1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Secure Encrypted Virtualization (SEV) interface 4 * 5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc. 6 * 7 * Author: Brijesh Singh <brijesh.singh@amd.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/kthread.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/spinlock.h> 17 #include <linux/spinlock_types.h> 18 #include <linux/types.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/hw_random.h> 22 #include <linux/ccp.h> 23 #include <linux/firmware.h> 24 #include <linux/panic_notifier.h> 25 #include <linux/gfp.h> 26 #include <linux/cpufeature.h> 27 #include <linux/fs.h> 28 #include <linux/fs_struct.h> 29 #include <linux/psp.h> 30 #include <linux/amd-iommu.h> 31 #include <linux/crash_dump.h> 32 33 #include <asm/smp.h> 34 #include <asm/cacheflush.h> 35 #include <asm/e820/types.h> 36 #include <asm/sev.h> 37 #include <asm/msr.h> 38 39 #include "psp-dev.h" 40 #include "sev-dev.h" 41 42 #define DEVICE_NAME "sev" 43 #define SEV_FW_FILE "amd/sev.fw" 44 #define SEV_FW_NAME_SIZE 64 45 46 /* Minimum firmware version required for the SEV-SNP support */ 47 #define SNP_MIN_API_MAJOR 1 48 #define SNP_MIN_API_MINOR 51 49 50 /* 51 * Maximum number of firmware-writable buffers that might be specified 52 * in the parameters of a legacy SEV command buffer. 53 */ 54 #define CMD_BUF_FW_WRITABLE_MAX 2 55 56 /* Leave room in the descriptor array for an end-of-list indicator. */ 57 #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1) 58 59 static DEFINE_MUTEX(sev_cmd_mutex); 60 static struct sev_misc_dev *misc_dev; 61 62 static int psp_cmd_timeout = 100; 63 module_param(psp_cmd_timeout, int, 0644); 64 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands"); 65 66 static int psp_probe_timeout = 5; 67 module_param(psp_probe_timeout, int, 0644); 68 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe"); 69 70 static char *init_ex_path; 71 module_param(init_ex_path, charp, 0444); 72 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX"); 73 74 static bool psp_init_on_probe = true; 75 module_param(psp_init_on_probe, bool, 0444); 76 MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it"); 77 78 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */ 79 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */ 80 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */ 81 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */ 82 83 static bool psp_dead; 84 static int psp_timeout; 85 86 enum snp_hv_fixed_pages_state { 87 ALLOCATED, 88 HV_FIXED, 89 }; 90 91 struct snp_hv_fixed_pages_entry { 92 struct list_head list; 93 struct page *page; 94 unsigned int order; 95 bool free; 96 enum snp_hv_fixed_pages_state page_state; 97 }; 98 99 static LIST_HEAD(snp_hv_fixed_pages); 100 101 /* Trusted Memory Region (TMR): 102 * The TMR is a 1MB area that must be 1MB aligned. Use the page allocator 103 * to allocate the memory, which will return aligned memory for the specified 104 * allocation order. 105 * 106 * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized. 107 */ 108 #define SEV_TMR_SIZE (1024 * 1024) 109 #define SNP_TMR_SIZE (2 * 1024 * 1024) 110 111 static void *sev_es_tmr; 112 static size_t sev_es_tmr_size = SEV_TMR_SIZE; 113 114 /* INIT_EX NV Storage: 115 * The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page 116 * allocator to allocate the memory, which will return aligned memory for the 117 * specified allocation order. 118 */ 119 #define NV_LENGTH (32 * 1024) 120 static void *sev_init_ex_buffer; 121 122 /* 123 * SEV_DATA_RANGE_LIST: 124 * Array containing range of pages that firmware transitions to HV-fixed 125 * page state. 126 */ 127 static struct sev_data_range_list *snp_range_list; 128 129 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic); 130 131 static int snp_shutdown_on_panic(struct notifier_block *nb, 132 unsigned long reason, void *arg); 133 134 static struct notifier_block snp_panic_notifier = { 135 .notifier_call = snp_shutdown_on_panic, 136 }; 137 138 static inline bool sev_version_greater_or_equal(u8 maj, u8 min) 139 { 140 struct sev_device *sev = psp_master->sev_data; 141 142 if (sev->api_major > maj) 143 return true; 144 145 if (sev->api_major == maj && sev->api_minor >= min) 146 return true; 147 148 return false; 149 } 150 151 static void sev_irq_handler(int irq, void *data, unsigned int status) 152 { 153 struct sev_device *sev = data; 154 int reg; 155 156 /* Check if it is command completion: */ 157 if (!(status & SEV_CMD_COMPLETE)) 158 return; 159 160 /* Check if it is SEV command completion: */ 161 reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 162 if (FIELD_GET(PSP_CMDRESP_RESP, reg)) { 163 sev->int_rcvd = 1; 164 wake_up(&sev->int_queue); 165 } 166 } 167 168 static int sev_wait_cmd_ioc(struct sev_device *sev, 169 unsigned int *reg, unsigned int timeout) 170 { 171 int ret; 172 173 /* 174 * If invoked during panic handling, local interrupts are disabled, 175 * so the PSP command completion interrupt can't be used. Poll for 176 * PSP command completion instead. 177 */ 178 if (irqs_disabled()) { 179 unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10; 180 181 /* Poll for SEV command completion: */ 182 while (timeout_usecs--) { 183 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 184 if (*reg & PSP_CMDRESP_RESP) 185 return 0; 186 187 udelay(10); 188 } 189 return -ETIMEDOUT; 190 } 191 192 ret = wait_event_timeout(sev->int_queue, 193 sev->int_rcvd, timeout * HZ); 194 if (!ret) 195 return -ETIMEDOUT; 196 197 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 198 199 return 0; 200 } 201 202 static int sev_cmd_buffer_len(int cmd) 203 { 204 switch (cmd) { 205 case SEV_CMD_INIT: return sizeof(struct sev_data_init); 206 case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex); 207 case SEV_CMD_SNP_SHUTDOWN_EX: return sizeof(struct sev_data_snp_shutdown_ex); 208 case SEV_CMD_SNP_INIT_EX: return sizeof(struct sev_data_snp_init_ex); 209 case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status); 210 case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr); 211 case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import); 212 case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export); 213 case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start); 214 case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data); 215 case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa); 216 case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish); 217 case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure); 218 case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate); 219 case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate); 220 case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission); 221 case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status); 222 case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg); 223 case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg); 224 case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start); 225 case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data); 226 case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa); 227 case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish); 228 case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start); 229 case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish); 230 case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data); 231 case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa); 232 case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret); 233 case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware); 234 case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id); 235 case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report); 236 case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel); 237 case SEV_CMD_SNP_GCTX_CREATE: return sizeof(struct sev_data_snp_addr); 238 case SEV_CMD_SNP_LAUNCH_START: return sizeof(struct sev_data_snp_launch_start); 239 case SEV_CMD_SNP_LAUNCH_UPDATE: return sizeof(struct sev_data_snp_launch_update); 240 case SEV_CMD_SNP_ACTIVATE: return sizeof(struct sev_data_snp_activate); 241 case SEV_CMD_SNP_DECOMMISSION: return sizeof(struct sev_data_snp_addr); 242 case SEV_CMD_SNP_PAGE_RECLAIM: return sizeof(struct sev_data_snp_page_reclaim); 243 case SEV_CMD_SNP_GUEST_STATUS: return sizeof(struct sev_data_snp_guest_status); 244 case SEV_CMD_SNP_LAUNCH_FINISH: return sizeof(struct sev_data_snp_launch_finish); 245 case SEV_CMD_SNP_DBG_DECRYPT: return sizeof(struct sev_data_snp_dbg); 246 case SEV_CMD_SNP_DBG_ENCRYPT: return sizeof(struct sev_data_snp_dbg); 247 case SEV_CMD_SNP_PAGE_UNSMASH: return sizeof(struct sev_data_snp_page_unsmash); 248 case SEV_CMD_SNP_PLATFORM_STATUS: return sizeof(struct sev_data_snp_addr); 249 case SEV_CMD_SNP_GUEST_REQUEST: return sizeof(struct sev_data_snp_guest_request); 250 case SEV_CMD_SNP_CONFIG: return sizeof(struct sev_user_data_snp_config); 251 case SEV_CMD_SNP_COMMIT: return sizeof(struct sev_data_snp_commit); 252 case SEV_CMD_SNP_FEATURE_INFO: return sizeof(struct sev_data_snp_feature_info); 253 case SEV_CMD_SNP_VLEK_LOAD: return sizeof(struct sev_user_data_snp_vlek_load); 254 default: return 0; 255 } 256 257 return 0; 258 } 259 260 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode) 261 { 262 struct file *fp; 263 struct path root; 264 struct cred *cred; 265 const struct cred *old_cred; 266 267 task_lock(&init_task); 268 get_fs_root(init_task.fs, &root); 269 task_unlock(&init_task); 270 271 cred = prepare_creds(); 272 if (!cred) 273 return ERR_PTR(-ENOMEM); 274 cred->fsuid = GLOBAL_ROOT_UID; 275 old_cred = override_creds(cred); 276 277 fp = file_open_root(&root, filename, flags, mode); 278 path_put(&root); 279 280 put_cred(revert_creds(old_cred)); 281 282 return fp; 283 } 284 285 static int sev_read_init_ex_file(void) 286 { 287 struct sev_device *sev = psp_master->sev_data; 288 struct file *fp; 289 ssize_t nread; 290 291 lockdep_assert_held(&sev_cmd_mutex); 292 293 if (!sev_init_ex_buffer) 294 return -EOPNOTSUPP; 295 296 fp = open_file_as_root(init_ex_path, O_RDONLY, 0); 297 if (IS_ERR(fp)) { 298 int ret = PTR_ERR(fp); 299 300 if (ret == -ENOENT) { 301 dev_info(sev->dev, 302 "SEV: %s does not exist and will be created later.\n", 303 init_ex_path); 304 ret = 0; 305 } else { 306 dev_err(sev->dev, 307 "SEV: could not open %s for read, error %d\n", 308 init_ex_path, ret); 309 } 310 return ret; 311 } 312 313 nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL); 314 if (nread != NV_LENGTH) { 315 dev_info(sev->dev, 316 "SEV: could not read %u bytes to non volatile memory area, ret %ld\n", 317 NV_LENGTH, nread); 318 } 319 320 dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread); 321 filp_close(fp, NULL); 322 323 return 0; 324 } 325 326 static int sev_write_init_ex_file(void) 327 { 328 struct sev_device *sev = psp_master->sev_data; 329 struct file *fp; 330 loff_t offset = 0; 331 ssize_t nwrite; 332 333 lockdep_assert_held(&sev_cmd_mutex); 334 335 if (!sev_init_ex_buffer) 336 return 0; 337 338 fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600); 339 if (IS_ERR(fp)) { 340 int ret = PTR_ERR(fp); 341 342 dev_err(sev->dev, 343 "SEV: could not open file for write, error %d\n", 344 ret); 345 return ret; 346 } 347 348 nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset); 349 vfs_fsync(fp, 0); 350 filp_close(fp, NULL); 351 352 if (nwrite != NV_LENGTH) { 353 dev_err(sev->dev, 354 "SEV: failed to write %u bytes to non volatile memory area, ret %ld\n", 355 NV_LENGTH, nwrite); 356 return -EIO; 357 } 358 359 dev_dbg(sev->dev, "SEV: write successful to NV file\n"); 360 361 return 0; 362 } 363 364 static int sev_write_init_ex_file_if_required(int cmd_id) 365 { 366 lockdep_assert_held(&sev_cmd_mutex); 367 368 if (!sev_init_ex_buffer) 369 return 0; 370 371 /* 372 * Only a few platform commands modify the SPI/NV area, but none of the 373 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN, 374 * PEK_CERT_IMPORT, and PDH_GEN do. 375 */ 376 switch (cmd_id) { 377 case SEV_CMD_FACTORY_RESET: 378 case SEV_CMD_INIT_EX: 379 case SEV_CMD_PDH_GEN: 380 case SEV_CMD_PEK_CERT_IMPORT: 381 case SEV_CMD_PEK_GEN: 382 break; 383 default: 384 return 0; 385 } 386 387 return sev_write_init_ex_file(); 388 } 389 390 /* 391 * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked() 392 * needs snp_reclaim_pages(), so a forward declaration is needed. 393 */ 394 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret); 395 396 static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked) 397 { 398 int ret, err, i; 399 400 paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE)); 401 402 for (i = 0; i < npages; i++, paddr += PAGE_SIZE) { 403 struct sev_data_snp_page_reclaim data = {0}; 404 405 data.paddr = paddr; 406 407 if (locked) 408 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 409 else 410 ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 411 412 if (ret) 413 goto cleanup; 414 415 ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K); 416 if (ret) 417 goto cleanup; 418 } 419 420 return 0; 421 422 cleanup: 423 /* 424 * If there was a failure reclaiming the page then it is no longer safe 425 * to release it back to the system; leak it instead. 426 */ 427 snp_leak_pages(__phys_to_pfn(paddr), npages - i); 428 return ret; 429 } 430 431 static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked) 432 { 433 unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT; 434 int rc, i; 435 436 for (i = 0; i < npages; i++, pfn++) { 437 rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true); 438 if (rc) 439 goto cleanup; 440 } 441 442 return 0; 443 444 cleanup: 445 /* 446 * Try unrolling the firmware state changes by 447 * reclaiming the pages which were already changed to the 448 * firmware state. 449 */ 450 snp_reclaim_pages(paddr, i, locked); 451 452 return rc; 453 } 454 455 static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order, bool locked) 456 { 457 unsigned long npages = 1ul << order, paddr; 458 struct sev_device *sev; 459 struct page *page; 460 461 if (!psp_master || !psp_master->sev_data) 462 return NULL; 463 464 page = alloc_pages(gfp_mask, order); 465 if (!page) 466 return NULL; 467 468 /* If SEV-SNP is initialized then add the page in RMP table. */ 469 sev = psp_master->sev_data; 470 if (!sev->snp_initialized) 471 return page; 472 473 paddr = __pa((unsigned long)page_address(page)); 474 if (rmp_mark_pages_firmware(paddr, npages, locked)) 475 return NULL; 476 477 return page; 478 } 479 480 void *snp_alloc_firmware_page(gfp_t gfp_mask) 481 { 482 struct page *page; 483 484 page = __snp_alloc_firmware_pages(gfp_mask, 0, false); 485 486 return page ? page_address(page) : NULL; 487 } 488 EXPORT_SYMBOL_GPL(snp_alloc_firmware_page); 489 490 static void __snp_free_firmware_pages(struct page *page, int order, bool locked) 491 { 492 struct sev_device *sev = psp_master->sev_data; 493 unsigned long paddr, npages = 1ul << order; 494 495 if (!page) 496 return; 497 498 paddr = __pa((unsigned long)page_address(page)); 499 if (sev->snp_initialized && 500 snp_reclaim_pages(paddr, npages, locked)) 501 return; 502 503 __free_pages(page, order); 504 } 505 506 void snp_free_firmware_page(void *addr) 507 { 508 if (!addr) 509 return; 510 511 __snp_free_firmware_pages(virt_to_page(addr), 0, false); 512 } 513 EXPORT_SYMBOL_GPL(snp_free_firmware_page); 514 515 static void *sev_fw_alloc(unsigned long len) 516 { 517 struct page *page; 518 519 page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len), true); 520 if (!page) 521 return NULL; 522 523 return page_address(page); 524 } 525 526 /** 527 * struct cmd_buf_desc - descriptors for managing legacy SEV command address 528 * parameters corresponding to buffers that may be written to by firmware. 529 * 530 * @paddr_ptr: pointer to the address parameter in the command buffer which may 531 * need to be saved/restored depending on whether a bounce buffer 532 * is used. In the case of a bounce buffer, the command buffer 533 * needs to be updated with the address of the new bounce buffer 534 * snp_map_cmd_buf_desc() has allocated specifically for it. Must 535 * be NULL if this descriptor is only an end-of-list indicator. 536 * 537 * @paddr_orig: storage for the original address parameter, which can be used to 538 * restore the original value in @paddr_ptr in cases where it is 539 * replaced with the address of a bounce buffer. 540 * 541 * @len: length of buffer located at the address originally stored at @paddr_ptr 542 * 543 * @guest_owned: true if the address corresponds to guest-owned pages, in which 544 * case bounce buffers are not needed. 545 */ 546 struct cmd_buf_desc { 547 u64 *paddr_ptr; 548 u64 paddr_orig; 549 u32 len; 550 bool guest_owned; 551 }; 552 553 /* 554 * If a legacy SEV command parameter is a memory address, those pages in 555 * turn need to be transitioned to/from firmware-owned before/after 556 * executing the firmware command. 557 * 558 * Additionally, in cases where those pages are not guest-owned, a bounce 559 * buffer is needed in place of the original memory address parameter. 560 * 561 * A set of descriptors are used to keep track of this handling, and 562 * initialized here based on the specific commands being executed. 563 */ 564 static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf, 565 struct cmd_buf_desc *desc_list) 566 { 567 switch (cmd) { 568 case SEV_CMD_PDH_CERT_EXPORT: { 569 struct sev_data_pdh_cert_export *data = cmd_buf; 570 571 desc_list[0].paddr_ptr = &data->pdh_cert_address; 572 desc_list[0].len = data->pdh_cert_len; 573 desc_list[1].paddr_ptr = &data->cert_chain_address; 574 desc_list[1].len = data->cert_chain_len; 575 break; 576 } 577 case SEV_CMD_GET_ID: { 578 struct sev_data_get_id *data = cmd_buf; 579 580 desc_list[0].paddr_ptr = &data->address; 581 desc_list[0].len = data->len; 582 break; 583 } 584 case SEV_CMD_PEK_CSR: { 585 struct sev_data_pek_csr *data = cmd_buf; 586 587 desc_list[0].paddr_ptr = &data->address; 588 desc_list[0].len = data->len; 589 break; 590 } 591 case SEV_CMD_LAUNCH_UPDATE_DATA: { 592 struct sev_data_launch_update_data *data = cmd_buf; 593 594 desc_list[0].paddr_ptr = &data->address; 595 desc_list[0].len = data->len; 596 desc_list[0].guest_owned = true; 597 break; 598 } 599 case SEV_CMD_LAUNCH_UPDATE_VMSA: { 600 struct sev_data_launch_update_vmsa *data = cmd_buf; 601 602 desc_list[0].paddr_ptr = &data->address; 603 desc_list[0].len = data->len; 604 desc_list[0].guest_owned = true; 605 break; 606 } 607 case SEV_CMD_LAUNCH_MEASURE: { 608 struct sev_data_launch_measure *data = cmd_buf; 609 610 desc_list[0].paddr_ptr = &data->address; 611 desc_list[0].len = data->len; 612 break; 613 } 614 case SEV_CMD_LAUNCH_UPDATE_SECRET: { 615 struct sev_data_launch_secret *data = cmd_buf; 616 617 desc_list[0].paddr_ptr = &data->guest_address; 618 desc_list[0].len = data->guest_len; 619 desc_list[0].guest_owned = true; 620 break; 621 } 622 case SEV_CMD_DBG_DECRYPT: { 623 struct sev_data_dbg *data = cmd_buf; 624 625 desc_list[0].paddr_ptr = &data->dst_addr; 626 desc_list[0].len = data->len; 627 desc_list[0].guest_owned = true; 628 break; 629 } 630 case SEV_CMD_DBG_ENCRYPT: { 631 struct sev_data_dbg *data = cmd_buf; 632 633 desc_list[0].paddr_ptr = &data->dst_addr; 634 desc_list[0].len = data->len; 635 desc_list[0].guest_owned = true; 636 break; 637 } 638 case SEV_CMD_ATTESTATION_REPORT: { 639 struct sev_data_attestation_report *data = cmd_buf; 640 641 desc_list[0].paddr_ptr = &data->address; 642 desc_list[0].len = data->len; 643 break; 644 } 645 case SEV_CMD_SEND_START: { 646 struct sev_data_send_start *data = cmd_buf; 647 648 desc_list[0].paddr_ptr = &data->session_address; 649 desc_list[0].len = data->session_len; 650 break; 651 } 652 case SEV_CMD_SEND_UPDATE_DATA: { 653 struct sev_data_send_update_data *data = cmd_buf; 654 655 desc_list[0].paddr_ptr = &data->hdr_address; 656 desc_list[0].len = data->hdr_len; 657 desc_list[1].paddr_ptr = &data->trans_address; 658 desc_list[1].len = data->trans_len; 659 break; 660 } 661 case SEV_CMD_SEND_UPDATE_VMSA: { 662 struct sev_data_send_update_vmsa *data = cmd_buf; 663 664 desc_list[0].paddr_ptr = &data->hdr_address; 665 desc_list[0].len = data->hdr_len; 666 desc_list[1].paddr_ptr = &data->trans_address; 667 desc_list[1].len = data->trans_len; 668 break; 669 } 670 case SEV_CMD_RECEIVE_UPDATE_DATA: { 671 struct sev_data_receive_update_data *data = cmd_buf; 672 673 desc_list[0].paddr_ptr = &data->guest_address; 674 desc_list[0].len = data->guest_len; 675 desc_list[0].guest_owned = true; 676 break; 677 } 678 case SEV_CMD_RECEIVE_UPDATE_VMSA: { 679 struct sev_data_receive_update_vmsa *data = cmd_buf; 680 681 desc_list[0].paddr_ptr = &data->guest_address; 682 desc_list[0].len = data->guest_len; 683 desc_list[0].guest_owned = true; 684 break; 685 } 686 default: 687 break; 688 } 689 } 690 691 static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc) 692 { 693 unsigned int npages; 694 695 if (!desc->len) 696 return 0; 697 698 /* Allocate a bounce buffer if this isn't a guest owned page. */ 699 if (!desc->guest_owned) { 700 struct page *page; 701 702 page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len)); 703 if (!page) { 704 pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n"); 705 return -ENOMEM; 706 } 707 708 desc->paddr_orig = *desc->paddr_ptr; 709 *desc->paddr_ptr = __psp_pa(page_to_virt(page)); 710 } 711 712 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 713 714 /* Transition the buffer to firmware-owned. */ 715 if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) { 716 pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n"); 717 return -EFAULT; 718 } 719 720 return 0; 721 } 722 723 static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc) 724 { 725 unsigned int npages; 726 727 if (!desc->len) 728 return 0; 729 730 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 731 732 /* Transition the buffers back to hypervisor-owned. */ 733 if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) { 734 pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n"); 735 return -EFAULT; 736 } 737 738 /* Copy data from bounce buffer and then free it. */ 739 if (!desc->guest_owned) { 740 void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr)); 741 void *dst_buf = __va(__sme_clr(desc->paddr_orig)); 742 743 memcpy(dst_buf, bounce_buf, desc->len); 744 __free_pages(virt_to_page(bounce_buf), get_order(desc->len)); 745 746 /* Restore the original address in the command buffer. */ 747 *desc->paddr_ptr = desc->paddr_orig; 748 } 749 750 return 0; 751 } 752 753 static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 754 { 755 int i; 756 757 snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list); 758 759 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 760 struct cmd_buf_desc *desc = &desc_list[i]; 761 762 if (!desc->paddr_ptr) 763 break; 764 765 if (snp_map_cmd_buf_desc(desc)) 766 goto err_unmap; 767 } 768 769 return 0; 770 771 err_unmap: 772 for (i--; i >= 0; i--) 773 snp_unmap_cmd_buf_desc(&desc_list[i]); 774 775 return -EFAULT; 776 } 777 778 static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list) 779 { 780 int i, ret = 0; 781 782 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 783 struct cmd_buf_desc *desc = &desc_list[i]; 784 785 if (!desc->paddr_ptr) 786 break; 787 788 if (snp_unmap_cmd_buf_desc(&desc_list[i])) 789 ret = -EFAULT; 790 } 791 792 return ret; 793 } 794 795 static bool sev_cmd_buf_writable(int cmd) 796 { 797 switch (cmd) { 798 case SEV_CMD_PLATFORM_STATUS: 799 case SEV_CMD_GUEST_STATUS: 800 case SEV_CMD_LAUNCH_START: 801 case SEV_CMD_RECEIVE_START: 802 case SEV_CMD_LAUNCH_MEASURE: 803 case SEV_CMD_SEND_START: 804 case SEV_CMD_SEND_UPDATE_DATA: 805 case SEV_CMD_SEND_UPDATE_VMSA: 806 case SEV_CMD_PEK_CSR: 807 case SEV_CMD_PDH_CERT_EXPORT: 808 case SEV_CMD_GET_ID: 809 case SEV_CMD_ATTESTATION_REPORT: 810 return true; 811 default: 812 return false; 813 } 814 } 815 816 /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */ 817 static bool snp_legacy_handling_needed(int cmd) 818 { 819 struct sev_device *sev = psp_master->sev_data; 820 821 return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized; 822 } 823 824 static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 825 { 826 if (!snp_legacy_handling_needed(cmd)) 827 return 0; 828 829 if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list)) 830 return -EFAULT; 831 832 /* 833 * Before command execution, the command buffer needs to be put into 834 * the firmware-owned state. 835 */ 836 if (sev_cmd_buf_writable(cmd)) { 837 if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true)) 838 return -EFAULT; 839 } 840 841 return 0; 842 } 843 844 static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf) 845 { 846 if (!snp_legacy_handling_needed(cmd)) 847 return 0; 848 849 /* 850 * After command completion, the command buffer needs to be put back 851 * into the hypervisor-owned state. 852 */ 853 if (sev_cmd_buf_writable(cmd)) 854 if (snp_reclaim_pages(__pa(cmd_buf), 1, true)) 855 return -EFAULT; 856 857 return 0; 858 } 859 860 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret) 861 { 862 struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0}; 863 struct psp_device *psp = psp_master; 864 struct sev_device *sev; 865 unsigned int cmdbuff_hi, cmdbuff_lo; 866 unsigned int phys_lsb, phys_msb; 867 unsigned int reg; 868 void *cmd_buf; 869 int buf_len; 870 int ret = 0; 871 872 if (!psp || !psp->sev_data) 873 return -ENODEV; 874 875 if (psp_dead) 876 return -EBUSY; 877 878 sev = psp->sev_data; 879 880 buf_len = sev_cmd_buffer_len(cmd); 881 if (WARN_ON_ONCE(!data != !buf_len)) 882 return -EINVAL; 883 884 /* 885 * Copy the incoming data to driver's scratch buffer as __pa() will not 886 * work for some memory, e.g. vmalloc'd addresses, and @data may not be 887 * physically contiguous. 888 */ 889 if (data) { 890 /* 891 * Commands are generally issued one at a time and require the 892 * sev_cmd_mutex, but there could be recursive firmware requests 893 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while 894 * preparing buffers for another command. This is the only known 895 * case of nesting in the current code, so exactly one 896 * additional command buffer is available for that purpose. 897 */ 898 if (!sev->cmd_buf_active) { 899 cmd_buf = sev->cmd_buf; 900 sev->cmd_buf_active = true; 901 } else if (!sev->cmd_buf_backup_active) { 902 cmd_buf = sev->cmd_buf_backup; 903 sev->cmd_buf_backup_active = true; 904 } else { 905 dev_err(sev->dev, 906 "SEV: too many firmware commands in progress, no command buffers available.\n"); 907 return -EBUSY; 908 } 909 910 memcpy(cmd_buf, data, buf_len); 911 912 /* 913 * The behavior of the SEV-legacy commands is altered when the 914 * SNP firmware is in the INIT state. 915 */ 916 ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list); 917 if (ret) { 918 dev_err(sev->dev, 919 "SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n", 920 cmd, ret); 921 return ret; 922 } 923 } else { 924 cmd_buf = sev->cmd_buf; 925 } 926 927 /* Get the physical address of the command buffer */ 928 phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0; 929 phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0; 930 931 dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n", 932 cmd, phys_msb, phys_lsb, psp_timeout); 933 934 print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data, 935 buf_len, false); 936 937 iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 938 iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 939 940 sev->int_rcvd = 0; 941 942 reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd); 943 944 /* 945 * If invoked during panic handling, local interrupts are disabled so 946 * the PSP command completion interrupt can't be used. 947 * sev_wait_cmd_ioc() already checks for interrupts disabled and 948 * polls for PSP command completion. Ensure we do not request an 949 * interrupt from the PSP if irqs disabled. 950 */ 951 if (!irqs_disabled()) 952 reg |= SEV_CMDRESP_IOC; 953 954 iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg); 955 956 /* wait for command completion */ 957 ret = sev_wait_cmd_ioc(sev, ®, psp_timeout); 958 if (ret) { 959 if (psp_ret) 960 *psp_ret = 0; 961 962 dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd); 963 psp_dead = true; 964 965 return ret; 966 } 967 968 psp_timeout = psp_cmd_timeout; 969 970 if (psp_ret) 971 *psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg); 972 973 if (FIELD_GET(PSP_CMDRESP_STS, reg)) { 974 dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n", 975 cmd, FIELD_GET(PSP_CMDRESP_STS, reg)); 976 977 /* 978 * PSP firmware may report additional error information in the 979 * command buffer registers on error. Print contents of command 980 * buffer registers if they changed. 981 */ 982 cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 983 cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 984 if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) { 985 dev_dbg(sev->dev, "Additional error information reported in cmdbuff:"); 986 dev_dbg(sev->dev, " cmdbuff hi: %#010x\n", cmdbuff_hi); 987 dev_dbg(sev->dev, " cmdbuff lo: %#010x\n", cmdbuff_lo); 988 } 989 ret = -EIO; 990 } else { 991 ret = sev_write_init_ex_file_if_required(cmd); 992 } 993 994 /* 995 * Copy potential output from the PSP back to data. Do this even on 996 * failure in case the caller wants to glean something from the error. 997 */ 998 if (data) { 999 int ret_reclaim; 1000 /* 1001 * Restore the page state after the command completes. 1002 */ 1003 ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf); 1004 if (ret_reclaim) { 1005 dev_err(sev->dev, 1006 "SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n", 1007 cmd, ret_reclaim); 1008 return ret_reclaim; 1009 } 1010 1011 memcpy(data, cmd_buf, buf_len); 1012 1013 if (sev->cmd_buf_backup_active) 1014 sev->cmd_buf_backup_active = false; 1015 else 1016 sev->cmd_buf_active = false; 1017 1018 if (snp_unmap_cmd_buf_desc_list(desc_list)) 1019 return -EFAULT; 1020 } 1021 1022 print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data, 1023 buf_len, false); 1024 1025 return ret; 1026 } 1027 1028 int sev_do_cmd(int cmd, void *data, int *psp_ret) 1029 { 1030 int rc; 1031 1032 mutex_lock(&sev_cmd_mutex); 1033 rc = __sev_do_cmd_locked(cmd, data, psp_ret); 1034 mutex_unlock(&sev_cmd_mutex); 1035 1036 return rc; 1037 } 1038 EXPORT_SYMBOL_GPL(sev_do_cmd); 1039 1040 static int __sev_init_locked(int *error) 1041 { 1042 struct sev_data_init data; 1043 1044 memset(&data, 0, sizeof(data)); 1045 if (sev_es_tmr) { 1046 /* 1047 * Do not include the encryption mask on the physical 1048 * address of the TMR (firmware should clear it anyway). 1049 */ 1050 data.tmr_address = __pa(sev_es_tmr); 1051 1052 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1053 data.tmr_len = sev_es_tmr_size; 1054 } 1055 1056 return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error); 1057 } 1058 1059 static int __sev_init_ex_locked(int *error) 1060 { 1061 struct sev_data_init_ex data; 1062 1063 memset(&data, 0, sizeof(data)); 1064 data.length = sizeof(data); 1065 data.nv_address = __psp_pa(sev_init_ex_buffer); 1066 data.nv_len = NV_LENGTH; 1067 1068 if (sev_es_tmr) { 1069 /* 1070 * Do not include the encryption mask on the physical 1071 * address of the TMR (firmware should clear it anyway). 1072 */ 1073 data.tmr_address = __pa(sev_es_tmr); 1074 1075 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1076 data.tmr_len = sev_es_tmr_size; 1077 } 1078 1079 return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error); 1080 } 1081 1082 static inline int __sev_do_init_locked(int *psp_ret) 1083 { 1084 if (sev_init_ex_buffer) 1085 return __sev_init_ex_locked(psp_ret); 1086 else 1087 return __sev_init_locked(psp_ret); 1088 } 1089 1090 static void snp_set_hsave_pa(void *arg) 1091 { 1092 wrmsrq(MSR_VM_HSAVE_PA, 0); 1093 } 1094 1095 /* Hypervisor Fixed pages API interface */ 1096 static void snp_hv_fixed_pages_state_update(struct sev_device *sev, 1097 enum snp_hv_fixed_pages_state page_state) 1098 { 1099 struct snp_hv_fixed_pages_entry *entry; 1100 1101 /* List is protected by sev_cmd_mutex */ 1102 lockdep_assert_held(&sev_cmd_mutex); 1103 1104 if (list_empty(&snp_hv_fixed_pages)) 1105 return; 1106 1107 list_for_each_entry(entry, &snp_hv_fixed_pages, list) 1108 entry->page_state = page_state; 1109 } 1110 1111 /* 1112 * Allocate HV_FIXED pages in 2MB aligned sizes to ensure the whole 1113 * 2MB pages are marked as HV_FIXED. 1114 */ 1115 struct page *snp_alloc_hv_fixed_pages(unsigned int num_2mb_pages) 1116 { 1117 struct psp_device *psp_master = psp_get_master_device(); 1118 struct snp_hv_fixed_pages_entry *entry; 1119 struct sev_device *sev; 1120 unsigned int order; 1121 struct page *page; 1122 1123 if (!psp_master || !psp_master->sev_data) 1124 return NULL; 1125 1126 sev = psp_master->sev_data; 1127 1128 order = get_order(PMD_SIZE * num_2mb_pages); 1129 1130 /* 1131 * SNP_INIT_EX is protected by sev_cmd_mutex, therefore this list 1132 * also needs to be protected using the same mutex. 1133 */ 1134 guard(mutex)(&sev_cmd_mutex); 1135 1136 /* 1137 * This API uses SNP_INIT_EX to transition allocated pages to HV_Fixed 1138 * page state, fail if SNP is already initialized. 1139 */ 1140 if (sev->snp_initialized) 1141 return NULL; 1142 1143 /* Re-use freed pages that match the request */ 1144 list_for_each_entry(entry, &snp_hv_fixed_pages, list) { 1145 /* Hypervisor fixed page allocator implements exact fit policy */ 1146 if (entry->order == order && entry->free) { 1147 entry->free = false; 1148 memset(page_address(entry->page), 0, 1149 (1 << entry->order) * PAGE_SIZE); 1150 return entry->page; 1151 } 1152 } 1153 1154 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, order); 1155 if (!page) 1156 return NULL; 1157 1158 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 1159 if (!entry) { 1160 __free_pages(page, order); 1161 return NULL; 1162 } 1163 1164 entry->page = page; 1165 entry->order = order; 1166 list_add_tail(&entry->list, &snp_hv_fixed_pages); 1167 1168 return page; 1169 } 1170 1171 void snp_free_hv_fixed_pages(struct page *page) 1172 { 1173 struct psp_device *psp_master = psp_get_master_device(); 1174 struct snp_hv_fixed_pages_entry *entry, *nentry; 1175 1176 if (!psp_master || !psp_master->sev_data) 1177 return; 1178 1179 /* 1180 * SNP_INIT_EX is protected by sev_cmd_mutex, therefore this list 1181 * also needs to be protected using the same mutex. 1182 */ 1183 guard(mutex)(&sev_cmd_mutex); 1184 1185 list_for_each_entry_safe(entry, nentry, &snp_hv_fixed_pages, list) { 1186 if (entry->page != page) 1187 continue; 1188 1189 /* 1190 * HV_FIXED page state cannot be changed until reboot 1191 * and they cannot be used by an SNP guest, so they cannot 1192 * be returned back to the page allocator. 1193 * Mark the pages as free internally to allow possible re-use. 1194 */ 1195 if (entry->page_state == HV_FIXED) { 1196 entry->free = true; 1197 } else { 1198 __free_pages(page, entry->order); 1199 list_del(&entry->list); 1200 kfree(entry); 1201 } 1202 return; 1203 } 1204 } 1205 1206 static void snp_add_hv_fixed_pages(struct sev_device *sev, struct sev_data_range_list *range_list) 1207 { 1208 struct snp_hv_fixed_pages_entry *entry; 1209 struct sev_data_range *range; 1210 int num_elements; 1211 1212 lockdep_assert_held(&sev_cmd_mutex); 1213 1214 if (list_empty(&snp_hv_fixed_pages)) 1215 return; 1216 1217 num_elements = list_count_nodes(&snp_hv_fixed_pages) + 1218 range_list->num_elements; 1219 1220 /* 1221 * Ensure the list of HV_FIXED pages that will be passed to firmware 1222 * do not exceed the page-sized argument buffer. 1223 */ 1224 if (num_elements * sizeof(*range) + sizeof(*range_list) > PAGE_SIZE) { 1225 dev_warn(sev->dev, "Additional HV_Fixed pages cannot be accommodated, omitting\n"); 1226 return; 1227 } 1228 1229 range = &range_list->ranges[range_list->num_elements]; 1230 list_for_each_entry(entry, &snp_hv_fixed_pages, list) { 1231 range->base = page_to_pfn(entry->page) << PAGE_SHIFT; 1232 range->page_count = 1 << entry->order; 1233 range++; 1234 } 1235 range_list->num_elements = num_elements; 1236 } 1237 1238 static void snp_leak_hv_fixed_pages(void) 1239 { 1240 struct snp_hv_fixed_pages_entry *entry; 1241 1242 /* List is protected by sev_cmd_mutex */ 1243 lockdep_assert_held(&sev_cmd_mutex); 1244 1245 if (list_empty(&snp_hv_fixed_pages)) 1246 return; 1247 1248 list_for_each_entry(entry, &snp_hv_fixed_pages, list) 1249 if (entry->page_state == HV_FIXED) 1250 __snp_leak_pages(page_to_pfn(entry->page), 1251 1 << entry->order, false); 1252 } 1253 1254 bool sev_is_snp_ciphertext_hiding_supported(void) 1255 { 1256 struct psp_device *psp = psp_master; 1257 struct sev_device *sev; 1258 1259 if (!psp || !psp->sev_data) 1260 return false; 1261 1262 sev = psp->sev_data; 1263 1264 /* 1265 * Feature information indicates if CipherTextHiding feature is 1266 * supported by the SEV firmware and additionally platform status 1267 * indicates if CipherTextHiding feature is enabled in the 1268 * Platform BIOS. 1269 */ 1270 return ((sev->snp_feat_info_0.ecx & SNP_CIPHER_TEXT_HIDING_SUPPORTED) && 1271 sev->snp_plat_status.ciphertext_hiding_cap); 1272 } 1273 EXPORT_SYMBOL_GPL(sev_is_snp_ciphertext_hiding_supported); 1274 1275 static int snp_get_platform_data(struct sev_device *sev, int *error) 1276 { 1277 struct sev_data_snp_feature_info snp_feat_info; 1278 struct snp_feature_info *feat_info; 1279 struct sev_data_snp_addr buf; 1280 struct page *page; 1281 int rc; 1282 1283 /* 1284 * This function is expected to be called before SNP is 1285 * initialized. 1286 */ 1287 if (sev->snp_initialized) 1288 return -EINVAL; 1289 1290 buf.address = __psp_pa(&sev->snp_plat_status); 1291 rc = sev_do_cmd(SEV_CMD_SNP_PLATFORM_STATUS, &buf, error); 1292 if (rc) { 1293 dev_err(sev->dev, "SNP PLATFORM_STATUS command failed, ret = %d, error = %#x\n", 1294 rc, *error); 1295 return rc; 1296 } 1297 1298 sev->api_major = sev->snp_plat_status.api_major; 1299 sev->api_minor = sev->snp_plat_status.api_minor; 1300 sev->build = sev->snp_plat_status.build_id; 1301 1302 /* 1303 * Do feature discovery of the currently loaded firmware, 1304 * and cache feature information from CPUID 0x8000_0024, 1305 * sub-function 0. 1306 */ 1307 if (!sev->snp_plat_status.feature_info) 1308 return 0; 1309 1310 /* 1311 * Use dynamically allocated structure for the SNP_FEATURE_INFO 1312 * command to ensure structure is 8-byte aligned, and does not 1313 * cross a page boundary. 1314 */ 1315 page = alloc_page(GFP_KERNEL); 1316 if (!page) 1317 return -ENOMEM; 1318 1319 feat_info = page_address(page); 1320 snp_feat_info.length = sizeof(snp_feat_info); 1321 snp_feat_info.ecx_in = 0; 1322 snp_feat_info.feature_info_paddr = __psp_pa(feat_info); 1323 1324 rc = sev_do_cmd(SEV_CMD_SNP_FEATURE_INFO, &snp_feat_info, error); 1325 if (!rc) 1326 sev->snp_feat_info_0 = *feat_info; 1327 else 1328 dev_err(sev->dev, "SNP FEATURE_INFO command failed, ret = %d, error = %#x\n", 1329 rc, *error); 1330 1331 __free_page(page); 1332 1333 return rc; 1334 } 1335 1336 static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg) 1337 { 1338 struct sev_data_range_list *range_list = arg; 1339 struct sev_data_range *range = &range_list->ranges[range_list->num_elements]; 1340 size_t size; 1341 1342 /* 1343 * Ensure the list of HV_FIXED pages that will be passed to firmware 1344 * do not exceed the page-sized argument buffer. 1345 */ 1346 if ((range_list->num_elements * sizeof(struct sev_data_range) + 1347 sizeof(struct sev_data_range_list)) > PAGE_SIZE) 1348 return -E2BIG; 1349 1350 switch (rs->desc) { 1351 case E820_TYPE_RESERVED: 1352 case E820_TYPE_PMEM: 1353 case E820_TYPE_ACPI: 1354 range->base = rs->start & PAGE_MASK; 1355 size = PAGE_ALIGN((rs->end + 1) - rs->start); 1356 range->page_count = size >> PAGE_SHIFT; 1357 range_list->num_elements++; 1358 break; 1359 default: 1360 break; 1361 } 1362 1363 return 0; 1364 } 1365 1366 static int __sev_snp_init_locked(int *error, unsigned int max_snp_asid) 1367 { 1368 struct psp_device *psp = psp_master; 1369 struct sev_data_snp_init_ex data; 1370 struct sev_device *sev; 1371 void *arg = &data; 1372 int cmd, rc = 0; 1373 1374 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 1375 return -ENODEV; 1376 1377 sev = psp->sev_data; 1378 1379 if (sev->snp_initialized) 1380 return 0; 1381 1382 if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) { 1383 dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n", 1384 SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR); 1385 return -EOPNOTSUPP; 1386 } 1387 1388 /* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */ 1389 on_each_cpu(snp_set_hsave_pa, NULL, 1); 1390 1391 /* 1392 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list 1393 * of system physical address ranges to convert into HV-fixed page 1394 * states during the RMP initialization. For instance, the memory that 1395 * UEFI reserves should be included in the that list. This allows system 1396 * components that occasionally write to memory (e.g. logging to UEFI 1397 * reserved regions) to not fail due to RMP initialization and SNP 1398 * enablement. 1399 * 1400 */ 1401 if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) { 1402 /* 1403 * Firmware checks that the pages containing the ranges enumerated 1404 * in the RANGES structure are either in the default page state or in the 1405 * firmware page state. 1406 */ 1407 snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL); 1408 if (!snp_range_list) { 1409 dev_err(sev->dev, 1410 "SEV: SNP_INIT_EX range list memory allocation failed\n"); 1411 return -ENOMEM; 1412 } 1413 1414 /* 1415 * Retrieve all reserved memory regions from the e820 memory map 1416 * to be setup as HV-fixed pages. 1417 */ 1418 rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0, 1419 snp_range_list, snp_filter_reserved_mem_regions); 1420 if (rc) { 1421 dev_err(sev->dev, 1422 "SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc); 1423 return rc; 1424 } 1425 1426 /* 1427 * Add HV_Fixed pages from other PSP sub-devices, such as SFS to the 1428 * HV_Fixed page list. 1429 */ 1430 snp_add_hv_fixed_pages(sev, snp_range_list); 1431 1432 memset(&data, 0, sizeof(data)); 1433 1434 if (max_snp_asid) { 1435 data.ciphertext_hiding_en = 1; 1436 data.max_snp_asid = max_snp_asid; 1437 } 1438 1439 data.init_rmp = 1; 1440 data.list_paddr_en = 1; 1441 data.list_paddr = __psp_pa(snp_range_list); 1442 cmd = SEV_CMD_SNP_INIT_EX; 1443 } else { 1444 cmd = SEV_CMD_SNP_INIT; 1445 arg = NULL; 1446 } 1447 1448 /* 1449 * The following sequence must be issued before launching the first SNP 1450 * guest to ensure all dirty cache lines are flushed, including from 1451 * updates to the RMP table itself via the RMPUPDATE instruction: 1452 * 1453 * - WBINVD on all running CPUs 1454 * - SEV_CMD_SNP_INIT[_EX] firmware command 1455 * - WBINVD on all running CPUs 1456 * - SEV_CMD_SNP_DF_FLUSH firmware command 1457 */ 1458 wbinvd_on_all_cpus(); 1459 1460 rc = __sev_do_cmd_locked(cmd, arg, error); 1461 if (rc) { 1462 dev_err(sev->dev, "SEV-SNP: %s failed rc %d, error %#x\n", 1463 cmd == SEV_CMD_SNP_INIT_EX ? "SNP_INIT_EX" : "SNP_INIT", 1464 rc, *error); 1465 return rc; 1466 } 1467 1468 /* Prepare for first SNP guest launch after INIT. */ 1469 wbinvd_on_all_cpus(); 1470 rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error); 1471 if (rc) { 1472 dev_err(sev->dev, "SEV-SNP: SNP_DF_FLUSH failed rc %d, error %#x\n", 1473 rc, *error); 1474 return rc; 1475 } 1476 1477 snp_hv_fixed_pages_state_update(sev, HV_FIXED); 1478 sev->snp_initialized = true; 1479 dev_dbg(sev->dev, "SEV-SNP firmware initialized\n"); 1480 1481 dev_info(sev->dev, "SEV-SNP API:%d.%d build:%d\n", sev->api_major, 1482 sev->api_minor, sev->build); 1483 1484 atomic_notifier_chain_register(&panic_notifier_list, 1485 &snp_panic_notifier); 1486 1487 sev_es_tmr_size = SNP_TMR_SIZE; 1488 1489 return 0; 1490 } 1491 1492 static void __sev_platform_init_handle_tmr(struct sev_device *sev) 1493 { 1494 if (sev_es_tmr) 1495 return; 1496 1497 /* Obtain the TMR memory area for SEV-ES use */ 1498 sev_es_tmr = sev_fw_alloc(sev_es_tmr_size); 1499 if (sev_es_tmr) { 1500 /* Must flush the cache before giving it to the firmware */ 1501 if (!sev->snp_initialized) 1502 clflush_cache_range(sev_es_tmr, sev_es_tmr_size); 1503 } else { 1504 dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n"); 1505 } 1506 } 1507 1508 /* 1509 * If an init_ex_path is provided allocate a buffer for the file and 1510 * read in the contents. Additionally, if SNP is initialized, convert 1511 * the buffer pages to firmware pages. 1512 */ 1513 static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev) 1514 { 1515 struct page *page; 1516 int rc; 1517 1518 if (!init_ex_path) 1519 return 0; 1520 1521 if (sev_init_ex_buffer) 1522 return 0; 1523 1524 page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH)); 1525 if (!page) { 1526 dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n"); 1527 return -ENOMEM; 1528 } 1529 1530 sev_init_ex_buffer = page_address(page); 1531 1532 rc = sev_read_init_ex_file(); 1533 if (rc) 1534 return rc; 1535 1536 /* If SEV-SNP is initialized, transition to firmware page. */ 1537 if (sev->snp_initialized) { 1538 unsigned long npages; 1539 1540 npages = 1UL << get_order(NV_LENGTH); 1541 if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) { 1542 dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n"); 1543 return -ENOMEM; 1544 } 1545 } 1546 1547 return 0; 1548 } 1549 1550 static int __sev_platform_init_locked(int *error) 1551 { 1552 int rc, psp_ret, dfflush_error; 1553 struct sev_device *sev; 1554 1555 psp_ret = dfflush_error = SEV_RET_NO_FW_CALL; 1556 1557 if (!psp_master || !psp_master->sev_data) 1558 return -ENODEV; 1559 1560 sev = psp_master->sev_data; 1561 1562 if (sev->sev_plat_status.state == SEV_STATE_INIT) 1563 return 0; 1564 1565 __sev_platform_init_handle_tmr(sev); 1566 1567 rc = __sev_platform_init_handle_init_ex_path(sev); 1568 if (rc) 1569 return rc; 1570 1571 rc = __sev_do_init_locked(&psp_ret); 1572 if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) { 1573 /* 1574 * Initialization command returned an integrity check failure 1575 * status code, meaning that firmware load and validation of SEV 1576 * related persistent data has failed. Retrying the 1577 * initialization function should succeed by replacing the state 1578 * with a reset state. 1579 */ 1580 dev_err(sev->dev, 1581 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state."); 1582 rc = __sev_do_init_locked(&psp_ret); 1583 } 1584 1585 if (error) 1586 *error = psp_ret; 1587 1588 if (rc) { 1589 dev_err(sev->dev, "SEV: %s failed %#x, rc %d\n", 1590 sev_init_ex_buffer ? "INIT_EX" : "INIT", psp_ret, rc); 1591 return rc; 1592 } 1593 1594 sev->sev_plat_status.state = SEV_STATE_INIT; 1595 1596 /* Prepare for first SEV guest launch after INIT */ 1597 wbinvd_on_all_cpus(); 1598 rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, &dfflush_error); 1599 if (rc) { 1600 dev_err(sev->dev, "SEV: DF_FLUSH failed %#x, rc %d\n", 1601 dfflush_error, rc); 1602 return rc; 1603 } 1604 1605 dev_dbg(sev->dev, "SEV firmware initialized\n"); 1606 1607 dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major, 1608 sev->api_minor, sev->build); 1609 1610 return 0; 1611 } 1612 1613 static int _sev_platform_init_locked(struct sev_platform_init_args *args) 1614 { 1615 struct sev_device *sev; 1616 int rc; 1617 1618 if (!psp_master || !psp_master->sev_data) 1619 return -ENODEV; 1620 1621 /* 1622 * Skip SNP/SEV initialization under a kdump kernel as SEV/SNP 1623 * may already be initialized in the previous kernel. Since no 1624 * SNP/SEV guests are run under a kdump kernel, there is no 1625 * need to initialize SNP or SEV during kdump boot. 1626 */ 1627 if (is_kdump_kernel()) 1628 return 0; 1629 1630 sev = psp_master->sev_data; 1631 1632 if (sev->sev_plat_status.state == SEV_STATE_INIT) 1633 return 0; 1634 1635 rc = __sev_snp_init_locked(&args->error, args->max_snp_asid); 1636 if (rc && rc != -ENODEV) 1637 return rc; 1638 1639 /* Defer legacy SEV/SEV-ES support if allowed by caller/module. */ 1640 if (args->probe && !psp_init_on_probe) 1641 return 0; 1642 1643 return __sev_platform_init_locked(&args->error); 1644 } 1645 1646 int sev_platform_init(struct sev_platform_init_args *args) 1647 { 1648 int rc; 1649 1650 mutex_lock(&sev_cmd_mutex); 1651 rc = _sev_platform_init_locked(args); 1652 mutex_unlock(&sev_cmd_mutex); 1653 1654 return rc; 1655 } 1656 EXPORT_SYMBOL_GPL(sev_platform_init); 1657 1658 static int __sev_platform_shutdown_locked(int *error) 1659 { 1660 struct psp_device *psp = psp_master; 1661 struct sev_device *sev; 1662 int ret; 1663 1664 if (!psp || !psp->sev_data) 1665 return 0; 1666 1667 sev = psp->sev_data; 1668 1669 if (sev->sev_plat_status.state == SEV_STATE_UNINIT) 1670 return 0; 1671 1672 ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error); 1673 if (ret) { 1674 dev_err(sev->dev, "SEV: failed to SHUTDOWN error %#x, rc %d\n", 1675 *error, ret); 1676 return ret; 1677 } 1678 1679 sev->sev_plat_status.state = SEV_STATE_UNINIT; 1680 dev_dbg(sev->dev, "SEV firmware shutdown\n"); 1681 1682 return ret; 1683 } 1684 1685 static int sev_get_platform_state(int *state, int *error) 1686 { 1687 struct sev_user_data_status data; 1688 int rc; 1689 1690 rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error); 1691 if (rc) 1692 return rc; 1693 1694 *state = data.state; 1695 return rc; 1696 } 1697 1698 static int sev_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required) 1699 { 1700 struct sev_platform_init_args init_args = {0}; 1701 int rc; 1702 1703 rc = _sev_platform_init_locked(&init_args); 1704 if (rc) { 1705 argp->error = SEV_RET_INVALID_PLATFORM_STATE; 1706 return rc; 1707 } 1708 1709 *shutdown_required = true; 1710 1711 return 0; 1712 } 1713 1714 static int snp_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required) 1715 { 1716 int error, rc; 1717 1718 rc = __sev_snp_init_locked(&error, 0); 1719 if (rc) { 1720 argp->error = SEV_RET_INVALID_PLATFORM_STATE; 1721 return rc; 1722 } 1723 1724 *shutdown_required = true; 1725 1726 return 0; 1727 } 1728 1729 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable) 1730 { 1731 int state, rc; 1732 1733 if (!writable) 1734 return -EPERM; 1735 1736 /* 1737 * The SEV spec requires that FACTORY_RESET must be issued in 1738 * UNINIT state. Before we go further lets check if any guest is 1739 * active. 1740 * 1741 * If FW is in WORKING state then deny the request otherwise issue 1742 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET. 1743 * 1744 */ 1745 rc = sev_get_platform_state(&state, &argp->error); 1746 if (rc) 1747 return rc; 1748 1749 if (state == SEV_STATE_WORKING) 1750 return -EBUSY; 1751 1752 if (state == SEV_STATE_INIT) { 1753 rc = __sev_platform_shutdown_locked(&argp->error); 1754 if (rc) 1755 return rc; 1756 } 1757 1758 return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error); 1759 } 1760 1761 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp) 1762 { 1763 struct sev_user_data_status data; 1764 int ret; 1765 1766 memset(&data, 0, sizeof(data)); 1767 1768 ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error); 1769 if (ret) 1770 return ret; 1771 1772 if (copy_to_user((void __user *)argp->data, &data, sizeof(data))) 1773 ret = -EFAULT; 1774 1775 return ret; 1776 } 1777 1778 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable) 1779 { 1780 struct sev_device *sev = psp_master->sev_data; 1781 bool shutdown_required = false; 1782 int rc; 1783 1784 if (!writable) 1785 return -EPERM; 1786 1787 if (sev->sev_plat_status.state == SEV_STATE_UNINIT) { 1788 rc = sev_move_to_init_state(argp, &shutdown_required); 1789 if (rc) 1790 return rc; 1791 } 1792 1793 rc = __sev_do_cmd_locked(cmd, NULL, &argp->error); 1794 1795 if (shutdown_required) 1796 __sev_firmware_shutdown(sev, false); 1797 1798 return rc; 1799 } 1800 1801 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable) 1802 { 1803 struct sev_device *sev = psp_master->sev_data; 1804 struct sev_user_data_pek_csr input; 1805 bool shutdown_required = false; 1806 struct sev_data_pek_csr data; 1807 void __user *input_address; 1808 void *blob = NULL; 1809 int ret; 1810 1811 if (!writable) 1812 return -EPERM; 1813 1814 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1815 return -EFAULT; 1816 1817 memset(&data, 0, sizeof(data)); 1818 1819 /* userspace wants to query CSR length */ 1820 if (!input.address || !input.length) 1821 goto cmd; 1822 1823 /* allocate a physically contiguous buffer to store the CSR blob */ 1824 input_address = (void __user *)input.address; 1825 if (input.length > SEV_FW_BLOB_MAX_SIZE) 1826 return -EFAULT; 1827 1828 blob = kzalloc(input.length, GFP_KERNEL); 1829 if (!blob) 1830 return -ENOMEM; 1831 1832 data.address = __psp_pa(blob); 1833 data.len = input.length; 1834 1835 cmd: 1836 if (sev->sev_plat_status.state == SEV_STATE_UNINIT) { 1837 ret = sev_move_to_init_state(argp, &shutdown_required); 1838 if (ret) 1839 goto e_free_blob; 1840 } 1841 1842 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error); 1843 1844 /* If we query the CSR length, FW responded with expected data. */ 1845 input.length = data.len; 1846 1847 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1848 ret = -EFAULT; 1849 goto e_free_blob; 1850 } 1851 1852 if (blob) { 1853 if (copy_to_user(input_address, blob, input.length)) 1854 ret = -EFAULT; 1855 } 1856 1857 e_free_blob: 1858 if (shutdown_required) 1859 __sev_firmware_shutdown(sev, false); 1860 1861 kfree(blob); 1862 return ret; 1863 } 1864 1865 void *psp_copy_user_blob(u64 uaddr, u32 len) 1866 { 1867 if (!uaddr || !len) 1868 return ERR_PTR(-EINVAL); 1869 1870 /* verify that blob length does not exceed our limit */ 1871 if (len > SEV_FW_BLOB_MAX_SIZE) 1872 return ERR_PTR(-EINVAL); 1873 1874 return memdup_user((void __user *)uaddr, len); 1875 } 1876 EXPORT_SYMBOL_GPL(psp_copy_user_blob); 1877 1878 static int sev_get_api_version(void) 1879 { 1880 struct sev_device *sev = psp_master->sev_data; 1881 struct sev_user_data_status status; 1882 int error = 0, ret; 1883 1884 /* 1885 * Cache SNP platform status and SNP feature information 1886 * if SNP is available. 1887 */ 1888 if (cc_platform_has(CC_ATTR_HOST_SEV_SNP)) { 1889 ret = snp_get_platform_data(sev, &error); 1890 if (ret) 1891 return 1; 1892 } 1893 1894 ret = sev_platform_status(&status, &error); 1895 if (ret) { 1896 dev_err(sev->dev, 1897 "SEV: failed to get status. Error: %#x\n", error); 1898 return 1; 1899 } 1900 1901 /* Cache SEV platform status */ 1902 sev->sev_plat_status = status; 1903 1904 sev->api_major = status.api_major; 1905 sev->api_minor = status.api_minor; 1906 sev->build = status.build; 1907 1908 return 0; 1909 } 1910 1911 static int sev_get_firmware(struct device *dev, 1912 const struct firmware **firmware) 1913 { 1914 char fw_name_specific[SEV_FW_NAME_SIZE]; 1915 char fw_name_subset[SEV_FW_NAME_SIZE]; 1916 1917 snprintf(fw_name_specific, sizeof(fw_name_specific), 1918 "amd/amd_sev_fam%.2xh_model%.2xh.sbin", 1919 boot_cpu_data.x86, boot_cpu_data.x86_model); 1920 1921 snprintf(fw_name_subset, sizeof(fw_name_subset), 1922 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin", 1923 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4); 1924 1925 /* Check for SEV FW for a particular model. 1926 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h 1927 * 1928 * or 1929 * 1930 * Check for SEV FW common to a subset of models. 1931 * Ex. amd_sev_fam17h_model0xh.sbin for 1932 * Family 17h Model 00h -- Family 17h Model 0Fh 1933 * 1934 * or 1935 * 1936 * Fall-back to using generic name: sev.fw 1937 */ 1938 if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) || 1939 (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) || 1940 (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0)) 1941 return 0; 1942 1943 return -ENOENT; 1944 } 1945 1946 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */ 1947 static int sev_update_firmware(struct device *dev) 1948 { 1949 struct sev_data_download_firmware *data; 1950 const struct firmware *firmware; 1951 int ret, error, order; 1952 struct page *p; 1953 u64 data_size; 1954 1955 if (!sev_version_greater_or_equal(0, 15)) { 1956 dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n"); 1957 return -1; 1958 } 1959 1960 if (sev_get_firmware(dev, &firmware) == -ENOENT) { 1961 dev_dbg(dev, "No SEV firmware file present\n"); 1962 return -1; 1963 } 1964 1965 /* 1966 * SEV FW expects the physical address given to it to be 32 1967 * byte aligned. Memory allocated has structure placed at the 1968 * beginning followed by the firmware being passed to the SEV 1969 * FW. Allocate enough memory for data structure + alignment 1970 * padding + SEV FW. 1971 */ 1972 data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32); 1973 1974 order = get_order(firmware->size + data_size); 1975 p = alloc_pages(GFP_KERNEL, order); 1976 if (!p) { 1977 ret = -1; 1978 goto fw_err; 1979 } 1980 1981 /* 1982 * Copy firmware data to a kernel allocated contiguous 1983 * memory region. 1984 */ 1985 data = page_address(p); 1986 memcpy(page_address(p) + data_size, firmware->data, firmware->size); 1987 1988 data->address = __psp_pa(page_address(p) + data_size); 1989 data->len = firmware->size; 1990 1991 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1992 1993 /* 1994 * A quirk for fixing the committed TCB version, when upgrading from 1995 * earlier firmware version than 1.50. 1996 */ 1997 if (!ret && !sev_version_greater_or_equal(1, 50)) 1998 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1999 2000 if (ret) 2001 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error); 2002 2003 __free_pages(p, order); 2004 2005 fw_err: 2006 release_firmware(firmware); 2007 2008 return ret; 2009 } 2010 2011 static int __sev_snp_shutdown_locked(int *error, bool panic) 2012 { 2013 struct psp_device *psp = psp_master; 2014 struct sev_device *sev; 2015 struct sev_data_snp_shutdown_ex data; 2016 int ret; 2017 2018 if (!psp || !psp->sev_data) 2019 return 0; 2020 2021 sev = psp->sev_data; 2022 2023 if (!sev->snp_initialized) 2024 return 0; 2025 2026 memset(&data, 0, sizeof(data)); 2027 data.len = sizeof(data); 2028 data.iommu_snp_shutdown = 1; 2029 2030 /* 2031 * If invoked during panic handling, local interrupts are disabled 2032 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called. 2033 * In that case, a wbinvd() is done on remote CPUs via the NMI 2034 * callback, so only a local wbinvd() is needed here. 2035 */ 2036 if (!panic) 2037 wbinvd_on_all_cpus(); 2038 else 2039 wbinvd(); 2040 2041 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error); 2042 /* SHUTDOWN may require DF_FLUSH */ 2043 if (*error == SEV_RET_DFFLUSH_REQUIRED) { 2044 int dfflush_error = SEV_RET_NO_FW_CALL; 2045 2046 ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, &dfflush_error); 2047 if (ret) { 2048 dev_err(sev->dev, "SEV-SNP DF_FLUSH failed, ret = %d, error = %#x\n", 2049 ret, dfflush_error); 2050 return ret; 2051 } 2052 /* reissue the shutdown command */ 2053 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, 2054 error); 2055 } 2056 if (ret) { 2057 dev_err(sev->dev, "SEV-SNP firmware shutdown failed, rc %d, error %#x\n", 2058 ret, *error); 2059 return ret; 2060 } 2061 2062 /* 2063 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP 2064 * enforcement by the IOMMU and also transitions all pages 2065 * associated with the IOMMU to the Reclaim state. 2066 * Firmware was transitioning the IOMMU pages to Hypervisor state 2067 * before version 1.53. But, accounting for the number of assigned 2068 * 4kB pages in a 2M page was done incorrectly by not transitioning 2069 * to the Reclaim state. This resulted in RMP #PF when later accessing 2070 * the 2M page containing those pages during kexec boot. Hence, the 2071 * firmware now transitions these pages to Reclaim state and hypervisor 2072 * needs to transition these pages to shared state. SNP Firmware 2073 * version 1.53 and above are needed for kexec boot. 2074 */ 2075 ret = amd_iommu_snp_disable(); 2076 if (ret) { 2077 dev_err(sev->dev, "SNP IOMMU shutdown failed\n"); 2078 return ret; 2079 } 2080 2081 snp_leak_hv_fixed_pages(); 2082 sev->snp_initialized = false; 2083 dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n"); 2084 2085 /* 2086 * __sev_snp_shutdown_locked() deadlocks when it tries to unregister 2087 * itself during panic as the panic notifier is called with RCU read 2088 * lock held and notifier unregistration does RCU synchronization. 2089 */ 2090 if (!panic) 2091 atomic_notifier_chain_unregister(&panic_notifier_list, 2092 &snp_panic_notifier); 2093 2094 /* Reset TMR size back to default */ 2095 sev_es_tmr_size = SEV_TMR_SIZE; 2096 2097 return ret; 2098 } 2099 2100 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable) 2101 { 2102 struct sev_device *sev = psp_master->sev_data; 2103 struct sev_user_data_pek_cert_import input; 2104 struct sev_data_pek_cert_import data; 2105 bool shutdown_required = false; 2106 void *pek_blob, *oca_blob; 2107 int ret; 2108 2109 if (!writable) 2110 return -EPERM; 2111 2112 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 2113 return -EFAULT; 2114 2115 /* copy PEK certificate blobs from userspace */ 2116 pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len); 2117 if (IS_ERR(pek_blob)) 2118 return PTR_ERR(pek_blob); 2119 2120 data.reserved = 0; 2121 data.pek_cert_address = __psp_pa(pek_blob); 2122 data.pek_cert_len = input.pek_cert_len; 2123 2124 /* copy PEK certificate blobs from userspace */ 2125 oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len); 2126 if (IS_ERR(oca_blob)) { 2127 ret = PTR_ERR(oca_blob); 2128 goto e_free_pek; 2129 } 2130 2131 data.oca_cert_address = __psp_pa(oca_blob); 2132 data.oca_cert_len = input.oca_cert_len; 2133 2134 /* If platform is not in INIT state then transition it to INIT */ 2135 if (sev->sev_plat_status.state != SEV_STATE_INIT) { 2136 ret = sev_move_to_init_state(argp, &shutdown_required); 2137 if (ret) 2138 goto e_free_oca; 2139 } 2140 2141 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error); 2142 2143 e_free_oca: 2144 if (shutdown_required) 2145 __sev_firmware_shutdown(sev, false); 2146 2147 kfree(oca_blob); 2148 e_free_pek: 2149 kfree(pek_blob); 2150 return ret; 2151 } 2152 2153 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp) 2154 { 2155 struct sev_user_data_get_id2 input; 2156 struct sev_data_get_id data; 2157 void __user *input_address; 2158 void *id_blob = NULL; 2159 int ret; 2160 2161 /* SEV GET_ID is available from SEV API v0.16 and up */ 2162 if (!sev_version_greater_or_equal(0, 16)) 2163 return -ENOTSUPP; 2164 2165 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 2166 return -EFAULT; 2167 2168 input_address = (void __user *)input.address; 2169 2170 if (input.address && input.length) { 2171 /* 2172 * The length of the ID shouldn't be assumed by software since 2173 * it may change in the future. The allocation size is limited 2174 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator. 2175 * If the allocation fails, simply return ENOMEM rather than 2176 * warning in the kernel log. 2177 */ 2178 id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN); 2179 if (!id_blob) 2180 return -ENOMEM; 2181 2182 data.address = __psp_pa(id_blob); 2183 data.len = input.length; 2184 } else { 2185 data.address = 0; 2186 data.len = 0; 2187 } 2188 2189 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error); 2190 2191 /* 2192 * Firmware will return the length of the ID value (either the minimum 2193 * required length or the actual length written), return it to the user. 2194 */ 2195 input.length = data.len; 2196 2197 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 2198 ret = -EFAULT; 2199 goto e_free; 2200 } 2201 2202 if (id_blob) { 2203 if (copy_to_user(input_address, id_blob, data.len)) { 2204 ret = -EFAULT; 2205 goto e_free; 2206 } 2207 } 2208 2209 e_free: 2210 kfree(id_blob); 2211 2212 return ret; 2213 } 2214 2215 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp) 2216 { 2217 struct sev_data_get_id *data; 2218 u64 data_size, user_size; 2219 void *id_blob, *mem; 2220 int ret; 2221 2222 /* SEV GET_ID available from SEV API v0.16 and up */ 2223 if (!sev_version_greater_or_equal(0, 16)) 2224 return -ENOTSUPP; 2225 2226 /* SEV FW expects the buffer it fills with the ID to be 2227 * 8-byte aligned. Memory allocated should be enough to 2228 * hold data structure + alignment padding + memory 2229 * where SEV FW writes the ID. 2230 */ 2231 data_size = ALIGN(sizeof(struct sev_data_get_id), 8); 2232 user_size = sizeof(struct sev_user_data_get_id); 2233 2234 mem = kzalloc(data_size + user_size, GFP_KERNEL); 2235 if (!mem) 2236 return -ENOMEM; 2237 2238 data = mem; 2239 id_blob = mem + data_size; 2240 2241 data->address = __psp_pa(id_blob); 2242 data->len = user_size; 2243 2244 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); 2245 if (!ret) { 2246 if (copy_to_user((void __user *)argp->data, id_blob, data->len)) 2247 ret = -EFAULT; 2248 } 2249 2250 kfree(mem); 2251 2252 return ret; 2253 } 2254 2255 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable) 2256 { 2257 struct sev_device *sev = psp_master->sev_data; 2258 struct sev_user_data_pdh_cert_export input; 2259 void *pdh_blob = NULL, *cert_blob = NULL; 2260 struct sev_data_pdh_cert_export data; 2261 void __user *input_cert_chain_address; 2262 void __user *input_pdh_cert_address; 2263 bool shutdown_required = false; 2264 int ret; 2265 2266 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 2267 return -EFAULT; 2268 2269 memset(&data, 0, sizeof(data)); 2270 2271 input_pdh_cert_address = (void __user *)input.pdh_cert_address; 2272 input_cert_chain_address = (void __user *)input.cert_chain_address; 2273 2274 /* Userspace wants to query the certificate length. */ 2275 if (!input.pdh_cert_address || 2276 !input.pdh_cert_len || 2277 !input.cert_chain_address) 2278 goto cmd; 2279 2280 /* Allocate a physically contiguous buffer to store the PDH blob. */ 2281 if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE) 2282 return -EFAULT; 2283 2284 /* Allocate a physically contiguous buffer to store the cert chain blob. */ 2285 if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE) 2286 return -EFAULT; 2287 2288 pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL); 2289 if (!pdh_blob) 2290 return -ENOMEM; 2291 2292 data.pdh_cert_address = __psp_pa(pdh_blob); 2293 data.pdh_cert_len = input.pdh_cert_len; 2294 2295 cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL); 2296 if (!cert_blob) { 2297 ret = -ENOMEM; 2298 goto e_free_pdh; 2299 } 2300 2301 data.cert_chain_address = __psp_pa(cert_blob); 2302 data.cert_chain_len = input.cert_chain_len; 2303 2304 cmd: 2305 /* If platform is not in INIT state then transition it to INIT. */ 2306 if (sev->sev_plat_status.state != SEV_STATE_INIT) { 2307 if (!writable) { 2308 ret = -EPERM; 2309 goto e_free_cert; 2310 } 2311 ret = sev_move_to_init_state(argp, &shutdown_required); 2312 if (ret) 2313 goto e_free_cert; 2314 } 2315 2316 ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error); 2317 2318 /* If we query the length, FW responded with expected data. */ 2319 input.cert_chain_len = data.cert_chain_len; 2320 input.pdh_cert_len = data.pdh_cert_len; 2321 2322 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 2323 ret = -EFAULT; 2324 goto e_free_cert; 2325 } 2326 2327 if (pdh_blob) { 2328 if (copy_to_user(input_pdh_cert_address, 2329 pdh_blob, input.pdh_cert_len)) { 2330 ret = -EFAULT; 2331 goto e_free_cert; 2332 } 2333 } 2334 2335 if (cert_blob) { 2336 if (copy_to_user(input_cert_chain_address, 2337 cert_blob, input.cert_chain_len)) 2338 ret = -EFAULT; 2339 } 2340 2341 e_free_cert: 2342 if (shutdown_required) 2343 __sev_firmware_shutdown(sev, false); 2344 2345 kfree(cert_blob); 2346 e_free_pdh: 2347 kfree(pdh_blob); 2348 return ret; 2349 } 2350 2351 static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp) 2352 { 2353 struct sev_device *sev = psp_master->sev_data; 2354 bool shutdown_required = false; 2355 struct sev_data_snp_addr buf; 2356 struct page *status_page; 2357 int ret, error; 2358 void *data; 2359 2360 if (!argp->data) 2361 return -EINVAL; 2362 2363 status_page = alloc_page(GFP_KERNEL_ACCOUNT); 2364 if (!status_page) 2365 return -ENOMEM; 2366 2367 data = page_address(status_page); 2368 2369 if (!sev->snp_initialized) { 2370 ret = snp_move_to_init_state(argp, &shutdown_required); 2371 if (ret) 2372 goto cleanup; 2373 } 2374 2375 /* 2376 * Firmware expects status page to be in firmware-owned state, otherwise 2377 * it will report firmware error code INVALID_PAGE_STATE (0x1A). 2378 */ 2379 if (rmp_mark_pages_firmware(__pa(data), 1, true)) { 2380 ret = -EFAULT; 2381 goto cleanup; 2382 } 2383 2384 buf.address = __psp_pa(data); 2385 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error); 2386 2387 /* 2388 * Status page will be transitioned to Reclaim state upon success, or 2389 * left in Firmware state in failure. Use snp_reclaim_pages() to 2390 * transition either case back to Hypervisor-owned state. 2391 */ 2392 if (snp_reclaim_pages(__pa(data), 1, true)) 2393 return -EFAULT; 2394 2395 if (ret) 2396 goto cleanup; 2397 2398 if (copy_to_user((void __user *)argp->data, data, 2399 sizeof(struct sev_user_data_snp_status))) 2400 ret = -EFAULT; 2401 2402 cleanup: 2403 if (shutdown_required) 2404 __sev_snp_shutdown_locked(&error, false); 2405 2406 __free_pages(status_page, 0); 2407 return ret; 2408 } 2409 2410 static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp) 2411 { 2412 struct sev_device *sev = psp_master->sev_data; 2413 struct sev_data_snp_commit buf; 2414 bool shutdown_required = false; 2415 int ret, error; 2416 2417 if (!sev->snp_initialized) { 2418 ret = snp_move_to_init_state(argp, &shutdown_required); 2419 if (ret) 2420 return ret; 2421 } 2422 2423 buf.len = sizeof(buf); 2424 2425 ret = __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error); 2426 2427 if (shutdown_required) 2428 __sev_snp_shutdown_locked(&error, false); 2429 2430 return ret; 2431 } 2432 2433 static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable) 2434 { 2435 struct sev_device *sev = psp_master->sev_data; 2436 struct sev_user_data_snp_config config; 2437 bool shutdown_required = false; 2438 int ret, error; 2439 2440 if (!argp->data) 2441 return -EINVAL; 2442 2443 if (!writable) 2444 return -EPERM; 2445 2446 if (copy_from_user(&config, (void __user *)argp->data, sizeof(config))) 2447 return -EFAULT; 2448 2449 if (!sev->snp_initialized) { 2450 ret = snp_move_to_init_state(argp, &shutdown_required); 2451 if (ret) 2452 return ret; 2453 } 2454 2455 ret = __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error); 2456 2457 if (shutdown_required) 2458 __sev_snp_shutdown_locked(&error, false); 2459 2460 return ret; 2461 } 2462 2463 static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable) 2464 { 2465 struct sev_device *sev = psp_master->sev_data; 2466 struct sev_user_data_snp_vlek_load input; 2467 bool shutdown_required = false; 2468 int ret, error; 2469 void *blob; 2470 2471 if (!argp->data) 2472 return -EINVAL; 2473 2474 if (!writable) 2475 return -EPERM; 2476 2477 if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input))) 2478 return -EFAULT; 2479 2480 if (input.len != sizeof(input) || input.vlek_wrapped_version != 0) 2481 return -EINVAL; 2482 2483 blob = psp_copy_user_blob(input.vlek_wrapped_address, 2484 sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick)); 2485 if (IS_ERR(blob)) 2486 return PTR_ERR(blob); 2487 2488 input.vlek_wrapped_address = __psp_pa(blob); 2489 2490 if (!sev->snp_initialized) { 2491 ret = snp_move_to_init_state(argp, &shutdown_required); 2492 if (ret) 2493 goto cleanup; 2494 } 2495 2496 ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error); 2497 2498 if (shutdown_required) 2499 __sev_snp_shutdown_locked(&error, false); 2500 2501 cleanup: 2502 kfree(blob); 2503 2504 return ret; 2505 } 2506 2507 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) 2508 { 2509 void __user *argp = (void __user *)arg; 2510 struct sev_issue_cmd input; 2511 int ret = -EFAULT; 2512 bool writable = file->f_mode & FMODE_WRITE; 2513 2514 if (!psp_master || !psp_master->sev_data) 2515 return -ENODEV; 2516 2517 if (ioctl != SEV_ISSUE_CMD) 2518 return -EINVAL; 2519 2520 if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd))) 2521 return -EFAULT; 2522 2523 if (input.cmd > SEV_MAX) 2524 return -EINVAL; 2525 2526 mutex_lock(&sev_cmd_mutex); 2527 2528 switch (input.cmd) { 2529 2530 case SEV_FACTORY_RESET: 2531 ret = sev_ioctl_do_reset(&input, writable); 2532 break; 2533 case SEV_PLATFORM_STATUS: 2534 ret = sev_ioctl_do_platform_status(&input); 2535 break; 2536 case SEV_PEK_GEN: 2537 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable); 2538 break; 2539 case SEV_PDH_GEN: 2540 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable); 2541 break; 2542 case SEV_PEK_CSR: 2543 ret = sev_ioctl_do_pek_csr(&input, writable); 2544 break; 2545 case SEV_PEK_CERT_IMPORT: 2546 ret = sev_ioctl_do_pek_import(&input, writable); 2547 break; 2548 case SEV_PDH_CERT_EXPORT: 2549 ret = sev_ioctl_do_pdh_export(&input, writable); 2550 break; 2551 case SEV_GET_ID: 2552 pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n"); 2553 ret = sev_ioctl_do_get_id(&input); 2554 break; 2555 case SEV_GET_ID2: 2556 ret = sev_ioctl_do_get_id2(&input); 2557 break; 2558 case SNP_PLATFORM_STATUS: 2559 ret = sev_ioctl_do_snp_platform_status(&input); 2560 break; 2561 case SNP_COMMIT: 2562 ret = sev_ioctl_do_snp_commit(&input); 2563 break; 2564 case SNP_SET_CONFIG: 2565 ret = sev_ioctl_do_snp_set_config(&input, writable); 2566 break; 2567 case SNP_VLEK_LOAD: 2568 ret = sev_ioctl_do_snp_vlek_load(&input, writable); 2569 break; 2570 default: 2571 ret = -EINVAL; 2572 goto out; 2573 } 2574 2575 if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd))) 2576 ret = -EFAULT; 2577 out: 2578 mutex_unlock(&sev_cmd_mutex); 2579 2580 return ret; 2581 } 2582 2583 static const struct file_operations sev_fops = { 2584 .owner = THIS_MODULE, 2585 .unlocked_ioctl = sev_ioctl, 2586 }; 2587 2588 int sev_platform_status(struct sev_user_data_status *data, int *error) 2589 { 2590 return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error); 2591 } 2592 EXPORT_SYMBOL_GPL(sev_platform_status); 2593 2594 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error) 2595 { 2596 return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error); 2597 } 2598 EXPORT_SYMBOL_GPL(sev_guest_deactivate); 2599 2600 int sev_guest_activate(struct sev_data_activate *data, int *error) 2601 { 2602 return sev_do_cmd(SEV_CMD_ACTIVATE, data, error); 2603 } 2604 EXPORT_SYMBOL_GPL(sev_guest_activate); 2605 2606 int sev_guest_decommission(struct sev_data_decommission *data, int *error) 2607 { 2608 return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error); 2609 } 2610 EXPORT_SYMBOL_GPL(sev_guest_decommission); 2611 2612 int sev_guest_df_flush(int *error) 2613 { 2614 return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error); 2615 } 2616 EXPORT_SYMBOL_GPL(sev_guest_df_flush); 2617 2618 static void sev_exit(struct kref *ref) 2619 { 2620 misc_deregister(&misc_dev->misc); 2621 kfree(misc_dev); 2622 misc_dev = NULL; 2623 } 2624 2625 static int sev_misc_init(struct sev_device *sev) 2626 { 2627 struct device *dev = sev->dev; 2628 int ret; 2629 2630 /* 2631 * SEV feature support can be detected on multiple devices but the SEV 2632 * FW commands must be issued on the master. During probe, we do not 2633 * know the master hence we create /dev/sev on the first device probe. 2634 * sev_do_cmd() finds the right master device to which to issue the 2635 * command to the firmware. 2636 */ 2637 if (!misc_dev) { 2638 struct miscdevice *misc; 2639 2640 misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL); 2641 if (!misc_dev) 2642 return -ENOMEM; 2643 2644 misc = &misc_dev->misc; 2645 misc->minor = MISC_DYNAMIC_MINOR; 2646 misc->name = DEVICE_NAME; 2647 misc->fops = &sev_fops; 2648 2649 ret = misc_register(misc); 2650 if (ret) 2651 return ret; 2652 2653 kref_init(&misc_dev->refcount); 2654 } else { 2655 kref_get(&misc_dev->refcount); 2656 } 2657 2658 init_waitqueue_head(&sev->int_queue); 2659 sev->misc = misc_dev; 2660 dev_dbg(dev, "registered SEV device\n"); 2661 2662 return 0; 2663 } 2664 2665 int sev_dev_init(struct psp_device *psp) 2666 { 2667 struct device *dev = psp->dev; 2668 struct sev_device *sev; 2669 int ret = -ENOMEM; 2670 2671 if (!boot_cpu_has(X86_FEATURE_SEV)) { 2672 dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n"); 2673 return 0; 2674 } 2675 2676 sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL); 2677 if (!sev) 2678 goto e_err; 2679 2680 sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1); 2681 if (!sev->cmd_buf) 2682 goto e_sev; 2683 2684 sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE; 2685 2686 psp->sev_data = sev; 2687 2688 sev->dev = dev; 2689 sev->psp = psp; 2690 2691 sev->io_regs = psp->io_regs; 2692 2693 sev->vdata = (struct sev_vdata *)psp->vdata->sev; 2694 if (!sev->vdata) { 2695 ret = -ENODEV; 2696 dev_err(dev, "sev: missing driver data\n"); 2697 goto e_buf; 2698 } 2699 2700 psp_set_sev_irq_handler(psp, sev_irq_handler, sev); 2701 2702 ret = sev_misc_init(sev); 2703 if (ret) 2704 goto e_irq; 2705 2706 dev_notice(dev, "sev enabled\n"); 2707 2708 return 0; 2709 2710 e_irq: 2711 psp_clear_sev_irq_handler(psp); 2712 e_buf: 2713 devm_free_pages(dev, (unsigned long)sev->cmd_buf); 2714 e_sev: 2715 devm_kfree(dev, sev); 2716 e_err: 2717 psp->sev_data = NULL; 2718 2719 dev_notice(dev, "sev initialization failed\n"); 2720 2721 return ret; 2722 } 2723 2724 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic) 2725 { 2726 int error; 2727 2728 __sev_platform_shutdown_locked(&error); 2729 2730 if (sev_es_tmr) { 2731 /* 2732 * The TMR area was encrypted, flush it from the cache. 2733 * 2734 * If invoked during panic handling, local interrupts are 2735 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus() 2736 * can't be used. In that case, wbinvd() is done on remote CPUs 2737 * via the NMI callback, and done for this CPU later during 2738 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped. 2739 */ 2740 if (!panic) 2741 wbinvd_on_all_cpus(); 2742 2743 __snp_free_firmware_pages(virt_to_page(sev_es_tmr), 2744 get_order(sev_es_tmr_size), 2745 true); 2746 sev_es_tmr = NULL; 2747 } 2748 2749 if (sev_init_ex_buffer) { 2750 __snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer), 2751 get_order(NV_LENGTH), 2752 true); 2753 sev_init_ex_buffer = NULL; 2754 } 2755 2756 if (snp_range_list) { 2757 kfree(snp_range_list); 2758 snp_range_list = NULL; 2759 } 2760 2761 __sev_snp_shutdown_locked(&error, panic); 2762 } 2763 2764 static void sev_firmware_shutdown(struct sev_device *sev) 2765 { 2766 mutex_lock(&sev_cmd_mutex); 2767 __sev_firmware_shutdown(sev, false); 2768 mutex_unlock(&sev_cmd_mutex); 2769 } 2770 2771 void sev_platform_shutdown(void) 2772 { 2773 if (!psp_master || !psp_master->sev_data) 2774 return; 2775 2776 sev_firmware_shutdown(psp_master->sev_data); 2777 } 2778 EXPORT_SYMBOL_GPL(sev_platform_shutdown); 2779 2780 void sev_dev_destroy(struct psp_device *psp) 2781 { 2782 struct sev_device *sev = psp->sev_data; 2783 2784 if (!sev) 2785 return; 2786 2787 sev_firmware_shutdown(sev); 2788 2789 if (sev->misc) 2790 kref_put(&misc_dev->refcount, sev_exit); 2791 2792 psp_clear_sev_irq_handler(psp); 2793 } 2794 2795 static int snp_shutdown_on_panic(struct notifier_block *nb, 2796 unsigned long reason, void *arg) 2797 { 2798 struct sev_device *sev = psp_master->sev_data; 2799 2800 /* 2801 * If sev_cmd_mutex is already acquired, then it's likely 2802 * another PSP command is in flight and issuing a shutdown 2803 * would fail in unexpected ways. Rather than create even 2804 * more confusion during a panic, just bail out here. 2805 */ 2806 if (mutex_is_locked(&sev_cmd_mutex)) 2807 return NOTIFY_DONE; 2808 2809 __sev_firmware_shutdown(sev, true); 2810 2811 return NOTIFY_DONE; 2812 } 2813 2814 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd, 2815 void *data, int *error) 2816 { 2817 if (!filep || filep->f_op != &sev_fops) 2818 return -EBADF; 2819 2820 return sev_do_cmd(cmd, data, error); 2821 } 2822 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user); 2823 2824 void sev_pci_init(void) 2825 { 2826 struct sev_device *sev = psp_master->sev_data; 2827 u8 api_major, api_minor, build; 2828 2829 if (!sev) 2830 return; 2831 2832 psp_timeout = psp_probe_timeout; 2833 2834 if (sev_get_api_version()) 2835 goto err; 2836 2837 api_major = sev->api_major; 2838 api_minor = sev->api_minor; 2839 build = sev->build; 2840 2841 if (sev_update_firmware(sev->dev) == 0) 2842 sev_get_api_version(); 2843 2844 if (api_major != sev->api_major || api_minor != sev->api_minor || 2845 build != sev->build) 2846 dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n", 2847 api_major, api_minor, build, 2848 sev->api_major, sev->api_minor, sev->build); 2849 2850 return; 2851 2852 err: 2853 sev_dev_destroy(psp_master); 2854 2855 psp_master->sev_data = NULL; 2856 } 2857 2858 void sev_pci_exit(void) 2859 { 2860 struct sev_device *sev = psp_master->sev_data; 2861 2862 if (!sev) 2863 return; 2864 2865 sev_firmware_shutdown(sev); 2866 } 2867