1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Secure Encrypted Virtualization (SEV) interface 4 * 5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc. 6 * 7 * Author: Brijesh Singh <brijesh.singh@amd.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/kthread.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/spinlock.h> 17 #include <linux/spinlock_types.h> 18 #include <linux/types.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/hw_random.h> 22 #include <linux/ccp.h> 23 #include <linux/firmware.h> 24 #include <linux/gfp.h> 25 #include <linux/cpufeature.h> 26 #include <linux/fs.h> 27 #include <linux/fs_struct.h> 28 #include <linux/psp.h> 29 30 #include <asm/smp.h> 31 #include <asm/cacheflush.h> 32 33 #include "psp-dev.h" 34 #include "sev-dev.h" 35 36 #define DEVICE_NAME "sev" 37 #define SEV_FW_FILE "amd/sev.fw" 38 #define SEV_FW_NAME_SIZE 64 39 40 static DEFINE_MUTEX(sev_cmd_mutex); 41 static struct sev_misc_dev *misc_dev; 42 43 static int psp_cmd_timeout = 100; 44 module_param(psp_cmd_timeout, int, 0644); 45 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands"); 46 47 static int psp_probe_timeout = 5; 48 module_param(psp_probe_timeout, int, 0644); 49 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe"); 50 51 static char *init_ex_path; 52 module_param(init_ex_path, charp, 0444); 53 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX"); 54 55 static bool psp_init_on_probe = true; 56 module_param(psp_init_on_probe, bool, 0444); 57 MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it"); 58 59 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */ 60 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */ 61 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */ 62 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */ 63 64 static bool psp_dead; 65 static int psp_timeout; 66 67 /* Trusted Memory Region (TMR): 68 * The TMR is a 1MB area that must be 1MB aligned. Use the page allocator 69 * to allocate the memory, which will return aligned memory for the specified 70 * allocation order. 71 */ 72 #define SEV_ES_TMR_SIZE (1024 * 1024) 73 static void *sev_es_tmr; 74 75 /* INIT_EX NV Storage: 76 * The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page 77 * allocator to allocate the memory, which will return aligned memory for the 78 * specified allocation order. 79 */ 80 #define NV_LENGTH (32 * 1024) 81 static void *sev_init_ex_buffer; 82 83 static inline bool sev_version_greater_or_equal(u8 maj, u8 min) 84 { 85 struct sev_device *sev = psp_master->sev_data; 86 87 if (sev->api_major > maj) 88 return true; 89 90 if (sev->api_major == maj && sev->api_minor >= min) 91 return true; 92 93 return false; 94 } 95 96 static void sev_irq_handler(int irq, void *data, unsigned int status) 97 { 98 struct sev_device *sev = data; 99 int reg; 100 101 /* Check if it is command completion: */ 102 if (!(status & SEV_CMD_COMPLETE)) 103 return; 104 105 /* Check if it is SEV command completion: */ 106 reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 107 if (FIELD_GET(PSP_CMDRESP_RESP, reg)) { 108 sev->int_rcvd = 1; 109 wake_up(&sev->int_queue); 110 } 111 } 112 113 static int sev_wait_cmd_ioc(struct sev_device *sev, 114 unsigned int *reg, unsigned int timeout) 115 { 116 int ret; 117 118 ret = wait_event_timeout(sev->int_queue, 119 sev->int_rcvd, timeout * HZ); 120 if (!ret) 121 return -ETIMEDOUT; 122 123 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 124 125 return 0; 126 } 127 128 static int sev_cmd_buffer_len(int cmd) 129 { 130 switch (cmd) { 131 case SEV_CMD_INIT: return sizeof(struct sev_data_init); 132 case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex); 133 case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status); 134 case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr); 135 case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import); 136 case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export); 137 case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start); 138 case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data); 139 case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa); 140 case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish); 141 case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure); 142 case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate); 143 case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate); 144 case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission); 145 case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status); 146 case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg); 147 case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg); 148 case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start); 149 case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data); 150 case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa); 151 case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish); 152 case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start); 153 case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish); 154 case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data); 155 case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa); 156 case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret); 157 case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware); 158 case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id); 159 case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report); 160 case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel); 161 default: return 0; 162 } 163 164 return 0; 165 } 166 167 static void *sev_fw_alloc(unsigned long len) 168 { 169 struct page *page; 170 171 page = alloc_pages(GFP_KERNEL, get_order(len)); 172 if (!page) 173 return NULL; 174 175 return page_address(page); 176 } 177 178 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode) 179 { 180 struct file *fp; 181 struct path root; 182 struct cred *cred; 183 const struct cred *old_cred; 184 185 task_lock(&init_task); 186 get_fs_root(init_task.fs, &root); 187 task_unlock(&init_task); 188 189 cred = prepare_creds(); 190 if (!cred) 191 return ERR_PTR(-ENOMEM); 192 cred->fsuid = GLOBAL_ROOT_UID; 193 old_cred = override_creds(cred); 194 195 fp = file_open_root(&root, filename, flags, mode); 196 path_put(&root); 197 198 revert_creds(old_cred); 199 200 return fp; 201 } 202 203 static int sev_read_init_ex_file(void) 204 { 205 struct sev_device *sev = psp_master->sev_data; 206 struct file *fp; 207 ssize_t nread; 208 209 lockdep_assert_held(&sev_cmd_mutex); 210 211 if (!sev_init_ex_buffer) 212 return -EOPNOTSUPP; 213 214 fp = open_file_as_root(init_ex_path, O_RDONLY, 0); 215 if (IS_ERR(fp)) { 216 int ret = PTR_ERR(fp); 217 218 if (ret == -ENOENT) { 219 dev_info(sev->dev, 220 "SEV: %s does not exist and will be created later.\n", 221 init_ex_path); 222 ret = 0; 223 } else { 224 dev_err(sev->dev, 225 "SEV: could not open %s for read, error %d\n", 226 init_ex_path, ret); 227 } 228 return ret; 229 } 230 231 nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL); 232 if (nread != NV_LENGTH) { 233 dev_info(sev->dev, 234 "SEV: could not read %u bytes to non volatile memory area, ret %ld\n", 235 NV_LENGTH, nread); 236 } 237 238 dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread); 239 filp_close(fp, NULL); 240 241 return 0; 242 } 243 244 static int sev_write_init_ex_file(void) 245 { 246 struct sev_device *sev = psp_master->sev_data; 247 struct file *fp; 248 loff_t offset = 0; 249 ssize_t nwrite; 250 251 lockdep_assert_held(&sev_cmd_mutex); 252 253 if (!sev_init_ex_buffer) 254 return 0; 255 256 fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600); 257 if (IS_ERR(fp)) { 258 int ret = PTR_ERR(fp); 259 260 dev_err(sev->dev, 261 "SEV: could not open file for write, error %d\n", 262 ret); 263 return ret; 264 } 265 266 nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset); 267 vfs_fsync(fp, 0); 268 filp_close(fp, NULL); 269 270 if (nwrite != NV_LENGTH) { 271 dev_err(sev->dev, 272 "SEV: failed to write %u bytes to non volatile memory area, ret %ld\n", 273 NV_LENGTH, nwrite); 274 return -EIO; 275 } 276 277 dev_dbg(sev->dev, "SEV: write successful to NV file\n"); 278 279 return 0; 280 } 281 282 static int sev_write_init_ex_file_if_required(int cmd_id) 283 { 284 lockdep_assert_held(&sev_cmd_mutex); 285 286 if (!sev_init_ex_buffer) 287 return 0; 288 289 /* 290 * Only a few platform commands modify the SPI/NV area, but none of the 291 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN, 292 * PEK_CERT_IMPORT, and PDH_GEN do. 293 */ 294 switch (cmd_id) { 295 case SEV_CMD_FACTORY_RESET: 296 case SEV_CMD_INIT_EX: 297 case SEV_CMD_PDH_GEN: 298 case SEV_CMD_PEK_CERT_IMPORT: 299 case SEV_CMD_PEK_GEN: 300 break; 301 default: 302 return 0; 303 } 304 305 return sev_write_init_ex_file(); 306 } 307 308 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret) 309 { 310 struct psp_device *psp = psp_master; 311 struct sev_device *sev; 312 unsigned int cmdbuff_hi, cmdbuff_lo; 313 unsigned int phys_lsb, phys_msb; 314 unsigned int reg, ret = 0; 315 int buf_len; 316 317 if (!psp || !psp->sev_data) 318 return -ENODEV; 319 320 if (psp_dead) 321 return -EBUSY; 322 323 sev = psp->sev_data; 324 325 buf_len = sev_cmd_buffer_len(cmd); 326 if (WARN_ON_ONCE(!data != !buf_len)) 327 return -EINVAL; 328 329 /* 330 * Copy the incoming data to driver's scratch buffer as __pa() will not 331 * work for some memory, e.g. vmalloc'd addresses, and @data may not be 332 * physically contiguous. 333 */ 334 if (data) 335 memcpy(sev->cmd_buf, data, buf_len); 336 337 /* Get the physical address of the command buffer */ 338 phys_lsb = data ? lower_32_bits(__psp_pa(sev->cmd_buf)) : 0; 339 phys_msb = data ? upper_32_bits(__psp_pa(sev->cmd_buf)) : 0; 340 341 dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n", 342 cmd, phys_msb, phys_lsb, psp_timeout); 343 344 print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data, 345 buf_len, false); 346 347 iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 348 iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 349 350 sev->int_rcvd = 0; 351 352 reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd) | SEV_CMDRESP_IOC; 353 iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg); 354 355 /* wait for command completion */ 356 ret = sev_wait_cmd_ioc(sev, ®, psp_timeout); 357 if (ret) { 358 if (psp_ret) 359 *psp_ret = 0; 360 361 dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd); 362 psp_dead = true; 363 364 return ret; 365 } 366 367 psp_timeout = psp_cmd_timeout; 368 369 if (psp_ret) 370 *psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg); 371 372 if (FIELD_GET(PSP_CMDRESP_STS, reg)) { 373 dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n", 374 cmd, FIELD_GET(PSP_CMDRESP_STS, reg)); 375 376 /* 377 * PSP firmware may report additional error information in the 378 * command buffer registers on error. Print contents of command 379 * buffer registers if they changed. 380 */ 381 cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 382 cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 383 if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) { 384 dev_dbg(sev->dev, "Additional error information reported in cmdbuff:"); 385 dev_dbg(sev->dev, " cmdbuff hi: %#010x\n", cmdbuff_hi); 386 dev_dbg(sev->dev, " cmdbuff lo: %#010x\n", cmdbuff_lo); 387 } 388 ret = -EIO; 389 } else { 390 ret = sev_write_init_ex_file_if_required(cmd); 391 } 392 393 print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data, 394 buf_len, false); 395 396 /* 397 * Copy potential output from the PSP back to data. Do this even on 398 * failure in case the caller wants to glean something from the error. 399 */ 400 if (data) 401 memcpy(data, sev->cmd_buf, buf_len); 402 403 return ret; 404 } 405 406 static int sev_do_cmd(int cmd, void *data, int *psp_ret) 407 { 408 int rc; 409 410 mutex_lock(&sev_cmd_mutex); 411 rc = __sev_do_cmd_locked(cmd, data, psp_ret); 412 mutex_unlock(&sev_cmd_mutex); 413 414 return rc; 415 } 416 417 static int __sev_init_locked(int *error) 418 { 419 struct sev_data_init data; 420 421 memset(&data, 0, sizeof(data)); 422 if (sev_es_tmr) { 423 /* 424 * Do not include the encryption mask on the physical 425 * address of the TMR (firmware should clear it anyway). 426 */ 427 data.tmr_address = __pa(sev_es_tmr); 428 429 data.flags |= SEV_INIT_FLAGS_SEV_ES; 430 data.tmr_len = SEV_ES_TMR_SIZE; 431 } 432 433 return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error); 434 } 435 436 static int __sev_init_ex_locked(int *error) 437 { 438 struct sev_data_init_ex data; 439 440 memset(&data, 0, sizeof(data)); 441 data.length = sizeof(data); 442 data.nv_address = __psp_pa(sev_init_ex_buffer); 443 data.nv_len = NV_LENGTH; 444 445 if (sev_es_tmr) { 446 /* 447 * Do not include the encryption mask on the physical 448 * address of the TMR (firmware should clear it anyway). 449 */ 450 data.tmr_address = __pa(sev_es_tmr); 451 452 data.flags |= SEV_INIT_FLAGS_SEV_ES; 453 data.tmr_len = SEV_ES_TMR_SIZE; 454 } 455 456 return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error); 457 } 458 459 static inline int __sev_do_init_locked(int *psp_ret) 460 { 461 if (sev_init_ex_buffer) 462 return __sev_init_ex_locked(psp_ret); 463 else 464 return __sev_init_locked(psp_ret); 465 } 466 467 static int __sev_platform_init_locked(int *error) 468 { 469 int rc = 0, psp_ret = SEV_RET_NO_FW_CALL; 470 struct psp_device *psp = psp_master; 471 struct sev_device *sev; 472 473 if (!psp || !psp->sev_data) 474 return -ENODEV; 475 476 sev = psp->sev_data; 477 478 if (sev->state == SEV_STATE_INIT) 479 return 0; 480 481 if (sev_init_ex_buffer) { 482 rc = sev_read_init_ex_file(); 483 if (rc) 484 return rc; 485 } 486 487 rc = __sev_do_init_locked(&psp_ret); 488 if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) { 489 /* 490 * Initialization command returned an integrity check failure 491 * status code, meaning that firmware load and validation of SEV 492 * related persistent data has failed. Retrying the 493 * initialization function should succeed by replacing the state 494 * with a reset state. 495 */ 496 dev_err(sev->dev, 497 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state."); 498 rc = __sev_do_init_locked(&psp_ret); 499 } 500 501 if (error) 502 *error = psp_ret; 503 504 if (rc) 505 return rc; 506 507 sev->state = SEV_STATE_INIT; 508 509 /* Prepare for first SEV guest launch after INIT */ 510 wbinvd_on_all_cpus(); 511 rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error); 512 if (rc) 513 return rc; 514 515 dev_dbg(sev->dev, "SEV firmware initialized\n"); 516 517 dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major, 518 sev->api_minor, sev->build); 519 520 return 0; 521 } 522 523 int sev_platform_init(int *error) 524 { 525 int rc; 526 527 mutex_lock(&sev_cmd_mutex); 528 rc = __sev_platform_init_locked(error); 529 mutex_unlock(&sev_cmd_mutex); 530 531 return rc; 532 } 533 EXPORT_SYMBOL_GPL(sev_platform_init); 534 535 static int __sev_platform_shutdown_locked(int *error) 536 { 537 struct psp_device *psp = psp_master; 538 struct sev_device *sev; 539 int ret; 540 541 if (!psp || !psp->sev_data) 542 return 0; 543 544 sev = psp->sev_data; 545 546 if (sev->state == SEV_STATE_UNINIT) 547 return 0; 548 549 ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error); 550 if (ret) 551 return ret; 552 553 sev->state = SEV_STATE_UNINIT; 554 dev_dbg(sev->dev, "SEV firmware shutdown\n"); 555 556 return ret; 557 } 558 559 static int sev_platform_shutdown(int *error) 560 { 561 int rc; 562 563 mutex_lock(&sev_cmd_mutex); 564 rc = __sev_platform_shutdown_locked(NULL); 565 mutex_unlock(&sev_cmd_mutex); 566 567 return rc; 568 } 569 570 static int sev_get_platform_state(int *state, int *error) 571 { 572 struct sev_user_data_status data; 573 int rc; 574 575 rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error); 576 if (rc) 577 return rc; 578 579 *state = data.state; 580 return rc; 581 } 582 583 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable) 584 { 585 int state, rc; 586 587 if (!writable) 588 return -EPERM; 589 590 /* 591 * The SEV spec requires that FACTORY_RESET must be issued in 592 * UNINIT state. Before we go further lets check if any guest is 593 * active. 594 * 595 * If FW is in WORKING state then deny the request otherwise issue 596 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET. 597 * 598 */ 599 rc = sev_get_platform_state(&state, &argp->error); 600 if (rc) 601 return rc; 602 603 if (state == SEV_STATE_WORKING) 604 return -EBUSY; 605 606 if (state == SEV_STATE_INIT) { 607 rc = __sev_platform_shutdown_locked(&argp->error); 608 if (rc) 609 return rc; 610 } 611 612 return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error); 613 } 614 615 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp) 616 { 617 struct sev_user_data_status data; 618 int ret; 619 620 memset(&data, 0, sizeof(data)); 621 622 ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error); 623 if (ret) 624 return ret; 625 626 if (copy_to_user((void __user *)argp->data, &data, sizeof(data))) 627 ret = -EFAULT; 628 629 return ret; 630 } 631 632 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable) 633 { 634 struct sev_device *sev = psp_master->sev_data; 635 int rc; 636 637 if (!writable) 638 return -EPERM; 639 640 if (sev->state == SEV_STATE_UNINIT) { 641 rc = __sev_platform_init_locked(&argp->error); 642 if (rc) 643 return rc; 644 } 645 646 return __sev_do_cmd_locked(cmd, NULL, &argp->error); 647 } 648 649 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable) 650 { 651 struct sev_device *sev = psp_master->sev_data; 652 struct sev_user_data_pek_csr input; 653 struct sev_data_pek_csr data; 654 void __user *input_address; 655 void *blob = NULL; 656 int ret; 657 658 if (!writable) 659 return -EPERM; 660 661 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 662 return -EFAULT; 663 664 memset(&data, 0, sizeof(data)); 665 666 /* userspace wants to query CSR length */ 667 if (!input.address || !input.length) 668 goto cmd; 669 670 /* allocate a physically contiguous buffer to store the CSR blob */ 671 input_address = (void __user *)input.address; 672 if (input.length > SEV_FW_BLOB_MAX_SIZE) 673 return -EFAULT; 674 675 blob = kzalloc(input.length, GFP_KERNEL); 676 if (!blob) 677 return -ENOMEM; 678 679 data.address = __psp_pa(blob); 680 data.len = input.length; 681 682 cmd: 683 if (sev->state == SEV_STATE_UNINIT) { 684 ret = __sev_platform_init_locked(&argp->error); 685 if (ret) 686 goto e_free_blob; 687 } 688 689 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error); 690 691 /* If we query the CSR length, FW responded with expected data. */ 692 input.length = data.len; 693 694 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 695 ret = -EFAULT; 696 goto e_free_blob; 697 } 698 699 if (blob) { 700 if (copy_to_user(input_address, blob, input.length)) 701 ret = -EFAULT; 702 } 703 704 e_free_blob: 705 kfree(blob); 706 return ret; 707 } 708 709 void *psp_copy_user_blob(u64 uaddr, u32 len) 710 { 711 if (!uaddr || !len) 712 return ERR_PTR(-EINVAL); 713 714 /* verify that blob length does not exceed our limit */ 715 if (len > SEV_FW_BLOB_MAX_SIZE) 716 return ERR_PTR(-EINVAL); 717 718 return memdup_user((void __user *)uaddr, len); 719 } 720 EXPORT_SYMBOL_GPL(psp_copy_user_blob); 721 722 static int sev_get_api_version(void) 723 { 724 struct sev_device *sev = psp_master->sev_data; 725 struct sev_user_data_status status; 726 int error = 0, ret; 727 728 ret = sev_platform_status(&status, &error); 729 if (ret) { 730 dev_err(sev->dev, 731 "SEV: failed to get status. Error: %#x\n", error); 732 return 1; 733 } 734 735 sev->api_major = status.api_major; 736 sev->api_minor = status.api_minor; 737 sev->build = status.build; 738 sev->state = status.state; 739 740 return 0; 741 } 742 743 static int sev_get_firmware(struct device *dev, 744 const struct firmware **firmware) 745 { 746 char fw_name_specific[SEV_FW_NAME_SIZE]; 747 char fw_name_subset[SEV_FW_NAME_SIZE]; 748 749 snprintf(fw_name_specific, sizeof(fw_name_specific), 750 "amd/amd_sev_fam%.2xh_model%.2xh.sbin", 751 boot_cpu_data.x86, boot_cpu_data.x86_model); 752 753 snprintf(fw_name_subset, sizeof(fw_name_subset), 754 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin", 755 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4); 756 757 /* Check for SEV FW for a particular model. 758 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h 759 * 760 * or 761 * 762 * Check for SEV FW common to a subset of models. 763 * Ex. amd_sev_fam17h_model0xh.sbin for 764 * Family 17h Model 00h -- Family 17h Model 0Fh 765 * 766 * or 767 * 768 * Fall-back to using generic name: sev.fw 769 */ 770 if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) || 771 (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) || 772 (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0)) 773 return 0; 774 775 return -ENOENT; 776 } 777 778 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */ 779 static int sev_update_firmware(struct device *dev) 780 { 781 struct sev_data_download_firmware *data; 782 const struct firmware *firmware; 783 int ret, error, order; 784 struct page *p; 785 u64 data_size; 786 787 if (!sev_version_greater_or_equal(0, 15)) { 788 dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n"); 789 return -1; 790 } 791 792 if (sev_get_firmware(dev, &firmware) == -ENOENT) { 793 dev_dbg(dev, "No SEV firmware file present\n"); 794 return -1; 795 } 796 797 /* 798 * SEV FW expects the physical address given to it to be 32 799 * byte aligned. Memory allocated has structure placed at the 800 * beginning followed by the firmware being passed to the SEV 801 * FW. Allocate enough memory for data structure + alignment 802 * padding + SEV FW. 803 */ 804 data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32); 805 806 order = get_order(firmware->size + data_size); 807 p = alloc_pages(GFP_KERNEL, order); 808 if (!p) { 809 ret = -1; 810 goto fw_err; 811 } 812 813 /* 814 * Copy firmware data to a kernel allocated contiguous 815 * memory region. 816 */ 817 data = page_address(p); 818 memcpy(page_address(p) + data_size, firmware->data, firmware->size); 819 820 data->address = __psp_pa(page_address(p) + data_size); 821 data->len = firmware->size; 822 823 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 824 825 /* 826 * A quirk for fixing the committed TCB version, when upgrading from 827 * earlier firmware version than 1.50. 828 */ 829 if (!ret && !sev_version_greater_or_equal(1, 50)) 830 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 831 832 if (ret) 833 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error); 834 else 835 dev_info(dev, "SEV firmware update successful\n"); 836 837 __free_pages(p, order); 838 839 fw_err: 840 release_firmware(firmware); 841 842 return ret; 843 } 844 845 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable) 846 { 847 struct sev_device *sev = psp_master->sev_data; 848 struct sev_user_data_pek_cert_import input; 849 struct sev_data_pek_cert_import data; 850 void *pek_blob, *oca_blob; 851 int ret; 852 853 if (!writable) 854 return -EPERM; 855 856 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 857 return -EFAULT; 858 859 /* copy PEK certificate blobs from userspace */ 860 pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len); 861 if (IS_ERR(pek_blob)) 862 return PTR_ERR(pek_blob); 863 864 data.reserved = 0; 865 data.pek_cert_address = __psp_pa(pek_blob); 866 data.pek_cert_len = input.pek_cert_len; 867 868 /* copy PEK certificate blobs from userspace */ 869 oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len); 870 if (IS_ERR(oca_blob)) { 871 ret = PTR_ERR(oca_blob); 872 goto e_free_pek; 873 } 874 875 data.oca_cert_address = __psp_pa(oca_blob); 876 data.oca_cert_len = input.oca_cert_len; 877 878 /* If platform is not in INIT state then transition it to INIT */ 879 if (sev->state != SEV_STATE_INIT) { 880 ret = __sev_platform_init_locked(&argp->error); 881 if (ret) 882 goto e_free_oca; 883 } 884 885 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error); 886 887 e_free_oca: 888 kfree(oca_blob); 889 e_free_pek: 890 kfree(pek_blob); 891 return ret; 892 } 893 894 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp) 895 { 896 struct sev_user_data_get_id2 input; 897 struct sev_data_get_id data; 898 void __user *input_address; 899 void *id_blob = NULL; 900 int ret; 901 902 /* SEV GET_ID is available from SEV API v0.16 and up */ 903 if (!sev_version_greater_or_equal(0, 16)) 904 return -ENOTSUPP; 905 906 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 907 return -EFAULT; 908 909 input_address = (void __user *)input.address; 910 911 if (input.address && input.length) { 912 /* 913 * The length of the ID shouldn't be assumed by software since 914 * it may change in the future. The allocation size is limited 915 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator. 916 * If the allocation fails, simply return ENOMEM rather than 917 * warning in the kernel log. 918 */ 919 id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN); 920 if (!id_blob) 921 return -ENOMEM; 922 923 data.address = __psp_pa(id_blob); 924 data.len = input.length; 925 } else { 926 data.address = 0; 927 data.len = 0; 928 } 929 930 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error); 931 932 /* 933 * Firmware will return the length of the ID value (either the minimum 934 * required length or the actual length written), return it to the user. 935 */ 936 input.length = data.len; 937 938 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 939 ret = -EFAULT; 940 goto e_free; 941 } 942 943 if (id_blob) { 944 if (copy_to_user(input_address, id_blob, data.len)) { 945 ret = -EFAULT; 946 goto e_free; 947 } 948 } 949 950 e_free: 951 kfree(id_blob); 952 953 return ret; 954 } 955 956 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp) 957 { 958 struct sev_data_get_id *data; 959 u64 data_size, user_size; 960 void *id_blob, *mem; 961 int ret; 962 963 /* SEV GET_ID available from SEV API v0.16 and up */ 964 if (!sev_version_greater_or_equal(0, 16)) 965 return -ENOTSUPP; 966 967 /* SEV FW expects the buffer it fills with the ID to be 968 * 8-byte aligned. Memory allocated should be enough to 969 * hold data structure + alignment padding + memory 970 * where SEV FW writes the ID. 971 */ 972 data_size = ALIGN(sizeof(struct sev_data_get_id), 8); 973 user_size = sizeof(struct sev_user_data_get_id); 974 975 mem = kzalloc(data_size + user_size, GFP_KERNEL); 976 if (!mem) 977 return -ENOMEM; 978 979 data = mem; 980 id_blob = mem + data_size; 981 982 data->address = __psp_pa(id_blob); 983 data->len = user_size; 984 985 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); 986 if (!ret) { 987 if (copy_to_user((void __user *)argp->data, id_blob, data->len)) 988 ret = -EFAULT; 989 } 990 991 kfree(mem); 992 993 return ret; 994 } 995 996 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable) 997 { 998 struct sev_device *sev = psp_master->sev_data; 999 struct sev_user_data_pdh_cert_export input; 1000 void *pdh_blob = NULL, *cert_blob = NULL; 1001 struct sev_data_pdh_cert_export data; 1002 void __user *input_cert_chain_address; 1003 void __user *input_pdh_cert_address; 1004 int ret; 1005 1006 /* If platform is not in INIT state then transition it to INIT. */ 1007 if (sev->state != SEV_STATE_INIT) { 1008 if (!writable) 1009 return -EPERM; 1010 1011 ret = __sev_platform_init_locked(&argp->error); 1012 if (ret) 1013 return ret; 1014 } 1015 1016 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1017 return -EFAULT; 1018 1019 memset(&data, 0, sizeof(data)); 1020 1021 /* Userspace wants to query the certificate length. */ 1022 if (!input.pdh_cert_address || 1023 !input.pdh_cert_len || 1024 !input.cert_chain_address) 1025 goto cmd; 1026 1027 input_pdh_cert_address = (void __user *)input.pdh_cert_address; 1028 input_cert_chain_address = (void __user *)input.cert_chain_address; 1029 1030 /* Allocate a physically contiguous buffer to store the PDH blob. */ 1031 if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE) 1032 return -EFAULT; 1033 1034 /* Allocate a physically contiguous buffer to store the cert chain blob. */ 1035 if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE) 1036 return -EFAULT; 1037 1038 pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL); 1039 if (!pdh_blob) 1040 return -ENOMEM; 1041 1042 data.pdh_cert_address = __psp_pa(pdh_blob); 1043 data.pdh_cert_len = input.pdh_cert_len; 1044 1045 cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL); 1046 if (!cert_blob) { 1047 ret = -ENOMEM; 1048 goto e_free_pdh; 1049 } 1050 1051 data.cert_chain_address = __psp_pa(cert_blob); 1052 data.cert_chain_len = input.cert_chain_len; 1053 1054 cmd: 1055 ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error); 1056 1057 /* If we query the length, FW responded with expected data. */ 1058 input.cert_chain_len = data.cert_chain_len; 1059 input.pdh_cert_len = data.pdh_cert_len; 1060 1061 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1062 ret = -EFAULT; 1063 goto e_free_cert; 1064 } 1065 1066 if (pdh_blob) { 1067 if (copy_to_user(input_pdh_cert_address, 1068 pdh_blob, input.pdh_cert_len)) { 1069 ret = -EFAULT; 1070 goto e_free_cert; 1071 } 1072 } 1073 1074 if (cert_blob) { 1075 if (copy_to_user(input_cert_chain_address, 1076 cert_blob, input.cert_chain_len)) 1077 ret = -EFAULT; 1078 } 1079 1080 e_free_cert: 1081 kfree(cert_blob); 1082 e_free_pdh: 1083 kfree(pdh_blob); 1084 return ret; 1085 } 1086 1087 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) 1088 { 1089 void __user *argp = (void __user *)arg; 1090 struct sev_issue_cmd input; 1091 int ret = -EFAULT; 1092 bool writable = file->f_mode & FMODE_WRITE; 1093 1094 if (!psp_master || !psp_master->sev_data) 1095 return -ENODEV; 1096 1097 if (ioctl != SEV_ISSUE_CMD) 1098 return -EINVAL; 1099 1100 if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd))) 1101 return -EFAULT; 1102 1103 if (input.cmd > SEV_MAX) 1104 return -EINVAL; 1105 1106 mutex_lock(&sev_cmd_mutex); 1107 1108 switch (input.cmd) { 1109 1110 case SEV_FACTORY_RESET: 1111 ret = sev_ioctl_do_reset(&input, writable); 1112 break; 1113 case SEV_PLATFORM_STATUS: 1114 ret = sev_ioctl_do_platform_status(&input); 1115 break; 1116 case SEV_PEK_GEN: 1117 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable); 1118 break; 1119 case SEV_PDH_GEN: 1120 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable); 1121 break; 1122 case SEV_PEK_CSR: 1123 ret = sev_ioctl_do_pek_csr(&input, writable); 1124 break; 1125 case SEV_PEK_CERT_IMPORT: 1126 ret = sev_ioctl_do_pek_import(&input, writable); 1127 break; 1128 case SEV_PDH_CERT_EXPORT: 1129 ret = sev_ioctl_do_pdh_export(&input, writable); 1130 break; 1131 case SEV_GET_ID: 1132 pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n"); 1133 ret = sev_ioctl_do_get_id(&input); 1134 break; 1135 case SEV_GET_ID2: 1136 ret = sev_ioctl_do_get_id2(&input); 1137 break; 1138 default: 1139 ret = -EINVAL; 1140 goto out; 1141 } 1142 1143 if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd))) 1144 ret = -EFAULT; 1145 out: 1146 mutex_unlock(&sev_cmd_mutex); 1147 1148 return ret; 1149 } 1150 1151 static const struct file_operations sev_fops = { 1152 .owner = THIS_MODULE, 1153 .unlocked_ioctl = sev_ioctl, 1154 }; 1155 1156 int sev_platform_status(struct sev_user_data_status *data, int *error) 1157 { 1158 return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error); 1159 } 1160 EXPORT_SYMBOL_GPL(sev_platform_status); 1161 1162 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error) 1163 { 1164 return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error); 1165 } 1166 EXPORT_SYMBOL_GPL(sev_guest_deactivate); 1167 1168 int sev_guest_activate(struct sev_data_activate *data, int *error) 1169 { 1170 return sev_do_cmd(SEV_CMD_ACTIVATE, data, error); 1171 } 1172 EXPORT_SYMBOL_GPL(sev_guest_activate); 1173 1174 int sev_guest_decommission(struct sev_data_decommission *data, int *error) 1175 { 1176 return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error); 1177 } 1178 EXPORT_SYMBOL_GPL(sev_guest_decommission); 1179 1180 int sev_guest_df_flush(int *error) 1181 { 1182 return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error); 1183 } 1184 EXPORT_SYMBOL_GPL(sev_guest_df_flush); 1185 1186 static void sev_exit(struct kref *ref) 1187 { 1188 misc_deregister(&misc_dev->misc); 1189 kfree(misc_dev); 1190 misc_dev = NULL; 1191 } 1192 1193 static int sev_misc_init(struct sev_device *sev) 1194 { 1195 struct device *dev = sev->dev; 1196 int ret; 1197 1198 /* 1199 * SEV feature support can be detected on multiple devices but the SEV 1200 * FW commands must be issued on the master. During probe, we do not 1201 * know the master hence we create /dev/sev on the first device probe. 1202 * sev_do_cmd() finds the right master device to which to issue the 1203 * command to the firmware. 1204 */ 1205 if (!misc_dev) { 1206 struct miscdevice *misc; 1207 1208 misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL); 1209 if (!misc_dev) 1210 return -ENOMEM; 1211 1212 misc = &misc_dev->misc; 1213 misc->minor = MISC_DYNAMIC_MINOR; 1214 misc->name = DEVICE_NAME; 1215 misc->fops = &sev_fops; 1216 1217 ret = misc_register(misc); 1218 if (ret) 1219 return ret; 1220 1221 kref_init(&misc_dev->refcount); 1222 } else { 1223 kref_get(&misc_dev->refcount); 1224 } 1225 1226 init_waitqueue_head(&sev->int_queue); 1227 sev->misc = misc_dev; 1228 dev_dbg(dev, "registered SEV device\n"); 1229 1230 return 0; 1231 } 1232 1233 int sev_dev_init(struct psp_device *psp) 1234 { 1235 struct device *dev = psp->dev; 1236 struct sev_device *sev; 1237 int ret = -ENOMEM; 1238 1239 if (!boot_cpu_has(X86_FEATURE_SEV)) { 1240 dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n"); 1241 return 0; 1242 } 1243 1244 sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL); 1245 if (!sev) 1246 goto e_err; 1247 1248 sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 0); 1249 if (!sev->cmd_buf) 1250 goto e_sev; 1251 1252 psp->sev_data = sev; 1253 1254 sev->dev = dev; 1255 sev->psp = psp; 1256 1257 sev->io_regs = psp->io_regs; 1258 1259 sev->vdata = (struct sev_vdata *)psp->vdata->sev; 1260 if (!sev->vdata) { 1261 ret = -ENODEV; 1262 dev_err(dev, "sev: missing driver data\n"); 1263 goto e_buf; 1264 } 1265 1266 psp_set_sev_irq_handler(psp, sev_irq_handler, sev); 1267 1268 ret = sev_misc_init(sev); 1269 if (ret) 1270 goto e_irq; 1271 1272 dev_notice(dev, "sev enabled\n"); 1273 1274 return 0; 1275 1276 e_irq: 1277 psp_clear_sev_irq_handler(psp); 1278 e_buf: 1279 devm_free_pages(dev, (unsigned long)sev->cmd_buf); 1280 e_sev: 1281 devm_kfree(dev, sev); 1282 e_err: 1283 psp->sev_data = NULL; 1284 1285 dev_notice(dev, "sev initialization failed\n"); 1286 1287 return ret; 1288 } 1289 1290 static void sev_firmware_shutdown(struct sev_device *sev) 1291 { 1292 sev_platform_shutdown(NULL); 1293 1294 if (sev_es_tmr) { 1295 /* The TMR area was encrypted, flush it from the cache */ 1296 wbinvd_on_all_cpus(); 1297 1298 free_pages((unsigned long)sev_es_tmr, 1299 get_order(SEV_ES_TMR_SIZE)); 1300 sev_es_tmr = NULL; 1301 } 1302 1303 if (sev_init_ex_buffer) { 1304 free_pages((unsigned long)sev_init_ex_buffer, 1305 get_order(NV_LENGTH)); 1306 sev_init_ex_buffer = NULL; 1307 } 1308 } 1309 1310 void sev_dev_destroy(struct psp_device *psp) 1311 { 1312 struct sev_device *sev = psp->sev_data; 1313 1314 if (!sev) 1315 return; 1316 1317 sev_firmware_shutdown(sev); 1318 1319 if (sev->misc) 1320 kref_put(&misc_dev->refcount, sev_exit); 1321 1322 psp_clear_sev_irq_handler(psp); 1323 } 1324 1325 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd, 1326 void *data, int *error) 1327 { 1328 if (!filep || filep->f_op != &sev_fops) 1329 return -EBADF; 1330 1331 return sev_do_cmd(cmd, data, error); 1332 } 1333 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user); 1334 1335 void sev_pci_init(void) 1336 { 1337 struct sev_device *sev = psp_master->sev_data; 1338 int error, rc; 1339 1340 if (!sev) 1341 return; 1342 1343 psp_timeout = psp_probe_timeout; 1344 1345 if (sev_get_api_version()) 1346 goto err; 1347 1348 if (sev_update_firmware(sev->dev) == 0) 1349 sev_get_api_version(); 1350 1351 /* If an init_ex_path is provided rely on INIT_EX for PSP initialization 1352 * instead of INIT. 1353 */ 1354 if (init_ex_path) { 1355 sev_init_ex_buffer = sev_fw_alloc(NV_LENGTH); 1356 if (!sev_init_ex_buffer) { 1357 dev_err(sev->dev, 1358 "SEV: INIT_EX NV memory allocation failed\n"); 1359 goto err; 1360 } 1361 } 1362 1363 /* Obtain the TMR memory area for SEV-ES use */ 1364 sev_es_tmr = sev_fw_alloc(SEV_ES_TMR_SIZE); 1365 if (sev_es_tmr) 1366 /* Must flush the cache before giving it to the firmware */ 1367 clflush_cache_range(sev_es_tmr, SEV_ES_TMR_SIZE); 1368 else 1369 dev_warn(sev->dev, 1370 "SEV: TMR allocation failed, SEV-ES support unavailable\n"); 1371 1372 if (!psp_init_on_probe) 1373 return; 1374 1375 /* Initialize the platform */ 1376 rc = sev_platform_init(&error); 1377 if (rc) 1378 dev_err(sev->dev, "SEV: failed to INIT error %#x, rc %d\n", 1379 error, rc); 1380 1381 return; 1382 1383 err: 1384 psp_master->sev_data = NULL; 1385 } 1386 1387 void sev_pci_exit(void) 1388 { 1389 struct sev_device *sev = psp_master->sev_data; 1390 1391 if (!sev) 1392 return; 1393 1394 sev_firmware_shutdown(sev); 1395 } 1396