1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Secure Encrypted Virtualization (SEV) interface 4 * 5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc. 6 * 7 * Author: Brijesh Singh <brijesh.singh@amd.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/kthread.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/spinlock.h> 17 #include <linux/spinlock_types.h> 18 #include <linux/types.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/hw_random.h> 22 #include <linux/ccp.h> 23 #include <linux/firmware.h> 24 #include <linux/panic_notifier.h> 25 #include <linux/gfp.h> 26 #include <linux/cpufeature.h> 27 #include <linux/fs.h> 28 #include <linux/fs_struct.h> 29 #include <linux/psp.h> 30 #include <linux/amd-iommu.h> 31 32 #include <asm/smp.h> 33 #include <asm/cacheflush.h> 34 #include <asm/e820/types.h> 35 #include <asm/sev.h> 36 #include <asm/msr.h> 37 38 #include "psp-dev.h" 39 #include "sev-dev.h" 40 41 #define DEVICE_NAME "sev" 42 #define SEV_FW_FILE "amd/sev.fw" 43 #define SEV_FW_NAME_SIZE 64 44 45 /* Minimum firmware version required for the SEV-SNP support */ 46 #define SNP_MIN_API_MAJOR 1 47 #define SNP_MIN_API_MINOR 51 48 49 /* 50 * Maximum number of firmware-writable buffers that might be specified 51 * in the parameters of a legacy SEV command buffer. 52 */ 53 #define CMD_BUF_FW_WRITABLE_MAX 2 54 55 /* Leave room in the descriptor array for an end-of-list indicator. */ 56 #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1) 57 58 static DEFINE_MUTEX(sev_cmd_mutex); 59 static struct sev_misc_dev *misc_dev; 60 61 static int psp_cmd_timeout = 100; 62 module_param(psp_cmd_timeout, int, 0644); 63 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands"); 64 65 static int psp_probe_timeout = 5; 66 module_param(psp_probe_timeout, int, 0644); 67 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe"); 68 69 static char *init_ex_path; 70 module_param(init_ex_path, charp, 0444); 71 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX"); 72 73 static bool psp_init_on_probe = true; 74 module_param(psp_init_on_probe, bool, 0444); 75 MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it"); 76 77 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */ 78 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */ 79 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */ 80 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */ 81 82 static bool psp_dead; 83 static int psp_timeout; 84 85 /* Trusted Memory Region (TMR): 86 * The TMR is a 1MB area that must be 1MB aligned. Use the page allocator 87 * to allocate the memory, which will return aligned memory for the specified 88 * allocation order. 89 * 90 * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized. 91 */ 92 #define SEV_TMR_SIZE (1024 * 1024) 93 #define SNP_TMR_SIZE (2 * 1024 * 1024) 94 95 static void *sev_es_tmr; 96 static size_t sev_es_tmr_size = SEV_TMR_SIZE; 97 98 /* INIT_EX NV Storage: 99 * The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page 100 * allocator to allocate the memory, which will return aligned memory for the 101 * specified allocation order. 102 */ 103 #define NV_LENGTH (32 * 1024) 104 static void *sev_init_ex_buffer; 105 106 /* 107 * SEV_DATA_RANGE_LIST: 108 * Array containing range of pages that firmware transitions to HV-fixed 109 * page state. 110 */ 111 static struct sev_data_range_list *snp_range_list; 112 113 static inline bool sev_version_greater_or_equal(u8 maj, u8 min) 114 { 115 struct sev_device *sev = psp_master->sev_data; 116 117 if (sev->api_major > maj) 118 return true; 119 120 if (sev->api_major == maj && sev->api_minor >= min) 121 return true; 122 123 return false; 124 } 125 126 static void sev_irq_handler(int irq, void *data, unsigned int status) 127 { 128 struct sev_device *sev = data; 129 int reg; 130 131 /* Check if it is command completion: */ 132 if (!(status & SEV_CMD_COMPLETE)) 133 return; 134 135 /* Check if it is SEV command completion: */ 136 reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 137 if (FIELD_GET(PSP_CMDRESP_RESP, reg)) { 138 sev->int_rcvd = 1; 139 wake_up(&sev->int_queue); 140 } 141 } 142 143 static int sev_wait_cmd_ioc(struct sev_device *sev, 144 unsigned int *reg, unsigned int timeout) 145 { 146 int ret; 147 148 /* 149 * If invoked during panic handling, local interrupts are disabled, 150 * so the PSP command completion interrupt can't be used. Poll for 151 * PSP command completion instead. 152 */ 153 if (irqs_disabled()) { 154 unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10; 155 156 /* Poll for SEV command completion: */ 157 while (timeout_usecs--) { 158 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 159 if (*reg & PSP_CMDRESP_RESP) 160 return 0; 161 162 udelay(10); 163 } 164 return -ETIMEDOUT; 165 } 166 167 ret = wait_event_timeout(sev->int_queue, 168 sev->int_rcvd, timeout * HZ); 169 if (!ret) 170 return -ETIMEDOUT; 171 172 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 173 174 return 0; 175 } 176 177 static int sev_cmd_buffer_len(int cmd) 178 { 179 switch (cmd) { 180 case SEV_CMD_INIT: return sizeof(struct sev_data_init); 181 case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex); 182 case SEV_CMD_SNP_SHUTDOWN_EX: return sizeof(struct sev_data_snp_shutdown_ex); 183 case SEV_CMD_SNP_INIT_EX: return sizeof(struct sev_data_snp_init_ex); 184 case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status); 185 case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr); 186 case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import); 187 case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export); 188 case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start); 189 case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data); 190 case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa); 191 case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish); 192 case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure); 193 case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate); 194 case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate); 195 case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission); 196 case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status); 197 case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg); 198 case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg); 199 case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start); 200 case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data); 201 case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa); 202 case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish); 203 case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start); 204 case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish); 205 case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data); 206 case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa); 207 case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret); 208 case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware); 209 case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id); 210 case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report); 211 case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel); 212 case SEV_CMD_SNP_GCTX_CREATE: return sizeof(struct sev_data_snp_addr); 213 case SEV_CMD_SNP_LAUNCH_START: return sizeof(struct sev_data_snp_launch_start); 214 case SEV_CMD_SNP_LAUNCH_UPDATE: return sizeof(struct sev_data_snp_launch_update); 215 case SEV_CMD_SNP_ACTIVATE: return sizeof(struct sev_data_snp_activate); 216 case SEV_CMD_SNP_DECOMMISSION: return sizeof(struct sev_data_snp_addr); 217 case SEV_CMD_SNP_PAGE_RECLAIM: return sizeof(struct sev_data_snp_page_reclaim); 218 case SEV_CMD_SNP_GUEST_STATUS: return sizeof(struct sev_data_snp_guest_status); 219 case SEV_CMD_SNP_LAUNCH_FINISH: return sizeof(struct sev_data_snp_launch_finish); 220 case SEV_CMD_SNP_DBG_DECRYPT: return sizeof(struct sev_data_snp_dbg); 221 case SEV_CMD_SNP_DBG_ENCRYPT: return sizeof(struct sev_data_snp_dbg); 222 case SEV_CMD_SNP_PAGE_UNSMASH: return sizeof(struct sev_data_snp_page_unsmash); 223 case SEV_CMD_SNP_PLATFORM_STATUS: return sizeof(struct sev_data_snp_addr); 224 case SEV_CMD_SNP_GUEST_REQUEST: return sizeof(struct sev_data_snp_guest_request); 225 case SEV_CMD_SNP_CONFIG: return sizeof(struct sev_user_data_snp_config); 226 case SEV_CMD_SNP_COMMIT: return sizeof(struct sev_data_snp_commit); 227 default: return 0; 228 } 229 230 return 0; 231 } 232 233 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode) 234 { 235 struct file *fp; 236 struct path root; 237 struct cred *cred; 238 const struct cred *old_cred; 239 240 task_lock(&init_task); 241 get_fs_root(init_task.fs, &root); 242 task_unlock(&init_task); 243 244 cred = prepare_creds(); 245 if (!cred) 246 return ERR_PTR(-ENOMEM); 247 cred->fsuid = GLOBAL_ROOT_UID; 248 old_cred = override_creds(cred); 249 250 fp = file_open_root(&root, filename, flags, mode); 251 path_put(&root); 252 253 put_cred(revert_creds(old_cred)); 254 255 return fp; 256 } 257 258 static int sev_read_init_ex_file(void) 259 { 260 struct sev_device *sev = psp_master->sev_data; 261 struct file *fp; 262 ssize_t nread; 263 264 lockdep_assert_held(&sev_cmd_mutex); 265 266 if (!sev_init_ex_buffer) 267 return -EOPNOTSUPP; 268 269 fp = open_file_as_root(init_ex_path, O_RDONLY, 0); 270 if (IS_ERR(fp)) { 271 int ret = PTR_ERR(fp); 272 273 if (ret == -ENOENT) { 274 dev_info(sev->dev, 275 "SEV: %s does not exist and will be created later.\n", 276 init_ex_path); 277 ret = 0; 278 } else { 279 dev_err(sev->dev, 280 "SEV: could not open %s for read, error %d\n", 281 init_ex_path, ret); 282 } 283 return ret; 284 } 285 286 nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL); 287 if (nread != NV_LENGTH) { 288 dev_info(sev->dev, 289 "SEV: could not read %u bytes to non volatile memory area, ret %ld\n", 290 NV_LENGTH, nread); 291 } 292 293 dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread); 294 filp_close(fp, NULL); 295 296 return 0; 297 } 298 299 static int sev_write_init_ex_file(void) 300 { 301 struct sev_device *sev = psp_master->sev_data; 302 struct file *fp; 303 loff_t offset = 0; 304 ssize_t nwrite; 305 306 lockdep_assert_held(&sev_cmd_mutex); 307 308 if (!sev_init_ex_buffer) 309 return 0; 310 311 fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600); 312 if (IS_ERR(fp)) { 313 int ret = PTR_ERR(fp); 314 315 dev_err(sev->dev, 316 "SEV: could not open file for write, error %d\n", 317 ret); 318 return ret; 319 } 320 321 nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset); 322 vfs_fsync(fp, 0); 323 filp_close(fp, NULL); 324 325 if (nwrite != NV_LENGTH) { 326 dev_err(sev->dev, 327 "SEV: failed to write %u bytes to non volatile memory area, ret %ld\n", 328 NV_LENGTH, nwrite); 329 return -EIO; 330 } 331 332 dev_dbg(sev->dev, "SEV: write successful to NV file\n"); 333 334 return 0; 335 } 336 337 static int sev_write_init_ex_file_if_required(int cmd_id) 338 { 339 lockdep_assert_held(&sev_cmd_mutex); 340 341 if (!sev_init_ex_buffer) 342 return 0; 343 344 /* 345 * Only a few platform commands modify the SPI/NV area, but none of the 346 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN, 347 * PEK_CERT_IMPORT, and PDH_GEN do. 348 */ 349 switch (cmd_id) { 350 case SEV_CMD_FACTORY_RESET: 351 case SEV_CMD_INIT_EX: 352 case SEV_CMD_PDH_GEN: 353 case SEV_CMD_PEK_CERT_IMPORT: 354 case SEV_CMD_PEK_GEN: 355 break; 356 default: 357 return 0; 358 } 359 360 return sev_write_init_ex_file(); 361 } 362 363 /* 364 * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked() 365 * needs snp_reclaim_pages(), so a forward declaration is needed. 366 */ 367 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret); 368 369 static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked) 370 { 371 int ret, err, i; 372 373 paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE)); 374 375 for (i = 0; i < npages; i++, paddr += PAGE_SIZE) { 376 struct sev_data_snp_page_reclaim data = {0}; 377 378 data.paddr = paddr; 379 380 if (locked) 381 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 382 else 383 ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 384 385 if (ret) 386 goto cleanup; 387 388 ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K); 389 if (ret) 390 goto cleanup; 391 } 392 393 return 0; 394 395 cleanup: 396 /* 397 * If there was a failure reclaiming the page then it is no longer safe 398 * to release it back to the system; leak it instead. 399 */ 400 snp_leak_pages(__phys_to_pfn(paddr), npages - i); 401 return ret; 402 } 403 404 static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked) 405 { 406 unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT; 407 int rc, i; 408 409 for (i = 0; i < npages; i++, pfn++) { 410 rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true); 411 if (rc) 412 goto cleanup; 413 } 414 415 return 0; 416 417 cleanup: 418 /* 419 * Try unrolling the firmware state changes by 420 * reclaiming the pages which were already changed to the 421 * firmware state. 422 */ 423 snp_reclaim_pages(paddr, i, locked); 424 425 return rc; 426 } 427 428 static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order) 429 { 430 unsigned long npages = 1ul << order, paddr; 431 struct sev_device *sev; 432 struct page *page; 433 434 if (!psp_master || !psp_master->sev_data) 435 return NULL; 436 437 page = alloc_pages(gfp_mask, order); 438 if (!page) 439 return NULL; 440 441 /* If SEV-SNP is initialized then add the page in RMP table. */ 442 sev = psp_master->sev_data; 443 if (!sev->snp_initialized) 444 return page; 445 446 paddr = __pa((unsigned long)page_address(page)); 447 if (rmp_mark_pages_firmware(paddr, npages, false)) 448 return NULL; 449 450 return page; 451 } 452 453 void *snp_alloc_firmware_page(gfp_t gfp_mask) 454 { 455 struct page *page; 456 457 page = __snp_alloc_firmware_pages(gfp_mask, 0); 458 459 return page ? page_address(page) : NULL; 460 } 461 EXPORT_SYMBOL_GPL(snp_alloc_firmware_page); 462 463 static void __snp_free_firmware_pages(struct page *page, int order, bool locked) 464 { 465 struct sev_device *sev = psp_master->sev_data; 466 unsigned long paddr, npages = 1ul << order; 467 468 if (!page) 469 return; 470 471 paddr = __pa((unsigned long)page_address(page)); 472 if (sev->snp_initialized && 473 snp_reclaim_pages(paddr, npages, locked)) 474 return; 475 476 __free_pages(page, order); 477 } 478 479 void snp_free_firmware_page(void *addr) 480 { 481 if (!addr) 482 return; 483 484 __snp_free_firmware_pages(virt_to_page(addr), 0, false); 485 } 486 EXPORT_SYMBOL_GPL(snp_free_firmware_page); 487 488 static void *sev_fw_alloc(unsigned long len) 489 { 490 struct page *page; 491 492 page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len)); 493 if (!page) 494 return NULL; 495 496 return page_address(page); 497 } 498 499 /** 500 * struct cmd_buf_desc - descriptors for managing legacy SEV command address 501 * parameters corresponding to buffers that may be written to by firmware. 502 * 503 * @paddr_ptr: pointer to the address parameter in the command buffer which may 504 * need to be saved/restored depending on whether a bounce buffer 505 * is used. In the case of a bounce buffer, the command buffer 506 * needs to be updated with the address of the new bounce buffer 507 * snp_map_cmd_buf_desc() has allocated specifically for it. Must 508 * be NULL if this descriptor is only an end-of-list indicator. 509 * 510 * @paddr_orig: storage for the original address parameter, which can be used to 511 * restore the original value in @paddr_ptr in cases where it is 512 * replaced with the address of a bounce buffer. 513 * 514 * @len: length of buffer located at the address originally stored at @paddr_ptr 515 * 516 * @guest_owned: true if the address corresponds to guest-owned pages, in which 517 * case bounce buffers are not needed. 518 */ 519 struct cmd_buf_desc { 520 u64 *paddr_ptr; 521 u64 paddr_orig; 522 u32 len; 523 bool guest_owned; 524 }; 525 526 /* 527 * If a legacy SEV command parameter is a memory address, those pages in 528 * turn need to be transitioned to/from firmware-owned before/after 529 * executing the firmware command. 530 * 531 * Additionally, in cases where those pages are not guest-owned, a bounce 532 * buffer is needed in place of the original memory address parameter. 533 * 534 * A set of descriptors are used to keep track of this handling, and 535 * initialized here based on the specific commands being executed. 536 */ 537 static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf, 538 struct cmd_buf_desc *desc_list) 539 { 540 switch (cmd) { 541 case SEV_CMD_PDH_CERT_EXPORT: { 542 struct sev_data_pdh_cert_export *data = cmd_buf; 543 544 desc_list[0].paddr_ptr = &data->pdh_cert_address; 545 desc_list[0].len = data->pdh_cert_len; 546 desc_list[1].paddr_ptr = &data->cert_chain_address; 547 desc_list[1].len = data->cert_chain_len; 548 break; 549 } 550 case SEV_CMD_GET_ID: { 551 struct sev_data_get_id *data = cmd_buf; 552 553 desc_list[0].paddr_ptr = &data->address; 554 desc_list[0].len = data->len; 555 break; 556 } 557 case SEV_CMD_PEK_CSR: { 558 struct sev_data_pek_csr *data = cmd_buf; 559 560 desc_list[0].paddr_ptr = &data->address; 561 desc_list[0].len = data->len; 562 break; 563 } 564 case SEV_CMD_LAUNCH_UPDATE_DATA: { 565 struct sev_data_launch_update_data *data = cmd_buf; 566 567 desc_list[0].paddr_ptr = &data->address; 568 desc_list[0].len = data->len; 569 desc_list[0].guest_owned = true; 570 break; 571 } 572 case SEV_CMD_LAUNCH_UPDATE_VMSA: { 573 struct sev_data_launch_update_vmsa *data = cmd_buf; 574 575 desc_list[0].paddr_ptr = &data->address; 576 desc_list[0].len = data->len; 577 desc_list[0].guest_owned = true; 578 break; 579 } 580 case SEV_CMD_LAUNCH_MEASURE: { 581 struct sev_data_launch_measure *data = cmd_buf; 582 583 desc_list[0].paddr_ptr = &data->address; 584 desc_list[0].len = data->len; 585 break; 586 } 587 case SEV_CMD_LAUNCH_UPDATE_SECRET: { 588 struct sev_data_launch_secret *data = cmd_buf; 589 590 desc_list[0].paddr_ptr = &data->guest_address; 591 desc_list[0].len = data->guest_len; 592 desc_list[0].guest_owned = true; 593 break; 594 } 595 case SEV_CMD_DBG_DECRYPT: { 596 struct sev_data_dbg *data = cmd_buf; 597 598 desc_list[0].paddr_ptr = &data->dst_addr; 599 desc_list[0].len = data->len; 600 desc_list[0].guest_owned = true; 601 break; 602 } 603 case SEV_CMD_DBG_ENCRYPT: { 604 struct sev_data_dbg *data = cmd_buf; 605 606 desc_list[0].paddr_ptr = &data->dst_addr; 607 desc_list[0].len = data->len; 608 desc_list[0].guest_owned = true; 609 break; 610 } 611 case SEV_CMD_ATTESTATION_REPORT: { 612 struct sev_data_attestation_report *data = cmd_buf; 613 614 desc_list[0].paddr_ptr = &data->address; 615 desc_list[0].len = data->len; 616 break; 617 } 618 case SEV_CMD_SEND_START: { 619 struct sev_data_send_start *data = cmd_buf; 620 621 desc_list[0].paddr_ptr = &data->session_address; 622 desc_list[0].len = data->session_len; 623 break; 624 } 625 case SEV_CMD_SEND_UPDATE_DATA: { 626 struct sev_data_send_update_data *data = cmd_buf; 627 628 desc_list[0].paddr_ptr = &data->hdr_address; 629 desc_list[0].len = data->hdr_len; 630 desc_list[1].paddr_ptr = &data->trans_address; 631 desc_list[1].len = data->trans_len; 632 break; 633 } 634 case SEV_CMD_SEND_UPDATE_VMSA: { 635 struct sev_data_send_update_vmsa *data = cmd_buf; 636 637 desc_list[0].paddr_ptr = &data->hdr_address; 638 desc_list[0].len = data->hdr_len; 639 desc_list[1].paddr_ptr = &data->trans_address; 640 desc_list[1].len = data->trans_len; 641 break; 642 } 643 case SEV_CMD_RECEIVE_UPDATE_DATA: { 644 struct sev_data_receive_update_data *data = cmd_buf; 645 646 desc_list[0].paddr_ptr = &data->guest_address; 647 desc_list[0].len = data->guest_len; 648 desc_list[0].guest_owned = true; 649 break; 650 } 651 case SEV_CMD_RECEIVE_UPDATE_VMSA: { 652 struct sev_data_receive_update_vmsa *data = cmd_buf; 653 654 desc_list[0].paddr_ptr = &data->guest_address; 655 desc_list[0].len = data->guest_len; 656 desc_list[0].guest_owned = true; 657 break; 658 } 659 default: 660 break; 661 } 662 } 663 664 static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc) 665 { 666 unsigned int npages; 667 668 if (!desc->len) 669 return 0; 670 671 /* Allocate a bounce buffer if this isn't a guest owned page. */ 672 if (!desc->guest_owned) { 673 struct page *page; 674 675 page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len)); 676 if (!page) { 677 pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n"); 678 return -ENOMEM; 679 } 680 681 desc->paddr_orig = *desc->paddr_ptr; 682 *desc->paddr_ptr = __psp_pa(page_to_virt(page)); 683 } 684 685 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 686 687 /* Transition the buffer to firmware-owned. */ 688 if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) { 689 pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n"); 690 return -EFAULT; 691 } 692 693 return 0; 694 } 695 696 static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc) 697 { 698 unsigned int npages; 699 700 if (!desc->len) 701 return 0; 702 703 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 704 705 /* Transition the buffers back to hypervisor-owned. */ 706 if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) { 707 pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n"); 708 return -EFAULT; 709 } 710 711 /* Copy data from bounce buffer and then free it. */ 712 if (!desc->guest_owned) { 713 void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr)); 714 void *dst_buf = __va(__sme_clr(desc->paddr_orig)); 715 716 memcpy(dst_buf, bounce_buf, desc->len); 717 __free_pages(virt_to_page(bounce_buf), get_order(desc->len)); 718 719 /* Restore the original address in the command buffer. */ 720 *desc->paddr_ptr = desc->paddr_orig; 721 } 722 723 return 0; 724 } 725 726 static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 727 { 728 int i; 729 730 snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list); 731 732 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 733 struct cmd_buf_desc *desc = &desc_list[i]; 734 735 if (!desc->paddr_ptr) 736 break; 737 738 if (snp_map_cmd_buf_desc(desc)) 739 goto err_unmap; 740 } 741 742 return 0; 743 744 err_unmap: 745 for (i--; i >= 0; i--) 746 snp_unmap_cmd_buf_desc(&desc_list[i]); 747 748 return -EFAULT; 749 } 750 751 static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list) 752 { 753 int i, ret = 0; 754 755 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 756 struct cmd_buf_desc *desc = &desc_list[i]; 757 758 if (!desc->paddr_ptr) 759 break; 760 761 if (snp_unmap_cmd_buf_desc(&desc_list[i])) 762 ret = -EFAULT; 763 } 764 765 return ret; 766 } 767 768 static bool sev_cmd_buf_writable(int cmd) 769 { 770 switch (cmd) { 771 case SEV_CMD_PLATFORM_STATUS: 772 case SEV_CMD_GUEST_STATUS: 773 case SEV_CMD_LAUNCH_START: 774 case SEV_CMD_RECEIVE_START: 775 case SEV_CMD_LAUNCH_MEASURE: 776 case SEV_CMD_SEND_START: 777 case SEV_CMD_SEND_UPDATE_DATA: 778 case SEV_CMD_SEND_UPDATE_VMSA: 779 case SEV_CMD_PEK_CSR: 780 case SEV_CMD_PDH_CERT_EXPORT: 781 case SEV_CMD_GET_ID: 782 case SEV_CMD_ATTESTATION_REPORT: 783 return true; 784 default: 785 return false; 786 } 787 } 788 789 /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */ 790 static bool snp_legacy_handling_needed(int cmd) 791 { 792 struct sev_device *sev = psp_master->sev_data; 793 794 return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized; 795 } 796 797 static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 798 { 799 if (!snp_legacy_handling_needed(cmd)) 800 return 0; 801 802 if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list)) 803 return -EFAULT; 804 805 /* 806 * Before command execution, the command buffer needs to be put into 807 * the firmware-owned state. 808 */ 809 if (sev_cmd_buf_writable(cmd)) { 810 if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true)) 811 return -EFAULT; 812 } 813 814 return 0; 815 } 816 817 static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf) 818 { 819 if (!snp_legacy_handling_needed(cmd)) 820 return 0; 821 822 /* 823 * After command completion, the command buffer needs to be put back 824 * into the hypervisor-owned state. 825 */ 826 if (sev_cmd_buf_writable(cmd)) 827 if (snp_reclaim_pages(__pa(cmd_buf), 1, true)) 828 return -EFAULT; 829 830 return 0; 831 } 832 833 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret) 834 { 835 struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0}; 836 struct psp_device *psp = psp_master; 837 struct sev_device *sev; 838 unsigned int cmdbuff_hi, cmdbuff_lo; 839 unsigned int phys_lsb, phys_msb; 840 unsigned int reg, ret = 0; 841 void *cmd_buf; 842 int buf_len; 843 844 if (!psp || !psp->sev_data) 845 return -ENODEV; 846 847 if (psp_dead) 848 return -EBUSY; 849 850 sev = psp->sev_data; 851 852 buf_len = sev_cmd_buffer_len(cmd); 853 if (WARN_ON_ONCE(!data != !buf_len)) 854 return -EINVAL; 855 856 /* 857 * Copy the incoming data to driver's scratch buffer as __pa() will not 858 * work for some memory, e.g. vmalloc'd addresses, and @data may not be 859 * physically contiguous. 860 */ 861 if (data) { 862 /* 863 * Commands are generally issued one at a time and require the 864 * sev_cmd_mutex, but there could be recursive firmware requests 865 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while 866 * preparing buffers for another command. This is the only known 867 * case of nesting in the current code, so exactly one 868 * additional command buffer is available for that purpose. 869 */ 870 if (!sev->cmd_buf_active) { 871 cmd_buf = sev->cmd_buf; 872 sev->cmd_buf_active = true; 873 } else if (!sev->cmd_buf_backup_active) { 874 cmd_buf = sev->cmd_buf_backup; 875 sev->cmd_buf_backup_active = true; 876 } else { 877 dev_err(sev->dev, 878 "SEV: too many firmware commands in progress, no command buffers available.\n"); 879 return -EBUSY; 880 } 881 882 memcpy(cmd_buf, data, buf_len); 883 884 /* 885 * The behavior of the SEV-legacy commands is altered when the 886 * SNP firmware is in the INIT state. 887 */ 888 ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list); 889 if (ret) { 890 dev_err(sev->dev, 891 "SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n", 892 cmd, ret); 893 return ret; 894 } 895 } else { 896 cmd_buf = sev->cmd_buf; 897 } 898 899 /* Get the physical address of the command buffer */ 900 phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0; 901 phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0; 902 903 dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n", 904 cmd, phys_msb, phys_lsb, psp_timeout); 905 906 print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data, 907 buf_len, false); 908 909 iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 910 iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 911 912 sev->int_rcvd = 0; 913 914 reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd); 915 916 /* 917 * If invoked during panic handling, local interrupts are disabled so 918 * the PSP command completion interrupt can't be used. 919 * sev_wait_cmd_ioc() already checks for interrupts disabled and 920 * polls for PSP command completion. Ensure we do not request an 921 * interrupt from the PSP if irqs disabled. 922 */ 923 if (!irqs_disabled()) 924 reg |= SEV_CMDRESP_IOC; 925 926 iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg); 927 928 /* wait for command completion */ 929 ret = sev_wait_cmd_ioc(sev, ®, psp_timeout); 930 if (ret) { 931 if (psp_ret) 932 *psp_ret = 0; 933 934 dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd); 935 psp_dead = true; 936 937 return ret; 938 } 939 940 psp_timeout = psp_cmd_timeout; 941 942 if (psp_ret) 943 *psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg); 944 945 if (FIELD_GET(PSP_CMDRESP_STS, reg)) { 946 dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n", 947 cmd, FIELD_GET(PSP_CMDRESP_STS, reg)); 948 949 /* 950 * PSP firmware may report additional error information in the 951 * command buffer registers on error. Print contents of command 952 * buffer registers if they changed. 953 */ 954 cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 955 cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 956 if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) { 957 dev_dbg(sev->dev, "Additional error information reported in cmdbuff:"); 958 dev_dbg(sev->dev, " cmdbuff hi: %#010x\n", cmdbuff_hi); 959 dev_dbg(sev->dev, " cmdbuff lo: %#010x\n", cmdbuff_lo); 960 } 961 ret = -EIO; 962 } else { 963 ret = sev_write_init_ex_file_if_required(cmd); 964 } 965 966 /* 967 * Copy potential output from the PSP back to data. Do this even on 968 * failure in case the caller wants to glean something from the error. 969 */ 970 if (data) { 971 int ret_reclaim; 972 /* 973 * Restore the page state after the command completes. 974 */ 975 ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf); 976 if (ret_reclaim) { 977 dev_err(sev->dev, 978 "SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n", 979 cmd, ret_reclaim); 980 return ret_reclaim; 981 } 982 983 memcpy(data, cmd_buf, buf_len); 984 985 if (sev->cmd_buf_backup_active) 986 sev->cmd_buf_backup_active = false; 987 else 988 sev->cmd_buf_active = false; 989 990 if (snp_unmap_cmd_buf_desc_list(desc_list)) 991 return -EFAULT; 992 } 993 994 print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data, 995 buf_len, false); 996 997 return ret; 998 } 999 1000 int sev_do_cmd(int cmd, void *data, int *psp_ret) 1001 { 1002 int rc; 1003 1004 mutex_lock(&sev_cmd_mutex); 1005 rc = __sev_do_cmd_locked(cmd, data, psp_ret); 1006 mutex_unlock(&sev_cmd_mutex); 1007 1008 return rc; 1009 } 1010 EXPORT_SYMBOL_GPL(sev_do_cmd); 1011 1012 static int __sev_init_locked(int *error) 1013 { 1014 struct sev_data_init data; 1015 1016 memset(&data, 0, sizeof(data)); 1017 if (sev_es_tmr) { 1018 /* 1019 * Do not include the encryption mask on the physical 1020 * address of the TMR (firmware should clear it anyway). 1021 */ 1022 data.tmr_address = __pa(sev_es_tmr); 1023 1024 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1025 data.tmr_len = sev_es_tmr_size; 1026 } 1027 1028 return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error); 1029 } 1030 1031 static int __sev_init_ex_locked(int *error) 1032 { 1033 struct sev_data_init_ex data; 1034 1035 memset(&data, 0, sizeof(data)); 1036 data.length = sizeof(data); 1037 data.nv_address = __psp_pa(sev_init_ex_buffer); 1038 data.nv_len = NV_LENGTH; 1039 1040 if (sev_es_tmr) { 1041 /* 1042 * Do not include the encryption mask on the physical 1043 * address of the TMR (firmware should clear it anyway). 1044 */ 1045 data.tmr_address = __pa(sev_es_tmr); 1046 1047 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1048 data.tmr_len = sev_es_tmr_size; 1049 } 1050 1051 return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error); 1052 } 1053 1054 static inline int __sev_do_init_locked(int *psp_ret) 1055 { 1056 if (sev_init_ex_buffer) 1057 return __sev_init_ex_locked(psp_ret); 1058 else 1059 return __sev_init_locked(psp_ret); 1060 } 1061 1062 static void snp_set_hsave_pa(void *arg) 1063 { 1064 wrmsrq(MSR_VM_HSAVE_PA, 0); 1065 } 1066 1067 static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg) 1068 { 1069 struct sev_data_range_list *range_list = arg; 1070 struct sev_data_range *range = &range_list->ranges[range_list->num_elements]; 1071 size_t size; 1072 1073 /* 1074 * Ensure the list of HV_FIXED pages that will be passed to firmware 1075 * do not exceed the page-sized argument buffer. 1076 */ 1077 if ((range_list->num_elements * sizeof(struct sev_data_range) + 1078 sizeof(struct sev_data_range_list)) > PAGE_SIZE) 1079 return -E2BIG; 1080 1081 switch (rs->desc) { 1082 case E820_TYPE_RESERVED: 1083 case E820_TYPE_PMEM: 1084 case E820_TYPE_ACPI: 1085 range->base = rs->start & PAGE_MASK; 1086 size = PAGE_ALIGN((rs->end + 1) - rs->start); 1087 range->page_count = size >> PAGE_SHIFT; 1088 range_list->num_elements++; 1089 break; 1090 default: 1091 break; 1092 } 1093 1094 return 0; 1095 } 1096 1097 static int __sev_snp_init_locked(int *error) 1098 { 1099 struct psp_device *psp = psp_master; 1100 struct sev_data_snp_init_ex data; 1101 struct sev_device *sev; 1102 void *arg = &data; 1103 int cmd, rc = 0; 1104 1105 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 1106 return -ENODEV; 1107 1108 sev = psp->sev_data; 1109 1110 if (sev->snp_initialized) 1111 return 0; 1112 1113 if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) { 1114 dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n", 1115 SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR); 1116 return 0; 1117 } 1118 1119 /* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */ 1120 on_each_cpu(snp_set_hsave_pa, NULL, 1); 1121 1122 /* 1123 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list 1124 * of system physical address ranges to convert into HV-fixed page 1125 * states during the RMP initialization. For instance, the memory that 1126 * UEFI reserves should be included in the that list. This allows system 1127 * components that occasionally write to memory (e.g. logging to UEFI 1128 * reserved regions) to not fail due to RMP initialization and SNP 1129 * enablement. 1130 * 1131 */ 1132 if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) { 1133 /* 1134 * Firmware checks that the pages containing the ranges enumerated 1135 * in the RANGES structure are either in the default page state or in the 1136 * firmware page state. 1137 */ 1138 snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL); 1139 if (!snp_range_list) { 1140 dev_err(sev->dev, 1141 "SEV: SNP_INIT_EX range list memory allocation failed\n"); 1142 return -ENOMEM; 1143 } 1144 1145 /* 1146 * Retrieve all reserved memory regions from the e820 memory map 1147 * to be setup as HV-fixed pages. 1148 */ 1149 rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0, 1150 snp_range_list, snp_filter_reserved_mem_regions); 1151 if (rc) { 1152 dev_err(sev->dev, 1153 "SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc); 1154 return rc; 1155 } 1156 1157 memset(&data, 0, sizeof(data)); 1158 data.init_rmp = 1; 1159 data.list_paddr_en = 1; 1160 data.list_paddr = __psp_pa(snp_range_list); 1161 cmd = SEV_CMD_SNP_INIT_EX; 1162 } else { 1163 cmd = SEV_CMD_SNP_INIT; 1164 arg = NULL; 1165 } 1166 1167 /* 1168 * The following sequence must be issued before launching the first SNP 1169 * guest to ensure all dirty cache lines are flushed, including from 1170 * updates to the RMP table itself via the RMPUPDATE instruction: 1171 * 1172 * - WBINVD on all running CPUs 1173 * - SEV_CMD_SNP_INIT[_EX] firmware command 1174 * - WBINVD on all running CPUs 1175 * - SEV_CMD_SNP_DF_FLUSH firmware command 1176 */ 1177 wbinvd_on_all_cpus(); 1178 1179 rc = __sev_do_cmd_locked(cmd, arg, error); 1180 if (rc) 1181 return rc; 1182 1183 /* Prepare for first SNP guest launch after INIT. */ 1184 wbinvd_on_all_cpus(); 1185 rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error); 1186 if (rc) 1187 return rc; 1188 1189 sev->snp_initialized = true; 1190 dev_dbg(sev->dev, "SEV-SNP firmware initialized\n"); 1191 1192 sev_es_tmr_size = SNP_TMR_SIZE; 1193 1194 return rc; 1195 } 1196 1197 static void __sev_platform_init_handle_tmr(struct sev_device *sev) 1198 { 1199 if (sev_es_tmr) 1200 return; 1201 1202 /* Obtain the TMR memory area for SEV-ES use */ 1203 sev_es_tmr = sev_fw_alloc(sev_es_tmr_size); 1204 if (sev_es_tmr) { 1205 /* Must flush the cache before giving it to the firmware */ 1206 if (!sev->snp_initialized) 1207 clflush_cache_range(sev_es_tmr, sev_es_tmr_size); 1208 } else { 1209 dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n"); 1210 } 1211 } 1212 1213 /* 1214 * If an init_ex_path is provided allocate a buffer for the file and 1215 * read in the contents. Additionally, if SNP is initialized, convert 1216 * the buffer pages to firmware pages. 1217 */ 1218 static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev) 1219 { 1220 struct page *page; 1221 int rc; 1222 1223 if (!init_ex_path) 1224 return 0; 1225 1226 if (sev_init_ex_buffer) 1227 return 0; 1228 1229 page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH)); 1230 if (!page) { 1231 dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n"); 1232 return -ENOMEM; 1233 } 1234 1235 sev_init_ex_buffer = page_address(page); 1236 1237 rc = sev_read_init_ex_file(); 1238 if (rc) 1239 return rc; 1240 1241 /* If SEV-SNP is initialized, transition to firmware page. */ 1242 if (sev->snp_initialized) { 1243 unsigned long npages; 1244 1245 npages = 1UL << get_order(NV_LENGTH); 1246 if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) { 1247 dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n"); 1248 return -ENOMEM; 1249 } 1250 } 1251 1252 return 0; 1253 } 1254 1255 static int __sev_platform_init_locked(int *error) 1256 { 1257 int rc, psp_ret = SEV_RET_NO_FW_CALL; 1258 struct sev_device *sev; 1259 1260 if (!psp_master || !psp_master->sev_data) 1261 return -ENODEV; 1262 1263 sev = psp_master->sev_data; 1264 1265 if (sev->state == SEV_STATE_INIT) 1266 return 0; 1267 1268 __sev_platform_init_handle_tmr(sev); 1269 1270 rc = __sev_platform_init_handle_init_ex_path(sev); 1271 if (rc) 1272 return rc; 1273 1274 rc = __sev_do_init_locked(&psp_ret); 1275 if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) { 1276 /* 1277 * Initialization command returned an integrity check failure 1278 * status code, meaning that firmware load and validation of SEV 1279 * related persistent data has failed. Retrying the 1280 * initialization function should succeed by replacing the state 1281 * with a reset state. 1282 */ 1283 dev_err(sev->dev, 1284 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state."); 1285 rc = __sev_do_init_locked(&psp_ret); 1286 } 1287 1288 if (error) 1289 *error = psp_ret; 1290 1291 if (rc) 1292 return rc; 1293 1294 sev->state = SEV_STATE_INIT; 1295 1296 /* Prepare for first SEV guest launch after INIT */ 1297 wbinvd_on_all_cpus(); 1298 rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error); 1299 if (rc) 1300 return rc; 1301 1302 dev_dbg(sev->dev, "SEV firmware initialized\n"); 1303 1304 dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major, 1305 sev->api_minor, sev->build); 1306 1307 return 0; 1308 } 1309 1310 static int _sev_platform_init_locked(struct sev_platform_init_args *args) 1311 { 1312 struct sev_device *sev; 1313 int rc; 1314 1315 if (!psp_master || !psp_master->sev_data) 1316 return -ENODEV; 1317 1318 sev = psp_master->sev_data; 1319 1320 if (sev->state == SEV_STATE_INIT) 1321 return 0; 1322 1323 /* 1324 * Legacy guests cannot be running while SNP_INIT(_EX) is executing, 1325 * so perform SEV-SNP initialization at probe time. 1326 */ 1327 rc = __sev_snp_init_locked(&args->error); 1328 if (rc && rc != -ENODEV) { 1329 /* 1330 * Don't abort the probe if SNP INIT failed, 1331 * continue to initialize the legacy SEV firmware. 1332 */ 1333 dev_err(sev->dev, "SEV-SNP: failed to INIT rc %d, error %#x\n", 1334 rc, args->error); 1335 } 1336 1337 /* Defer legacy SEV/SEV-ES support if allowed by caller/module. */ 1338 if (args->probe && !psp_init_on_probe) 1339 return 0; 1340 1341 return __sev_platform_init_locked(&args->error); 1342 } 1343 1344 int sev_platform_init(struct sev_platform_init_args *args) 1345 { 1346 int rc; 1347 1348 mutex_lock(&sev_cmd_mutex); 1349 rc = _sev_platform_init_locked(args); 1350 mutex_unlock(&sev_cmd_mutex); 1351 1352 return rc; 1353 } 1354 EXPORT_SYMBOL_GPL(sev_platform_init); 1355 1356 static int __sev_platform_shutdown_locked(int *error) 1357 { 1358 struct psp_device *psp = psp_master; 1359 struct sev_device *sev; 1360 int ret; 1361 1362 if (!psp || !psp->sev_data) 1363 return 0; 1364 1365 sev = psp->sev_data; 1366 1367 if (sev->state == SEV_STATE_UNINIT) 1368 return 0; 1369 1370 ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error); 1371 if (ret) 1372 return ret; 1373 1374 sev->state = SEV_STATE_UNINIT; 1375 dev_dbg(sev->dev, "SEV firmware shutdown\n"); 1376 1377 return ret; 1378 } 1379 1380 static int sev_get_platform_state(int *state, int *error) 1381 { 1382 struct sev_user_data_status data; 1383 int rc; 1384 1385 rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error); 1386 if (rc) 1387 return rc; 1388 1389 *state = data.state; 1390 return rc; 1391 } 1392 1393 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable) 1394 { 1395 int state, rc; 1396 1397 if (!writable) 1398 return -EPERM; 1399 1400 /* 1401 * The SEV spec requires that FACTORY_RESET must be issued in 1402 * UNINIT state. Before we go further lets check if any guest is 1403 * active. 1404 * 1405 * If FW is in WORKING state then deny the request otherwise issue 1406 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET. 1407 * 1408 */ 1409 rc = sev_get_platform_state(&state, &argp->error); 1410 if (rc) 1411 return rc; 1412 1413 if (state == SEV_STATE_WORKING) 1414 return -EBUSY; 1415 1416 if (state == SEV_STATE_INIT) { 1417 rc = __sev_platform_shutdown_locked(&argp->error); 1418 if (rc) 1419 return rc; 1420 } 1421 1422 return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error); 1423 } 1424 1425 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp) 1426 { 1427 struct sev_user_data_status data; 1428 int ret; 1429 1430 memset(&data, 0, sizeof(data)); 1431 1432 ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error); 1433 if (ret) 1434 return ret; 1435 1436 if (copy_to_user((void __user *)argp->data, &data, sizeof(data))) 1437 ret = -EFAULT; 1438 1439 return ret; 1440 } 1441 1442 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable) 1443 { 1444 struct sev_device *sev = psp_master->sev_data; 1445 int rc; 1446 1447 if (!writable) 1448 return -EPERM; 1449 1450 if (sev->state == SEV_STATE_UNINIT) { 1451 rc = __sev_platform_init_locked(&argp->error); 1452 if (rc) 1453 return rc; 1454 } 1455 1456 return __sev_do_cmd_locked(cmd, NULL, &argp->error); 1457 } 1458 1459 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable) 1460 { 1461 struct sev_device *sev = psp_master->sev_data; 1462 struct sev_user_data_pek_csr input; 1463 struct sev_data_pek_csr data; 1464 void __user *input_address; 1465 void *blob = NULL; 1466 int ret; 1467 1468 if (!writable) 1469 return -EPERM; 1470 1471 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1472 return -EFAULT; 1473 1474 memset(&data, 0, sizeof(data)); 1475 1476 /* userspace wants to query CSR length */ 1477 if (!input.address || !input.length) 1478 goto cmd; 1479 1480 /* allocate a physically contiguous buffer to store the CSR blob */ 1481 input_address = (void __user *)input.address; 1482 if (input.length > SEV_FW_BLOB_MAX_SIZE) 1483 return -EFAULT; 1484 1485 blob = kzalloc(input.length, GFP_KERNEL); 1486 if (!blob) 1487 return -ENOMEM; 1488 1489 data.address = __psp_pa(blob); 1490 data.len = input.length; 1491 1492 cmd: 1493 if (sev->state == SEV_STATE_UNINIT) { 1494 ret = __sev_platform_init_locked(&argp->error); 1495 if (ret) 1496 goto e_free_blob; 1497 } 1498 1499 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error); 1500 1501 /* If we query the CSR length, FW responded with expected data. */ 1502 input.length = data.len; 1503 1504 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1505 ret = -EFAULT; 1506 goto e_free_blob; 1507 } 1508 1509 if (blob) { 1510 if (copy_to_user(input_address, blob, input.length)) 1511 ret = -EFAULT; 1512 } 1513 1514 e_free_blob: 1515 kfree(blob); 1516 return ret; 1517 } 1518 1519 void *psp_copy_user_blob(u64 uaddr, u32 len) 1520 { 1521 if (!uaddr || !len) 1522 return ERR_PTR(-EINVAL); 1523 1524 /* verify that blob length does not exceed our limit */ 1525 if (len > SEV_FW_BLOB_MAX_SIZE) 1526 return ERR_PTR(-EINVAL); 1527 1528 return memdup_user((void __user *)uaddr, len); 1529 } 1530 EXPORT_SYMBOL_GPL(psp_copy_user_blob); 1531 1532 static int sev_get_api_version(void) 1533 { 1534 struct sev_device *sev = psp_master->sev_data; 1535 struct sev_user_data_status status; 1536 int error = 0, ret; 1537 1538 ret = sev_platform_status(&status, &error); 1539 if (ret) { 1540 dev_err(sev->dev, 1541 "SEV: failed to get status. Error: %#x\n", error); 1542 return 1; 1543 } 1544 1545 sev->api_major = status.api_major; 1546 sev->api_minor = status.api_minor; 1547 sev->build = status.build; 1548 sev->state = status.state; 1549 1550 return 0; 1551 } 1552 1553 static int sev_get_firmware(struct device *dev, 1554 const struct firmware **firmware) 1555 { 1556 char fw_name_specific[SEV_FW_NAME_SIZE]; 1557 char fw_name_subset[SEV_FW_NAME_SIZE]; 1558 1559 snprintf(fw_name_specific, sizeof(fw_name_specific), 1560 "amd/amd_sev_fam%.2xh_model%.2xh.sbin", 1561 boot_cpu_data.x86, boot_cpu_data.x86_model); 1562 1563 snprintf(fw_name_subset, sizeof(fw_name_subset), 1564 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin", 1565 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4); 1566 1567 /* Check for SEV FW for a particular model. 1568 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h 1569 * 1570 * or 1571 * 1572 * Check for SEV FW common to a subset of models. 1573 * Ex. amd_sev_fam17h_model0xh.sbin for 1574 * Family 17h Model 00h -- Family 17h Model 0Fh 1575 * 1576 * or 1577 * 1578 * Fall-back to using generic name: sev.fw 1579 */ 1580 if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) || 1581 (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) || 1582 (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0)) 1583 return 0; 1584 1585 return -ENOENT; 1586 } 1587 1588 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */ 1589 static int sev_update_firmware(struct device *dev) 1590 { 1591 struct sev_data_download_firmware *data; 1592 const struct firmware *firmware; 1593 int ret, error, order; 1594 struct page *p; 1595 u64 data_size; 1596 1597 if (!sev_version_greater_or_equal(0, 15)) { 1598 dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n"); 1599 return -1; 1600 } 1601 1602 if (sev_get_firmware(dev, &firmware) == -ENOENT) { 1603 dev_dbg(dev, "No SEV firmware file present\n"); 1604 return -1; 1605 } 1606 1607 /* 1608 * SEV FW expects the physical address given to it to be 32 1609 * byte aligned. Memory allocated has structure placed at the 1610 * beginning followed by the firmware being passed to the SEV 1611 * FW. Allocate enough memory for data structure + alignment 1612 * padding + SEV FW. 1613 */ 1614 data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32); 1615 1616 order = get_order(firmware->size + data_size); 1617 p = alloc_pages(GFP_KERNEL, order); 1618 if (!p) { 1619 ret = -1; 1620 goto fw_err; 1621 } 1622 1623 /* 1624 * Copy firmware data to a kernel allocated contiguous 1625 * memory region. 1626 */ 1627 data = page_address(p); 1628 memcpy(page_address(p) + data_size, firmware->data, firmware->size); 1629 1630 data->address = __psp_pa(page_address(p) + data_size); 1631 data->len = firmware->size; 1632 1633 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1634 1635 /* 1636 * A quirk for fixing the committed TCB version, when upgrading from 1637 * earlier firmware version than 1.50. 1638 */ 1639 if (!ret && !sev_version_greater_or_equal(1, 50)) 1640 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1641 1642 if (ret) 1643 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error); 1644 1645 __free_pages(p, order); 1646 1647 fw_err: 1648 release_firmware(firmware); 1649 1650 return ret; 1651 } 1652 1653 static int __sev_snp_shutdown_locked(int *error, bool panic) 1654 { 1655 struct psp_device *psp = psp_master; 1656 struct sev_device *sev; 1657 struct sev_data_snp_shutdown_ex data; 1658 int ret; 1659 1660 if (!psp || !psp->sev_data) 1661 return 0; 1662 1663 sev = psp->sev_data; 1664 1665 if (!sev->snp_initialized) 1666 return 0; 1667 1668 memset(&data, 0, sizeof(data)); 1669 data.len = sizeof(data); 1670 data.iommu_snp_shutdown = 1; 1671 1672 /* 1673 * If invoked during panic handling, local interrupts are disabled 1674 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called. 1675 * In that case, a wbinvd() is done on remote CPUs via the NMI 1676 * callback, so only a local wbinvd() is needed here. 1677 */ 1678 if (!panic) 1679 wbinvd_on_all_cpus(); 1680 else 1681 wbinvd(); 1682 1683 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error); 1684 /* SHUTDOWN may require DF_FLUSH */ 1685 if (*error == SEV_RET_DFFLUSH_REQUIRED) { 1686 ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, NULL); 1687 if (ret) { 1688 dev_err(sev->dev, "SEV-SNP DF_FLUSH failed\n"); 1689 return ret; 1690 } 1691 /* reissue the shutdown command */ 1692 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, 1693 error); 1694 } 1695 if (ret) { 1696 dev_err(sev->dev, "SEV-SNP firmware shutdown failed\n"); 1697 return ret; 1698 } 1699 1700 /* 1701 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP 1702 * enforcement by the IOMMU and also transitions all pages 1703 * associated with the IOMMU to the Reclaim state. 1704 * Firmware was transitioning the IOMMU pages to Hypervisor state 1705 * before version 1.53. But, accounting for the number of assigned 1706 * 4kB pages in a 2M page was done incorrectly by not transitioning 1707 * to the Reclaim state. This resulted in RMP #PF when later accessing 1708 * the 2M page containing those pages during kexec boot. Hence, the 1709 * firmware now transitions these pages to Reclaim state and hypervisor 1710 * needs to transition these pages to shared state. SNP Firmware 1711 * version 1.53 and above are needed for kexec boot. 1712 */ 1713 ret = amd_iommu_snp_disable(); 1714 if (ret) { 1715 dev_err(sev->dev, "SNP IOMMU shutdown failed\n"); 1716 return ret; 1717 } 1718 1719 sev->snp_initialized = false; 1720 dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n"); 1721 1722 return ret; 1723 } 1724 1725 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable) 1726 { 1727 struct sev_device *sev = psp_master->sev_data; 1728 struct sev_user_data_pek_cert_import input; 1729 struct sev_data_pek_cert_import data; 1730 void *pek_blob, *oca_blob; 1731 int ret; 1732 1733 if (!writable) 1734 return -EPERM; 1735 1736 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1737 return -EFAULT; 1738 1739 /* copy PEK certificate blobs from userspace */ 1740 pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len); 1741 if (IS_ERR(pek_blob)) 1742 return PTR_ERR(pek_blob); 1743 1744 data.reserved = 0; 1745 data.pek_cert_address = __psp_pa(pek_blob); 1746 data.pek_cert_len = input.pek_cert_len; 1747 1748 /* copy PEK certificate blobs from userspace */ 1749 oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len); 1750 if (IS_ERR(oca_blob)) { 1751 ret = PTR_ERR(oca_blob); 1752 goto e_free_pek; 1753 } 1754 1755 data.oca_cert_address = __psp_pa(oca_blob); 1756 data.oca_cert_len = input.oca_cert_len; 1757 1758 /* If platform is not in INIT state then transition it to INIT */ 1759 if (sev->state != SEV_STATE_INIT) { 1760 ret = __sev_platform_init_locked(&argp->error); 1761 if (ret) 1762 goto e_free_oca; 1763 } 1764 1765 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error); 1766 1767 e_free_oca: 1768 kfree(oca_blob); 1769 e_free_pek: 1770 kfree(pek_blob); 1771 return ret; 1772 } 1773 1774 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp) 1775 { 1776 struct sev_user_data_get_id2 input; 1777 struct sev_data_get_id data; 1778 void __user *input_address; 1779 void *id_blob = NULL; 1780 int ret; 1781 1782 /* SEV GET_ID is available from SEV API v0.16 and up */ 1783 if (!sev_version_greater_or_equal(0, 16)) 1784 return -ENOTSUPP; 1785 1786 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1787 return -EFAULT; 1788 1789 input_address = (void __user *)input.address; 1790 1791 if (input.address && input.length) { 1792 /* 1793 * The length of the ID shouldn't be assumed by software since 1794 * it may change in the future. The allocation size is limited 1795 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator. 1796 * If the allocation fails, simply return ENOMEM rather than 1797 * warning in the kernel log. 1798 */ 1799 id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN); 1800 if (!id_blob) 1801 return -ENOMEM; 1802 1803 data.address = __psp_pa(id_blob); 1804 data.len = input.length; 1805 } else { 1806 data.address = 0; 1807 data.len = 0; 1808 } 1809 1810 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error); 1811 1812 /* 1813 * Firmware will return the length of the ID value (either the minimum 1814 * required length or the actual length written), return it to the user. 1815 */ 1816 input.length = data.len; 1817 1818 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1819 ret = -EFAULT; 1820 goto e_free; 1821 } 1822 1823 if (id_blob) { 1824 if (copy_to_user(input_address, id_blob, data.len)) { 1825 ret = -EFAULT; 1826 goto e_free; 1827 } 1828 } 1829 1830 e_free: 1831 kfree(id_blob); 1832 1833 return ret; 1834 } 1835 1836 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp) 1837 { 1838 struct sev_data_get_id *data; 1839 u64 data_size, user_size; 1840 void *id_blob, *mem; 1841 int ret; 1842 1843 /* SEV GET_ID available from SEV API v0.16 and up */ 1844 if (!sev_version_greater_or_equal(0, 16)) 1845 return -ENOTSUPP; 1846 1847 /* SEV FW expects the buffer it fills with the ID to be 1848 * 8-byte aligned. Memory allocated should be enough to 1849 * hold data structure + alignment padding + memory 1850 * where SEV FW writes the ID. 1851 */ 1852 data_size = ALIGN(sizeof(struct sev_data_get_id), 8); 1853 user_size = sizeof(struct sev_user_data_get_id); 1854 1855 mem = kzalloc(data_size + user_size, GFP_KERNEL); 1856 if (!mem) 1857 return -ENOMEM; 1858 1859 data = mem; 1860 id_blob = mem + data_size; 1861 1862 data->address = __psp_pa(id_blob); 1863 data->len = user_size; 1864 1865 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); 1866 if (!ret) { 1867 if (copy_to_user((void __user *)argp->data, id_blob, data->len)) 1868 ret = -EFAULT; 1869 } 1870 1871 kfree(mem); 1872 1873 return ret; 1874 } 1875 1876 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable) 1877 { 1878 struct sev_device *sev = psp_master->sev_data; 1879 struct sev_user_data_pdh_cert_export input; 1880 void *pdh_blob = NULL, *cert_blob = NULL; 1881 struct sev_data_pdh_cert_export data; 1882 void __user *input_cert_chain_address; 1883 void __user *input_pdh_cert_address; 1884 int ret; 1885 1886 /* If platform is not in INIT state then transition it to INIT. */ 1887 if (sev->state != SEV_STATE_INIT) { 1888 if (!writable) 1889 return -EPERM; 1890 1891 ret = __sev_platform_init_locked(&argp->error); 1892 if (ret) 1893 return ret; 1894 } 1895 1896 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1897 return -EFAULT; 1898 1899 memset(&data, 0, sizeof(data)); 1900 1901 /* Userspace wants to query the certificate length. */ 1902 if (!input.pdh_cert_address || 1903 !input.pdh_cert_len || 1904 !input.cert_chain_address) 1905 goto cmd; 1906 1907 input_pdh_cert_address = (void __user *)input.pdh_cert_address; 1908 input_cert_chain_address = (void __user *)input.cert_chain_address; 1909 1910 /* Allocate a physically contiguous buffer to store the PDH blob. */ 1911 if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE) 1912 return -EFAULT; 1913 1914 /* Allocate a physically contiguous buffer to store the cert chain blob. */ 1915 if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE) 1916 return -EFAULT; 1917 1918 pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL); 1919 if (!pdh_blob) 1920 return -ENOMEM; 1921 1922 data.pdh_cert_address = __psp_pa(pdh_blob); 1923 data.pdh_cert_len = input.pdh_cert_len; 1924 1925 cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL); 1926 if (!cert_blob) { 1927 ret = -ENOMEM; 1928 goto e_free_pdh; 1929 } 1930 1931 data.cert_chain_address = __psp_pa(cert_blob); 1932 data.cert_chain_len = input.cert_chain_len; 1933 1934 cmd: 1935 ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error); 1936 1937 /* If we query the length, FW responded with expected data. */ 1938 input.cert_chain_len = data.cert_chain_len; 1939 input.pdh_cert_len = data.pdh_cert_len; 1940 1941 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1942 ret = -EFAULT; 1943 goto e_free_cert; 1944 } 1945 1946 if (pdh_blob) { 1947 if (copy_to_user(input_pdh_cert_address, 1948 pdh_blob, input.pdh_cert_len)) { 1949 ret = -EFAULT; 1950 goto e_free_cert; 1951 } 1952 } 1953 1954 if (cert_blob) { 1955 if (copy_to_user(input_cert_chain_address, 1956 cert_blob, input.cert_chain_len)) 1957 ret = -EFAULT; 1958 } 1959 1960 e_free_cert: 1961 kfree(cert_blob); 1962 e_free_pdh: 1963 kfree(pdh_blob); 1964 return ret; 1965 } 1966 1967 static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp) 1968 { 1969 struct sev_device *sev = psp_master->sev_data; 1970 struct sev_data_snp_addr buf; 1971 struct page *status_page; 1972 void *data; 1973 int ret; 1974 1975 if (!sev->snp_initialized || !argp->data) 1976 return -EINVAL; 1977 1978 status_page = alloc_page(GFP_KERNEL_ACCOUNT); 1979 if (!status_page) 1980 return -ENOMEM; 1981 1982 data = page_address(status_page); 1983 1984 /* 1985 * Firmware expects status page to be in firmware-owned state, otherwise 1986 * it will report firmware error code INVALID_PAGE_STATE (0x1A). 1987 */ 1988 if (rmp_mark_pages_firmware(__pa(data), 1, true)) { 1989 ret = -EFAULT; 1990 goto cleanup; 1991 } 1992 1993 buf.address = __psp_pa(data); 1994 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error); 1995 1996 /* 1997 * Status page will be transitioned to Reclaim state upon success, or 1998 * left in Firmware state in failure. Use snp_reclaim_pages() to 1999 * transition either case back to Hypervisor-owned state. 2000 */ 2001 if (snp_reclaim_pages(__pa(data), 1, true)) 2002 return -EFAULT; 2003 2004 if (ret) 2005 goto cleanup; 2006 2007 if (copy_to_user((void __user *)argp->data, data, 2008 sizeof(struct sev_user_data_snp_status))) 2009 ret = -EFAULT; 2010 2011 cleanup: 2012 __free_pages(status_page, 0); 2013 return ret; 2014 } 2015 2016 static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp) 2017 { 2018 struct sev_device *sev = psp_master->sev_data; 2019 struct sev_data_snp_commit buf; 2020 2021 if (!sev->snp_initialized) 2022 return -EINVAL; 2023 2024 buf.len = sizeof(buf); 2025 2026 return __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error); 2027 } 2028 2029 static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable) 2030 { 2031 struct sev_device *sev = psp_master->sev_data; 2032 struct sev_user_data_snp_config config; 2033 2034 if (!sev->snp_initialized || !argp->data) 2035 return -EINVAL; 2036 2037 if (!writable) 2038 return -EPERM; 2039 2040 if (copy_from_user(&config, (void __user *)argp->data, sizeof(config))) 2041 return -EFAULT; 2042 2043 return __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error); 2044 } 2045 2046 static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable) 2047 { 2048 struct sev_device *sev = psp_master->sev_data; 2049 struct sev_user_data_snp_vlek_load input; 2050 void *blob; 2051 int ret; 2052 2053 if (!sev->snp_initialized || !argp->data) 2054 return -EINVAL; 2055 2056 if (!writable) 2057 return -EPERM; 2058 2059 if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input))) 2060 return -EFAULT; 2061 2062 if (input.len != sizeof(input) || input.vlek_wrapped_version != 0) 2063 return -EINVAL; 2064 2065 blob = psp_copy_user_blob(input.vlek_wrapped_address, 2066 sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick)); 2067 if (IS_ERR(blob)) 2068 return PTR_ERR(blob); 2069 2070 input.vlek_wrapped_address = __psp_pa(blob); 2071 2072 ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error); 2073 2074 kfree(blob); 2075 2076 return ret; 2077 } 2078 2079 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) 2080 { 2081 void __user *argp = (void __user *)arg; 2082 struct sev_issue_cmd input; 2083 int ret = -EFAULT; 2084 bool writable = file->f_mode & FMODE_WRITE; 2085 2086 if (!psp_master || !psp_master->sev_data) 2087 return -ENODEV; 2088 2089 if (ioctl != SEV_ISSUE_CMD) 2090 return -EINVAL; 2091 2092 if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd))) 2093 return -EFAULT; 2094 2095 if (input.cmd > SEV_MAX) 2096 return -EINVAL; 2097 2098 mutex_lock(&sev_cmd_mutex); 2099 2100 switch (input.cmd) { 2101 2102 case SEV_FACTORY_RESET: 2103 ret = sev_ioctl_do_reset(&input, writable); 2104 break; 2105 case SEV_PLATFORM_STATUS: 2106 ret = sev_ioctl_do_platform_status(&input); 2107 break; 2108 case SEV_PEK_GEN: 2109 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable); 2110 break; 2111 case SEV_PDH_GEN: 2112 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable); 2113 break; 2114 case SEV_PEK_CSR: 2115 ret = sev_ioctl_do_pek_csr(&input, writable); 2116 break; 2117 case SEV_PEK_CERT_IMPORT: 2118 ret = sev_ioctl_do_pek_import(&input, writable); 2119 break; 2120 case SEV_PDH_CERT_EXPORT: 2121 ret = sev_ioctl_do_pdh_export(&input, writable); 2122 break; 2123 case SEV_GET_ID: 2124 pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n"); 2125 ret = sev_ioctl_do_get_id(&input); 2126 break; 2127 case SEV_GET_ID2: 2128 ret = sev_ioctl_do_get_id2(&input); 2129 break; 2130 case SNP_PLATFORM_STATUS: 2131 ret = sev_ioctl_do_snp_platform_status(&input); 2132 break; 2133 case SNP_COMMIT: 2134 ret = sev_ioctl_do_snp_commit(&input); 2135 break; 2136 case SNP_SET_CONFIG: 2137 ret = sev_ioctl_do_snp_set_config(&input, writable); 2138 break; 2139 case SNP_VLEK_LOAD: 2140 ret = sev_ioctl_do_snp_vlek_load(&input, writable); 2141 break; 2142 default: 2143 ret = -EINVAL; 2144 goto out; 2145 } 2146 2147 if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd))) 2148 ret = -EFAULT; 2149 out: 2150 mutex_unlock(&sev_cmd_mutex); 2151 2152 return ret; 2153 } 2154 2155 static const struct file_operations sev_fops = { 2156 .owner = THIS_MODULE, 2157 .unlocked_ioctl = sev_ioctl, 2158 }; 2159 2160 int sev_platform_status(struct sev_user_data_status *data, int *error) 2161 { 2162 return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error); 2163 } 2164 EXPORT_SYMBOL_GPL(sev_platform_status); 2165 2166 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error) 2167 { 2168 return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error); 2169 } 2170 EXPORT_SYMBOL_GPL(sev_guest_deactivate); 2171 2172 int sev_guest_activate(struct sev_data_activate *data, int *error) 2173 { 2174 return sev_do_cmd(SEV_CMD_ACTIVATE, data, error); 2175 } 2176 EXPORT_SYMBOL_GPL(sev_guest_activate); 2177 2178 int sev_guest_decommission(struct sev_data_decommission *data, int *error) 2179 { 2180 return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error); 2181 } 2182 EXPORT_SYMBOL_GPL(sev_guest_decommission); 2183 2184 int sev_guest_df_flush(int *error) 2185 { 2186 return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error); 2187 } 2188 EXPORT_SYMBOL_GPL(sev_guest_df_flush); 2189 2190 static void sev_exit(struct kref *ref) 2191 { 2192 misc_deregister(&misc_dev->misc); 2193 kfree(misc_dev); 2194 misc_dev = NULL; 2195 } 2196 2197 static int sev_misc_init(struct sev_device *sev) 2198 { 2199 struct device *dev = sev->dev; 2200 int ret; 2201 2202 /* 2203 * SEV feature support can be detected on multiple devices but the SEV 2204 * FW commands must be issued on the master. During probe, we do not 2205 * know the master hence we create /dev/sev on the first device probe. 2206 * sev_do_cmd() finds the right master device to which to issue the 2207 * command to the firmware. 2208 */ 2209 if (!misc_dev) { 2210 struct miscdevice *misc; 2211 2212 misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL); 2213 if (!misc_dev) 2214 return -ENOMEM; 2215 2216 misc = &misc_dev->misc; 2217 misc->minor = MISC_DYNAMIC_MINOR; 2218 misc->name = DEVICE_NAME; 2219 misc->fops = &sev_fops; 2220 2221 ret = misc_register(misc); 2222 if (ret) 2223 return ret; 2224 2225 kref_init(&misc_dev->refcount); 2226 } else { 2227 kref_get(&misc_dev->refcount); 2228 } 2229 2230 init_waitqueue_head(&sev->int_queue); 2231 sev->misc = misc_dev; 2232 dev_dbg(dev, "registered SEV device\n"); 2233 2234 return 0; 2235 } 2236 2237 int sev_dev_init(struct psp_device *psp) 2238 { 2239 struct device *dev = psp->dev; 2240 struct sev_device *sev; 2241 int ret = -ENOMEM; 2242 2243 if (!boot_cpu_has(X86_FEATURE_SEV)) { 2244 dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n"); 2245 return 0; 2246 } 2247 2248 sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL); 2249 if (!sev) 2250 goto e_err; 2251 2252 sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1); 2253 if (!sev->cmd_buf) 2254 goto e_sev; 2255 2256 sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE; 2257 2258 psp->sev_data = sev; 2259 2260 sev->dev = dev; 2261 sev->psp = psp; 2262 2263 sev->io_regs = psp->io_regs; 2264 2265 sev->vdata = (struct sev_vdata *)psp->vdata->sev; 2266 if (!sev->vdata) { 2267 ret = -ENODEV; 2268 dev_err(dev, "sev: missing driver data\n"); 2269 goto e_buf; 2270 } 2271 2272 psp_set_sev_irq_handler(psp, sev_irq_handler, sev); 2273 2274 ret = sev_misc_init(sev); 2275 if (ret) 2276 goto e_irq; 2277 2278 dev_notice(dev, "sev enabled\n"); 2279 2280 return 0; 2281 2282 e_irq: 2283 psp_clear_sev_irq_handler(psp); 2284 e_buf: 2285 devm_free_pages(dev, (unsigned long)sev->cmd_buf); 2286 e_sev: 2287 devm_kfree(dev, sev); 2288 e_err: 2289 psp->sev_data = NULL; 2290 2291 dev_notice(dev, "sev initialization failed\n"); 2292 2293 return ret; 2294 } 2295 2296 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic) 2297 { 2298 int error; 2299 2300 __sev_platform_shutdown_locked(NULL); 2301 2302 if (sev_es_tmr) { 2303 /* 2304 * The TMR area was encrypted, flush it from the cache. 2305 * 2306 * If invoked during panic handling, local interrupts are 2307 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus() 2308 * can't be used. In that case, wbinvd() is done on remote CPUs 2309 * via the NMI callback, and done for this CPU later during 2310 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped. 2311 */ 2312 if (!panic) 2313 wbinvd_on_all_cpus(); 2314 2315 __snp_free_firmware_pages(virt_to_page(sev_es_tmr), 2316 get_order(sev_es_tmr_size), 2317 true); 2318 sev_es_tmr = NULL; 2319 } 2320 2321 if (sev_init_ex_buffer) { 2322 __snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer), 2323 get_order(NV_LENGTH), 2324 true); 2325 sev_init_ex_buffer = NULL; 2326 } 2327 2328 if (snp_range_list) { 2329 kfree(snp_range_list); 2330 snp_range_list = NULL; 2331 } 2332 2333 __sev_snp_shutdown_locked(&error, panic); 2334 } 2335 2336 static void sev_firmware_shutdown(struct sev_device *sev) 2337 { 2338 mutex_lock(&sev_cmd_mutex); 2339 __sev_firmware_shutdown(sev, false); 2340 mutex_unlock(&sev_cmd_mutex); 2341 } 2342 2343 void sev_dev_destroy(struct psp_device *psp) 2344 { 2345 struct sev_device *sev = psp->sev_data; 2346 2347 if (!sev) 2348 return; 2349 2350 sev_firmware_shutdown(sev); 2351 2352 if (sev->misc) 2353 kref_put(&misc_dev->refcount, sev_exit); 2354 2355 psp_clear_sev_irq_handler(psp); 2356 } 2357 2358 static int snp_shutdown_on_panic(struct notifier_block *nb, 2359 unsigned long reason, void *arg) 2360 { 2361 struct sev_device *sev = psp_master->sev_data; 2362 2363 /* 2364 * If sev_cmd_mutex is already acquired, then it's likely 2365 * another PSP command is in flight and issuing a shutdown 2366 * would fail in unexpected ways. Rather than create even 2367 * more confusion during a panic, just bail out here. 2368 */ 2369 if (mutex_is_locked(&sev_cmd_mutex)) 2370 return NOTIFY_DONE; 2371 2372 __sev_firmware_shutdown(sev, true); 2373 2374 return NOTIFY_DONE; 2375 } 2376 2377 static struct notifier_block snp_panic_notifier = { 2378 .notifier_call = snp_shutdown_on_panic, 2379 }; 2380 2381 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd, 2382 void *data, int *error) 2383 { 2384 if (!filep || filep->f_op != &sev_fops) 2385 return -EBADF; 2386 2387 return sev_do_cmd(cmd, data, error); 2388 } 2389 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user); 2390 2391 void sev_pci_init(void) 2392 { 2393 struct sev_device *sev = psp_master->sev_data; 2394 struct sev_platform_init_args args = {0}; 2395 u8 api_major, api_minor, build; 2396 int rc; 2397 2398 if (!sev) 2399 return; 2400 2401 psp_timeout = psp_probe_timeout; 2402 2403 if (sev_get_api_version()) 2404 goto err; 2405 2406 api_major = sev->api_major; 2407 api_minor = sev->api_minor; 2408 build = sev->build; 2409 2410 if (sev_update_firmware(sev->dev) == 0) 2411 sev_get_api_version(); 2412 2413 if (api_major != sev->api_major || api_minor != sev->api_minor || 2414 build != sev->build) 2415 dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n", 2416 api_major, api_minor, build, 2417 sev->api_major, sev->api_minor, sev->build); 2418 2419 /* Initialize the platform */ 2420 args.probe = true; 2421 rc = sev_platform_init(&args); 2422 if (rc) 2423 dev_err(sev->dev, "SEV: failed to INIT error %#x, rc %d\n", 2424 args.error, rc); 2425 2426 dev_info(sev->dev, "SEV%s API:%d.%d build:%d\n", sev->snp_initialized ? 2427 "-SNP" : "", sev->api_major, sev->api_minor, sev->build); 2428 2429 atomic_notifier_chain_register(&panic_notifier_list, 2430 &snp_panic_notifier); 2431 return; 2432 2433 err: 2434 sev_dev_destroy(psp_master); 2435 2436 psp_master->sev_data = NULL; 2437 } 2438 2439 void sev_pci_exit(void) 2440 { 2441 struct sev_device *sev = psp_master->sev_data; 2442 2443 if (!sev) 2444 return; 2445 2446 sev_firmware_shutdown(sev); 2447 2448 atomic_notifier_chain_unregister(&panic_notifier_list, 2449 &snp_panic_notifier); 2450 } 2451