xref: /linux/drivers/crypto/ccp/sev-dev.c (revision 55a42f78ffd386e01a5404419f8c5ded7db70a21)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Secure Encrypted Virtualization (SEV) interface
4  *
5  * Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6  *
7  * Author: Brijesh Singh <brijesh.singh@amd.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/kthread.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/spinlock_types.h>
18 #include <linux/types.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/hw_random.h>
22 #include <linux/ccp.h>
23 #include <linux/firmware.h>
24 #include <linux/panic_notifier.h>
25 #include <linux/gfp.h>
26 #include <linux/cpufeature.h>
27 #include <linux/fs.h>
28 #include <linux/fs_struct.h>
29 #include <linux/psp.h>
30 #include <linux/amd-iommu.h>
31 #include <linux/crash_dump.h>
32 
33 #include <asm/smp.h>
34 #include <asm/cacheflush.h>
35 #include <asm/e820/types.h>
36 #include <asm/sev.h>
37 #include <asm/msr.h>
38 
39 #include "psp-dev.h"
40 #include "sev-dev.h"
41 
42 #define DEVICE_NAME		"sev"
43 #define SEV_FW_FILE		"amd/sev.fw"
44 #define SEV_FW_NAME_SIZE	64
45 
46 /* Minimum firmware version required for the SEV-SNP support */
47 #define SNP_MIN_API_MAJOR	1
48 #define SNP_MIN_API_MINOR	51
49 
50 /*
51  * Maximum number of firmware-writable buffers that might be specified
52  * in the parameters of a legacy SEV command buffer.
53  */
54 #define CMD_BUF_FW_WRITABLE_MAX 2
55 
56 /* Leave room in the descriptor array for an end-of-list indicator. */
57 #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1)
58 
59 static DEFINE_MUTEX(sev_cmd_mutex);
60 static struct sev_misc_dev *misc_dev;
61 
62 static int psp_cmd_timeout = 100;
63 module_param(psp_cmd_timeout, int, 0644);
64 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands");
65 
66 static int psp_probe_timeout = 5;
67 module_param(psp_probe_timeout, int, 0644);
68 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe");
69 
70 static char *init_ex_path;
71 module_param(init_ex_path, charp, 0444);
72 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX");
73 
74 static bool psp_init_on_probe = true;
75 module_param(psp_init_on_probe, bool, 0444);
76 MODULE_PARM_DESC(psp_init_on_probe, "  if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it");
77 
78 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */
79 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */
80 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */
81 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */
82 
83 static bool psp_dead;
84 static int psp_timeout;
85 
86 enum snp_hv_fixed_pages_state {
87 	ALLOCATED,
88 	HV_FIXED,
89 };
90 
91 struct snp_hv_fixed_pages_entry {
92 	struct list_head list;
93 	struct page *page;
94 	unsigned int order;
95 	bool free;
96 	enum snp_hv_fixed_pages_state page_state;
97 };
98 
99 static LIST_HEAD(snp_hv_fixed_pages);
100 
101 /* Trusted Memory Region (TMR):
102  *   The TMR is a 1MB area that must be 1MB aligned.  Use the page allocator
103  *   to allocate the memory, which will return aligned memory for the specified
104  *   allocation order.
105  *
106  * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized.
107  */
108 #define SEV_TMR_SIZE		(1024 * 1024)
109 #define SNP_TMR_SIZE		(2 * 1024 * 1024)
110 
111 static void *sev_es_tmr;
112 static size_t sev_es_tmr_size = SEV_TMR_SIZE;
113 
114 /* INIT_EX NV Storage:
115  *   The NV Storage is a 32Kb area and must be 4Kb page aligned.  Use the page
116  *   allocator to allocate the memory, which will return aligned memory for the
117  *   specified allocation order.
118  */
119 #define NV_LENGTH (32 * 1024)
120 static void *sev_init_ex_buffer;
121 
122 /*
123  * SEV_DATA_RANGE_LIST:
124  *   Array containing range of pages that firmware transitions to HV-fixed
125  *   page state.
126  */
127 static struct sev_data_range_list *snp_range_list;
128 
129 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic);
130 
131 static int snp_shutdown_on_panic(struct notifier_block *nb,
132 				 unsigned long reason, void *arg);
133 
134 static struct notifier_block snp_panic_notifier = {
135 	.notifier_call = snp_shutdown_on_panic,
136 };
137 
138 static inline bool sev_version_greater_or_equal(u8 maj, u8 min)
139 {
140 	struct sev_device *sev = psp_master->sev_data;
141 
142 	if (sev->api_major > maj)
143 		return true;
144 
145 	if (sev->api_major == maj && sev->api_minor >= min)
146 		return true;
147 
148 	return false;
149 }
150 
151 static void sev_irq_handler(int irq, void *data, unsigned int status)
152 {
153 	struct sev_device *sev = data;
154 	int reg;
155 
156 	/* Check if it is command completion: */
157 	if (!(status & SEV_CMD_COMPLETE))
158 		return;
159 
160 	/* Check if it is SEV command completion: */
161 	reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
162 	if (FIELD_GET(PSP_CMDRESP_RESP, reg)) {
163 		sev->int_rcvd = 1;
164 		wake_up(&sev->int_queue);
165 	}
166 }
167 
168 static int sev_wait_cmd_ioc(struct sev_device *sev,
169 			    unsigned int *reg, unsigned int timeout)
170 {
171 	int ret;
172 
173 	/*
174 	 * If invoked during panic handling, local interrupts are disabled,
175 	 * so the PSP command completion interrupt can't be used. Poll for
176 	 * PSP command completion instead.
177 	 */
178 	if (irqs_disabled()) {
179 		unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10;
180 
181 		/* Poll for SEV command completion: */
182 		while (timeout_usecs--) {
183 			*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
184 			if (*reg & PSP_CMDRESP_RESP)
185 				return 0;
186 
187 			udelay(10);
188 		}
189 		return -ETIMEDOUT;
190 	}
191 
192 	ret = wait_event_timeout(sev->int_queue,
193 			sev->int_rcvd, timeout * HZ);
194 	if (!ret)
195 		return -ETIMEDOUT;
196 
197 	*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
198 
199 	return 0;
200 }
201 
202 static int sev_cmd_buffer_len(int cmd)
203 {
204 	switch (cmd) {
205 	case SEV_CMD_INIT:			return sizeof(struct sev_data_init);
206 	case SEV_CMD_INIT_EX:                   return sizeof(struct sev_data_init_ex);
207 	case SEV_CMD_SNP_SHUTDOWN_EX:		return sizeof(struct sev_data_snp_shutdown_ex);
208 	case SEV_CMD_SNP_INIT_EX:		return sizeof(struct sev_data_snp_init_ex);
209 	case SEV_CMD_PLATFORM_STATUS:		return sizeof(struct sev_user_data_status);
210 	case SEV_CMD_PEK_CSR:			return sizeof(struct sev_data_pek_csr);
211 	case SEV_CMD_PEK_CERT_IMPORT:		return sizeof(struct sev_data_pek_cert_import);
212 	case SEV_CMD_PDH_CERT_EXPORT:		return sizeof(struct sev_data_pdh_cert_export);
213 	case SEV_CMD_LAUNCH_START:		return sizeof(struct sev_data_launch_start);
214 	case SEV_CMD_LAUNCH_UPDATE_DATA:	return sizeof(struct sev_data_launch_update_data);
215 	case SEV_CMD_LAUNCH_UPDATE_VMSA:	return sizeof(struct sev_data_launch_update_vmsa);
216 	case SEV_CMD_LAUNCH_FINISH:		return sizeof(struct sev_data_launch_finish);
217 	case SEV_CMD_LAUNCH_MEASURE:		return sizeof(struct sev_data_launch_measure);
218 	case SEV_CMD_ACTIVATE:			return sizeof(struct sev_data_activate);
219 	case SEV_CMD_DEACTIVATE:		return sizeof(struct sev_data_deactivate);
220 	case SEV_CMD_DECOMMISSION:		return sizeof(struct sev_data_decommission);
221 	case SEV_CMD_GUEST_STATUS:		return sizeof(struct sev_data_guest_status);
222 	case SEV_CMD_DBG_DECRYPT:		return sizeof(struct sev_data_dbg);
223 	case SEV_CMD_DBG_ENCRYPT:		return sizeof(struct sev_data_dbg);
224 	case SEV_CMD_SEND_START:		return sizeof(struct sev_data_send_start);
225 	case SEV_CMD_SEND_UPDATE_DATA:		return sizeof(struct sev_data_send_update_data);
226 	case SEV_CMD_SEND_UPDATE_VMSA:		return sizeof(struct sev_data_send_update_vmsa);
227 	case SEV_CMD_SEND_FINISH:		return sizeof(struct sev_data_send_finish);
228 	case SEV_CMD_RECEIVE_START:		return sizeof(struct sev_data_receive_start);
229 	case SEV_CMD_RECEIVE_FINISH:		return sizeof(struct sev_data_receive_finish);
230 	case SEV_CMD_RECEIVE_UPDATE_DATA:	return sizeof(struct sev_data_receive_update_data);
231 	case SEV_CMD_RECEIVE_UPDATE_VMSA:	return sizeof(struct sev_data_receive_update_vmsa);
232 	case SEV_CMD_LAUNCH_UPDATE_SECRET:	return sizeof(struct sev_data_launch_secret);
233 	case SEV_CMD_DOWNLOAD_FIRMWARE:		return sizeof(struct sev_data_download_firmware);
234 	case SEV_CMD_GET_ID:			return sizeof(struct sev_data_get_id);
235 	case SEV_CMD_ATTESTATION_REPORT:	return sizeof(struct sev_data_attestation_report);
236 	case SEV_CMD_SEND_CANCEL:		return sizeof(struct sev_data_send_cancel);
237 	case SEV_CMD_SNP_GCTX_CREATE:		return sizeof(struct sev_data_snp_addr);
238 	case SEV_CMD_SNP_LAUNCH_START:		return sizeof(struct sev_data_snp_launch_start);
239 	case SEV_CMD_SNP_LAUNCH_UPDATE:		return sizeof(struct sev_data_snp_launch_update);
240 	case SEV_CMD_SNP_ACTIVATE:		return sizeof(struct sev_data_snp_activate);
241 	case SEV_CMD_SNP_DECOMMISSION:		return sizeof(struct sev_data_snp_addr);
242 	case SEV_CMD_SNP_PAGE_RECLAIM:		return sizeof(struct sev_data_snp_page_reclaim);
243 	case SEV_CMD_SNP_GUEST_STATUS:		return sizeof(struct sev_data_snp_guest_status);
244 	case SEV_CMD_SNP_LAUNCH_FINISH:		return sizeof(struct sev_data_snp_launch_finish);
245 	case SEV_CMD_SNP_DBG_DECRYPT:		return sizeof(struct sev_data_snp_dbg);
246 	case SEV_CMD_SNP_DBG_ENCRYPT:		return sizeof(struct sev_data_snp_dbg);
247 	case SEV_CMD_SNP_PAGE_UNSMASH:		return sizeof(struct sev_data_snp_page_unsmash);
248 	case SEV_CMD_SNP_PLATFORM_STATUS:	return sizeof(struct sev_data_snp_addr);
249 	case SEV_CMD_SNP_GUEST_REQUEST:		return sizeof(struct sev_data_snp_guest_request);
250 	case SEV_CMD_SNP_CONFIG:		return sizeof(struct sev_user_data_snp_config);
251 	case SEV_CMD_SNP_COMMIT:		return sizeof(struct sev_data_snp_commit);
252 	default:				return 0;
253 	}
254 
255 	return 0;
256 }
257 
258 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode)
259 {
260 	struct file *fp;
261 	struct path root;
262 	struct cred *cred;
263 	const struct cred *old_cred;
264 
265 	task_lock(&init_task);
266 	get_fs_root(init_task.fs, &root);
267 	task_unlock(&init_task);
268 
269 	cred = prepare_creds();
270 	if (!cred)
271 		return ERR_PTR(-ENOMEM);
272 	cred->fsuid = GLOBAL_ROOT_UID;
273 	old_cred = override_creds(cred);
274 
275 	fp = file_open_root(&root, filename, flags, mode);
276 	path_put(&root);
277 
278 	put_cred(revert_creds(old_cred));
279 
280 	return fp;
281 }
282 
283 static int sev_read_init_ex_file(void)
284 {
285 	struct sev_device *sev = psp_master->sev_data;
286 	struct file *fp;
287 	ssize_t nread;
288 
289 	lockdep_assert_held(&sev_cmd_mutex);
290 
291 	if (!sev_init_ex_buffer)
292 		return -EOPNOTSUPP;
293 
294 	fp = open_file_as_root(init_ex_path, O_RDONLY, 0);
295 	if (IS_ERR(fp)) {
296 		int ret = PTR_ERR(fp);
297 
298 		if (ret == -ENOENT) {
299 			dev_info(sev->dev,
300 				"SEV: %s does not exist and will be created later.\n",
301 				init_ex_path);
302 			ret = 0;
303 		} else {
304 			dev_err(sev->dev,
305 				"SEV: could not open %s for read, error %d\n",
306 				init_ex_path, ret);
307 		}
308 		return ret;
309 	}
310 
311 	nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL);
312 	if (nread != NV_LENGTH) {
313 		dev_info(sev->dev,
314 			"SEV: could not read %u bytes to non volatile memory area, ret %ld\n",
315 			NV_LENGTH, nread);
316 	}
317 
318 	dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread);
319 	filp_close(fp, NULL);
320 
321 	return 0;
322 }
323 
324 static int sev_write_init_ex_file(void)
325 {
326 	struct sev_device *sev = psp_master->sev_data;
327 	struct file *fp;
328 	loff_t offset = 0;
329 	ssize_t nwrite;
330 
331 	lockdep_assert_held(&sev_cmd_mutex);
332 
333 	if (!sev_init_ex_buffer)
334 		return 0;
335 
336 	fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600);
337 	if (IS_ERR(fp)) {
338 		int ret = PTR_ERR(fp);
339 
340 		dev_err(sev->dev,
341 			"SEV: could not open file for write, error %d\n",
342 			ret);
343 		return ret;
344 	}
345 
346 	nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset);
347 	vfs_fsync(fp, 0);
348 	filp_close(fp, NULL);
349 
350 	if (nwrite != NV_LENGTH) {
351 		dev_err(sev->dev,
352 			"SEV: failed to write %u bytes to non volatile memory area, ret %ld\n",
353 			NV_LENGTH, nwrite);
354 		return -EIO;
355 	}
356 
357 	dev_dbg(sev->dev, "SEV: write successful to NV file\n");
358 
359 	return 0;
360 }
361 
362 static int sev_write_init_ex_file_if_required(int cmd_id)
363 {
364 	lockdep_assert_held(&sev_cmd_mutex);
365 
366 	if (!sev_init_ex_buffer)
367 		return 0;
368 
369 	/*
370 	 * Only a few platform commands modify the SPI/NV area, but none of the
371 	 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN,
372 	 * PEK_CERT_IMPORT, and PDH_GEN do.
373 	 */
374 	switch (cmd_id) {
375 	case SEV_CMD_FACTORY_RESET:
376 	case SEV_CMD_INIT_EX:
377 	case SEV_CMD_PDH_GEN:
378 	case SEV_CMD_PEK_CERT_IMPORT:
379 	case SEV_CMD_PEK_GEN:
380 		break;
381 	default:
382 		return 0;
383 	}
384 
385 	return sev_write_init_ex_file();
386 }
387 
388 /*
389  * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked()
390  * needs snp_reclaim_pages(), so a forward declaration is needed.
391  */
392 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret);
393 
394 static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked)
395 {
396 	int ret, err, i;
397 
398 	paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE));
399 
400 	for (i = 0; i < npages; i++, paddr += PAGE_SIZE) {
401 		struct sev_data_snp_page_reclaim data = {0};
402 
403 		data.paddr = paddr;
404 
405 		if (locked)
406 			ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
407 		else
408 			ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
409 
410 		if (ret)
411 			goto cleanup;
412 
413 		ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K);
414 		if (ret)
415 			goto cleanup;
416 	}
417 
418 	return 0;
419 
420 cleanup:
421 	/*
422 	 * If there was a failure reclaiming the page then it is no longer safe
423 	 * to release it back to the system; leak it instead.
424 	 */
425 	snp_leak_pages(__phys_to_pfn(paddr), npages - i);
426 	return ret;
427 }
428 
429 static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked)
430 {
431 	unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT;
432 	int rc, i;
433 
434 	for (i = 0; i < npages; i++, pfn++) {
435 		rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true);
436 		if (rc)
437 			goto cleanup;
438 	}
439 
440 	return 0;
441 
442 cleanup:
443 	/*
444 	 * Try unrolling the firmware state changes by
445 	 * reclaiming the pages which were already changed to the
446 	 * firmware state.
447 	 */
448 	snp_reclaim_pages(paddr, i, locked);
449 
450 	return rc;
451 }
452 
453 static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order, bool locked)
454 {
455 	unsigned long npages = 1ul << order, paddr;
456 	struct sev_device *sev;
457 	struct page *page;
458 
459 	if (!psp_master || !psp_master->sev_data)
460 		return NULL;
461 
462 	page = alloc_pages(gfp_mask, order);
463 	if (!page)
464 		return NULL;
465 
466 	/* If SEV-SNP is initialized then add the page in RMP table. */
467 	sev = psp_master->sev_data;
468 	if (!sev->snp_initialized)
469 		return page;
470 
471 	paddr = __pa((unsigned long)page_address(page));
472 	if (rmp_mark_pages_firmware(paddr, npages, locked))
473 		return NULL;
474 
475 	return page;
476 }
477 
478 void *snp_alloc_firmware_page(gfp_t gfp_mask)
479 {
480 	struct page *page;
481 
482 	page = __snp_alloc_firmware_pages(gfp_mask, 0, false);
483 
484 	return page ? page_address(page) : NULL;
485 }
486 EXPORT_SYMBOL_GPL(snp_alloc_firmware_page);
487 
488 static void __snp_free_firmware_pages(struct page *page, int order, bool locked)
489 {
490 	struct sev_device *sev = psp_master->sev_data;
491 	unsigned long paddr, npages = 1ul << order;
492 
493 	if (!page)
494 		return;
495 
496 	paddr = __pa((unsigned long)page_address(page));
497 	if (sev->snp_initialized &&
498 	    snp_reclaim_pages(paddr, npages, locked))
499 		return;
500 
501 	__free_pages(page, order);
502 }
503 
504 void snp_free_firmware_page(void *addr)
505 {
506 	if (!addr)
507 		return;
508 
509 	__snp_free_firmware_pages(virt_to_page(addr), 0, false);
510 }
511 EXPORT_SYMBOL_GPL(snp_free_firmware_page);
512 
513 static void *sev_fw_alloc(unsigned long len)
514 {
515 	struct page *page;
516 
517 	page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len), true);
518 	if (!page)
519 		return NULL;
520 
521 	return page_address(page);
522 }
523 
524 /**
525  * struct cmd_buf_desc - descriptors for managing legacy SEV command address
526  * parameters corresponding to buffers that may be written to by firmware.
527  *
528  * @paddr_ptr:  pointer to the address parameter in the command buffer which may
529  *              need to be saved/restored depending on whether a bounce buffer
530  *              is used. In the case of a bounce buffer, the command buffer
531  *              needs to be updated with the address of the new bounce buffer
532  *              snp_map_cmd_buf_desc() has allocated specifically for it. Must
533  *              be NULL if this descriptor is only an end-of-list indicator.
534  *
535  * @paddr_orig: storage for the original address parameter, which can be used to
536  *              restore the original value in @paddr_ptr in cases where it is
537  *              replaced with the address of a bounce buffer.
538  *
539  * @len: length of buffer located at the address originally stored at @paddr_ptr
540  *
541  * @guest_owned: true if the address corresponds to guest-owned pages, in which
542  *               case bounce buffers are not needed.
543  */
544 struct cmd_buf_desc {
545 	u64 *paddr_ptr;
546 	u64 paddr_orig;
547 	u32 len;
548 	bool guest_owned;
549 };
550 
551 /*
552  * If a legacy SEV command parameter is a memory address, those pages in
553  * turn need to be transitioned to/from firmware-owned before/after
554  * executing the firmware command.
555  *
556  * Additionally, in cases where those pages are not guest-owned, a bounce
557  * buffer is needed in place of the original memory address parameter.
558  *
559  * A set of descriptors are used to keep track of this handling, and
560  * initialized here based on the specific commands being executed.
561  */
562 static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf,
563 					   struct cmd_buf_desc *desc_list)
564 {
565 	switch (cmd) {
566 	case SEV_CMD_PDH_CERT_EXPORT: {
567 		struct sev_data_pdh_cert_export *data = cmd_buf;
568 
569 		desc_list[0].paddr_ptr = &data->pdh_cert_address;
570 		desc_list[0].len = data->pdh_cert_len;
571 		desc_list[1].paddr_ptr = &data->cert_chain_address;
572 		desc_list[1].len = data->cert_chain_len;
573 		break;
574 	}
575 	case SEV_CMD_GET_ID: {
576 		struct sev_data_get_id *data = cmd_buf;
577 
578 		desc_list[0].paddr_ptr = &data->address;
579 		desc_list[0].len = data->len;
580 		break;
581 	}
582 	case SEV_CMD_PEK_CSR: {
583 		struct sev_data_pek_csr *data = cmd_buf;
584 
585 		desc_list[0].paddr_ptr = &data->address;
586 		desc_list[0].len = data->len;
587 		break;
588 	}
589 	case SEV_CMD_LAUNCH_UPDATE_DATA: {
590 		struct sev_data_launch_update_data *data = cmd_buf;
591 
592 		desc_list[0].paddr_ptr = &data->address;
593 		desc_list[0].len = data->len;
594 		desc_list[0].guest_owned = true;
595 		break;
596 	}
597 	case SEV_CMD_LAUNCH_UPDATE_VMSA: {
598 		struct sev_data_launch_update_vmsa *data = cmd_buf;
599 
600 		desc_list[0].paddr_ptr = &data->address;
601 		desc_list[0].len = data->len;
602 		desc_list[0].guest_owned = true;
603 		break;
604 	}
605 	case SEV_CMD_LAUNCH_MEASURE: {
606 		struct sev_data_launch_measure *data = cmd_buf;
607 
608 		desc_list[0].paddr_ptr = &data->address;
609 		desc_list[0].len = data->len;
610 		break;
611 	}
612 	case SEV_CMD_LAUNCH_UPDATE_SECRET: {
613 		struct sev_data_launch_secret *data = cmd_buf;
614 
615 		desc_list[0].paddr_ptr = &data->guest_address;
616 		desc_list[0].len = data->guest_len;
617 		desc_list[0].guest_owned = true;
618 		break;
619 	}
620 	case SEV_CMD_DBG_DECRYPT: {
621 		struct sev_data_dbg *data = cmd_buf;
622 
623 		desc_list[0].paddr_ptr = &data->dst_addr;
624 		desc_list[0].len = data->len;
625 		desc_list[0].guest_owned = true;
626 		break;
627 	}
628 	case SEV_CMD_DBG_ENCRYPT: {
629 		struct sev_data_dbg *data = cmd_buf;
630 
631 		desc_list[0].paddr_ptr = &data->dst_addr;
632 		desc_list[0].len = data->len;
633 		desc_list[0].guest_owned = true;
634 		break;
635 	}
636 	case SEV_CMD_ATTESTATION_REPORT: {
637 		struct sev_data_attestation_report *data = cmd_buf;
638 
639 		desc_list[0].paddr_ptr = &data->address;
640 		desc_list[0].len = data->len;
641 		break;
642 	}
643 	case SEV_CMD_SEND_START: {
644 		struct sev_data_send_start *data = cmd_buf;
645 
646 		desc_list[0].paddr_ptr = &data->session_address;
647 		desc_list[0].len = data->session_len;
648 		break;
649 	}
650 	case SEV_CMD_SEND_UPDATE_DATA: {
651 		struct sev_data_send_update_data *data = cmd_buf;
652 
653 		desc_list[0].paddr_ptr = &data->hdr_address;
654 		desc_list[0].len = data->hdr_len;
655 		desc_list[1].paddr_ptr = &data->trans_address;
656 		desc_list[1].len = data->trans_len;
657 		break;
658 	}
659 	case SEV_CMD_SEND_UPDATE_VMSA: {
660 		struct sev_data_send_update_vmsa *data = cmd_buf;
661 
662 		desc_list[0].paddr_ptr = &data->hdr_address;
663 		desc_list[0].len = data->hdr_len;
664 		desc_list[1].paddr_ptr = &data->trans_address;
665 		desc_list[1].len = data->trans_len;
666 		break;
667 	}
668 	case SEV_CMD_RECEIVE_UPDATE_DATA: {
669 		struct sev_data_receive_update_data *data = cmd_buf;
670 
671 		desc_list[0].paddr_ptr = &data->guest_address;
672 		desc_list[0].len = data->guest_len;
673 		desc_list[0].guest_owned = true;
674 		break;
675 	}
676 	case SEV_CMD_RECEIVE_UPDATE_VMSA: {
677 		struct sev_data_receive_update_vmsa *data = cmd_buf;
678 
679 		desc_list[0].paddr_ptr = &data->guest_address;
680 		desc_list[0].len = data->guest_len;
681 		desc_list[0].guest_owned = true;
682 		break;
683 	}
684 	default:
685 		break;
686 	}
687 }
688 
689 static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc)
690 {
691 	unsigned int npages;
692 
693 	if (!desc->len)
694 		return 0;
695 
696 	/* Allocate a bounce buffer if this isn't a guest owned page. */
697 	if (!desc->guest_owned) {
698 		struct page *page;
699 
700 		page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len));
701 		if (!page) {
702 			pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n");
703 			return -ENOMEM;
704 		}
705 
706 		desc->paddr_orig = *desc->paddr_ptr;
707 		*desc->paddr_ptr = __psp_pa(page_to_virt(page));
708 	}
709 
710 	npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
711 
712 	/* Transition the buffer to firmware-owned. */
713 	if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) {
714 		pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n");
715 		return -EFAULT;
716 	}
717 
718 	return 0;
719 }
720 
721 static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc)
722 {
723 	unsigned int npages;
724 
725 	if (!desc->len)
726 		return 0;
727 
728 	npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
729 
730 	/* Transition the buffers back to hypervisor-owned. */
731 	if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) {
732 		pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n");
733 		return -EFAULT;
734 	}
735 
736 	/* Copy data from bounce buffer and then free it. */
737 	if (!desc->guest_owned) {
738 		void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr));
739 		void *dst_buf = __va(__sme_clr(desc->paddr_orig));
740 
741 		memcpy(dst_buf, bounce_buf, desc->len);
742 		__free_pages(virt_to_page(bounce_buf), get_order(desc->len));
743 
744 		/* Restore the original address in the command buffer. */
745 		*desc->paddr_ptr = desc->paddr_orig;
746 	}
747 
748 	return 0;
749 }
750 
751 static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
752 {
753 	int i;
754 
755 	snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list);
756 
757 	for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
758 		struct cmd_buf_desc *desc = &desc_list[i];
759 
760 		if (!desc->paddr_ptr)
761 			break;
762 
763 		if (snp_map_cmd_buf_desc(desc))
764 			goto err_unmap;
765 	}
766 
767 	return 0;
768 
769 err_unmap:
770 	for (i--; i >= 0; i--)
771 		snp_unmap_cmd_buf_desc(&desc_list[i]);
772 
773 	return -EFAULT;
774 }
775 
776 static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list)
777 {
778 	int i, ret = 0;
779 
780 	for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
781 		struct cmd_buf_desc *desc = &desc_list[i];
782 
783 		if (!desc->paddr_ptr)
784 			break;
785 
786 		if (snp_unmap_cmd_buf_desc(&desc_list[i]))
787 			ret = -EFAULT;
788 	}
789 
790 	return ret;
791 }
792 
793 static bool sev_cmd_buf_writable(int cmd)
794 {
795 	switch (cmd) {
796 	case SEV_CMD_PLATFORM_STATUS:
797 	case SEV_CMD_GUEST_STATUS:
798 	case SEV_CMD_LAUNCH_START:
799 	case SEV_CMD_RECEIVE_START:
800 	case SEV_CMD_LAUNCH_MEASURE:
801 	case SEV_CMD_SEND_START:
802 	case SEV_CMD_SEND_UPDATE_DATA:
803 	case SEV_CMD_SEND_UPDATE_VMSA:
804 	case SEV_CMD_PEK_CSR:
805 	case SEV_CMD_PDH_CERT_EXPORT:
806 	case SEV_CMD_GET_ID:
807 	case SEV_CMD_ATTESTATION_REPORT:
808 		return true;
809 	default:
810 		return false;
811 	}
812 }
813 
814 /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */
815 static bool snp_legacy_handling_needed(int cmd)
816 {
817 	struct sev_device *sev = psp_master->sev_data;
818 
819 	return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized;
820 }
821 
822 static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
823 {
824 	if (!snp_legacy_handling_needed(cmd))
825 		return 0;
826 
827 	if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list))
828 		return -EFAULT;
829 
830 	/*
831 	 * Before command execution, the command buffer needs to be put into
832 	 * the firmware-owned state.
833 	 */
834 	if (sev_cmd_buf_writable(cmd)) {
835 		if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true))
836 			return -EFAULT;
837 	}
838 
839 	return 0;
840 }
841 
842 static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf)
843 {
844 	if (!snp_legacy_handling_needed(cmd))
845 		return 0;
846 
847 	/*
848 	 * After command completion, the command buffer needs to be put back
849 	 * into the hypervisor-owned state.
850 	 */
851 	if (sev_cmd_buf_writable(cmd))
852 		if (snp_reclaim_pages(__pa(cmd_buf), 1, true))
853 			return -EFAULT;
854 
855 	return 0;
856 }
857 
858 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret)
859 {
860 	struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0};
861 	struct psp_device *psp = psp_master;
862 	struct sev_device *sev;
863 	unsigned int cmdbuff_hi, cmdbuff_lo;
864 	unsigned int phys_lsb, phys_msb;
865 	unsigned int reg, ret = 0;
866 	void *cmd_buf;
867 	int buf_len;
868 
869 	if (!psp || !psp->sev_data)
870 		return -ENODEV;
871 
872 	if (psp_dead)
873 		return -EBUSY;
874 
875 	sev = psp->sev_data;
876 
877 	buf_len = sev_cmd_buffer_len(cmd);
878 	if (WARN_ON_ONCE(!data != !buf_len))
879 		return -EINVAL;
880 
881 	/*
882 	 * Copy the incoming data to driver's scratch buffer as __pa() will not
883 	 * work for some memory, e.g. vmalloc'd addresses, and @data may not be
884 	 * physically contiguous.
885 	 */
886 	if (data) {
887 		/*
888 		 * Commands are generally issued one at a time and require the
889 		 * sev_cmd_mutex, but there could be recursive firmware requests
890 		 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while
891 		 * preparing buffers for another command. This is the only known
892 		 * case of nesting in the current code, so exactly one
893 		 * additional command buffer is available for that purpose.
894 		 */
895 		if (!sev->cmd_buf_active) {
896 			cmd_buf = sev->cmd_buf;
897 			sev->cmd_buf_active = true;
898 		} else if (!sev->cmd_buf_backup_active) {
899 			cmd_buf = sev->cmd_buf_backup;
900 			sev->cmd_buf_backup_active = true;
901 		} else {
902 			dev_err(sev->dev,
903 				"SEV: too many firmware commands in progress, no command buffers available.\n");
904 			return -EBUSY;
905 		}
906 
907 		memcpy(cmd_buf, data, buf_len);
908 
909 		/*
910 		 * The behavior of the SEV-legacy commands is altered when the
911 		 * SNP firmware is in the INIT state.
912 		 */
913 		ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list);
914 		if (ret) {
915 			dev_err(sev->dev,
916 				"SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n",
917 				cmd, ret);
918 			return ret;
919 		}
920 	} else {
921 		cmd_buf = sev->cmd_buf;
922 	}
923 
924 	/* Get the physical address of the command buffer */
925 	phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0;
926 	phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0;
927 
928 	dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n",
929 		cmd, phys_msb, phys_lsb, psp_timeout);
930 
931 	print_hex_dump_debug("(in):  ", DUMP_PREFIX_OFFSET, 16, 2, data,
932 			     buf_len, false);
933 
934 	iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
935 	iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
936 
937 	sev->int_rcvd = 0;
938 
939 	reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd);
940 
941 	/*
942 	 * If invoked during panic handling, local interrupts are disabled so
943 	 * the PSP command completion interrupt can't be used.
944 	 * sev_wait_cmd_ioc() already checks for interrupts disabled and
945 	 * polls for PSP command completion.  Ensure we do not request an
946 	 * interrupt from the PSP if irqs disabled.
947 	 */
948 	if (!irqs_disabled())
949 		reg |= SEV_CMDRESP_IOC;
950 
951 	iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg);
952 
953 	/* wait for command completion */
954 	ret = sev_wait_cmd_ioc(sev, &reg, psp_timeout);
955 	if (ret) {
956 		if (psp_ret)
957 			*psp_ret = 0;
958 
959 		dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd);
960 		psp_dead = true;
961 
962 		return ret;
963 	}
964 
965 	psp_timeout = psp_cmd_timeout;
966 
967 	if (psp_ret)
968 		*psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg);
969 
970 	if (FIELD_GET(PSP_CMDRESP_STS, reg)) {
971 		dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n",
972 			cmd, FIELD_GET(PSP_CMDRESP_STS, reg));
973 
974 		/*
975 		 * PSP firmware may report additional error information in the
976 		 * command buffer registers on error. Print contents of command
977 		 * buffer registers if they changed.
978 		 */
979 		cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
980 		cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
981 		if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) {
982 			dev_dbg(sev->dev, "Additional error information reported in cmdbuff:");
983 			dev_dbg(sev->dev, "  cmdbuff hi: %#010x\n", cmdbuff_hi);
984 			dev_dbg(sev->dev, "  cmdbuff lo: %#010x\n", cmdbuff_lo);
985 		}
986 		ret = -EIO;
987 	} else {
988 		ret = sev_write_init_ex_file_if_required(cmd);
989 	}
990 
991 	/*
992 	 * Copy potential output from the PSP back to data.  Do this even on
993 	 * failure in case the caller wants to glean something from the error.
994 	 */
995 	if (data) {
996 		int ret_reclaim;
997 		/*
998 		 * Restore the page state after the command completes.
999 		 */
1000 		ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf);
1001 		if (ret_reclaim) {
1002 			dev_err(sev->dev,
1003 				"SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n",
1004 				cmd, ret_reclaim);
1005 			return ret_reclaim;
1006 		}
1007 
1008 		memcpy(data, cmd_buf, buf_len);
1009 
1010 		if (sev->cmd_buf_backup_active)
1011 			sev->cmd_buf_backup_active = false;
1012 		else
1013 			sev->cmd_buf_active = false;
1014 
1015 		if (snp_unmap_cmd_buf_desc_list(desc_list))
1016 			return -EFAULT;
1017 	}
1018 
1019 	print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data,
1020 			     buf_len, false);
1021 
1022 	return ret;
1023 }
1024 
1025 int sev_do_cmd(int cmd, void *data, int *psp_ret)
1026 {
1027 	int rc;
1028 
1029 	mutex_lock(&sev_cmd_mutex);
1030 	rc = __sev_do_cmd_locked(cmd, data, psp_ret);
1031 	mutex_unlock(&sev_cmd_mutex);
1032 
1033 	return rc;
1034 }
1035 EXPORT_SYMBOL_GPL(sev_do_cmd);
1036 
1037 static int __sev_init_locked(int *error)
1038 {
1039 	struct sev_data_init data;
1040 
1041 	memset(&data, 0, sizeof(data));
1042 	if (sev_es_tmr) {
1043 		/*
1044 		 * Do not include the encryption mask on the physical
1045 		 * address of the TMR (firmware should clear it anyway).
1046 		 */
1047 		data.tmr_address = __pa(sev_es_tmr);
1048 
1049 		data.flags |= SEV_INIT_FLAGS_SEV_ES;
1050 		data.tmr_len = sev_es_tmr_size;
1051 	}
1052 
1053 	return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error);
1054 }
1055 
1056 static int __sev_init_ex_locked(int *error)
1057 {
1058 	struct sev_data_init_ex data;
1059 
1060 	memset(&data, 0, sizeof(data));
1061 	data.length = sizeof(data);
1062 	data.nv_address = __psp_pa(sev_init_ex_buffer);
1063 	data.nv_len = NV_LENGTH;
1064 
1065 	if (sev_es_tmr) {
1066 		/*
1067 		 * Do not include the encryption mask on the physical
1068 		 * address of the TMR (firmware should clear it anyway).
1069 		 */
1070 		data.tmr_address = __pa(sev_es_tmr);
1071 
1072 		data.flags |= SEV_INIT_FLAGS_SEV_ES;
1073 		data.tmr_len = sev_es_tmr_size;
1074 	}
1075 
1076 	return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error);
1077 }
1078 
1079 static inline int __sev_do_init_locked(int *psp_ret)
1080 {
1081 	if (sev_init_ex_buffer)
1082 		return __sev_init_ex_locked(psp_ret);
1083 	else
1084 		return __sev_init_locked(psp_ret);
1085 }
1086 
1087 static void snp_set_hsave_pa(void *arg)
1088 {
1089 	wrmsrq(MSR_VM_HSAVE_PA, 0);
1090 }
1091 
1092 /* Hypervisor Fixed pages API interface */
1093 static void snp_hv_fixed_pages_state_update(struct sev_device *sev,
1094 					    enum snp_hv_fixed_pages_state page_state)
1095 {
1096 	struct snp_hv_fixed_pages_entry *entry;
1097 
1098 	/* List is protected by sev_cmd_mutex */
1099 	lockdep_assert_held(&sev_cmd_mutex);
1100 
1101 	if (list_empty(&snp_hv_fixed_pages))
1102 		return;
1103 
1104 	list_for_each_entry(entry, &snp_hv_fixed_pages, list)
1105 		entry->page_state = page_state;
1106 }
1107 
1108 /*
1109  * Allocate HV_FIXED pages in 2MB aligned sizes to ensure the whole
1110  * 2MB pages are marked as HV_FIXED.
1111  */
1112 struct page *snp_alloc_hv_fixed_pages(unsigned int num_2mb_pages)
1113 {
1114 	struct psp_device *psp_master = psp_get_master_device();
1115 	struct snp_hv_fixed_pages_entry *entry;
1116 	struct sev_device *sev;
1117 	unsigned int order;
1118 	struct page *page;
1119 
1120 	if (!psp_master || !psp_master->sev_data)
1121 		return NULL;
1122 
1123 	sev = psp_master->sev_data;
1124 
1125 	order = get_order(PMD_SIZE * num_2mb_pages);
1126 
1127 	/*
1128 	 * SNP_INIT_EX is protected by sev_cmd_mutex, therefore this list
1129 	 * also needs to be protected using the same mutex.
1130 	 */
1131 	guard(mutex)(&sev_cmd_mutex);
1132 
1133 	/*
1134 	 * This API uses SNP_INIT_EX to transition allocated pages to HV_Fixed
1135 	 * page state, fail if SNP is already initialized.
1136 	 */
1137 	if (sev->snp_initialized)
1138 		return NULL;
1139 
1140 	/* Re-use freed pages that match the request */
1141 	list_for_each_entry(entry, &snp_hv_fixed_pages, list) {
1142 		/* Hypervisor fixed page allocator implements exact fit policy */
1143 		if (entry->order == order && entry->free) {
1144 			entry->free = false;
1145 			memset(page_address(entry->page), 0,
1146 			       (1 << entry->order) * PAGE_SIZE);
1147 			return entry->page;
1148 		}
1149 	}
1150 
1151 	page = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1152 	if (!page)
1153 		return NULL;
1154 
1155 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1156 	if (!entry) {
1157 		__free_pages(page, order);
1158 		return NULL;
1159 	}
1160 
1161 	entry->page = page;
1162 	entry->order = order;
1163 	list_add_tail(&entry->list, &snp_hv_fixed_pages);
1164 
1165 	return page;
1166 }
1167 
1168 void snp_free_hv_fixed_pages(struct page *page)
1169 {
1170 	struct psp_device *psp_master = psp_get_master_device();
1171 	struct snp_hv_fixed_pages_entry *entry, *nentry;
1172 
1173 	if (!psp_master || !psp_master->sev_data)
1174 		return;
1175 
1176 	/*
1177 	 * SNP_INIT_EX is protected by sev_cmd_mutex, therefore this list
1178 	 * also needs to be protected using the same mutex.
1179 	 */
1180 	guard(mutex)(&sev_cmd_mutex);
1181 
1182 	list_for_each_entry_safe(entry, nentry, &snp_hv_fixed_pages, list) {
1183 		if (entry->page != page)
1184 			continue;
1185 
1186 		/*
1187 		 * HV_FIXED page state cannot be changed until reboot
1188 		 * and they cannot be used by an SNP guest, so they cannot
1189 		 * be returned back to the page allocator.
1190 		 * Mark the pages as free internally to allow possible re-use.
1191 		 */
1192 		if (entry->page_state == HV_FIXED) {
1193 			entry->free = true;
1194 		} else {
1195 			__free_pages(page, entry->order);
1196 			list_del(&entry->list);
1197 			kfree(entry);
1198 		}
1199 		return;
1200 	}
1201 }
1202 
1203 static void snp_add_hv_fixed_pages(struct sev_device *sev, struct sev_data_range_list *range_list)
1204 {
1205 	struct snp_hv_fixed_pages_entry *entry;
1206 	struct sev_data_range *range;
1207 	int num_elements;
1208 
1209 	lockdep_assert_held(&sev_cmd_mutex);
1210 
1211 	if (list_empty(&snp_hv_fixed_pages))
1212 		return;
1213 
1214 	num_elements = list_count_nodes(&snp_hv_fixed_pages) +
1215 		       range_list->num_elements;
1216 
1217 	/*
1218 	 * Ensure the list of HV_FIXED pages that will be passed to firmware
1219 	 * do not exceed the page-sized argument buffer.
1220 	 */
1221 	if (num_elements * sizeof(*range) + sizeof(*range_list) > PAGE_SIZE) {
1222 		dev_warn(sev->dev, "Additional HV_Fixed pages cannot be accommodated, omitting\n");
1223 		return;
1224 	}
1225 
1226 	range = &range_list->ranges[range_list->num_elements];
1227 	list_for_each_entry(entry, &snp_hv_fixed_pages, list) {
1228 		range->base = page_to_pfn(entry->page) << PAGE_SHIFT;
1229 		range->page_count = 1 << entry->order;
1230 		range++;
1231 	}
1232 	range_list->num_elements = num_elements;
1233 }
1234 
1235 static void snp_leak_hv_fixed_pages(void)
1236 {
1237 	struct snp_hv_fixed_pages_entry *entry;
1238 
1239 	/* List is protected by sev_cmd_mutex */
1240 	lockdep_assert_held(&sev_cmd_mutex);
1241 
1242 	if (list_empty(&snp_hv_fixed_pages))
1243 		return;
1244 
1245 	list_for_each_entry(entry, &snp_hv_fixed_pages, list)
1246 		if (entry->page_state == HV_FIXED)
1247 			__snp_leak_pages(page_to_pfn(entry->page),
1248 					 1 << entry->order, false);
1249 }
1250 
1251 static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg)
1252 {
1253 	struct sev_data_range_list *range_list = arg;
1254 	struct sev_data_range *range = &range_list->ranges[range_list->num_elements];
1255 	size_t size;
1256 
1257 	/*
1258 	 * Ensure the list of HV_FIXED pages that will be passed to firmware
1259 	 * do not exceed the page-sized argument buffer.
1260 	 */
1261 	if ((range_list->num_elements * sizeof(struct sev_data_range) +
1262 	     sizeof(struct sev_data_range_list)) > PAGE_SIZE)
1263 		return -E2BIG;
1264 
1265 	switch (rs->desc) {
1266 	case E820_TYPE_RESERVED:
1267 	case E820_TYPE_PMEM:
1268 	case E820_TYPE_ACPI:
1269 		range->base = rs->start & PAGE_MASK;
1270 		size = PAGE_ALIGN((rs->end + 1) - rs->start);
1271 		range->page_count = size >> PAGE_SHIFT;
1272 		range_list->num_elements++;
1273 		break;
1274 	default:
1275 		break;
1276 	}
1277 
1278 	return 0;
1279 }
1280 
1281 static int __sev_snp_init_locked(int *error)
1282 {
1283 	struct psp_device *psp = psp_master;
1284 	struct sev_data_snp_init_ex data;
1285 	struct sev_device *sev;
1286 	void *arg = &data;
1287 	int cmd, rc = 0;
1288 
1289 	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
1290 		return -ENODEV;
1291 
1292 	sev = psp->sev_data;
1293 
1294 	if (sev->snp_initialized)
1295 		return 0;
1296 
1297 	if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) {
1298 		dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n",
1299 			SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR);
1300 		return -EOPNOTSUPP;
1301 	}
1302 
1303 	/* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */
1304 	on_each_cpu(snp_set_hsave_pa, NULL, 1);
1305 
1306 	/*
1307 	 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list
1308 	 * of system physical address ranges to convert into HV-fixed page
1309 	 * states during the RMP initialization.  For instance, the memory that
1310 	 * UEFI reserves should be included in the that list. This allows system
1311 	 * components that occasionally write to memory (e.g. logging to UEFI
1312 	 * reserved regions) to not fail due to RMP initialization and SNP
1313 	 * enablement.
1314 	 *
1315 	 */
1316 	if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) {
1317 		/*
1318 		 * Firmware checks that the pages containing the ranges enumerated
1319 		 * in the RANGES structure are either in the default page state or in the
1320 		 * firmware page state.
1321 		 */
1322 		snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL);
1323 		if (!snp_range_list) {
1324 			dev_err(sev->dev,
1325 				"SEV: SNP_INIT_EX range list memory allocation failed\n");
1326 			return -ENOMEM;
1327 		}
1328 
1329 		/*
1330 		 * Retrieve all reserved memory regions from the e820 memory map
1331 		 * to be setup as HV-fixed pages.
1332 		 */
1333 		rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0,
1334 					 snp_range_list, snp_filter_reserved_mem_regions);
1335 		if (rc) {
1336 			dev_err(sev->dev,
1337 				"SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc);
1338 			return rc;
1339 		}
1340 
1341 		/*
1342 		 * Add HV_Fixed pages from other PSP sub-devices, such as SFS to the
1343 		 * HV_Fixed page list.
1344 		 */
1345 		snp_add_hv_fixed_pages(sev, snp_range_list);
1346 
1347 		memset(&data, 0, sizeof(data));
1348 		data.init_rmp = 1;
1349 		data.list_paddr_en = 1;
1350 		data.list_paddr = __psp_pa(snp_range_list);
1351 		cmd = SEV_CMD_SNP_INIT_EX;
1352 	} else {
1353 		cmd = SEV_CMD_SNP_INIT;
1354 		arg = NULL;
1355 	}
1356 
1357 	/*
1358 	 * The following sequence must be issued before launching the first SNP
1359 	 * guest to ensure all dirty cache lines are flushed, including from
1360 	 * updates to the RMP table itself via the RMPUPDATE instruction:
1361 	 *
1362 	 * - WBINVD on all running CPUs
1363 	 * - SEV_CMD_SNP_INIT[_EX] firmware command
1364 	 * - WBINVD on all running CPUs
1365 	 * - SEV_CMD_SNP_DF_FLUSH firmware command
1366 	 */
1367 	wbinvd_on_all_cpus();
1368 
1369 	rc = __sev_do_cmd_locked(cmd, arg, error);
1370 	if (rc) {
1371 		dev_err(sev->dev, "SEV-SNP: %s failed rc %d, error %#x\n",
1372 			cmd == SEV_CMD_SNP_INIT_EX ? "SNP_INIT_EX" : "SNP_INIT",
1373 			rc, *error);
1374 		return rc;
1375 	}
1376 
1377 	/* Prepare for first SNP guest launch after INIT. */
1378 	wbinvd_on_all_cpus();
1379 	rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error);
1380 	if (rc) {
1381 		dev_err(sev->dev, "SEV-SNP: SNP_DF_FLUSH failed rc %d, error %#x\n",
1382 			rc, *error);
1383 		return rc;
1384 	}
1385 
1386 	snp_hv_fixed_pages_state_update(sev, HV_FIXED);
1387 	sev->snp_initialized = true;
1388 	dev_dbg(sev->dev, "SEV-SNP firmware initialized\n");
1389 
1390 	dev_info(sev->dev, "SEV-SNP API:%d.%d build:%d\n", sev->api_major,
1391 		 sev->api_minor, sev->build);
1392 
1393 	atomic_notifier_chain_register(&panic_notifier_list,
1394 				       &snp_panic_notifier);
1395 
1396 	sev_es_tmr_size = SNP_TMR_SIZE;
1397 
1398 	return 0;
1399 }
1400 
1401 static void __sev_platform_init_handle_tmr(struct sev_device *sev)
1402 {
1403 	if (sev_es_tmr)
1404 		return;
1405 
1406 	/* Obtain the TMR memory area for SEV-ES use */
1407 	sev_es_tmr = sev_fw_alloc(sev_es_tmr_size);
1408 	if (sev_es_tmr) {
1409 		/* Must flush the cache before giving it to the firmware */
1410 		if (!sev->snp_initialized)
1411 			clflush_cache_range(sev_es_tmr, sev_es_tmr_size);
1412 	} else {
1413 			dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n");
1414 	}
1415 }
1416 
1417 /*
1418  * If an init_ex_path is provided allocate a buffer for the file and
1419  * read in the contents. Additionally, if SNP is initialized, convert
1420  * the buffer pages to firmware pages.
1421  */
1422 static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev)
1423 {
1424 	struct page *page;
1425 	int rc;
1426 
1427 	if (!init_ex_path)
1428 		return 0;
1429 
1430 	if (sev_init_ex_buffer)
1431 		return 0;
1432 
1433 	page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH));
1434 	if (!page) {
1435 		dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n");
1436 		return -ENOMEM;
1437 	}
1438 
1439 	sev_init_ex_buffer = page_address(page);
1440 
1441 	rc = sev_read_init_ex_file();
1442 	if (rc)
1443 		return rc;
1444 
1445 	/* If SEV-SNP is initialized, transition to firmware page. */
1446 	if (sev->snp_initialized) {
1447 		unsigned long npages;
1448 
1449 		npages = 1UL << get_order(NV_LENGTH);
1450 		if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) {
1451 			dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n");
1452 			return -ENOMEM;
1453 		}
1454 	}
1455 
1456 	return 0;
1457 }
1458 
1459 static int __sev_platform_init_locked(int *error)
1460 {
1461 	int rc, psp_ret, dfflush_error;
1462 	struct sev_device *sev;
1463 
1464 	psp_ret = dfflush_error = SEV_RET_NO_FW_CALL;
1465 
1466 	if (!psp_master || !psp_master->sev_data)
1467 		return -ENODEV;
1468 
1469 	sev = psp_master->sev_data;
1470 
1471 	if (sev->state == SEV_STATE_INIT)
1472 		return 0;
1473 
1474 	__sev_platform_init_handle_tmr(sev);
1475 
1476 	rc = __sev_platform_init_handle_init_ex_path(sev);
1477 	if (rc)
1478 		return rc;
1479 
1480 	rc = __sev_do_init_locked(&psp_ret);
1481 	if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) {
1482 		/*
1483 		 * Initialization command returned an integrity check failure
1484 		 * status code, meaning that firmware load and validation of SEV
1485 		 * related persistent data has failed. Retrying the
1486 		 * initialization function should succeed by replacing the state
1487 		 * with a reset state.
1488 		 */
1489 		dev_err(sev->dev,
1490 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state.");
1491 		rc = __sev_do_init_locked(&psp_ret);
1492 	}
1493 
1494 	if (error)
1495 		*error = psp_ret;
1496 
1497 	if (rc) {
1498 		dev_err(sev->dev, "SEV: %s failed %#x, rc %d\n",
1499 			sev_init_ex_buffer ? "INIT_EX" : "INIT", psp_ret, rc);
1500 		return rc;
1501 	}
1502 
1503 	sev->state = SEV_STATE_INIT;
1504 
1505 	/* Prepare for first SEV guest launch after INIT */
1506 	wbinvd_on_all_cpus();
1507 	rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, &dfflush_error);
1508 	if (rc) {
1509 		dev_err(sev->dev, "SEV: DF_FLUSH failed %#x, rc %d\n",
1510 			dfflush_error, rc);
1511 		return rc;
1512 	}
1513 
1514 	dev_dbg(sev->dev, "SEV firmware initialized\n");
1515 
1516 	dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major,
1517 		 sev->api_minor, sev->build);
1518 
1519 	return 0;
1520 }
1521 
1522 static int _sev_platform_init_locked(struct sev_platform_init_args *args)
1523 {
1524 	struct sev_device *sev;
1525 	int rc;
1526 
1527 	if (!psp_master || !psp_master->sev_data)
1528 		return -ENODEV;
1529 
1530 	/*
1531 	 * Skip SNP/SEV initialization under a kdump kernel as SEV/SNP
1532 	 * may already be initialized in the previous kernel. Since no
1533 	 * SNP/SEV guests are run under a kdump kernel, there is no
1534 	 * need to initialize SNP or SEV during kdump boot.
1535 	 */
1536 	if (is_kdump_kernel())
1537 		return 0;
1538 
1539 	sev = psp_master->sev_data;
1540 
1541 	if (sev->state == SEV_STATE_INIT)
1542 		return 0;
1543 
1544 	rc = __sev_snp_init_locked(&args->error);
1545 	if (rc && rc != -ENODEV)
1546 		return rc;
1547 
1548 	/* Defer legacy SEV/SEV-ES support if allowed by caller/module. */
1549 	if (args->probe && !psp_init_on_probe)
1550 		return 0;
1551 
1552 	return __sev_platform_init_locked(&args->error);
1553 }
1554 
1555 int sev_platform_init(struct sev_platform_init_args *args)
1556 {
1557 	int rc;
1558 
1559 	mutex_lock(&sev_cmd_mutex);
1560 	rc = _sev_platform_init_locked(args);
1561 	mutex_unlock(&sev_cmd_mutex);
1562 
1563 	return rc;
1564 }
1565 EXPORT_SYMBOL_GPL(sev_platform_init);
1566 
1567 static int __sev_platform_shutdown_locked(int *error)
1568 {
1569 	struct psp_device *psp = psp_master;
1570 	struct sev_device *sev;
1571 	int ret;
1572 
1573 	if (!psp || !psp->sev_data)
1574 		return 0;
1575 
1576 	sev = psp->sev_data;
1577 
1578 	if (sev->state == SEV_STATE_UNINIT)
1579 		return 0;
1580 
1581 	ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error);
1582 	if (ret) {
1583 		dev_err(sev->dev, "SEV: failed to SHUTDOWN error %#x, rc %d\n",
1584 			*error, ret);
1585 		return ret;
1586 	}
1587 
1588 	sev->state = SEV_STATE_UNINIT;
1589 	dev_dbg(sev->dev, "SEV firmware shutdown\n");
1590 
1591 	return ret;
1592 }
1593 
1594 static int sev_get_platform_state(int *state, int *error)
1595 {
1596 	struct sev_user_data_status data;
1597 	int rc;
1598 
1599 	rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error);
1600 	if (rc)
1601 		return rc;
1602 
1603 	*state = data.state;
1604 	return rc;
1605 }
1606 
1607 static int sev_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required)
1608 {
1609 	struct sev_platform_init_args init_args = {0};
1610 	int rc;
1611 
1612 	rc = _sev_platform_init_locked(&init_args);
1613 	if (rc) {
1614 		argp->error = SEV_RET_INVALID_PLATFORM_STATE;
1615 		return rc;
1616 	}
1617 
1618 	*shutdown_required = true;
1619 
1620 	return 0;
1621 }
1622 
1623 static int snp_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required)
1624 {
1625 	int error, rc;
1626 
1627 	rc = __sev_snp_init_locked(&error);
1628 	if (rc) {
1629 		argp->error = SEV_RET_INVALID_PLATFORM_STATE;
1630 		return rc;
1631 	}
1632 
1633 	*shutdown_required = true;
1634 
1635 	return 0;
1636 }
1637 
1638 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable)
1639 {
1640 	int state, rc;
1641 
1642 	if (!writable)
1643 		return -EPERM;
1644 
1645 	/*
1646 	 * The SEV spec requires that FACTORY_RESET must be issued in
1647 	 * UNINIT state. Before we go further lets check if any guest is
1648 	 * active.
1649 	 *
1650 	 * If FW is in WORKING state then deny the request otherwise issue
1651 	 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET.
1652 	 *
1653 	 */
1654 	rc = sev_get_platform_state(&state, &argp->error);
1655 	if (rc)
1656 		return rc;
1657 
1658 	if (state == SEV_STATE_WORKING)
1659 		return -EBUSY;
1660 
1661 	if (state == SEV_STATE_INIT) {
1662 		rc = __sev_platform_shutdown_locked(&argp->error);
1663 		if (rc)
1664 			return rc;
1665 	}
1666 
1667 	return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error);
1668 }
1669 
1670 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp)
1671 {
1672 	struct sev_user_data_status data;
1673 	int ret;
1674 
1675 	memset(&data, 0, sizeof(data));
1676 
1677 	ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error);
1678 	if (ret)
1679 		return ret;
1680 
1681 	if (copy_to_user((void __user *)argp->data, &data, sizeof(data)))
1682 		ret = -EFAULT;
1683 
1684 	return ret;
1685 }
1686 
1687 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable)
1688 {
1689 	struct sev_device *sev = psp_master->sev_data;
1690 	bool shutdown_required = false;
1691 	int rc;
1692 
1693 	if (!writable)
1694 		return -EPERM;
1695 
1696 	if (sev->state == SEV_STATE_UNINIT) {
1697 		rc = sev_move_to_init_state(argp, &shutdown_required);
1698 		if (rc)
1699 			return rc;
1700 	}
1701 
1702 	rc = __sev_do_cmd_locked(cmd, NULL, &argp->error);
1703 
1704 	if (shutdown_required)
1705 		__sev_firmware_shutdown(sev, false);
1706 
1707 	return rc;
1708 }
1709 
1710 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable)
1711 {
1712 	struct sev_device *sev = psp_master->sev_data;
1713 	struct sev_user_data_pek_csr input;
1714 	bool shutdown_required = false;
1715 	struct sev_data_pek_csr data;
1716 	void __user *input_address;
1717 	void *blob = NULL;
1718 	int ret;
1719 
1720 	if (!writable)
1721 		return -EPERM;
1722 
1723 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1724 		return -EFAULT;
1725 
1726 	memset(&data, 0, sizeof(data));
1727 
1728 	/* userspace wants to query CSR length */
1729 	if (!input.address || !input.length)
1730 		goto cmd;
1731 
1732 	/* allocate a physically contiguous buffer to store the CSR blob */
1733 	input_address = (void __user *)input.address;
1734 	if (input.length > SEV_FW_BLOB_MAX_SIZE)
1735 		return -EFAULT;
1736 
1737 	blob = kzalloc(input.length, GFP_KERNEL);
1738 	if (!blob)
1739 		return -ENOMEM;
1740 
1741 	data.address = __psp_pa(blob);
1742 	data.len = input.length;
1743 
1744 cmd:
1745 	if (sev->state == SEV_STATE_UNINIT) {
1746 		ret = sev_move_to_init_state(argp, &shutdown_required);
1747 		if (ret)
1748 			goto e_free_blob;
1749 	}
1750 
1751 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error);
1752 
1753 	 /* If we query the CSR length, FW responded with expected data. */
1754 	input.length = data.len;
1755 
1756 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1757 		ret = -EFAULT;
1758 		goto e_free_blob;
1759 	}
1760 
1761 	if (blob) {
1762 		if (copy_to_user(input_address, blob, input.length))
1763 			ret = -EFAULT;
1764 	}
1765 
1766 e_free_blob:
1767 	if (shutdown_required)
1768 		__sev_firmware_shutdown(sev, false);
1769 
1770 	kfree(blob);
1771 	return ret;
1772 }
1773 
1774 void *psp_copy_user_blob(u64 uaddr, u32 len)
1775 {
1776 	if (!uaddr || !len)
1777 		return ERR_PTR(-EINVAL);
1778 
1779 	/* verify that blob length does not exceed our limit */
1780 	if (len > SEV_FW_BLOB_MAX_SIZE)
1781 		return ERR_PTR(-EINVAL);
1782 
1783 	return memdup_user((void __user *)uaddr, len);
1784 }
1785 EXPORT_SYMBOL_GPL(psp_copy_user_blob);
1786 
1787 static int sev_get_api_version(void)
1788 {
1789 	struct sev_device *sev = psp_master->sev_data;
1790 	struct sev_user_data_status status;
1791 	int error = 0, ret;
1792 
1793 	ret = sev_platform_status(&status, &error);
1794 	if (ret) {
1795 		dev_err(sev->dev,
1796 			"SEV: failed to get status. Error: %#x\n", error);
1797 		return 1;
1798 	}
1799 
1800 	sev->api_major = status.api_major;
1801 	sev->api_minor = status.api_minor;
1802 	sev->build = status.build;
1803 	sev->state = status.state;
1804 
1805 	return 0;
1806 }
1807 
1808 static int sev_get_firmware(struct device *dev,
1809 			    const struct firmware **firmware)
1810 {
1811 	char fw_name_specific[SEV_FW_NAME_SIZE];
1812 	char fw_name_subset[SEV_FW_NAME_SIZE];
1813 
1814 	snprintf(fw_name_specific, sizeof(fw_name_specific),
1815 		 "amd/amd_sev_fam%.2xh_model%.2xh.sbin",
1816 		 boot_cpu_data.x86, boot_cpu_data.x86_model);
1817 
1818 	snprintf(fw_name_subset, sizeof(fw_name_subset),
1819 		 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin",
1820 		 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4);
1821 
1822 	/* Check for SEV FW for a particular model.
1823 	 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h
1824 	 *
1825 	 * or
1826 	 *
1827 	 * Check for SEV FW common to a subset of models.
1828 	 * Ex. amd_sev_fam17h_model0xh.sbin for
1829 	 *     Family 17h Model 00h -- Family 17h Model 0Fh
1830 	 *
1831 	 * or
1832 	 *
1833 	 * Fall-back to using generic name: sev.fw
1834 	 */
1835 	if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) ||
1836 	    (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) ||
1837 	    (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0))
1838 		return 0;
1839 
1840 	return -ENOENT;
1841 }
1842 
1843 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */
1844 static int sev_update_firmware(struct device *dev)
1845 {
1846 	struct sev_data_download_firmware *data;
1847 	const struct firmware *firmware;
1848 	int ret, error, order;
1849 	struct page *p;
1850 	u64 data_size;
1851 
1852 	if (!sev_version_greater_or_equal(0, 15)) {
1853 		dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n");
1854 		return -1;
1855 	}
1856 
1857 	if (sev_get_firmware(dev, &firmware) == -ENOENT) {
1858 		dev_dbg(dev, "No SEV firmware file present\n");
1859 		return -1;
1860 	}
1861 
1862 	/*
1863 	 * SEV FW expects the physical address given to it to be 32
1864 	 * byte aligned. Memory allocated has structure placed at the
1865 	 * beginning followed by the firmware being passed to the SEV
1866 	 * FW. Allocate enough memory for data structure + alignment
1867 	 * padding + SEV FW.
1868 	 */
1869 	data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32);
1870 
1871 	order = get_order(firmware->size + data_size);
1872 	p = alloc_pages(GFP_KERNEL, order);
1873 	if (!p) {
1874 		ret = -1;
1875 		goto fw_err;
1876 	}
1877 
1878 	/*
1879 	 * Copy firmware data to a kernel allocated contiguous
1880 	 * memory region.
1881 	 */
1882 	data = page_address(p);
1883 	memcpy(page_address(p) + data_size, firmware->data, firmware->size);
1884 
1885 	data->address = __psp_pa(page_address(p) + data_size);
1886 	data->len = firmware->size;
1887 
1888 	ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1889 
1890 	/*
1891 	 * A quirk for fixing the committed TCB version, when upgrading from
1892 	 * earlier firmware version than 1.50.
1893 	 */
1894 	if (!ret && !sev_version_greater_or_equal(1, 50))
1895 		ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1896 
1897 	if (ret)
1898 		dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error);
1899 
1900 	__free_pages(p, order);
1901 
1902 fw_err:
1903 	release_firmware(firmware);
1904 
1905 	return ret;
1906 }
1907 
1908 static int __sev_snp_shutdown_locked(int *error, bool panic)
1909 {
1910 	struct psp_device *psp = psp_master;
1911 	struct sev_device *sev;
1912 	struct sev_data_snp_shutdown_ex data;
1913 	int ret;
1914 
1915 	if (!psp || !psp->sev_data)
1916 		return 0;
1917 
1918 	sev = psp->sev_data;
1919 
1920 	if (!sev->snp_initialized)
1921 		return 0;
1922 
1923 	memset(&data, 0, sizeof(data));
1924 	data.len = sizeof(data);
1925 	data.iommu_snp_shutdown = 1;
1926 
1927 	/*
1928 	 * If invoked during panic handling, local interrupts are disabled
1929 	 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called.
1930 	 * In that case, a wbinvd() is done on remote CPUs via the NMI
1931 	 * callback, so only a local wbinvd() is needed here.
1932 	 */
1933 	if (!panic)
1934 		wbinvd_on_all_cpus();
1935 	else
1936 		wbinvd();
1937 
1938 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error);
1939 	/* SHUTDOWN may require DF_FLUSH */
1940 	if (*error == SEV_RET_DFFLUSH_REQUIRED) {
1941 		int dfflush_error = SEV_RET_NO_FW_CALL;
1942 
1943 		ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, &dfflush_error);
1944 		if (ret) {
1945 			dev_err(sev->dev, "SEV-SNP DF_FLUSH failed, ret = %d, error = %#x\n",
1946 				ret, dfflush_error);
1947 			return ret;
1948 		}
1949 		/* reissue the shutdown command */
1950 		ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data,
1951 					  error);
1952 	}
1953 	if (ret) {
1954 		dev_err(sev->dev, "SEV-SNP firmware shutdown failed, rc %d, error %#x\n",
1955 			ret, *error);
1956 		return ret;
1957 	}
1958 
1959 	/*
1960 	 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP
1961 	 * enforcement by the IOMMU and also transitions all pages
1962 	 * associated with the IOMMU to the Reclaim state.
1963 	 * Firmware was transitioning the IOMMU pages to Hypervisor state
1964 	 * before version 1.53. But, accounting for the number of assigned
1965 	 * 4kB pages in a 2M page was done incorrectly by not transitioning
1966 	 * to the Reclaim state. This resulted in RMP #PF when later accessing
1967 	 * the 2M page containing those pages during kexec boot. Hence, the
1968 	 * firmware now transitions these pages to Reclaim state and hypervisor
1969 	 * needs to transition these pages to shared state. SNP Firmware
1970 	 * version 1.53 and above are needed for kexec boot.
1971 	 */
1972 	ret = amd_iommu_snp_disable();
1973 	if (ret) {
1974 		dev_err(sev->dev, "SNP IOMMU shutdown failed\n");
1975 		return ret;
1976 	}
1977 
1978 	snp_leak_hv_fixed_pages();
1979 	sev->snp_initialized = false;
1980 	dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n");
1981 
1982 	/*
1983 	 * __sev_snp_shutdown_locked() deadlocks when it tries to unregister
1984 	 * itself during panic as the panic notifier is called with RCU read
1985 	 * lock held and notifier unregistration does RCU synchronization.
1986 	 */
1987 	if (!panic)
1988 		atomic_notifier_chain_unregister(&panic_notifier_list,
1989 						 &snp_panic_notifier);
1990 
1991 	/* Reset TMR size back to default */
1992 	sev_es_tmr_size = SEV_TMR_SIZE;
1993 
1994 	return ret;
1995 }
1996 
1997 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable)
1998 {
1999 	struct sev_device *sev = psp_master->sev_data;
2000 	struct sev_user_data_pek_cert_import input;
2001 	struct sev_data_pek_cert_import data;
2002 	bool shutdown_required = false;
2003 	void *pek_blob, *oca_blob;
2004 	int ret;
2005 
2006 	if (!writable)
2007 		return -EPERM;
2008 
2009 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
2010 		return -EFAULT;
2011 
2012 	/* copy PEK certificate blobs from userspace */
2013 	pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len);
2014 	if (IS_ERR(pek_blob))
2015 		return PTR_ERR(pek_blob);
2016 
2017 	data.reserved = 0;
2018 	data.pek_cert_address = __psp_pa(pek_blob);
2019 	data.pek_cert_len = input.pek_cert_len;
2020 
2021 	/* copy PEK certificate blobs from userspace */
2022 	oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len);
2023 	if (IS_ERR(oca_blob)) {
2024 		ret = PTR_ERR(oca_blob);
2025 		goto e_free_pek;
2026 	}
2027 
2028 	data.oca_cert_address = __psp_pa(oca_blob);
2029 	data.oca_cert_len = input.oca_cert_len;
2030 
2031 	/* If platform is not in INIT state then transition it to INIT */
2032 	if (sev->state != SEV_STATE_INIT) {
2033 		ret = sev_move_to_init_state(argp, &shutdown_required);
2034 		if (ret)
2035 			goto e_free_oca;
2036 	}
2037 
2038 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error);
2039 
2040 e_free_oca:
2041 	if (shutdown_required)
2042 		__sev_firmware_shutdown(sev, false);
2043 
2044 	kfree(oca_blob);
2045 e_free_pek:
2046 	kfree(pek_blob);
2047 	return ret;
2048 }
2049 
2050 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp)
2051 {
2052 	struct sev_user_data_get_id2 input;
2053 	struct sev_data_get_id data;
2054 	void __user *input_address;
2055 	void *id_blob = NULL;
2056 	int ret;
2057 
2058 	/* SEV GET_ID is available from SEV API v0.16 and up */
2059 	if (!sev_version_greater_or_equal(0, 16))
2060 		return -ENOTSUPP;
2061 
2062 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
2063 		return -EFAULT;
2064 
2065 	input_address = (void __user *)input.address;
2066 
2067 	if (input.address && input.length) {
2068 		/*
2069 		 * The length of the ID shouldn't be assumed by software since
2070 		 * it may change in the future.  The allocation size is limited
2071 		 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator.
2072 		 * If the allocation fails, simply return ENOMEM rather than
2073 		 * warning in the kernel log.
2074 		 */
2075 		id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN);
2076 		if (!id_blob)
2077 			return -ENOMEM;
2078 
2079 		data.address = __psp_pa(id_blob);
2080 		data.len = input.length;
2081 	} else {
2082 		data.address = 0;
2083 		data.len = 0;
2084 	}
2085 
2086 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error);
2087 
2088 	/*
2089 	 * Firmware will return the length of the ID value (either the minimum
2090 	 * required length or the actual length written), return it to the user.
2091 	 */
2092 	input.length = data.len;
2093 
2094 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
2095 		ret = -EFAULT;
2096 		goto e_free;
2097 	}
2098 
2099 	if (id_blob) {
2100 		if (copy_to_user(input_address, id_blob, data.len)) {
2101 			ret = -EFAULT;
2102 			goto e_free;
2103 		}
2104 	}
2105 
2106 e_free:
2107 	kfree(id_blob);
2108 
2109 	return ret;
2110 }
2111 
2112 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp)
2113 {
2114 	struct sev_data_get_id *data;
2115 	u64 data_size, user_size;
2116 	void *id_blob, *mem;
2117 	int ret;
2118 
2119 	/* SEV GET_ID available from SEV API v0.16 and up */
2120 	if (!sev_version_greater_or_equal(0, 16))
2121 		return -ENOTSUPP;
2122 
2123 	/* SEV FW expects the buffer it fills with the ID to be
2124 	 * 8-byte aligned. Memory allocated should be enough to
2125 	 * hold data structure + alignment padding + memory
2126 	 * where SEV FW writes the ID.
2127 	 */
2128 	data_size = ALIGN(sizeof(struct sev_data_get_id), 8);
2129 	user_size = sizeof(struct sev_user_data_get_id);
2130 
2131 	mem = kzalloc(data_size + user_size, GFP_KERNEL);
2132 	if (!mem)
2133 		return -ENOMEM;
2134 
2135 	data = mem;
2136 	id_blob = mem + data_size;
2137 
2138 	data->address = __psp_pa(id_blob);
2139 	data->len = user_size;
2140 
2141 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error);
2142 	if (!ret) {
2143 		if (copy_to_user((void __user *)argp->data, id_blob, data->len))
2144 			ret = -EFAULT;
2145 	}
2146 
2147 	kfree(mem);
2148 
2149 	return ret;
2150 }
2151 
2152 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable)
2153 {
2154 	struct sev_device *sev = psp_master->sev_data;
2155 	struct sev_user_data_pdh_cert_export input;
2156 	void *pdh_blob = NULL, *cert_blob = NULL;
2157 	struct sev_data_pdh_cert_export data;
2158 	void __user *input_cert_chain_address;
2159 	void __user *input_pdh_cert_address;
2160 	bool shutdown_required = false;
2161 	int ret;
2162 
2163 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
2164 		return -EFAULT;
2165 
2166 	memset(&data, 0, sizeof(data));
2167 
2168 	input_pdh_cert_address = (void __user *)input.pdh_cert_address;
2169 	input_cert_chain_address = (void __user *)input.cert_chain_address;
2170 
2171 	/* Userspace wants to query the certificate length. */
2172 	if (!input.pdh_cert_address ||
2173 	    !input.pdh_cert_len ||
2174 	    !input.cert_chain_address)
2175 		goto cmd;
2176 
2177 	/* Allocate a physically contiguous buffer to store the PDH blob. */
2178 	if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE)
2179 		return -EFAULT;
2180 
2181 	/* Allocate a physically contiguous buffer to store the cert chain blob. */
2182 	if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE)
2183 		return -EFAULT;
2184 
2185 	pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL);
2186 	if (!pdh_blob)
2187 		return -ENOMEM;
2188 
2189 	data.pdh_cert_address = __psp_pa(pdh_blob);
2190 	data.pdh_cert_len = input.pdh_cert_len;
2191 
2192 	cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL);
2193 	if (!cert_blob) {
2194 		ret = -ENOMEM;
2195 		goto e_free_pdh;
2196 	}
2197 
2198 	data.cert_chain_address = __psp_pa(cert_blob);
2199 	data.cert_chain_len = input.cert_chain_len;
2200 
2201 cmd:
2202 	/* If platform is not in INIT state then transition it to INIT. */
2203 	if (sev->state != SEV_STATE_INIT) {
2204 		if (!writable) {
2205 			ret = -EPERM;
2206 			goto e_free_cert;
2207 		}
2208 		ret = sev_move_to_init_state(argp, &shutdown_required);
2209 		if (ret)
2210 			goto e_free_cert;
2211 	}
2212 
2213 	ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error);
2214 
2215 	/* If we query the length, FW responded with expected data. */
2216 	input.cert_chain_len = data.cert_chain_len;
2217 	input.pdh_cert_len = data.pdh_cert_len;
2218 
2219 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
2220 		ret = -EFAULT;
2221 		goto e_free_cert;
2222 	}
2223 
2224 	if (pdh_blob) {
2225 		if (copy_to_user(input_pdh_cert_address,
2226 				 pdh_blob, input.pdh_cert_len)) {
2227 			ret = -EFAULT;
2228 			goto e_free_cert;
2229 		}
2230 	}
2231 
2232 	if (cert_blob) {
2233 		if (copy_to_user(input_cert_chain_address,
2234 				 cert_blob, input.cert_chain_len))
2235 			ret = -EFAULT;
2236 	}
2237 
2238 e_free_cert:
2239 	if (shutdown_required)
2240 		__sev_firmware_shutdown(sev, false);
2241 
2242 	kfree(cert_blob);
2243 e_free_pdh:
2244 	kfree(pdh_blob);
2245 	return ret;
2246 }
2247 
2248 static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp)
2249 {
2250 	struct sev_device *sev = psp_master->sev_data;
2251 	bool shutdown_required = false;
2252 	struct sev_data_snp_addr buf;
2253 	struct page *status_page;
2254 	int ret, error;
2255 	void *data;
2256 
2257 	if (!argp->data)
2258 		return -EINVAL;
2259 
2260 	status_page = alloc_page(GFP_KERNEL_ACCOUNT);
2261 	if (!status_page)
2262 		return -ENOMEM;
2263 
2264 	data = page_address(status_page);
2265 
2266 	if (!sev->snp_initialized) {
2267 		ret = snp_move_to_init_state(argp, &shutdown_required);
2268 		if (ret)
2269 			goto cleanup;
2270 	}
2271 
2272 	/*
2273 	 * Firmware expects status page to be in firmware-owned state, otherwise
2274 	 * it will report firmware error code INVALID_PAGE_STATE (0x1A).
2275 	 */
2276 	if (rmp_mark_pages_firmware(__pa(data), 1, true)) {
2277 		ret = -EFAULT;
2278 		goto cleanup;
2279 	}
2280 
2281 	buf.address = __psp_pa(data);
2282 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error);
2283 
2284 	/*
2285 	 * Status page will be transitioned to Reclaim state upon success, or
2286 	 * left in Firmware state in failure. Use snp_reclaim_pages() to
2287 	 * transition either case back to Hypervisor-owned state.
2288 	 */
2289 	if (snp_reclaim_pages(__pa(data), 1, true))
2290 		return -EFAULT;
2291 
2292 	if (ret)
2293 		goto cleanup;
2294 
2295 	if (copy_to_user((void __user *)argp->data, data,
2296 			 sizeof(struct sev_user_data_snp_status)))
2297 		ret = -EFAULT;
2298 
2299 cleanup:
2300 	if (shutdown_required)
2301 		__sev_snp_shutdown_locked(&error, false);
2302 
2303 	__free_pages(status_page, 0);
2304 	return ret;
2305 }
2306 
2307 static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp)
2308 {
2309 	struct sev_device *sev = psp_master->sev_data;
2310 	struct sev_data_snp_commit buf;
2311 	bool shutdown_required = false;
2312 	int ret, error;
2313 
2314 	if (!sev->snp_initialized) {
2315 		ret = snp_move_to_init_state(argp, &shutdown_required);
2316 		if (ret)
2317 			return ret;
2318 	}
2319 
2320 	buf.len = sizeof(buf);
2321 
2322 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error);
2323 
2324 	if (shutdown_required)
2325 		__sev_snp_shutdown_locked(&error, false);
2326 
2327 	return ret;
2328 }
2329 
2330 static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable)
2331 {
2332 	struct sev_device *sev = psp_master->sev_data;
2333 	struct sev_user_data_snp_config config;
2334 	bool shutdown_required = false;
2335 	int ret, error;
2336 
2337 	if (!argp->data)
2338 		return -EINVAL;
2339 
2340 	if (!writable)
2341 		return -EPERM;
2342 
2343 	if (copy_from_user(&config, (void __user *)argp->data, sizeof(config)))
2344 		return -EFAULT;
2345 
2346 	if (!sev->snp_initialized) {
2347 		ret = snp_move_to_init_state(argp, &shutdown_required);
2348 		if (ret)
2349 			return ret;
2350 	}
2351 
2352 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error);
2353 
2354 	if (shutdown_required)
2355 		__sev_snp_shutdown_locked(&error, false);
2356 
2357 	return ret;
2358 }
2359 
2360 static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable)
2361 {
2362 	struct sev_device *sev = psp_master->sev_data;
2363 	struct sev_user_data_snp_vlek_load input;
2364 	bool shutdown_required = false;
2365 	int ret, error;
2366 	void *blob;
2367 
2368 	if (!argp->data)
2369 		return -EINVAL;
2370 
2371 	if (!writable)
2372 		return -EPERM;
2373 
2374 	if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input)))
2375 		return -EFAULT;
2376 
2377 	if (input.len != sizeof(input) || input.vlek_wrapped_version != 0)
2378 		return -EINVAL;
2379 
2380 	blob = psp_copy_user_blob(input.vlek_wrapped_address,
2381 				  sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick));
2382 	if (IS_ERR(blob))
2383 		return PTR_ERR(blob);
2384 
2385 	input.vlek_wrapped_address = __psp_pa(blob);
2386 
2387 	if (!sev->snp_initialized) {
2388 		ret = snp_move_to_init_state(argp, &shutdown_required);
2389 		if (ret)
2390 			goto cleanup;
2391 	}
2392 
2393 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error);
2394 
2395 	if (shutdown_required)
2396 		__sev_snp_shutdown_locked(&error, false);
2397 
2398 cleanup:
2399 	kfree(blob);
2400 
2401 	return ret;
2402 }
2403 
2404 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
2405 {
2406 	void __user *argp = (void __user *)arg;
2407 	struct sev_issue_cmd input;
2408 	int ret = -EFAULT;
2409 	bool writable = file->f_mode & FMODE_WRITE;
2410 
2411 	if (!psp_master || !psp_master->sev_data)
2412 		return -ENODEV;
2413 
2414 	if (ioctl != SEV_ISSUE_CMD)
2415 		return -EINVAL;
2416 
2417 	if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd)))
2418 		return -EFAULT;
2419 
2420 	if (input.cmd > SEV_MAX)
2421 		return -EINVAL;
2422 
2423 	mutex_lock(&sev_cmd_mutex);
2424 
2425 	switch (input.cmd) {
2426 
2427 	case SEV_FACTORY_RESET:
2428 		ret = sev_ioctl_do_reset(&input, writable);
2429 		break;
2430 	case SEV_PLATFORM_STATUS:
2431 		ret = sev_ioctl_do_platform_status(&input);
2432 		break;
2433 	case SEV_PEK_GEN:
2434 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable);
2435 		break;
2436 	case SEV_PDH_GEN:
2437 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable);
2438 		break;
2439 	case SEV_PEK_CSR:
2440 		ret = sev_ioctl_do_pek_csr(&input, writable);
2441 		break;
2442 	case SEV_PEK_CERT_IMPORT:
2443 		ret = sev_ioctl_do_pek_import(&input, writable);
2444 		break;
2445 	case SEV_PDH_CERT_EXPORT:
2446 		ret = sev_ioctl_do_pdh_export(&input, writable);
2447 		break;
2448 	case SEV_GET_ID:
2449 		pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n");
2450 		ret = sev_ioctl_do_get_id(&input);
2451 		break;
2452 	case SEV_GET_ID2:
2453 		ret = sev_ioctl_do_get_id2(&input);
2454 		break;
2455 	case SNP_PLATFORM_STATUS:
2456 		ret = sev_ioctl_do_snp_platform_status(&input);
2457 		break;
2458 	case SNP_COMMIT:
2459 		ret = sev_ioctl_do_snp_commit(&input);
2460 		break;
2461 	case SNP_SET_CONFIG:
2462 		ret = sev_ioctl_do_snp_set_config(&input, writable);
2463 		break;
2464 	case SNP_VLEK_LOAD:
2465 		ret = sev_ioctl_do_snp_vlek_load(&input, writable);
2466 		break;
2467 	default:
2468 		ret = -EINVAL;
2469 		goto out;
2470 	}
2471 
2472 	if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd)))
2473 		ret = -EFAULT;
2474 out:
2475 	mutex_unlock(&sev_cmd_mutex);
2476 
2477 	return ret;
2478 }
2479 
2480 static const struct file_operations sev_fops = {
2481 	.owner	= THIS_MODULE,
2482 	.unlocked_ioctl = sev_ioctl,
2483 };
2484 
2485 int sev_platform_status(struct sev_user_data_status *data, int *error)
2486 {
2487 	return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error);
2488 }
2489 EXPORT_SYMBOL_GPL(sev_platform_status);
2490 
2491 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error)
2492 {
2493 	return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error);
2494 }
2495 EXPORT_SYMBOL_GPL(sev_guest_deactivate);
2496 
2497 int sev_guest_activate(struct sev_data_activate *data, int *error)
2498 {
2499 	return sev_do_cmd(SEV_CMD_ACTIVATE, data, error);
2500 }
2501 EXPORT_SYMBOL_GPL(sev_guest_activate);
2502 
2503 int sev_guest_decommission(struct sev_data_decommission *data, int *error)
2504 {
2505 	return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error);
2506 }
2507 EXPORT_SYMBOL_GPL(sev_guest_decommission);
2508 
2509 int sev_guest_df_flush(int *error)
2510 {
2511 	return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error);
2512 }
2513 EXPORT_SYMBOL_GPL(sev_guest_df_flush);
2514 
2515 static void sev_exit(struct kref *ref)
2516 {
2517 	misc_deregister(&misc_dev->misc);
2518 	kfree(misc_dev);
2519 	misc_dev = NULL;
2520 }
2521 
2522 static int sev_misc_init(struct sev_device *sev)
2523 {
2524 	struct device *dev = sev->dev;
2525 	int ret;
2526 
2527 	/*
2528 	 * SEV feature support can be detected on multiple devices but the SEV
2529 	 * FW commands must be issued on the master. During probe, we do not
2530 	 * know the master hence we create /dev/sev on the first device probe.
2531 	 * sev_do_cmd() finds the right master device to which to issue the
2532 	 * command to the firmware.
2533 	 */
2534 	if (!misc_dev) {
2535 		struct miscdevice *misc;
2536 
2537 		misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL);
2538 		if (!misc_dev)
2539 			return -ENOMEM;
2540 
2541 		misc = &misc_dev->misc;
2542 		misc->minor = MISC_DYNAMIC_MINOR;
2543 		misc->name = DEVICE_NAME;
2544 		misc->fops = &sev_fops;
2545 
2546 		ret = misc_register(misc);
2547 		if (ret)
2548 			return ret;
2549 
2550 		kref_init(&misc_dev->refcount);
2551 	} else {
2552 		kref_get(&misc_dev->refcount);
2553 	}
2554 
2555 	init_waitqueue_head(&sev->int_queue);
2556 	sev->misc = misc_dev;
2557 	dev_dbg(dev, "registered SEV device\n");
2558 
2559 	return 0;
2560 }
2561 
2562 int sev_dev_init(struct psp_device *psp)
2563 {
2564 	struct device *dev = psp->dev;
2565 	struct sev_device *sev;
2566 	int ret = -ENOMEM;
2567 
2568 	if (!boot_cpu_has(X86_FEATURE_SEV)) {
2569 		dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n");
2570 		return 0;
2571 	}
2572 
2573 	sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL);
2574 	if (!sev)
2575 		goto e_err;
2576 
2577 	sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1);
2578 	if (!sev->cmd_buf)
2579 		goto e_sev;
2580 
2581 	sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE;
2582 
2583 	psp->sev_data = sev;
2584 
2585 	sev->dev = dev;
2586 	sev->psp = psp;
2587 
2588 	sev->io_regs = psp->io_regs;
2589 
2590 	sev->vdata = (struct sev_vdata *)psp->vdata->sev;
2591 	if (!sev->vdata) {
2592 		ret = -ENODEV;
2593 		dev_err(dev, "sev: missing driver data\n");
2594 		goto e_buf;
2595 	}
2596 
2597 	psp_set_sev_irq_handler(psp, sev_irq_handler, sev);
2598 
2599 	ret = sev_misc_init(sev);
2600 	if (ret)
2601 		goto e_irq;
2602 
2603 	dev_notice(dev, "sev enabled\n");
2604 
2605 	return 0;
2606 
2607 e_irq:
2608 	psp_clear_sev_irq_handler(psp);
2609 e_buf:
2610 	devm_free_pages(dev, (unsigned long)sev->cmd_buf);
2611 e_sev:
2612 	devm_kfree(dev, sev);
2613 e_err:
2614 	psp->sev_data = NULL;
2615 
2616 	dev_notice(dev, "sev initialization failed\n");
2617 
2618 	return ret;
2619 }
2620 
2621 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic)
2622 {
2623 	int error;
2624 
2625 	__sev_platform_shutdown_locked(&error);
2626 
2627 	if (sev_es_tmr) {
2628 		/*
2629 		 * The TMR area was encrypted, flush it from the cache.
2630 		 *
2631 		 * If invoked during panic handling, local interrupts are
2632 		 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus()
2633 		 * can't be used. In that case, wbinvd() is done on remote CPUs
2634 		 * via the NMI callback, and done for this CPU later during
2635 		 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped.
2636 		 */
2637 		if (!panic)
2638 			wbinvd_on_all_cpus();
2639 
2640 		__snp_free_firmware_pages(virt_to_page(sev_es_tmr),
2641 					  get_order(sev_es_tmr_size),
2642 					  true);
2643 		sev_es_tmr = NULL;
2644 	}
2645 
2646 	if (sev_init_ex_buffer) {
2647 		__snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer),
2648 					  get_order(NV_LENGTH),
2649 					  true);
2650 		sev_init_ex_buffer = NULL;
2651 	}
2652 
2653 	if (snp_range_list) {
2654 		kfree(snp_range_list);
2655 		snp_range_list = NULL;
2656 	}
2657 
2658 	__sev_snp_shutdown_locked(&error, panic);
2659 }
2660 
2661 static void sev_firmware_shutdown(struct sev_device *sev)
2662 {
2663 	mutex_lock(&sev_cmd_mutex);
2664 	__sev_firmware_shutdown(sev, false);
2665 	mutex_unlock(&sev_cmd_mutex);
2666 }
2667 
2668 void sev_platform_shutdown(void)
2669 {
2670 	if (!psp_master || !psp_master->sev_data)
2671 		return;
2672 
2673 	sev_firmware_shutdown(psp_master->sev_data);
2674 }
2675 EXPORT_SYMBOL_GPL(sev_platform_shutdown);
2676 
2677 void sev_dev_destroy(struct psp_device *psp)
2678 {
2679 	struct sev_device *sev = psp->sev_data;
2680 
2681 	if (!sev)
2682 		return;
2683 
2684 	sev_firmware_shutdown(sev);
2685 
2686 	if (sev->misc)
2687 		kref_put(&misc_dev->refcount, sev_exit);
2688 
2689 	psp_clear_sev_irq_handler(psp);
2690 }
2691 
2692 static int snp_shutdown_on_panic(struct notifier_block *nb,
2693 				 unsigned long reason, void *arg)
2694 {
2695 	struct sev_device *sev = psp_master->sev_data;
2696 
2697 	/*
2698 	 * If sev_cmd_mutex is already acquired, then it's likely
2699 	 * another PSP command is in flight and issuing a shutdown
2700 	 * would fail in unexpected ways. Rather than create even
2701 	 * more confusion during a panic, just bail out here.
2702 	 */
2703 	if (mutex_is_locked(&sev_cmd_mutex))
2704 		return NOTIFY_DONE;
2705 
2706 	__sev_firmware_shutdown(sev, true);
2707 
2708 	return NOTIFY_DONE;
2709 }
2710 
2711 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd,
2712 				void *data, int *error)
2713 {
2714 	if (!filep || filep->f_op != &sev_fops)
2715 		return -EBADF;
2716 
2717 	return sev_do_cmd(cmd, data, error);
2718 }
2719 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user);
2720 
2721 void sev_pci_init(void)
2722 {
2723 	struct sev_device *sev = psp_master->sev_data;
2724 	u8 api_major, api_minor, build;
2725 
2726 	if (!sev)
2727 		return;
2728 
2729 	psp_timeout = psp_probe_timeout;
2730 
2731 	if (sev_get_api_version())
2732 		goto err;
2733 
2734 	api_major = sev->api_major;
2735 	api_minor = sev->api_minor;
2736 	build     = sev->build;
2737 
2738 	if (sev_update_firmware(sev->dev) == 0)
2739 		sev_get_api_version();
2740 
2741 	if (api_major != sev->api_major || api_minor != sev->api_minor ||
2742 	    build != sev->build)
2743 		dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n",
2744 			 api_major, api_minor, build,
2745 			 sev->api_major, sev->api_minor, sev->build);
2746 
2747 	return;
2748 
2749 err:
2750 	sev_dev_destroy(psp_master);
2751 
2752 	psp_master->sev_data = NULL;
2753 }
2754 
2755 void sev_pci_exit(void)
2756 {
2757 	struct sev_device *sev = psp_master->sev_data;
2758 
2759 	if (!sev)
2760 		return;
2761 
2762 	sev_firmware_shutdown(sev);
2763 }
2764