deregister(&misc_dev->misc);
2428 	kfree(misc_dev);
2429 	misc_dev = NULL;
2430 }
2431 
2432 static int sev_misc_init(struct sev_device *sev)
2433 {
2434 	struct device *dev = sev->dev;
2435 	int ret;
2436 
2437 	/*
2438 	 * SEV feature support can be detected on multiple devices but the SEV
2439 	 * FW commands must be issued on the master. During probe, we do not
2440 	 * know the master hence we create /dev/sev on the first device probe.
2441 	 * sev_do_cmd() finds the right master device to which to issue the
2442 	 * command to the firmware.
2443 	 */
2444 	if (!misc_dev) {
2445 		struct miscdevice *misc;
2446 
2447 		misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL);
2448 		if (!misc_dev)
2449 			return -ENOMEM;
2450 
2451 		misc = &misc_dev->misc;
2452 		misc->minor = MISC_DYNAMIC_MINOR;
2453 		misc->name = DEVICE_NAME;
2454 		misc->fops = &sev_fops;
2455 
2456 		ret = misc_register(misc);
2457 		if (ret)
2458 			return ret;
2459 
2460 		kref_init(&misc_dev->refcount);
2461 	} else {
2462 		kref_get(&misc_dev->refcount);
2463 	}
2464 
2465 	init_waitqueue_head(&sev->int_queue);
2466 	sev->misc = misc_dev;
2467 	dev_dbg(dev, "registered SEV device\n");
2468 
2469 	return 0;
2470 }
2471 
2472 int sev_dev_init(struct psp_device *psp)
2473 {
2474 	struct device *dev = psp->dev;
2475 	struct sev_device *sev;
2476 	int ret = -ENOMEM;
2477 
2478 	if (!boot_cpu_has(X86_FEATURE_SEV)) {
2479 		dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n");
2480 		return 0;
2481 	}
2482 
2483 	sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL);
2484 	if (!sev)
2485 		goto e_err;
2486 
2487 	sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1);
2488 	if (!sev->cmd_buf)
2489 		goto e_sev;
2490 
2491 	sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE;
2492 
2493 	psp->sev_data = sev;
2494 
2495 	sev->dev = dev;
2496 	sev->psp = psp;
2497 
2498 	sev->io_regs = psp->io_regs;
2499 
2500 	sev->vdata = (struct sev_vdata *)psp->vdata->sev;
2501 	if (!sev->vdata) {
2502 		ret = -ENODEV;
2503 		dev_err(dev, "sev: missing driver data\n");
2504 		goto e_buf;
2505 	}
2506 
2507 	psp_set_sev_irq_handler(psp, sev_irq_handler, sev);
2508 
2509 	ret = sev_misc_init(sev);
2510 	if (ret)
2511 		goto e_irq;
2512 
2513 	dev_notice(dev, "sev enabled\n");
2514 
2515 	return 0;
2516 
2517 e_irq:
2518 	psp_clear_sev_irq_handler(psp);
2519 e_buf:
2520 	devm_free_pages(dev, (unsigned long)sev->cmd_buf);
2521 e_sev:
2522 	devm_kfree(dev, sev);
2523 e_err:
2524 	psp->sev_data = NULL;
2525 
2526 	dev_notice(dev, "sev initialization failed\n");
2527 
2528 	return ret;
2529 }
2530 
2531 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic)
2532 {
2533 	int error;
2534 
2535 	__sev_platform_shutdown_locked(NULL);
2536 
2537 	if (sev_es_tmr) {
2538 		/*
2539 		 * The TMR area was encrypted, flush it from the cache.
2540 		 *
2541 		 * If invoked during panic handling, local interrupts are
2542 		 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus()
2543 		 * can't be used. In that case, wbinvd() is done on remote CPUs
2544 		 * via the NMI callback, and done for this CPU later during
2545 		 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped.
2546 		 */
2547 		if (!panic)
2548 			wbinvd_on_all_cpus();
2549 
2550 		__snp_free_firmware_pages(virt_to_page(sev_es_tmr),
2551 					  get_order(sev_es_tmr_size),
2552 					  true);
2553 		sev_es_tmr = NULL;
2554 	}
2555 
2556 	if (sev_init_ex_buffer) {
2557 		__snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer),
2558 					  get_order(NV_LENGTH),
2559 					  true);
2560 		sev_init_ex_buffer = NULL;
2561 	}
2562 
2563 	if (snp_range_list) {
2564 		kfree(snp_range_list);
2565 		snp_range_list = NULL;
2566 	}
2567 
2568 	__sev_snp_shutdown_locked(&error, panic);
2569 }
2570 
2571 static void sev_firmware_shutdown(struct sev_device *sev)
2572 {
2573 	mutex_lock(&sev_cmd_mutex);
2574 	__sev_firmware_shutdown(sev, false);
2575 	mutex_unlock(&sev_cmd_mutex);
2576 }
2577 
2578 void sev_platform_shutdown(void)
2579 {
2580 	if (!psp_master || !psp_master->sev_data)
2581 		return;
2582 
2583 	sev_firmware_shutdown(psp_master->sev_data);
2584 }
2585 EXPORT_SYMBOL_GPL(sev_platform_shutdown);
2586 
2587 void sev_dev_destroy(struct psp_device *psp)
2588 {
2589 	struct sev_device *sev = psp->sev_data;
2590 
2591 	if (!sev)
2592 		return;
2593 
2594 	sev_firmware_shutdown(sev);
2595 
2596 	if (sev->misc)
2597 		kref_put(&misc_dev->refcount, sev_exit);
2598 
2599 	psp_clear_sev_irq_handler(psp);
2600 }
2601 
2602 static int snp_shutdown_on_panic(struct notifier_block *nb,
2603 				 unsigned long reason, void *arg)
2604 {
2605 	struct sev_device *sev = psp_master->sev_data;
2606 
2607 	/*
2608 	 * If sev_cmd_mutex is already acquired, then it's likely
2609 	 * another PSP command is in flight and issuing a shutdown
2610 	 * would fail in unexpected ways. Rather than create even
2611 	 * more confusion during a panic, just bail out here.
2612 	 */
2613 	if (mutex_is_locked(&sev_cmd_mutex))
2614 		return NOTIFY_DONE;
2615 
2616 	__sev_firmware_shutdown(sev, true);
2617 
2618 	return NOTIFY_DONE;
2619 }
2620 
2621 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd,
2622 				void *data, int *error)
2623 {
2624 	if (!filep || filep->f_op != &sev_fops)
2625 		return -EBADF;
2626 
2627 	return sev_do_cmd(cmd, data, error);
2628 }
2629 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user);
2630 
2631 void sev_pci_init(void)
2632 {
2633 	struct sev_device *sev = psp_master->sev_data;
2634 	u8 api_major, api_minor, build;
2635 
2636 	if (!sev)
2637 		return;
2638 
2639 	psp_timeout = psp_probe_timeout;
2640 
2641 	if (sev_get_api_version())
2642 		goto err;
2643 
2644 	api_major = sev->api_major;
2645 	api_minor = sev->api_minor;
2646 	build     = sev->build;
2647 
2648 	if (sev_update_firmware(sev->dev) == 0)
2649 		sev_get_api_version();
2650 
2651 	if (api_major != sev->api_major || api_minor != sev->api_minor ||
2652 	    build != sev->build)
2653 		dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n",
2654 			 api_major, api_minor, build,
2655 			 sev->api_major, sev->api_minor, sev->build);
2656 
2657 	return;
2658 
2659 err:
2660 	sev_dev_destroy(psp_master);
2661 
2662 	psp_master->sev_data = NULL;
2663 }
2664 
2665 void sev_pci_exit(void)
2666 {
2667 	struct sev_device *sev = psp_master->sev_data;
2668 
2669 	if (!sev)
2670 		return;
2671 
2672 	sev_firmware_shutdown(sev);
2673 }
2674