1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Secure Encrypted Virtualization (SEV) interface 4 * 5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc. 6 * 7 * Author: Brijesh Singh <brijesh.singh@amd.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/kthread.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/spinlock.h> 17 #include <linux/spinlock_types.h> 18 #include <linux/types.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/hw_random.h> 22 #include <linux/ccp.h> 23 #include <linux/firmware.h> 24 #include <linux/panic_notifier.h> 25 #include <linux/gfp.h> 26 #include <linux/cpufeature.h> 27 #include <linux/fs.h> 28 #include <linux/fs_struct.h> 29 #include <linux/psp.h> 30 #include <linux/amd-iommu.h> 31 #include <linux/crash_dump.h> 32 33 #include <asm/smp.h> 34 #include <asm/cacheflush.h> 35 #include <asm/e820/types.h> 36 #include <asm/sev.h> 37 #include <asm/msr.h> 38 39 #include "psp-dev.h" 40 #include "sev-dev.h" 41 42 #define DEVICE_NAME "sev" 43 #define SEV_FW_FILE "amd/sev.fw" 44 #define SEV_FW_NAME_SIZE 64 45 46 /* Minimum firmware version required for the SEV-SNP support */ 47 #define SNP_MIN_API_MAJOR 1 48 #define SNP_MIN_API_MINOR 51 49 50 /* 51 * Maximum number of firmware-writable buffers that might be specified 52 * in the parameters of a legacy SEV command buffer. 53 */ 54 #define CMD_BUF_FW_WRITABLE_MAX 2 55 56 /* Leave room in the descriptor array for an end-of-list indicator. */ 57 #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1) 58 59 static DEFINE_MUTEX(sev_cmd_mutex); 60 static struct sev_misc_dev *misc_dev; 61 62 static int psp_cmd_timeout = 100; 63 module_param(psp_cmd_timeout, int, 0644); 64 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands"); 65 66 static int psp_probe_timeout = 5; 67 module_param(psp_probe_timeout, int, 0644); 68 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe"); 69 70 static char *init_ex_path; 71 module_param(init_ex_path, charp, 0444); 72 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX"); 73 74 static bool psp_init_on_probe = true; 75 module_param(psp_init_on_probe, bool, 0444); 76 MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it"); 77 78 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */ 79 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */ 80 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */ 81 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */ 82 83 static bool psp_dead; 84 static int psp_timeout; 85 86 enum snp_hv_fixed_pages_state { 87 ALLOCATED, 88 HV_FIXED, 89 }; 90 91 struct snp_hv_fixed_pages_entry { 92 struct list_head list; 93 struct page *page; 94 unsigned int order; 95 bool free; 96 enum snp_hv_fixed_pages_state page_state; 97 }; 98 99 static LIST_HEAD(snp_hv_fixed_pages); 100 101 /* Trusted Memory Region (TMR): 102 * The TMR is a 1MB area that must be 1MB aligned. Use the page allocator 103 * to allocate the memory, which will return aligned memory for the specified 104 * allocation order. 105 * 106 * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized. 107 */ 108 #define SEV_TMR_SIZE (1024 * 1024) 109 #define SNP_TMR_SIZE (2 * 1024 * 1024) 110 111 static void *sev_es_tmr; 112 static size_t sev_es_tmr_size = SEV_TMR_SIZE; 113 114 /* INIT_EX NV Storage: 115 * The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page 116 * allocator to allocate the memory, which will return aligned memory for the 117 * specified allocation order. 118 */ 119 #define NV_LENGTH (32 * 1024) 120 static void *sev_init_ex_buffer; 121 122 /* 123 * SEV_DATA_RANGE_LIST: 124 * Array containing range of pages that firmware transitions to HV-fixed 125 * page state. 126 */ 127 static struct sev_data_range_list *snp_range_list; 128 129 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic); 130 131 static int snp_shutdown_on_panic(struct notifier_block *nb, 132 unsigned long reason, void *arg); 133 134 static struct notifier_block snp_panic_notifier = { 135 .notifier_call = snp_shutdown_on_panic, 136 }; 137 138 static inline bool sev_version_greater_or_equal(u8 maj, u8 min) 139 { 140 struct sev_device *sev = psp_master->sev_data; 141 142 if (sev->api_major > maj) 143 return true; 144 145 if (sev->api_major == maj && sev->api_minor >= min) 146 return true; 147 148 return false; 149 } 150 151 static void sev_irq_handler(int irq, void *data, unsigned int status) 152 { 153 struct sev_device *sev = data; 154 int reg; 155 156 /* Check if it is command completion: */ 157 if (!(status & SEV_CMD_COMPLETE)) 158 return; 159 160 /* Check if it is SEV command completion: */ 161 reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 162 if (FIELD_GET(PSP_CMDRESP_RESP, reg)) { 163 sev->int_rcvd = 1; 164 wake_up(&sev->int_queue); 165 } 166 } 167 168 static int sev_wait_cmd_ioc(struct sev_device *sev, 169 unsigned int *reg, unsigned int timeout) 170 { 171 int ret; 172 173 /* 174 * If invoked during panic handling, local interrupts are disabled, 175 * so the PSP command completion interrupt can't be used. Poll for 176 * PSP command completion instead. 177 */ 178 if (irqs_disabled()) { 179 unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10; 180 181 /* Poll for SEV command completion: */ 182 while (timeout_usecs--) { 183 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 184 if (*reg & PSP_CMDRESP_RESP) 185 return 0; 186 187 udelay(10); 188 } 189 return -ETIMEDOUT; 190 } 191 192 ret = wait_event_timeout(sev->int_queue, 193 sev->int_rcvd, timeout * HZ); 194 if (!ret) 195 return -ETIMEDOUT; 196 197 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 198 199 return 0; 200 } 201 202 static int sev_cmd_buffer_len(int cmd) 203 { 204 switch (cmd) { 205 case SEV_CMD_INIT: return sizeof(struct sev_data_init); 206 case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex); 207 case SEV_CMD_SNP_SHUTDOWN_EX: return sizeof(struct sev_data_snp_shutdown_ex); 208 case SEV_CMD_SNP_INIT_EX: return sizeof(struct sev_data_snp_init_ex); 209 case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status); 210 case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr); 211 case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import); 212 case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export); 213 case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start); 214 case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data); 215 case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa); 216 case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish); 217 case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure); 218 case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate); 219 case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate); 220 case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission); 221 case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status); 222 case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg); 223 case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg); 224 case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start); 225 case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data); 226 case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa); 227 case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish); 228 case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start); 229 case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish); 230 case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data); 231 case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa); 232 case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret); 233 case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware); 234 case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id); 235 case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report); 236 case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel); 237 case SEV_CMD_SNP_GCTX_CREATE: return sizeof(struct sev_data_snp_addr); 238 case SEV_CMD_SNP_LAUNCH_START: return sizeof(struct sev_data_snp_launch_start); 239 case SEV_CMD_SNP_LAUNCH_UPDATE: return sizeof(struct sev_data_snp_launch_update); 240 case SEV_CMD_SNP_ACTIVATE: return sizeof(struct sev_data_snp_activate); 241 case SEV_CMD_SNP_DECOMMISSION: return sizeof(struct sev_data_snp_addr); 242 case SEV_CMD_SNP_PAGE_RECLAIM: return sizeof(struct sev_data_snp_page_reclaim); 243 case SEV_CMD_SNP_GUEST_STATUS: return sizeof(struct sev_data_snp_guest_status); 244 case SEV_CMD_SNP_LAUNCH_FINISH: return sizeof(struct sev_data_snp_launch_finish); 245 case SEV_CMD_SNP_DBG_DECRYPT: return sizeof(struct sev_data_snp_dbg); 246 case SEV_CMD_SNP_DBG_ENCRYPT: return sizeof(struct sev_data_snp_dbg); 247 case SEV_CMD_SNP_PAGE_UNSMASH: return sizeof(struct sev_data_snp_page_unsmash); 248 case SEV_CMD_SNP_PLATFORM_STATUS: return sizeof(struct sev_data_snp_addr); 249 case SEV_CMD_SNP_GUEST_REQUEST: return sizeof(struct sev_data_snp_guest_request); 250 case SEV_CMD_SNP_CONFIG: return sizeof(struct sev_user_data_snp_config); 251 case SEV_CMD_SNP_COMMIT: return sizeof(struct sev_data_snp_commit); 252 case SEV_CMD_SNP_FEATURE_INFO: return sizeof(struct sev_data_snp_feature_info); 253 case SEV_CMD_SNP_VLEK_LOAD: return sizeof(struct sev_user_data_snp_vlek_load); 254 default: return 0; 255 } 256 257 return 0; 258 } 259 260 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode) 261 { 262 struct path root __free(path_put) = {}; 263 264 task_lock(&init_task); 265 get_fs_root(init_task.fs, &root); 266 task_unlock(&init_task); 267 268 CLASS(prepare_creds, cred)(); 269 if (!cred) 270 return ERR_PTR(-ENOMEM); 271 272 cred->fsuid = GLOBAL_ROOT_UID; 273 274 scoped_with_creds(cred) 275 return file_open_root(&root, filename, flags, mode); 276 } 277 278 static int sev_read_init_ex_file(void) 279 { 280 struct sev_device *sev = psp_master->sev_data; 281 struct file *fp; 282 ssize_t nread; 283 284 lockdep_assert_held(&sev_cmd_mutex); 285 286 if (!sev_init_ex_buffer) 287 return -EOPNOTSUPP; 288 289 fp = open_file_as_root(init_ex_path, O_RDONLY, 0); 290 if (IS_ERR(fp)) { 291 int ret = PTR_ERR(fp); 292 293 if (ret == -ENOENT) { 294 dev_info(sev->dev, 295 "SEV: %s does not exist and will be created later.\n", 296 init_ex_path); 297 ret = 0; 298 } else { 299 dev_err(sev->dev, 300 "SEV: could not open %s for read, error %d\n", 301 init_ex_path, ret); 302 } 303 return ret; 304 } 305 306 nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL); 307 if (nread != NV_LENGTH) { 308 dev_info(sev->dev, 309 "SEV: could not read %u bytes to non volatile memory area, ret %ld\n", 310 NV_LENGTH, nread); 311 } 312 313 dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread); 314 filp_close(fp, NULL); 315 316 return 0; 317 } 318 319 static int sev_write_init_ex_file(void) 320 { 321 struct sev_device *sev = psp_master->sev_data; 322 struct file *fp; 323 loff_t offset = 0; 324 ssize_t nwrite; 325 326 lockdep_assert_held(&sev_cmd_mutex); 327 328 if (!sev_init_ex_buffer) 329 return 0; 330 331 fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600); 332 if (IS_ERR(fp)) { 333 int ret = PTR_ERR(fp); 334 335 dev_err(sev->dev, 336 "SEV: could not open file for write, error %d\n", 337 ret); 338 return ret; 339 } 340 341 nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset); 342 vfs_fsync(fp, 0); 343 filp_close(fp, NULL); 344 345 if (nwrite != NV_LENGTH) { 346 dev_err(sev->dev, 347 "SEV: failed to write %u bytes to non volatile memory area, ret %ld\n", 348 NV_LENGTH, nwrite); 349 return -EIO; 350 } 351 352 dev_dbg(sev->dev, "SEV: write successful to NV file\n"); 353 354 return 0; 355 } 356 357 static int sev_write_init_ex_file_if_required(int cmd_id) 358 { 359 lockdep_assert_held(&sev_cmd_mutex); 360 361 if (!sev_init_ex_buffer) 362 return 0; 363 364 /* 365 * Only a few platform commands modify the SPI/NV area, but none of the 366 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN, 367 * PEK_CERT_IMPORT, and PDH_GEN do. 368 */ 369 switch (cmd_id) { 370 case SEV_CMD_FACTORY_RESET: 371 case SEV_CMD_INIT_EX: 372 case SEV_CMD_PDH_GEN: 373 case SEV_CMD_PEK_CERT_IMPORT: 374 case SEV_CMD_PEK_GEN: 375 break; 376 default: 377 return 0; 378 } 379 380 return sev_write_init_ex_file(); 381 } 382 383 /* 384 * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked() 385 * needs snp_reclaim_pages(), so a forward declaration is needed. 386 */ 387 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret); 388 389 static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked) 390 { 391 int ret, err, i; 392 393 paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE)); 394 395 for (i = 0; i < npages; i++, paddr += PAGE_SIZE) { 396 struct sev_data_snp_page_reclaim data = {0}; 397 398 data.paddr = paddr; 399 400 if (locked) 401 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 402 else 403 ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 404 405 if (ret) 406 goto cleanup; 407 408 ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K); 409 if (ret) 410 goto cleanup; 411 } 412 413 return 0; 414 415 cleanup: 416 /* 417 * If there was a failure reclaiming the page then it is no longer safe 418 * to release it back to the system; leak it instead. 419 */ 420 snp_leak_pages(__phys_to_pfn(paddr), npages - i); 421 return ret; 422 } 423 424 static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked) 425 { 426 unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT; 427 int rc, i; 428 429 for (i = 0; i < npages; i++, pfn++) { 430 rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true); 431 if (rc) 432 goto cleanup; 433 } 434 435 return 0; 436 437 cleanup: 438 /* 439 * Try unrolling the firmware state changes by 440 * reclaiming the pages which were already changed to the 441 * firmware state. 442 */ 443 snp_reclaim_pages(paddr, i, locked); 444 445 return rc; 446 } 447 448 static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order, bool locked) 449 { 450 unsigned long npages = 1ul << order, paddr; 451 struct sev_device *sev; 452 struct page *page; 453 454 if (!psp_master || !psp_master->sev_data) 455 return NULL; 456 457 page = alloc_pages(gfp_mask, order); 458 if (!page) 459 return NULL; 460 461 /* If SEV-SNP is initialized then add the page in RMP table. */ 462 sev = psp_master->sev_data; 463 if (!sev->snp_initialized) 464 return page; 465 466 paddr = __pa((unsigned long)page_address(page)); 467 if (rmp_mark_pages_firmware(paddr, npages, locked)) 468 return NULL; 469 470 return page; 471 } 472 473 void *snp_alloc_firmware_page(gfp_t gfp_mask) 474 { 475 struct page *page; 476 477 page = __snp_alloc_firmware_pages(gfp_mask, 0, false); 478 479 return page ? page_address(page) : NULL; 480 } 481 EXPORT_SYMBOL_GPL(snp_alloc_firmware_page); 482 483 static void __snp_free_firmware_pages(struct page *page, int order, bool locked) 484 { 485 struct sev_device *sev = psp_master->sev_data; 486 unsigned long paddr, npages = 1ul << order; 487 488 if (!page) 489 return; 490 491 paddr = __pa((unsigned long)page_address(page)); 492 if (sev->snp_initialized && 493 snp_reclaim_pages(paddr, npages, locked)) 494 return; 495 496 __free_pages(page, order); 497 } 498 499 void snp_free_firmware_page(void *addr) 500 { 501 if (!addr) 502 return; 503 504 __snp_free_firmware_pages(virt_to_page(addr), 0, false); 505 } 506 EXPORT_SYMBOL_GPL(snp_free_firmware_page); 507 508 static void *sev_fw_alloc(unsigned long len) 509 { 510 struct page *page; 511 512 page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len), true); 513 if (!page) 514 return NULL; 515 516 return page_address(page); 517 } 518 519 /** 520 * struct cmd_buf_desc - descriptors for managing legacy SEV command address 521 * parameters corresponding to buffers that may be written to by firmware. 522 * 523 * @paddr_ptr: pointer to the address parameter in the command buffer which may 524 * need to be saved/restored depending on whether a bounce buffer 525 * is used. In the case of a bounce buffer, the command buffer 526 * needs to be updated with the address of the new bounce buffer 527 * snp_map_cmd_buf_desc() has allocated specifically for it. Must 528 * be NULL if this descriptor is only an end-of-list indicator. 529 * 530 * @paddr_orig: storage for the original address parameter, which can be used to 531 * restore the original value in @paddr_ptr in cases where it is 532 * replaced with the address of a bounce buffer. 533 * 534 * @len: length of buffer located at the address originally stored at @paddr_ptr 535 * 536 * @guest_owned: true if the address corresponds to guest-owned pages, in which 537 * case bounce buffers are not needed. 538 */ 539 struct cmd_buf_desc { 540 u64 *paddr_ptr; 541 u64 paddr_orig; 542 u32 len; 543 bool guest_owned; 544 }; 545 546 /* 547 * If a legacy SEV command parameter is a memory address, those pages in 548 * turn need to be transitioned to/from firmware-owned before/after 549 * executing the firmware command. 550 * 551 * Additionally, in cases where those pages are not guest-owned, a bounce 552 * buffer is needed in place of the original memory address parameter. 553 * 554 * A set of descriptors are used to keep track of this handling, and 555 * initialized here based on the specific commands being executed. 556 */ 557 static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf, 558 struct cmd_buf_desc *desc_list) 559 { 560 switch (cmd) { 561 case SEV_CMD_PDH_CERT_EXPORT: { 562 struct sev_data_pdh_cert_export *data = cmd_buf; 563 564 desc_list[0].paddr_ptr = &data->pdh_cert_address; 565 desc_list[0].len = data->pdh_cert_len; 566 desc_list[1].paddr_ptr = &data->cert_chain_address; 567 desc_list[1].len = data->cert_chain_len; 568 break; 569 } 570 case SEV_CMD_GET_ID: { 571 struct sev_data_get_id *data = cmd_buf; 572 573 desc_list[0].paddr_ptr = &data->address; 574 desc_list[0].len = data->len; 575 break; 576 } 577 case SEV_CMD_PEK_CSR: { 578 struct sev_data_pek_csr *data = cmd_buf; 579 580 desc_list[0].paddr_ptr = &data->address; 581 desc_list[0].len = data->len; 582 break; 583 } 584 case SEV_CMD_LAUNCH_UPDATE_DATA: { 585 struct sev_data_launch_update_data *data = cmd_buf; 586 587 desc_list[0].paddr_ptr = &data->address; 588 desc_list[0].len = data->len; 589 desc_list[0].guest_owned = true; 590 break; 591 } 592 case SEV_CMD_LAUNCH_UPDATE_VMSA: { 593 struct sev_data_launch_update_vmsa *data = cmd_buf; 594 595 desc_list[0].paddr_ptr = &data->address; 596 desc_list[0].len = data->len; 597 desc_list[0].guest_owned = true; 598 break; 599 } 600 case SEV_CMD_LAUNCH_MEASURE: { 601 struct sev_data_launch_measure *data = cmd_buf; 602 603 desc_list[0].paddr_ptr = &data->address; 604 desc_list[0].len = data->len; 605 break; 606 } 607 case SEV_CMD_LAUNCH_UPDATE_SECRET: { 608 struct sev_data_launch_secret *data = cmd_buf; 609 610 desc_list[0].paddr_ptr = &data->guest_address; 611 desc_list[0].len = data->guest_len; 612 desc_list[0].guest_owned = true; 613 break; 614 } 615 case SEV_CMD_DBG_DECRYPT: { 616 struct sev_data_dbg *data = cmd_buf; 617 618 desc_list[0].paddr_ptr = &data->dst_addr; 619 desc_list[0].len = data->len; 620 desc_list[0].guest_owned = true; 621 break; 622 } 623 case SEV_CMD_DBG_ENCRYPT: { 624 struct sev_data_dbg *data = cmd_buf; 625 626 desc_list[0].paddr_ptr = &data->dst_addr; 627 desc_list[0].len = data->len; 628 desc_list[0].guest_owned = true; 629 break; 630 } 631 case SEV_CMD_ATTESTATION_REPORT: { 632 struct sev_data_attestation_report *data = cmd_buf; 633 634 desc_list[0].paddr_ptr = &data->address; 635 desc_list[0].len = data->len; 636 break; 637 } 638 case SEV_CMD_SEND_START: { 639 struct sev_data_send_start *data = cmd_buf; 640 641 desc_list[0].paddr_ptr = &data->session_address; 642 desc_list[0].len = data->session_len; 643 break; 644 } 645 case SEV_CMD_SEND_UPDATE_DATA: { 646 struct sev_data_send_update_data *data = cmd_buf; 647 648 desc_list[0].paddr_ptr = &data->hdr_address; 649 desc_list[0].len = data->hdr_len; 650 desc_list[1].paddr_ptr = &data->trans_address; 651 desc_list[1].len = data->trans_len; 652 break; 653 } 654 case SEV_CMD_SEND_UPDATE_VMSA: { 655 struct sev_data_send_update_vmsa *data = cmd_buf; 656 657 desc_list[0].paddr_ptr = &data->hdr_address; 658 desc_list[0].len = data->hdr_len; 659 desc_list[1].paddr_ptr = &data->trans_address; 660 desc_list[1].len = data->trans_len; 661 break; 662 } 663 case SEV_CMD_RECEIVE_UPDATE_DATA: { 664 struct sev_data_receive_update_data *data = cmd_buf; 665 666 desc_list[0].paddr_ptr = &data->guest_address; 667 desc_list[0].len = data->guest_len; 668 desc_list[0].guest_owned = true; 669 break; 670 } 671 case SEV_CMD_RECEIVE_UPDATE_VMSA: { 672 struct sev_data_receive_update_vmsa *data = cmd_buf; 673 674 desc_list[0].paddr_ptr = &data->guest_address; 675 desc_list[0].len = data->guest_len; 676 desc_list[0].guest_owned = true; 677 break; 678 } 679 default: 680 break; 681 } 682 } 683 684 static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc) 685 { 686 unsigned int npages; 687 688 if (!desc->len) 689 return 0; 690 691 /* Allocate a bounce buffer if this isn't a guest owned page. */ 692 if (!desc->guest_owned) { 693 struct page *page; 694 695 page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len)); 696 if (!page) { 697 pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n"); 698 return -ENOMEM; 699 } 700 701 desc->paddr_orig = *desc->paddr_ptr; 702 *desc->paddr_ptr = __psp_pa(page_to_virt(page)); 703 } 704 705 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 706 707 /* Transition the buffer to firmware-owned. */ 708 if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) { 709 pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n"); 710 return -EFAULT; 711 } 712 713 return 0; 714 } 715 716 static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc) 717 { 718 unsigned int npages; 719 720 if (!desc->len) 721 return 0; 722 723 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 724 725 /* Transition the buffers back to hypervisor-owned. */ 726 if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) { 727 pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n"); 728 return -EFAULT; 729 } 730 731 /* Copy data from bounce buffer and then free it. */ 732 if (!desc->guest_owned) { 733 void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr)); 734 void *dst_buf = __va(__sme_clr(desc->paddr_orig)); 735 736 memcpy(dst_buf, bounce_buf, desc->len); 737 __free_pages(virt_to_page(bounce_buf), get_order(desc->len)); 738 739 /* Restore the original address in the command buffer. */ 740 *desc->paddr_ptr = desc->paddr_orig; 741 } 742 743 return 0; 744 } 745 746 static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 747 { 748 int i; 749 750 snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list); 751 752 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 753 struct cmd_buf_desc *desc = &desc_list[i]; 754 755 if (!desc->paddr_ptr) 756 break; 757 758 if (snp_map_cmd_buf_desc(desc)) 759 goto err_unmap; 760 } 761 762 return 0; 763 764 err_unmap: 765 for (i--; i >= 0; i--) 766 snp_unmap_cmd_buf_desc(&desc_list[i]); 767 768 return -EFAULT; 769 } 770 771 static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list) 772 { 773 int i, ret = 0; 774 775 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 776 struct cmd_buf_desc *desc = &desc_list[i]; 777 778 if (!desc->paddr_ptr) 779 break; 780 781 if (snp_unmap_cmd_buf_desc(&desc_list[i])) 782 ret = -EFAULT; 783 } 784 785 return ret; 786 } 787 788 static bool sev_cmd_buf_writable(int cmd) 789 { 790 switch (cmd) { 791 case SEV_CMD_PLATFORM_STATUS: 792 case SEV_CMD_GUEST_STATUS: 793 case SEV_CMD_LAUNCH_START: 794 case SEV_CMD_RECEIVE_START: 795 case SEV_CMD_LAUNCH_MEASURE: 796 case SEV_CMD_SEND_START: 797 case SEV_CMD_SEND_UPDATE_DATA: 798 case SEV_CMD_SEND_UPDATE_VMSA: 799 case SEV_CMD_PEK_CSR: 800 case SEV_CMD_PDH_CERT_EXPORT: 801 case SEV_CMD_GET_ID: 802 case SEV_CMD_ATTESTATION_REPORT: 803 return true; 804 default: 805 return false; 806 } 807 } 808 809 /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */ 810 static bool snp_legacy_handling_needed(int cmd) 811 { 812 struct sev_device *sev = psp_master->sev_data; 813 814 return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized; 815 } 816 817 static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 818 { 819 if (!snp_legacy_handling_needed(cmd)) 820 return 0; 821 822 if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list)) 823 return -EFAULT; 824 825 /* 826 * Before command execution, the command buffer needs to be put into 827 * the firmware-owned state. 828 */ 829 if (sev_cmd_buf_writable(cmd)) { 830 if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true)) 831 return -EFAULT; 832 } 833 834 return 0; 835 } 836 837 static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf) 838 { 839 if (!snp_legacy_handling_needed(cmd)) 840 return 0; 841 842 /* 843 * After command completion, the command buffer needs to be put back 844 * into the hypervisor-owned state. 845 */ 846 if (sev_cmd_buf_writable(cmd)) 847 if (snp_reclaim_pages(__pa(cmd_buf), 1, true)) 848 return -EFAULT; 849 850 return 0; 851 } 852 853 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret) 854 { 855 struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0}; 856 struct psp_device *psp = psp_master; 857 struct sev_device *sev; 858 unsigned int cmdbuff_hi, cmdbuff_lo; 859 unsigned int phys_lsb, phys_msb; 860 unsigned int reg; 861 void *cmd_buf; 862 int buf_len; 863 int ret = 0; 864 865 if (!psp || !psp->sev_data) 866 return -ENODEV; 867 868 if (psp_dead) 869 return -EBUSY; 870 871 sev = psp->sev_data; 872 873 buf_len = sev_cmd_buffer_len(cmd); 874 if (WARN_ON_ONCE(!data != !buf_len)) 875 return -EINVAL; 876 877 /* 878 * Copy the incoming data to driver's scratch buffer as __pa() will not 879 * work for some memory, e.g. vmalloc'd addresses, and @data may not be 880 * physically contiguous. 881 */ 882 if (data) { 883 /* 884 * Commands are generally issued one at a time and require the 885 * sev_cmd_mutex, but there could be recursive firmware requests 886 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while 887 * preparing buffers for another command. This is the only known 888 * case of nesting in the current code, so exactly one 889 * additional command buffer is available for that purpose. 890 */ 891 if (!sev->cmd_buf_active) { 892 cmd_buf = sev->cmd_buf; 893 sev->cmd_buf_active = true; 894 } else if (!sev->cmd_buf_backup_active) { 895 cmd_buf = sev->cmd_buf_backup; 896 sev->cmd_buf_backup_active = true; 897 } else { 898 dev_err(sev->dev, 899 "SEV: too many firmware commands in progress, no command buffers available.\n"); 900 return -EBUSY; 901 } 902 903 memcpy(cmd_buf, data, buf_len); 904 905 /* 906 * The behavior of the SEV-legacy commands is altered when the 907 * SNP firmware is in the INIT state. 908 */ 909 ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list); 910 if (ret) { 911 dev_err(sev->dev, 912 "SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n", 913 cmd, ret); 914 return ret; 915 } 916 } else { 917 cmd_buf = sev->cmd_buf; 918 } 919 920 /* Get the physical address of the command buffer */ 921 phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0; 922 phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0; 923 924 dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n", 925 cmd, phys_msb, phys_lsb, psp_timeout); 926 927 print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data, 928 buf_len, false); 929 930 iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 931 iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 932 933 sev->int_rcvd = 0; 934 935 reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd); 936 937 /* 938 * If invoked during panic handling, local interrupts are disabled so 939 * the PSP command completion interrupt can't be used. 940 * sev_wait_cmd_ioc() already checks for interrupts disabled and 941 * polls for PSP command completion. Ensure we do not request an 942 * interrupt from the PSP if irqs disabled. 943 */ 944 if (!irqs_disabled()) 945 reg |= SEV_CMDRESP_IOC; 946 947 iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg); 948 949 /* wait for command completion */ 950 ret = sev_wait_cmd_ioc(sev, ®, psp_timeout); 951 if (ret) { 952 if (psp_ret) 953 *psp_ret = 0; 954 955 dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd); 956 psp_dead = true; 957 958 return ret; 959 } 960 961 psp_timeout = psp_cmd_timeout; 962 963 if (psp_ret) 964 *psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg); 965 966 if (FIELD_GET(PSP_CMDRESP_STS, reg)) { 967 dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n", 968 cmd, FIELD_GET(PSP_CMDRESP_STS, reg)); 969 970 /* 971 * PSP firmware may report additional error information in the 972 * command buffer registers on error. Print contents of command 973 * buffer registers if they changed. 974 */ 975 cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 976 cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 977 if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) { 978 dev_dbg(sev->dev, "Additional error information reported in cmdbuff:"); 979 dev_dbg(sev->dev, " cmdbuff hi: %#010x\n", cmdbuff_hi); 980 dev_dbg(sev->dev, " cmdbuff lo: %#010x\n", cmdbuff_lo); 981 } 982 ret = -EIO; 983 } else { 984 ret = sev_write_init_ex_file_if_required(cmd); 985 } 986 987 /* 988 * Copy potential output from the PSP back to data. Do this even on 989 * failure in case the caller wants to glean something from the error. 990 */ 991 if (data) { 992 int ret_reclaim; 993 /* 994 * Restore the page state after the command completes. 995 */ 996 ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf); 997 if (ret_reclaim) { 998 dev_err(sev->dev, 999 "SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n", 1000 cmd, ret_reclaim); 1001 return ret_reclaim; 1002 } 1003 1004 memcpy(data, cmd_buf, buf_len); 1005 1006 if (sev->cmd_buf_backup_active) 1007 sev->cmd_buf_backup_active = false; 1008 else 1009 sev->cmd_buf_active = false; 1010 1011 if (snp_unmap_cmd_buf_desc_list(desc_list)) 1012 return -EFAULT; 1013 } 1014 1015 print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data, 1016 buf_len, false); 1017 1018 return ret; 1019 } 1020 1021 int sev_do_cmd(int cmd, void *data, int *psp_ret) 1022 { 1023 int rc; 1024 1025 mutex_lock(&sev_cmd_mutex); 1026 rc = __sev_do_cmd_locked(cmd, data, psp_ret); 1027 mutex_unlock(&sev_cmd_mutex); 1028 1029 return rc; 1030 } 1031 EXPORT_SYMBOL_GPL(sev_do_cmd); 1032 1033 static int __sev_init_locked(int *error) 1034 { 1035 struct sev_data_init data; 1036 1037 memset(&data, 0, sizeof(data)); 1038 if (sev_es_tmr) { 1039 /* 1040 * Do not include the encryption mask on the physical 1041 * address of the TMR (firmware should clear it anyway). 1042 */ 1043 data.tmr_address = __pa(sev_es_tmr); 1044 1045 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1046 data.tmr_len = sev_es_tmr_size; 1047 } 1048 1049 return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error); 1050 } 1051 1052 static int __sev_init_ex_locked(int *error) 1053 { 1054 struct sev_data_init_ex data; 1055 1056 memset(&data, 0, sizeof(data)); 1057 data.length = sizeof(data); 1058 data.nv_address = __psp_pa(sev_init_ex_buffer); 1059 data.nv_len = NV_LENGTH; 1060 1061 if (sev_es_tmr) { 1062 /* 1063 * Do not include the encryption mask on the physical 1064 * address of the TMR (firmware should clear it anyway). 1065 */ 1066 data.tmr_address = __pa(sev_es_tmr); 1067 1068 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1069 data.tmr_len = sev_es_tmr_size; 1070 } 1071 1072 return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error); 1073 } 1074 1075 static inline int __sev_do_init_locked(int *psp_ret) 1076 { 1077 if (sev_init_ex_buffer) 1078 return __sev_init_ex_locked(psp_ret); 1079 else 1080 return __sev_init_locked(psp_ret); 1081 } 1082 1083 static void snp_set_hsave_pa(void *arg) 1084 { 1085 wrmsrq(MSR_VM_HSAVE_PA, 0); 1086 } 1087 1088 /* Hypervisor Fixed pages API interface */ 1089 static void snp_hv_fixed_pages_state_update(struct sev_device *sev, 1090 enum snp_hv_fixed_pages_state page_state) 1091 { 1092 struct snp_hv_fixed_pages_entry *entry; 1093 1094 /* List is protected by sev_cmd_mutex */ 1095 lockdep_assert_held(&sev_cmd_mutex); 1096 1097 if (list_empty(&snp_hv_fixed_pages)) 1098 return; 1099 1100 list_for_each_entry(entry, &snp_hv_fixed_pages, list) 1101 entry->page_state = page_state; 1102 } 1103 1104 /* 1105 * Allocate HV_FIXED pages in 2MB aligned sizes to ensure the whole 1106 * 2MB pages are marked as HV_FIXED. 1107 */ 1108 struct page *snp_alloc_hv_fixed_pages(unsigned int num_2mb_pages) 1109 { 1110 struct psp_device *psp_master = psp_get_master_device(); 1111 struct snp_hv_fixed_pages_entry *entry; 1112 struct sev_device *sev; 1113 unsigned int order; 1114 struct page *page; 1115 1116 if (!psp_master || !psp_master->sev_data) 1117 return NULL; 1118 1119 sev = psp_master->sev_data; 1120 1121 order = get_order(PMD_SIZE * num_2mb_pages); 1122 1123 /* 1124 * SNP_INIT_EX is protected by sev_cmd_mutex, therefore this list 1125 * also needs to be protected using the same mutex. 1126 */ 1127 guard(mutex)(&sev_cmd_mutex); 1128 1129 /* 1130 * This API uses SNP_INIT_EX to transition allocated pages to HV_Fixed 1131 * page state, fail if SNP is already initialized. 1132 */ 1133 if (sev->snp_initialized) 1134 return NULL; 1135 1136 /* Re-use freed pages that match the request */ 1137 list_for_each_entry(entry, &snp_hv_fixed_pages, list) { 1138 /* Hypervisor fixed page allocator implements exact fit policy */ 1139 if (entry->order == order && entry->free) { 1140 entry->free = false; 1141 memset(page_address(entry->page), 0, 1142 (1 << entry->order) * PAGE_SIZE); 1143 return entry->page; 1144 } 1145 } 1146 1147 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, order); 1148 if (!page) 1149 return NULL; 1150 1151 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 1152 if (!entry) { 1153 __free_pages(page, order); 1154 return NULL; 1155 } 1156 1157 entry->page = page; 1158 entry->order = order; 1159 list_add_tail(&entry->list, &snp_hv_fixed_pages); 1160 1161 return page; 1162 } 1163 1164 void snp_free_hv_fixed_pages(struct page *page) 1165 { 1166 struct psp_device *psp_master = psp_get_master_device(); 1167 struct snp_hv_fixed_pages_entry *entry, *nentry; 1168 1169 if (!psp_master || !psp_master->sev_data) 1170 return; 1171 1172 /* 1173 * SNP_INIT_EX is protected by sev_cmd_mutex, therefore this list 1174 * also needs to be protected using the same mutex. 1175 */ 1176 guard(mutex)(&sev_cmd_mutex); 1177 1178 list_for_each_entry_safe(entry, nentry, &snp_hv_fixed_pages, list) { 1179 if (entry->page != page) 1180 continue; 1181 1182 /* 1183 * HV_FIXED page state cannot be changed until reboot 1184 * and they cannot be used by an SNP guest, so they cannot 1185 * be returned back to the page allocator. 1186 * Mark the pages as free internally to allow possible re-use. 1187 */ 1188 if (entry->page_state == HV_FIXED) { 1189 entry->free = true; 1190 } else { 1191 __free_pages(page, entry->order); 1192 list_del(&entry->list); 1193 kfree(entry); 1194 } 1195 return; 1196 } 1197 } 1198 1199 static void snp_add_hv_fixed_pages(struct sev_device *sev, struct sev_data_range_list *range_list) 1200 { 1201 struct snp_hv_fixed_pages_entry *entry; 1202 struct sev_data_range *range; 1203 int num_elements; 1204 1205 lockdep_assert_held(&sev_cmd_mutex); 1206 1207 if (list_empty(&snp_hv_fixed_pages)) 1208 return; 1209 1210 num_elements = list_count_nodes(&snp_hv_fixed_pages) + 1211 range_list->num_elements; 1212 1213 /* 1214 * Ensure the list of HV_FIXED pages that will be passed to firmware 1215 * do not exceed the page-sized argument buffer. 1216 */ 1217 if (num_elements * sizeof(*range) + sizeof(*range_list) > PAGE_SIZE) { 1218 dev_warn(sev->dev, "Additional HV_Fixed pages cannot be accommodated, omitting\n"); 1219 return; 1220 } 1221 1222 range = &range_list->ranges[range_list->num_elements]; 1223 list_for_each_entry(entry, &snp_hv_fixed_pages, list) { 1224 range->base = page_to_pfn(entry->page) << PAGE_SHIFT; 1225 range->page_count = 1 << entry->order; 1226 range++; 1227 } 1228 range_list->num_elements = num_elements; 1229 } 1230 1231 static void snp_leak_hv_fixed_pages(void) 1232 { 1233 struct snp_hv_fixed_pages_entry *entry; 1234 1235 /* List is protected by sev_cmd_mutex */ 1236 lockdep_assert_held(&sev_cmd_mutex); 1237 1238 if (list_empty(&snp_hv_fixed_pages)) 1239 return; 1240 1241 list_for_each_entry(entry, &snp_hv_fixed_pages, list) 1242 if (entry->page_state == HV_FIXED) 1243 __snp_leak_pages(page_to_pfn(entry->page), 1244 1 << entry->order, false); 1245 } 1246 1247 bool sev_is_snp_ciphertext_hiding_supported(void) 1248 { 1249 struct psp_device *psp = psp_master; 1250 struct sev_device *sev; 1251 1252 if (!psp || !psp->sev_data) 1253 return false; 1254 1255 sev = psp->sev_data; 1256 1257 /* 1258 * Feature information indicates if CipherTextHiding feature is 1259 * supported by the SEV firmware and additionally platform status 1260 * indicates if CipherTextHiding feature is enabled in the 1261 * Platform BIOS. 1262 */ 1263 return ((sev->snp_feat_info_0.ecx & SNP_CIPHER_TEXT_HIDING_SUPPORTED) && 1264 sev->snp_plat_status.ciphertext_hiding_cap); 1265 } 1266 EXPORT_SYMBOL_GPL(sev_is_snp_ciphertext_hiding_supported); 1267 1268 static int snp_get_platform_data(struct sev_device *sev, int *error) 1269 { 1270 struct sev_data_snp_feature_info snp_feat_info; 1271 struct snp_feature_info *feat_info; 1272 struct sev_data_snp_addr buf; 1273 struct page *page; 1274 int rc; 1275 1276 /* 1277 * This function is expected to be called before SNP is 1278 * initialized. 1279 */ 1280 if (sev->snp_initialized) 1281 return -EINVAL; 1282 1283 buf.address = __psp_pa(&sev->snp_plat_status); 1284 rc = sev_do_cmd(SEV_CMD_SNP_PLATFORM_STATUS, &buf, error); 1285 if (rc) { 1286 dev_err(sev->dev, "SNP PLATFORM_STATUS command failed, ret = %d, error = %#x\n", 1287 rc, *error); 1288 return rc; 1289 } 1290 1291 sev->api_major = sev->snp_plat_status.api_major; 1292 sev->api_minor = sev->snp_plat_status.api_minor; 1293 sev->build = sev->snp_plat_status.build_id; 1294 1295 /* 1296 * Do feature discovery of the currently loaded firmware, 1297 * and cache feature information from CPUID 0x8000_0024, 1298 * sub-function 0. 1299 */ 1300 if (!sev->snp_plat_status.feature_info) 1301 return 0; 1302 1303 /* 1304 * Use dynamically allocated structure for the SNP_FEATURE_INFO 1305 * command to ensure structure is 8-byte aligned, and does not 1306 * cross a page boundary. 1307 */ 1308 page = alloc_page(GFP_KERNEL); 1309 if (!page) 1310 return -ENOMEM; 1311 1312 feat_info = page_address(page); 1313 snp_feat_info.length = sizeof(snp_feat_info); 1314 snp_feat_info.ecx_in = 0; 1315 snp_feat_info.feature_info_paddr = __psp_pa(feat_info); 1316 1317 rc = sev_do_cmd(SEV_CMD_SNP_FEATURE_INFO, &snp_feat_info, error); 1318 if (!rc) 1319 sev->snp_feat_info_0 = *feat_info; 1320 else 1321 dev_err(sev->dev, "SNP FEATURE_INFO command failed, ret = %d, error = %#x\n", 1322 rc, *error); 1323 1324 __free_page(page); 1325 1326 return rc; 1327 } 1328 1329 static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg) 1330 { 1331 struct sev_data_range_list *range_list = arg; 1332 struct sev_data_range *range = &range_list->ranges[range_list->num_elements]; 1333 size_t size; 1334 1335 /* 1336 * Ensure the list of HV_FIXED pages that will be passed to firmware 1337 * do not exceed the page-sized argument buffer. 1338 */ 1339 if ((range_list->num_elements * sizeof(struct sev_data_range) + 1340 sizeof(struct sev_data_range_list)) > PAGE_SIZE) 1341 return -E2BIG; 1342 1343 switch (rs->desc) { 1344 case E820_TYPE_RESERVED: 1345 case E820_TYPE_PMEM: 1346 case E820_TYPE_ACPI: 1347 range->base = rs->start & PAGE_MASK; 1348 size = PAGE_ALIGN((rs->end + 1) - rs->start); 1349 range->page_count = size >> PAGE_SHIFT; 1350 range_list->num_elements++; 1351 break; 1352 default: 1353 break; 1354 } 1355 1356 return 0; 1357 } 1358 1359 static int __sev_snp_init_locked(int *error, unsigned int max_snp_asid) 1360 { 1361 struct psp_device *psp = psp_master; 1362 struct sev_data_snp_init_ex data; 1363 struct sev_device *sev; 1364 void *arg = &data; 1365 int cmd, rc = 0; 1366 1367 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 1368 return -ENODEV; 1369 1370 sev = psp->sev_data; 1371 1372 if (sev->snp_initialized) 1373 return 0; 1374 1375 if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) { 1376 dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n", 1377 SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR); 1378 return -EOPNOTSUPP; 1379 } 1380 1381 /* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */ 1382 on_each_cpu(snp_set_hsave_pa, NULL, 1); 1383 1384 /* 1385 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list 1386 * of system physical address ranges to convert into HV-fixed page 1387 * states during the RMP initialization. For instance, the memory that 1388 * UEFI reserves should be included in the that list. This allows system 1389 * components that occasionally write to memory (e.g. logging to UEFI 1390 * reserved regions) to not fail due to RMP initialization and SNP 1391 * enablement. 1392 * 1393 */ 1394 if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) { 1395 /* 1396 * Firmware checks that the pages containing the ranges enumerated 1397 * in the RANGES structure are either in the default page state or in the 1398 * firmware page state. 1399 */ 1400 snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL); 1401 if (!snp_range_list) { 1402 dev_err(sev->dev, 1403 "SEV: SNP_INIT_EX range list memory allocation failed\n"); 1404 return -ENOMEM; 1405 } 1406 1407 /* 1408 * Retrieve all reserved memory regions from the e820 memory map 1409 * to be setup as HV-fixed pages. 1410 */ 1411 rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0, 1412 snp_range_list, snp_filter_reserved_mem_regions); 1413 if (rc) { 1414 dev_err(sev->dev, 1415 "SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc); 1416 return rc; 1417 } 1418 1419 /* 1420 * Add HV_Fixed pages from other PSP sub-devices, such as SFS to the 1421 * HV_Fixed page list. 1422 */ 1423 snp_add_hv_fixed_pages(sev, snp_range_list); 1424 1425 memset(&data, 0, sizeof(data)); 1426 1427 if (max_snp_asid) { 1428 data.ciphertext_hiding_en = 1; 1429 data.max_snp_asid = max_snp_asid; 1430 } 1431 1432 data.init_rmp = 1; 1433 data.list_paddr_en = 1; 1434 data.list_paddr = __psp_pa(snp_range_list); 1435 cmd = SEV_CMD_SNP_INIT_EX; 1436 } else { 1437 cmd = SEV_CMD_SNP_INIT; 1438 arg = NULL; 1439 } 1440 1441 /* 1442 * The following sequence must be issued before launching the first SNP 1443 * guest to ensure all dirty cache lines are flushed, including from 1444 * updates to the RMP table itself via the RMPUPDATE instruction: 1445 * 1446 * - WBINVD on all running CPUs 1447 * - SEV_CMD_SNP_INIT[_EX] firmware command 1448 * - WBINVD on all running CPUs 1449 * - SEV_CMD_SNP_DF_FLUSH firmware command 1450 */ 1451 wbinvd_on_all_cpus(); 1452 1453 rc = __sev_do_cmd_locked(cmd, arg, error); 1454 if (rc) { 1455 dev_err(sev->dev, "SEV-SNP: %s failed rc %d, error %#x\n", 1456 cmd == SEV_CMD_SNP_INIT_EX ? "SNP_INIT_EX" : "SNP_INIT", 1457 rc, *error); 1458 return rc; 1459 } 1460 1461 /* Prepare for first SNP guest launch after INIT. */ 1462 wbinvd_on_all_cpus(); 1463 rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error); 1464 if (rc) { 1465 dev_err(sev->dev, "SEV-SNP: SNP_DF_FLUSH failed rc %d, error %#x\n", 1466 rc, *error); 1467 return rc; 1468 } 1469 1470 snp_hv_fixed_pages_state_update(sev, HV_FIXED); 1471 sev->snp_initialized = true; 1472 dev_dbg(sev->dev, "SEV-SNP firmware initialized\n"); 1473 1474 dev_info(sev->dev, "SEV-SNP API:%d.%d build:%d\n", sev->api_major, 1475 sev->api_minor, sev->build); 1476 1477 atomic_notifier_chain_register(&panic_notifier_list, 1478 &snp_panic_notifier); 1479 1480 sev_es_tmr_size = SNP_TMR_SIZE; 1481 1482 return 0; 1483 } 1484 1485 static void __sev_platform_init_handle_tmr(struct sev_device *sev) 1486 { 1487 if (sev_es_tmr) 1488 return; 1489 1490 /* Obtain the TMR memory area for SEV-ES use */ 1491 sev_es_tmr = sev_fw_alloc(sev_es_tmr_size); 1492 if (sev_es_tmr) { 1493 /* Must flush the cache before giving it to the firmware */ 1494 if (!sev->snp_initialized) 1495 clflush_cache_range(sev_es_tmr, sev_es_tmr_size); 1496 } else { 1497 dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n"); 1498 } 1499 } 1500 1501 /* 1502 * If an init_ex_path is provided allocate a buffer for the file and 1503 * read in the contents. Additionally, if SNP is initialized, convert 1504 * the buffer pages to firmware pages. 1505 */ 1506 static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev) 1507 { 1508 struct page *page; 1509 int rc; 1510 1511 if (!init_ex_path) 1512 return 0; 1513 1514 if (sev_init_ex_buffer) 1515 return 0; 1516 1517 page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH)); 1518 if (!page) { 1519 dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n"); 1520 return -ENOMEM; 1521 } 1522 1523 sev_init_ex_buffer = page_address(page); 1524 1525 rc = sev_read_init_ex_file(); 1526 if (rc) 1527 return rc; 1528 1529 /* If SEV-SNP is initialized, transition to firmware page. */ 1530 if (sev->snp_initialized) { 1531 unsigned long npages; 1532 1533 npages = 1UL << get_order(NV_LENGTH); 1534 if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) { 1535 dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n"); 1536 return -ENOMEM; 1537 } 1538 } 1539 1540 return 0; 1541 } 1542 1543 static int __sev_platform_init_locked(int *error) 1544 { 1545 int rc, psp_ret, dfflush_error; 1546 struct sev_device *sev; 1547 1548 psp_ret = dfflush_error = SEV_RET_NO_FW_CALL; 1549 1550 if (!psp_master || !psp_master->sev_data) 1551 return -ENODEV; 1552 1553 sev = psp_master->sev_data; 1554 1555 if (sev->sev_plat_status.state == SEV_STATE_INIT) 1556 return 0; 1557 1558 __sev_platform_init_handle_tmr(sev); 1559 1560 rc = __sev_platform_init_handle_init_ex_path(sev); 1561 if (rc) 1562 return rc; 1563 1564 rc = __sev_do_init_locked(&psp_ret); 1565 if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) { 1566 /* 1567 * Initialization command returned an integrity check failure 1568 * status code, meaning that firmware load and validation of SEV 1569 * related persistent data has failed. Retrying the 1570 * initialization function should succeed by replacing the state 1571 * with a reset state. 1572 */ 1573 dev_err(sev->dev, 1574 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state."); 1575 rc = __sev_do_init_locked(&psp_ret); 1576 } 1577 1578 if (error) 1579 *error = psp_ret; 1580 1581 if (rc) { 1582 dev_err(sev->dev, "SEV: %s failed %#x, rc %d\n", 1583 sev_init_ex_buffer ? "INIT_EX" : "INIT", psp_ret, rc); 1584 return rc; 1585 } 1586 1587 sev->sev_plat_status.state = SEV_STATE_INIT; 1588 1589 /* Prepare for first SEV guest launch after INIT */ 1590 wbinvd_on_all_cpus(); 1591 rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, &dfflush_error); 1592 if (rc) { 1593 dev_err(sev->dev, "SEV: DF_FLUSH failed %#x, rc %d\n", 1594 dfflush_error, rc); 1595 return rc; 1596 } 1597 1598 dev_dbg(sev->dev, "SEV firmware initialized\n"); 1599 1600 dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major, 1601 sev->api_minor, sev->build); 1602 1603 return 0; 1604 } 1605 1606 static int _sev_platform_init_locked(struct sev_platform_init_args *args) 1607 { 1608 struct sev_device *sev; 1609 int rc; 1610 1611 if (!psp_master || !psp_master->sev_data) 1612 return -ENODEV; 1613 1614 /* 1615 * Skip SNP/SEV initialization under a kdump kernel as SEV/SNP 1616 * may already be initialized in the previous kernel. Since no 1617 * SNP/SEV guests are run under a kdump kernel, there is no 1618 * need to initialize SNP or SEV during kdump boot. 1619 */ 1620 if (is_kdump_kernel()) 1621 return 0; 1622 1623 sev = psp_master->sev_data; 1624 1625 if (sev->sev_plat_status.state == SEV_STATE_INIT) 1626 return 0; 1627 1628 rc = __sev_snp_init_locked(&args->error, args->max_snp_asid); 1629 if (rc && rc != -ENODEV) 1630 return rc; 1631 1632 /* Defer legacy SEV/SEV-ES support if allowed by caller/module. */ 1633 if (args->probe && !psp_init_on_probe) 1634 return 0; 1635 1636 return __sev_platform_init_locked(&args->error); 1637 } 1638 1639 int sev_platform_init(struct sev_platform_init_args *args) 1640 { 1641 int rc; 1642 1643 mutex_lock(&sev_cmd_mutex); 1644 rc = _sev_platform_init_locked(args); 1645 mutex_unlock(&sev_cmd_mutex); 1646 1647 return rc; 1648 } 1649 EXPORT_SYMBOL_GPL(sev_platform_init); 1650 1651 static int __sev_platform_shutdown_locked(int *error) 1652 { 1653 struct psp_device *psp = psp_master; 1654 struct sev_device *sev; 1655 int ret; 1656 1657 if (!psp || !psp->sev_data) 1658 return 0; 1659 1660 sev = psp->sev_data; 1661 1662 if (sev->sev_plat_status.state == SEV_STATE_UNINIT) 1663 return 0; 1664 1665 ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error); 1666 if (ret) { 1667 dev_err(sev->dev, "SEV: failed to SHUTDOWN error %#x, rc %d\n", 1668 *error, ret); 1669 return ret; 1670 } 1671 1672 sev->sev_plat_status.state = SEV_STATE_UNINIT; 1673 dev_dbg(sev->dev, "SEV firmware shutdown\n"); 1674 1675 return ret; 1676 } 1677 1678 static int sev_get_platform_state(int *state, int *error) 1679 { 1680 struct sev_user_data_status data; 1681 int rc; 1682 1683 rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error); 1684 if (rc) 1685 return rc; 1686 1687 *state = data.state; 1688 return rc; 1689 } 1690 1691 static int sev_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required) 1692 { 1693 struct sev_platform_init_args init_args = {0}; 1694 int rc; 1695 1696 rc = _sev_platform_init_locked(&init_args); 1697 if (rc) { 1698 argp->error = SEV_RET_INVALID_PLATFORM_STATE; 1699 return rc; 1700 } 1701 1702 *shutdown_required = true; 1703 1704 return 0; 1705 } 1706 1707 static int snp_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required) 1708 { 1709 int error, rc; 1710 1711 rc = __sev_snp_init_locked(&error, 0); 1712 if (rc) { 1713 argp->error = SEV_RET_INVALID_PLATFORM_STATE; 1714 return rc; 1715 } 1716 1717 *shutdown_required = true; 1718 1719 return 0; 1720 } 1721 1722 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable) 1723 { 1724 int state, rc; 1725 1726 if (!writable) 1727 return -EPERM; 1728 1729 /* 1730 * The SEV spec requires that FACTORY_RESET must be issued in 1731 * UNINIT state. Before we go further lets check if any guest is 1732 * active. 1733 * 1734 * If FW is in WORKING state then deny the request otherwise issue 1735 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET. 1736 * 1737 */ 1738 rc = sev_get_platform_state(&state, &argp->error); 1739 if (rc) 1740 return rc; 1741 1742 if (state == SEV_STATE_WORKING) 1743 return -EBUSY; 1744 1745 if (state == SEV_STATE_INIT) { 1746 rc = __sev_platform_shutdown_locked(&argp->error); 1747 if (rc) 1748 return rc; 1749 } 1750 1751 return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error); 1752 } 1753 1754 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp) 1755 { 1756 struct sev_user_data_status data; 1757 int ret; 1758 1759 memset(&data, 0, sizeof(data)); 1760 1761 ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error); 1762 if (ret) 1763 return ret; 1764 1765 if (copy_to_user((void __user *)argp->data, &data, sizeof(data))) 1766 ret = -EFAULT; 1767 1768 return ret; 1769 } 1770 1771 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable) 1772 { 1773 struct sev_device *sev = psp_master->sev_data; 1774 bool shutdown_required = false; 1775 int rc; 1776 1777 if (!writable) 1778 return -EPERM; 1779 1780 if (sev->sev_plat_status.state == SEV_STATE_UNINIT) { 1781 rc = sev_move_to_init_state(argp, &shutdown_required); 1782 if (rc) 1783 return rc; 1784 } 1785 1786 rc = __sev_do_cmd_locked(cmd, NULL, &argp->error); 1787 1788 if (shutdown_required) 1789 __sev_firmware_shutdown(sev, false); 1790 1791 return rc; 1792 } 1793 1794 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable) 1795 { 1796 struct sev_device *sev = psp_master->sev_data; 1797 struct sev_user_data_pek_csr input; 1798 bool shutdown_required = false; 1799 struct sev_data_pek_csr data; 1800 void __user *input_address; 1801 void *blob = NULL; 1802 int ret; 1803 1804 if (!writable) 1805 return -EPERM; 1806 1807 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1808 return -EFAULT; 1809 1810 memset(&data, 0, sizeof(data)); 1811 1812 /* userspace wants to query CSR length */ 1813 if (!input.address || !input.length) 1814 goto cmd; 1815 1816 /* allocate a physically contiguous buffer to store the CSR blob */ 1817 input_address = (void __user *)input.address; 1818 if (input.length > SEV_FW_BLOB_MAX_SIZE) 1819 return -EFAULT; 1820 1821 blob = kzalloc(input.length, GFP_KERNEL); 1822 if (!blob) 1823 return -ENOMEM; 1824 1825 data.address = __psp_pa(blob); 1826 data.len = input.length; 1827 1828 cmd: 1829 if (sev->sev_plat_status.state == SEV_STATE_UNINIT) { 1830 ret = sev_move_to_init_state(argp, &shutdown_required); 1831 if (ret) 1832 goto e_free_blob; 1833 } 1834 1835 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error); 1836 1837 /* If we query the CSR length, FW responded with expected data. */ 1838 input.length = data.len; 1839 1840 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1841 ret = -EFAULT; 1842 goto e_free_blob; 1843 } 1844 1845 if (blob) { 1846 if (copy_to_user(input_address, blob, input.length)) 1847 ret = -EFAULT; 1848 } 1849 1850 e_free_blob: 1851 if (shutdown_required) 1852 __sev_firmware_shutdown(sev, false); 1853 1854 kfree(blob); 1855 return ret; 1856 } 1857 1858 void *psp_copy_user_blob(u64 uaddr, u32 len) 1859 { 1860 if (!uaddr || !len) 1861 return ERR_PTR(-EINVAL); 1862 1863 /* verify that blob length does not exceed our limit */ 1864 if (len > SEV_FW_BLOB_MAX_SIZE) 1865 return ERR_PTR(-EINVAL); 1866 1867 return memdup_user((void __user *)uaddr, len); 1868 } 1869 EXPORT_SYMBOL_GPL(psp_copy_user_blob); 1870 1871 static int sev_get_api_version(void) 1872 { 1873 struct sev_device *sev = psp_master->sev_data; 1874 struct sev_user_data_status status; 1875 int error = 0, ret; 1876 1877 /* 1878 * Cache SNP platform status and SNP feature information 1879 * if SNP is available. 1880 */ 1881 if (cc_platform_has(CC_ATTR_HOST_SEV_SNP)) { 1882 ret = snp_get_platform_data(sev, &error); 1883 if (ret) 1884 return 1; 1885 } 1886 1887 ret = sev_platform_status(&status, &error); 1888 if (ret) { 1889 dev_err(sev->dev, 1890 "SEV: failed to get status. Error: %#x\n", error); 1891 return 1; 1892 } 1893 1894 /* Cache SEV platform status */ 1895 sev->sev_plat_status = status; 1896 1897 sev->api_major = status.api_major; 1898 sev->api_minor = status.api_minor; 1899 sev->build = status.build; 1900 1901 return 0; 1902 } 1903 1904 static int sev_get_firmware(struct device *dev, 1905 const struct firmware **firmware) 1906 { 1907 char fw_name_specific[SEV_FW_NAME_SIZE]; 1908 char fw_name_subset[SEV_FW_NAME_SIZE]; 1909 1910 snprintf(fw_name_specific, sizeof(fw_name_specific), 1911 "amd/amd_sev_fam%.2xh_model%.2xh.sbin", 1912 boot_cpu_data.x86, boot_cpu_data.x86_model); 1913 1914 snprintf(fw_name_subset, sizeof(fw_name_subset), 1915 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin", 1916 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4); 1917 1918 /* Check for SEV FW for a particular model. 1919 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h 1920 * 1921 * or 1922 * 1923 * Check for SEV FW common to a subset of models. 1924 * Ex. amd_sev_fam17h_model0xh.sbin for 1925 * Family 17h Model 00h -- Family 17h Model 0Fh 1926 * 1927 * or 1928 * 1929 * Fall-back to using generic name: sev.fw 1930 */ 1931 if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) || 1932 (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) || 1933 (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0)) 1934 return 0; 1935 1936 return -ENOENT; 1937 } 1938 1939 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */ 1940 static int sev_update_firmware(struct device *dev) 1941 { 1942 struct sev_data_download_firmware *data; 1943 const struct firmware *firmware; 1944 int ret, error, order; 1945 struct page *p; 1946 u64 data_size; 1947 1948 if (!sev_version_greater_or_equal(0, 15)) { 1949 dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n"); 1950 return -1; 1951 } 1952 1953 if (sev_get_firmware(dev, &firmware) == -ENOENT) { 1954 dev_dbg(dev, "No SEV firmware file present\n"); 1955 return -1; 1956 } 1957 1958 /* 1959 * SEV FW expects the physical address given to it to be 32 1960 * byte aligned. Memory allocated has structure placed at the 1961 * beginning followed by the firmware being passed to the SEV 1962 * FW. Allocate enough memory for data structure + alignment 1963 * padding + SEV FW. 1964 */ 1965 data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32); 1966 1967 order = get_order(firmware->size + data_size); 1968 p = alloc_pages(GFP_KERNEL, order); 1969 if (!p) { 1970 ret = -1; 1971 goto fw_err; 1972 } 1973 1974 /* 1975 * Copy firmware data to a kernel allocated contiguous 1976 * memory region. 1977 */ 1978 data = page_address(p); 1979 memcpy(page_address(p) + data_size, firmware->data, firmware->size); 1980 1981 data->address = __psp_pa(page_address(p) + data_size); 1982 data->len = firmware->size; 1983 1984 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1985 1986 /* 1987 * A quirk for fixing the committed TCB version, when upgrading from 1988 * earlier firmware version than 1.50. 1989 */ 1990 if (!ret && !sev_version_greater_or_equal(1, 50)) 1991 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1992 1993 if (ret) 1994 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error); 1995 1996 __free_pages(p, order); 1997 1998 fw_err: 1999 release_firmware(firmware); 2000 2001 return ret; 2002 } 2003 2004 static int __sev_snp_shutdown_locked(int *error, bool panic) 2005 { 2006 struct psp_device *psp = psp_master; 2007 struct sev_device *sev; 2008 struct sev_data_snp_shutdown_ex data; 2009 int ret; 2010 2011 if (!psp || !psp->sev_data) 2012 return 0; 2013 2014 sev = psp->sev_data; 2015 2016 if (!sev->snp_initialized) 2017 return 0; 2018 2019 memset(&data, 0, sizeof(data)); 2020 data.len = sizeof(data); 2021 data.iommu_snp_shutdown = 1; 2022 2023 /* 2024 * If invoked during panic handling, local interrupts are disabled 2025 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called. 2026 * In that case, a wbinvd() is done on remote CPUs via the NMI 2027 * callback, so only a local wbinvd() is needed here. 2028 */ 2029 if (!panic) 2030 wbinvd_on_all_cpus(); 2031 else 2032 wbinvd(); 2033 2034 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error); 2035 /* SHUTDOWN may require DF_FLUSH */ 2036 if (*error == SEV_RET_DFFLUSH_REQUIRED) { 2037 int dfflush_error = SEV_RET_NO_FW_CALL; 2038 2039 ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, &dfflush_error); 2040 if (ret) { 2041 dev_err(sev->dev, "SEV-SNP DF_FLUSH failed, ret = %d, error = %#x\n", 2042 ret, dfflush_error); 2043 return ret; 2044 } 2045 /* reissue the shutdown command */ 2046 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, 2047 error); 2048 } 2049 if (ret) { 2050 dev_err(sev->dev, "SEV-SNP firmware shutdown failed, rc %d, error %#x\n", 2051 ret, *error); 2052 return ret; 2053 } 2054 2055 /* 2056 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP 2057 * enforcement by the IOMMU and also transitions all pages 2058 * associated with the IOMMU to the Reclaim state. 2059 * Firmware was transitioning the IOMMU pages to Hypervisor state 2060 * before version 1.53. But, accounting for the number of assigned 2061 * 4kB pages in a 2M page was done incorrectly by not transitioning 2062 * to the Reclaim state. This resulted in RMP #PF when later accessing 2063 * the 2M page containing those pages during kexec boot. Hence, the 2064 * firmware now transitions these pages to Reclaim state and hypervisor 2065 * needs to transition these pages to shared state. SNP Firmware 2066 * version 1.53 and above are needed for kexec boot. 2067 */ 2068 ret = amd_iommu_snp_disable(); 2069 if (ret) { 2070 dev_err(sev->dev, "SNP IOMMU shutdown failed\n"); 2071 return ret; 2072 } 2073 2074 snp_leak_hv_fixed_pages(); 2075 sev->snp_initialized = false; 2076 dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n"); 2077 2078 /* 2079 * __sev_snp_shutdown_locked() deadlocks when it tries to unregister 2080 * itself during panic as the panic notifier is called with RCU read 2081 * lock held and notifier unregistration does RCU synchronization. 2082 */ 2083 if (!panic) 2084 atomic_notifier_chain_unregister(&panic_notifier_list, 2085 &snp_panic_notifier); 2086 2087 /* Reset TMR size back to default */ 2088 sev_es_tmr_size = SEV_TMR_SIZE; 2089 2090 return ret; 2091 } 2092 2093 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable) 2094 { 2095 struct sev_device *sev = psp_master->sev_data; 2096 struct sev_user_data_pek_cert_import input; 2097 struct sev_data_pek_cert_import data; 2098 bool shutdown_required = false; 2099 void *pek_blob, *oca_blob; 2100 int ret; 2101 2102 if (!writable) 2103 return -EPERM; 2104 2105 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 2106 return -EFAULT; 2107 2108 /* copy PEK certificate blobs from userspace */ 2109 pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len); 2110 if (IS_ERR(pek_blob)) 2111 return PTR_ERR(pek_blob); 2112 2113 data.reserved = 0; 2114 data.pek_cert_address = __psp_pa(pek_blob); 2115 data.pek_cert_len = input.pek_cert_len; 2116 2117 /* copy PEK certificate blobs from userspace */ 2118 oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len); 2119 if (IS_ERR(oca_blob)) { 2120 ret = PTR_ERR(oca_blob); 2121 goto e_free_pek; 2122 } 2123 2124 data.oca_cert_address = __psp_pa(oca_blob); 2125 data.oca_cert_len = input.oca_cert_len; 2126 2127 /* If platform is not in INIT state then transition it to INIT */ 2128 if (sev->sev_plat_status.state != SEV_STATE_INIT) { 2129 ret = sev_move_to_init_state(argp, &shutdown_required); 2130 if (ret) 2131 goto e_free_oca; 2132 } 2133 2134 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error); 2135 2136 e_free_oca: 2137 if (shutdown_required) 2138 __sev_firmware_shutdown(sev, false); 2139 2140 kfree(oca_blob); 2141 e_free_pek: 2142 kfree(pek_blob); 2143 return ret; 2144 } 2145 2146 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp) 2147 { 2148 struct sev_user_data_get_id2 input; 2149 struct sev_data_get_id data; 2150 void __user *input_address; 2151 void *id_blob = NULL; 2152 int ret; 2153 2154 /* SEV GET_ID is available from SEV API v0.16 and up */ 2155 if (!sev_version_greater_or_equal(0, 16)) 2156 return -ENOTSUPP; 2157 2158 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 2159 return -EFAULT; 2160 2161 input_address = (void __user *)input.address; 2162 2163 if (input.address && input.length) { 2164 /* 2165 * The length of the ID shouldn't be assumed by software since 2166 * it may change in the future. The allocation size is limited 2167 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator. 2168 * If the allocation fails, simply return ENOMEM rather than 2169 * warning in the kernel log. 2170 */ 2171 id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN); 2172 if (!id_blob) 2173 return -ENOMEM; 2174 2175 data.address = __psp_pa(id_blob); 2176 data.len = input.length; 2177 } else { 2178 data.address = 0; 2179 data.len = 0; 2180 } 2181 2182 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error); 2183 2184 /* 2185 * Firmware will return the length of the ID value (either the minimum 2186 * required length or the actual length written), return it to the user. 2187 */ 2188 input.length = data.len; 2189 2190 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 2191 ret = -EFAULT; 2192 goto e_free; 2193 } 2194 2195 if (id_blob) { 2196 if (copy_to_user(input_address, id_blob, data.len)) { 2197 ret = -EFAULT; 2198 goto e_free; 2199 } 2200 } 2201 2202 e_free: 2203 kfree(id_blob); 2204 2205 return ret; 2206 } 2207 2208 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp) 2209 { 2210 struct sev_data_get_id *data; 2211 u64 data_size, user_size; 2212 void *id_blob, *mem; 2213 int ret; 2214 2215 /* SEV GET_ID available from SEV API v0.16 and up */ 2216 if (!sev_version_greater_or_equal(0, 16)) 2217 return -ENOTSUPP; 2218 2219 /* SEV FW expects the buffer it fills with the ID to be 2220 * 8-byte aligned. Memory allocated should be enough to 2221 * hold data structure + alignment padding + memory 2222 * where SEV FW writes the ID. 2223 */ 2224 data_size = ALIGN(sizeof(struct sev_data_get_id), 8); 2225 user_size = sizeof(struct sev_user_data_get_id); 2226 2227 mem = kzalloc(data_size + user_size, GFP_KERNEL); 2228 if (!mem) 2229 return -ENOMEM; 2230 2231 data = mem; 2232 id_blob = mem + data_size; 2233 2234 data->address = __psp_pa(id_blob); 2235 data->len = user_size; 2236 2237 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); 2238 if (!ret) { 2239 if (copy_to_user((void __user *)argp->data, id_blob, data->len)) 2240 ret = -EFAULT; 2241 } 2242 2243 kfree(mem); 2244 2245 return ret; 2246 } 2247 2248 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable) 2249 { 2250 struct sev_device *sev = psp_master->sev_data; 2251 struct sev_user_data_pdh_cert_export input; 2252 void *pdh_blob = NULL, *cert_blob = NULL; 2253 struct sev_data_pdh_cert_export data; 2254 void __user *input_cert_chain_address; 2255 void __user *input_pdh_cert_address; 2256 bool shutdown_required = false; 2257 int ret; 2258 2259 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 2260 return -EFAULT; 2261 2262 memset(&data, 0, sizeof(data)); 2263 2264 input_pdh_cert_address = (void __user *)input.pdh_cert_address; 2265 input_cert_chain_address = (void __user *)input.cert_chain_address; 2266 2267 /* Userspace wants to query the certificate length. */ 2268 if (!input.pdh_cert_address || 2269 !input.pdh_cert_len || 2270 !input.cert_chain_address) 2271 goto cmd; 2272 2273 /* Allocate a physically contiguous buffer to store the PDH blob. */ 2274 if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE) 2275 return -EFAULT; 2276 2277 /* Allocate a physically contiguous buffer to store the cert chain blob. */ 2278 if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE) 2279 return -EFAULT; 2280 2281 pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL); 2282 if (!pdh_blob) 2283 return -ENOMEM; 2284 2285 data.pdh_cert_address = __psp_pa(pdh_blob); 2286 data.pdh_cert_len = input.pdh_cert_len; 2287 2288 cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL); 2289 if (!cert_blob) { 2290 ret = -ENOMEM; 2291 goto e_free_pdh; 2292 } 2293 2294 data.cert_chain_address = __psp_pa(cert_blob); 2295 data.cert_chain_len = input.cert_chain_len; 2296 2297 cmd: 2298 /* If platform is not in INIT state then transition it to INIT. */ 2299 if (sev->sev_plat_status.state != SEV_STATE_INIT) { 2300 if (!writable) { 2301 ret = -EPERM; 2302 goto e_free_cert; 2303 } 2304 ret = sev_move_to_init_state(argp, &shutdown_required); 2305 if (ret) 2306 goto e_free_cert; 2307 } 2308 2309 ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error); 2310 2311 /* If we query the length, FW responded with expected data. */ 2312 input.cert_chain_len = data.cert_chain_len; 2313 input.pdh_cert_len = data.pdh_cert_len; 2314 2315 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 2316 ret = -EFAULT; 2317 goto e_free_cert; 2318 } 2319 2320 if (pdh_blob) { 2321 if (copy_to_user(input_pdh_cert_address, 2322 pdh_blob, input.pdh_cert_len)) { 2323 ret = -EFAULT; 2324 goto e_free_cert; 2325 } 2326 } 2327 2328 if (cert_blob) { 2329 if (copy_to_user(input_cert_chain_address, 2330 cert_blob, input.cert_chain_len)) 2331 ret = -EFAULT; 2332 } 2333 2334 e_free_cert: 2335 if (shutdown_required) 2336 __sev_firmware_shutdown(sev, false); 2337 2338 kfree(cert_blob); 2339 e_free_pdh: 2340 kfree(pdh_blob); 2341 return ret; 2342 } 2343 2344 static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp) 2345 { 2346 struct sev_device *sev = psp_master->sev_data; 2347 bool shutdown_required = false; 2348 struct sev_data_snp_addr buf; 2349 struct page *status_page; 2350 int ret, error; 2351 void *data; 2352 2353 if (!argp->data) 2354 return -EINVAL; 2355 2356 status_page = alloc_page(GFP_KERNEL_ACCOUNT); 2357 if (!status_page) 2358 return -ENOMEM; 2359 2360 data = page_address(status_page); 2361 2362 if (!sev->snp_initialized) { 2363 ret = snp_move_to_init_state(argp, &shutdown_required); 2364 if (ret) 2365 goto cleanup; 2366 } 2367 2368 /* 2369 * Firmware expects status page to be in firmware-owned state, otherwise 2370 * it will report firmware error code INVALID_PAGE_STATE (0x1A). 2371 */ 2372 if (rmp_mark_pages_firmware(__pa(data), 1, true)) { 2373 ret = -EFAULT; 2374 goto cleanup; 2375 } 2376 2377 buf.address = __psp_pa(data); 2378 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error); 2379 2380 /* 2381 * Status page will be transitioned to Reclaim state upon success, or 2382 * left in Firmware state in failure. Use snp_reclaim_pages() to 2383 * transition either case back to Hypervisor-owned state. 2384 */ 2385 if (snp_reclaim_pages(__pa(data), 1, true)) 2386 return -EFAULT; 2387 2388 if (ret) 2389 goto cleanup; 2390 2391 if (copy_to_user((void __user *)argp->data, data, 2392 sizeof(struct sev_user_data_snp_status))) 2393 ret = -EFAULT; 2394 2395 cleanup: 2396 if (shutdown_required) 2397 __sev_snp_shutdown_locked(&error, false); 2398 2399 __free_pages(status_page, 0); 2400 return ret; 2401 } 2402 2403 static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp) 2404 { 2405 struct sev_device *sev = psp_master->sev_data; 2406 struct sev_data_snp_commit buf; 2407 bool shutdown_required = false; 2408 int ret, error; 2409 2410 if (!sev->snp_initialized) { 2411 ret = snp_move_to_init_state(argp, &shutdown_required); 2412 if (ret) 2413 return ret; 2414 } 2415 2416 buf.len = sizeof(buf); 2417 2418 ret = __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error); 2419 2420 if (shutdown_required) 2421 __sev_snp_shutdown_locked(&error, false); 2422 2423 return ret; 2424 } 2425 2426 static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable) 2427 { 2428 struct sev_device *sev = psp_master->sev_data; 2429 struct sev_user_data_snp_config config; 2430 bool shutdown_required = false; 2431 int ret, error; 2432 2433 if (!argp->data) 2434 return -EINVAL; 2435 2436 if (!writable) 2437 return -EPERM; 2438 2439 if (copy_from_user(&config, (void __user *)argp->data, sizeof(config))) 2440 return -EFAULT; 2441 2442 if (!sev->snp_initialized) { 2443 ret = snp_move_to_init_state(argp, &shutdown_required); 2444 if (ret) 2445 return ret; 2446 } 2447 2448 ret = __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error); 2449 2450 if (shutdown_required) 2451 __sev_snp_shutdown_locked(&error, false); 2452 2453 return ret; 2454 } 2455 2456 static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable) 2457 { 2458 struct sev_device *sev = psp_master->sev_data; 2459 struct sev_user_data_snp_vlek_load input; 2460 bool shutdown_required = false; 2461 int ret, error; 2462 void *blob; 2463 2464 if (!argp->data) 2465 return -EINVAL; 2466 2467 if (!writable) 2468 return -EPERM; 2469 2470 if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input))) 2471 return -EFAULT; 2472 2473 if (input.len != sizeof(input) || input.vlek_wrapped_version != 0) 2474 return -EINVAL; 2475 2476 blob = psp_copy_user_blob(input.vlek_wrapped_address, 2477 sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick)); 2478 if (IS_ERR(blob)) 2479 return PTR_ERR(blob); 2480 2481 input.vlek_wrapped_address = __psp_pa(blob); 2482 2483 if (!sev->snp_initialized) { 2484 ret = snp_move_to_init_state(argp, &shutdown_required); 2485 if (ret) 2486 goto cleanup; 2487 } 2488 2489 ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error); 2490 2491 if (shutdown_required) 2492 __sev_snp_shutdown_locked(&error, false); 2493 2494 cleanup: 2495 kfree(blob); 2496 2497 return ret; 2498 } 2499 2500 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) 2501 { 2502 void __user *argp = (void __user *)arg; 2503 struct sev_issue_cmd input; 2504 int ret = -EFAULT; 2505 bool writable = file->f_mode & FMODE_WRITE; 2506 2507 if (!psp_master || !psp_master->sev_data) 2508 return -ENODEV; 2509 2510 if (ioctl != SEV_ISSUE_CMD) 2511 return -EINVAL; 2512 2513 if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd))) 2514 return -EFAULT; 2515 2516 if (input.cmd > SEV_MAX) 2517 return -EINVAL; 2518 2519 mutex_lock(&sev_cmd_mutex); 2520 2521 switch (input.cmd) { 2522 2523 case SEV_FACTORY_RESET: 2524 ret = sev_ioctl_do_reset(&input, writable); 2525 break; 2526 case SEV_PLATFORM_STATUS: 2527 ret = sev_ioctl_do_platform_status(&input); 2528 break; 2529 case SEV_PEK_GEN: 2530 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable); 2531 break; 2532 case SEV_PDH_GEN: 2533 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable); 2534 break; 2535 case SEV_PEK_CSR: 2536 ret = sev_ioctl_do_pek_csr(&input, writable); 2537 break; 2538 case SEV_PEK_CERT_IMPORT: 2539 ret = sev_ioctl_do_pek_import(&input, writable); 2540 break; 2541 case SEV_PDH_CERT_EXPORT: 2542 ret = sev_ioctl_do_pdh_export(&input, writable); 2543 break; 2544 case SEV_GET_ID: 2545 pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n"); 2546 ret = sev_ioctl_do_get_id(&input); 2547 break; 2548 case SEV_GET_ID2: 2549 ret = sev_ioctl_do_get_id2(&input); 2550 break; 2551 case SNP_PLATFORM_STATUS: 2552 ret = sev_ioctl_do_snp_platform_status(&input); 2553 break; 2554 case SNP_COMMIT: 2555 ret = sev_ioctl_do_snp_commit(&input); 2556 break; 2557 case SNP_SET_CONFIG: 2558 ret = sev_ioctl_do_snp_set_config(&input, writable); 2559 break; 2560 case SNP_VLEK_LOAD: 2561 ret = sev_ioctl_do_snp_vlek_load(&input, writable); 2562 break; 2563 default: 2564 ret = -EINVAL; 2565 goto out; 2566 } 2567 2568 if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd))) 2569 ret = -EFAULT; 2570 out: 2571 mutex_unlock(&sev_cmd_mutex); 2572 2573 return ret; 2574 } 2575 2576 static const struct file_operations sev_fops = { 2577 .owner = THIS_MODULE, 2578 .unlocked_ioctl = sev_ioctl, 2579 }; 2580 2581 int sev_platform_status(struct sev_user_data_status *data, int *error) 2582 { 2583 return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error); 2584 } 2585 EXPORT_SYMBOL_GPL(sev_platform_status); 2586 2587 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error) 2588 { 2589 return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error); 2590 } 2591 EXPORT_SYMBOL_GPL(sev_guest_deactivate); 2592 2593 int sev_guest_activate(struct sev_data_activate *data, int *error) 2594 { 2595 return sev_do_cmd(SEV_CMD_ACTIVATE, data, error); 2596 } 2597 EXPORT_SYMBOL_GPL(sev_guest_activate); 2598 2599 int sev_guest_decommission(struct sev_data_decommission *data, int *error) 2600 { 2601 return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error); 2602 } 2603 EXPORT_SYMBOL_GPL(sev_guest_decommission); 2604 2605 int sev_guest_df_flush(int *error) 2606 { 2607 return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error); 2608 } 2609 EXPORT_SYMBOL_GPL(sev_guest_df_flush); 2610 2611 static void sev_exit(struct kref *ref) 2612 { 2613 misc_deregister(&misc_dev->misc); 2614 kfree(misc_dev); 2615 misc_dev = NULL; 2616 } 2617 2618 static int sev_misc_init(struct sev_device *sev) 2619 { 2620 struct device *dev = sev->dev; 2621 int ret; 2622 2623 /* 2624 * SEV feature support can be detected on multiple devices but the SEV 2625 * FW commands must be issued on the master. During probe, we do not 2626 * know the master hence we create /dev/sev on the first device probe. 2627 * sev_do_cmd() finds the right master device to which to issue the 2628 * command to the firmware. 2629 */ 2630 if (!misc_dev) { 2631 struct miscdevice *misc; 2632 2633 misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL); 2634 if (!misc_dev) 2635 return -ENOMEM; 2636 2637 misc = &misc_dev->misc; 2638 misc->minor = MISC_DYNAMIC_MINOR; 2639 misc->name = DEVICE_NAME; 2640 misc->fops = &sev_fops; 2641 2642 ret = misc_register(misc); 2643 if (ret) 2644 return ret; 2645 2646 kref_init(&misc_dev->refcount); 2647 } else { 2648 kref_get(&misc_dev->refcount); 2649 } 2650 2651 init_waitqueue_head(&sev->int_queue); 2652 sev->misc = misc_dev; 2653 dev_dbg(dev, "registered SEV device\n"); 2654 2655 return 0; 2656 } 2657 2658 int sev_dev_init(struct psp_device *psp) 2659 { 2660 struct device *dev = psp->dev; 2661 struct sev_device *sev; 2662 int ret = -ENOMEM; 2663 2664 if (!boot_cpu_has(X86_FEATURE_SEV)) { 2665 dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n"); 2666 return 0; 2667 } 2668 2669 sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL); 2670 if (!sev) 2671 goto e_err; 2672 2673 sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1); 2674 if (!sev->cmd_buf) 2675 goto e_sev; 2676 2677 sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE; 2678 2679 psp->sev_data = sev; 2680 2681 sev->dev = dev; 2682 sev->psp = psp; 2683 2684 sev->io_regs = psp->io_regs; 2685 2686 sev->vdata = (struct sev_vdata *)psp->vdata->sev; 2687 if (!sev->vdata) { 2688 ret = -ENODEV; 2689 dev_err(dev, "sev: missing driver data\n"); 2690 goto e_buf; 2691 } 2692 2693 psp_set_sev_irq_handler(psp, sev_irq_handler, sev); 2694 2695 ret = sev_misc_init(sev); 2696 if (ret) 2697 goto e_irq; 2698 2699 dev_notice(dev, "sev enabled\n"); 2700 2701 return 0; 2702 2703 e_irq: 2704 psp_clear_sev_irq_handler(psp); 2705 e_buf: 2706 devm_free_pages(dev, (unsigned long)sev->cmd_buf); 2707 e_sev: 2708 devm_kfree(dev, sev); 2709 e_err: 2710 psp->sev_data = NULL; 2711 2712 dev_notice(dev, "sev initialization failed\n"); 2713 2714 return ret; 2715 } 2716 2717 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic) 2718 { 2719 int error; 2720 2721 __sev_platform_shutdown_locked(&error); 2722 2723 if (sev_es_tmr) { 2724 /* 2725 * The TMR area was encrypted, flush it from the cache. 2726 * 2727 * If invoked during panic handling, local interrupts are 2728 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus() 2729 * can't be used. In that case, wbinvd() is done on remote CPUs 2730 * via the NMI callback, and done for this CPU later during 2731 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped. 2732 */ 2733 if (!panic) 2734 wbinvd_on_all_cpus(); 2735 2736 __snp_free_firmware_pages(virt_to_page(sev_es_tmr), 2737 get_order(sev_es_tmr_size), 2738 true); 2739 sev_es_tmr = NULL; 2740 } 2741 2742 if (sev_init_ex_buffer) { 2743 __snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer), 2744 get_order(NV_LENGTH), 2745 true); 2746 sev_init_ex_buffer = NULL; 2747 } 2748 2749 if (snp_range_list) { 2750 kfree(snp_range_list); 2751 snp_range_list = NULL; 2752 } 2753 2754 __sev_snp_shutdown_locked(&error, panic); 2755 } 2756 2757 static void sev_firmware_shutdown(struct sev_device *sev) 2758 { 2759 mutex_lock(&sev_cmd_mutex); 2760 __sev_firmware_shutdown(sev, false); 2761 mutex_unlock(&sev_cmd_mutex); 2762 } 2763 2764 void sev_platform_shutdown(void) 2765 { 2766 if (!psp_master || !psp_master->sev_data) 2767 return; 2768 2769 sev_firmware_shutdown(psp_master->sev_data); 2770 } 2771 EXPORT_SYMBOL_GPL(sev_platform_shutdown); 2772 2773 void sev_dev_destroy(struct psp_device *psp) 2774 { 2775 struct sev_device *sev = psp->sev_data; 2776 2777 if (!sev) 2778 return; 2779 2780 sev_firmware_shutdown(sev); 2781 2782 if (sev->misc) 2783 kref_put(&misc_dev->refcount, sev_exit); 2784 2785 psp_clear_sev_irq_handler(psp); 2786 } 2787 2788 static int snp_shutdown_on_panic(struct notifier_block *nb, 2789 unsigned long reason, void *arg) 2790 { 2791 struct sev_device *sev = psp_master->sev_data; 2792 2793 /* 2794 * If sev_cmd_mutex is already acquired, then it's likely 2795 * another PSP command is in flight and issuing a shutdown 2796 * would fail in unexpected ways. Rather than create even 2797 * more confusion during a panic, just bail out here. 2798 */ 2799 if (mutex_is_locked(&sev_cmd_mutex)) 2800 return NOTIFY_DONE; 2801 2802 __sev_firmware_shutdown(sev, true); 2803 2804 return NOTIFY_DONE; 2805 } 2806 2807 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd, 2808 void *data, int *error) 2809 { 2810 if (!filep || filep->f_op != &sev_fops) 2811 return -EBADF; 2812 2813 return sev_do_cmd(cmd, data, error); 2814 } 2815 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user); 2816 2817 void sev_pci_init(void) 2818 { 2819 struct sev_device *sev = psp_master->sev_data; 2820 u8 api_major, api_minor, build; 2821 2822 if (!sev) 2823 return; 2824 2825 psp_timeout = psp_probe_timeout; 2826 2827 if (sev_get_api_version()) 2828 goto err; 2829 2830 api_major = sev->api_major; 2831 api_minor = sev->api_minor; 2832 build = sev->build; 2833 2834 if (sev_update_firmware(sev->dev) == 0) 2835 sev_get_api_version(); 2836 2837 if (api_major != sev->api_major || api_minor != sev->api_minor || 2838 build != sev->build) 2839 dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n", 2840 api_major, api_minor, build, 2841 sev->api_major, sev->api_minor, sev->build); 2842 2843 return; 2844 2845 err: 2846 sev_dev_destroy(psp_master); 2847 2848 psp_master->sev_data = NULL; 2849 } 2850 2851 void sev_pci_exit(void) 2852 { 2853 struct sev_device *sev = psp_master->sev_data; 2854 2855 if (!sev) 2856 return; 2857 2858 sev_firmware_shutdown(sev); 2859 } 2860