xref: /linux/drivers/crypto/ccp/sev-dev.c (revision 412751aa6991501d7defeadecfede59043d1b5e8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Secure Encrypted Virtualization (SEV) interface
4  *
5  * Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6  *
7  * Author: Brijesh Singh <brijesh.singh@amd.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/kthread.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/spinlock_types.h>
18 #include <linux/types.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/hw_random.h>
22 #include <linux/ccp.h>
23 #include <linux/firmware.h>
24 #include <linux/panic_notifier.h>
25 #include <linux/gfp.h>
26 #include <linux/cpufeature.h>
27 #include <linux/fs.h>
28 #include <linux/fs_struct.h>
29 #include <linux/psp.h>
30 #include <linux/amd-iommu.h>
31 
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/e820/types.h>
35 #include <asm/sev.h>
36 #include <asm/msr.h>
37 
38 #include "psp-dev.h"
39 #include "sev-dev.h"
40 
41 #define DEVICE_NAME		"sev"
42 #define SEV_FW_FILE		"amd/sev.fw"
43 #define SEV_FW_NAME_SIZE	64
44 
45 /* Minimum firmware version required for the SEV-SNP support */
46 #define SNP_MIN_API_MAJOR	1
47 #define SNP_MIN_API_MINOR	51
48 
49 /*
50  * Maximum number of firmware-writable buffers that might be specified
51  * in the parameters of a legacy SEV command buffer.
52  */
53 #define CMD_BUF_FW_WRITABLE_MAX 2
54 
55 /* Leave room in the descriptor array for an end-of-list indicator. */
56 #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1)
57 
58 static DEFINE_MUTEX(sev_cmd_mutex);
59 static struct sev_misc_dev *misc_dev;
60 
61 static int psp_cmd_timeout = 100;
62 module_param(psp_cmd_timeout, int, 0644);
63 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands");
64 
65 static int psp_probe_timeout = 5;
66 module_param(psp_probe_timeout, int, 0644);
67 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe");
68 
69 static char *init_ex_path;
70 module_param(init_ex_path, charp, 0444);
71 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX");
72 
73 static bool psp_init_on_probe = true;
74 module_param(psp_init_on_probe, bool, 0444);
75 MODULE_PARM_DESC(psp_init_on_probe, "  if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it");
76 
77 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */
78 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */
79 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */
80 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */
81 
82 static bool psp_dead;
83 static int psp_timeout;
84 
85 /* Trusted Memory Region (TMR):
86  *   The TMR is a 1MB area that must be 1MB aligned.  Use the page allocator
87  *   to allocate the memory, which will return aligned memory for the specified
88  *   allocation order.
89  *
90  * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized.
91  */
92 #define SEV_TMR_SIZE		(1024 * 1024)
93 #define SNP_TMR_SIZE		(2 * 1024 * 1024)
94 
95 static void *sev_es_tmr;
96 static size_t sev_es_tmr_size = SEV_TMR_SIZE;
97 
98 /* INIT_EX NV Storage:
99  *   The NV Storage is a 32Kb area and must be 4Kb page aligned.  Use the page
100  *   allocator to allocate the memory, which will return aligned memory for the
101  *   specified allocation order.
102  */
103 #define NV_LENGTH (32 * 1024)
104 static void *sev_init_ex_buffer;
105 
106 /*
107  * SEV_DATA_RANGE_LIST:
108  *   Array containing range of pages that firmware transitions to HV-fixed
109  *   page state.
110  */
111 static struct sev_data_range_list *snp_range_list;
112 
113 static inline bool sev_version_greater_or_equal(u8 maj, u8 min)
114 {
115 	struct sev_device *sev = psp_master->sev_data;
116 
117 	if (sev->api_major > maj)
118 		return true;
119 
120 	if (sev->api_major == maj && sev->api_minor >= min)
121 		return true;
122 
123 	return false;
124 }
125 
126 static void sev_irq_handler(int irq, void *data, unsigned int status)
127 {
128 	struct sev_device *sev = data;
129 	int reg;
130 
131 	/* Check if it is command completion: */
132 	if (!(status & SEV_CMD_COMPLETE))
133 		return;
134 
135 	/* Check if it is SEV command completion: */
136 	reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
137 	if (FIELD_GET(PSP_CMDRESP_RESP, reg)) {
138 		sev->int_rcvd = 1;
139 		wake_up(&sev->int_queue);
140 	}
141 }
142 
143 static int sev_wait_cmd_ioc(struct sev_device *sev,
144 			    unsigned int *reg, unsigned int timeout)
145 {
146 	int ret;
147 
148 	/*
149 	 * If invoked during panic handling, local interrupts are disabled,
150 	 * so the PSP command completion interrupt can't be used. Poll for
151 	 * PSP command completion instead.
152 	 */
153 	if (irqs_disabled()) {
154 		unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10;
155 
156 		/* Poll for SEV command completion: */
157 		while (timeout_usecs--) {
158 			*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
159 			if (*reg & PSP_CMDRESP_RESP)
160 				return 0;
161 
162 			udelay(10);
163 		}
164 		return -ETIMEDOUT;
165 	}
166 
167 	ret = wait_event_timeout(sev->int_queue,
168 			sev->int_rcvd, timeout * HZ);
169 	if (!ret)
170 		return -ETIMEDOUT;
171 
172 	*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
173 
174 	return 0;
175 }
176 
177 static int sev_cmd_buffer_len(int cmd)
178 {
179 	switch (cmd) {
180 	case SEV_CMD_INIT:			return sizeof(struct sev_data_init);
181 	case SEV_CMD_INIT_EX:                   return sizeof(struct sev_data_init_ex);
182 	case SEV_CMD_SNP_SHUTDOWN_EX:		return sizeof(struct sev_data_snp_shutdown_ex);
183 	case SEV_CMD_SNP_INIT_EX:		return sizeof(struct sev_data_snp_init_ex);
184 	case SEV_CMD_PLATFORM_STATUS:		return sizeof(struct sev_user_data_status);
185 	case SEV_CMD_PEK_CSR:			return sizeof(struct sev_data_pek_csr);
186 	case SEV_CMD_PEK_CERT_IMPORT:		return sizeof(struct sev_data_pek_cert_import);
187 	case SEV_CMD_PDH_CERT_EXPORT:		return sizeof(struct sev_data_pdh_cert_export);
188 	case SEV_CMD_LAUNCH_START:		return sizeof(struct sev_data_launch_start);
189 	case SEV_CMD_LAUNCH_UPDATE_DATA:	return sizeof(struct sev_data_launch_update_data);
190 	case SEV_CMD_LAUNCH_UPDATE_VMSA:	return sizeof(struct sev_data_launch_update_vmsa);
191 	case SEV_CMD_LAUNCH_FINISH:		return sizeof(struct sev_data_launch_finish);
192 	case SEV_CMD_LAUNCH_MEASURE:		return sizeof(struct sev_data_launch_measure);
193 	case SEV_CMD_ACTIVATE:			return sizeof(struct sev_data_activate);
194 	case SEV_CMD_DEACTIVATE:		return sizeof(struct sev_data_deactivate);
195 	case SEV_CMD_DECOMMISSION:		return sizeof(struct sev_data_decommission);
196 	case SEV_CMD_GUEST_STATUS:		return sizeof(struct sev_data_guest_status);
197 	case SEV_CMD_DBG_DECRYPT:		return sizeof(struct sev_data_dbg);
198 	case SEV_CMD_DBG_ENCRYPT:		return sizeof(struct sev_data_dbg);
199 	case SEV_CMD_SEND_START:		return sizeof(struct sev_data_send_start);
200 	case SEV_CMD_SEND_UPDATE_DATA:		return sizeof(struct sev_data_send_update_data);
201 	case SEV_CMD_SEND_UPDATE_VMSA:		return sizeof(struct sev_data_send_update_vmsa);
202 	case SEV_CMD_SEND_FINISH:		return sizeof(struct sev_data_send_finish);
203 	case SEV_CMD_RECEIVE_START:		return sizeof(struct sev_data_receive_start);
204 	case SEV_CMD_RECEIVE_FINISH:		return sizeof(struct sev_data_receive_finish);
205 	case SEV_CMD_RECEIVE_UPDATE_DATA:	return sizeof(struct sev_data_receive_update_data);
206 	case SEV_CMD_RECEIVE_UPDATE_VMSA:	return sizeof(struct sev_data_receive_update_vmsa);
207 	case SEV_CMD_LAUNCH_UPDATE_SECRET:	return sizeof(struct sev_data_launch_secret);
208 	case SEV_CMD_DOWNLOAD_FIRMWARE:		return sizeof(struct sev_data_download_firmware);
209 	case SEV_CMD_GET_ID:			return sizeof(struct sev_data_get_id);
210 	case SEV_CMD_ATTESTATION_REPORT:	return sizeof(struct sev_data_attestation_report);
211 	case SEV_CMD_SEND_CANCEL:		return sizeof(struct sev_data_send_cancel);
212 	case SEV_CMD_SNP_GCTX_CREATE:		return sizeof(struct sev_data_snp_addr);
213 	case SEV_CMD_SNP_LAUNCH_START:		return sizeof(struct sev_data_snp_launch_start);
214 	case SEV_CMD_SNP_LAUNCH_UPDATE:		return sizeof(struct sev_data_snp_launch_update);
215 	case SEV_CMD_SNP_ACTIVATE:		return sizeof(struct sev_data_snp_activate);
216 	case SEV_CMD_SNP_DECOMMISSION:		return sizeof(struct sev_data_snp_addr);
217 	case SEV_CMD_SNP_PAGE_RECLAIM:		return sizeof(struct sev_data_snp_page_reclaim);
218 	case SEV_CMD_SNP_GUEST_STATUS:		return sizeof(struct sev_data_snp_guest_status);
219 	case SEV_CMD_SNP_LAUNCH_FINISH:		return sizeof(struct sev_data_snp_launch_finish);
220 	case SEV_CMD_SNP_DBG_DECRYPT:		return sizeof(struct sev_data_snp_dbg);
221 	case SEV_CMD_SNP_DBG_ENCRYPT:		return sizeof(struct sev_data_snp_dbg);
222 	case SEV_CMD_SNP_PAGE_UNSMASH:		return sizeof(struct sev_data_snp_page_unsmash);
223 	case SEV_CMD_SNP_PLATFORM_STATUS:	return sizeof(struct sev_data_snp_addr);
224 	case SEV_CMD_SNP_GUEST_REQUEST:		return sizeof(struct sev_data_snp_guest_request);
225 	case SEV_CMD_SNP_CONFIG:		return sizeof(struct sev_user_data_snp_config);
226 	case SEV_CMD_SNP_COMMIT:		return sizeof(struct sev_data_snp_commit);
227 	default:				return 0;
228 	}
229 
230 	return 0;
231 }
232 
233 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode)
234 {
235 	struct file *fp;
236 	struct path root;
237 	struct cred *cred;
238 	const struct cred *old_cred;
239 
240 	task_lock(&init_task);
241 	get_fs_root(init_task.fs, &root);
242 	task_unlock(&init_task);
243 
244 	cred = prepare_creds();
245 	if (!cred)
246 		return ERR_PTR(-ENOMEM);
247 	cred->fsuid = GLOBAL_ROOT_UID;
248 	old_cred = override_creds(cred);
249 
250 	fp = file_open_root(&root, filename, flags, mode);
251 	path_put(&root);
252 
253 	put_cred(revert_creds(old_cred));
254 
255 	return fp;
256 }
257 
258 static int sev_read_init_ex_file(void)
259 {
260 	struct sev_device *sev = psp_master->sev_data;
261 	struct file *fp;
262 	ssize_t nread;
263 
264 	lockdep_assert_held(&sev_cmd_mutex);
265 
266 	if (!sev_init_ex_buffer)
267 		return -EOPNOTSUPP;
268 
269 	fp = open_file_as_root(init_ex_path, O_RDONLY, 0);
270 	if (IS_ERR(fp)) {
271 		int ret = PTR_ERR(fp);
272 
273 		if (ret == -ENOENT) {
274 			dev_info(sev->dev,
275 				"SEV: %s does not exist and will be created later.\n",
276 				init_ex_path);
277 			ret = 0;
278 		} else {
279 			dev_err(sev->dev,
280 				"SEV: could not open %s for read, error %d\n",
281 				init_ex_path, ret);
282 		}
283 		return ret;
284 	}
285 
286 	nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL);
287 	if (nread != NV_LENGTH) {
288 		dev_info(sev->dev,
289 			"SEV: could not read %u bytes to non volatile memory area, ret %ld\n",
290 			NV_LENGTH, nread);
291 	}
292 
293 	dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread);
294 	filp_close(fp, NULL);
295 
296 	return 0;
297 }
298 
299 static int sev_write_init_ex_file(void)
300 {
301 	struct sev_device *sev = psp_master->sev_data;
302 	struct file *fp;
303 	loff_t offset = 0;
304 	ssize_t nwrite;
305 
306 	lockdep_assert_held(&sev_cmd_mutex);
307 
308 	if (!sev_init_ex_buffer)
309 		return 0;
310 
311 	fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600);
312 	if (IS_ERR(fp)) {
313 		int ret = PTR_ERR(fp);
314 
315 		dev_err(sev->dev,
316 			"SEV: could not open file for write, error %d\n",
317 			ret);
318 		return ret;
319 	}
320 
321 	nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset);
322 	vfs_fsync(fp, 0);
323 	filp_close(fp, NULL);
324 
325 	if (nwrite != NV_LENGTH) {
326 		dev_err(sev->dev,
327 			"SEV: failed to write %u bytes to non volatile memory area, ret %ld\n",
328 			NV_LENGTH, nwrite);
329 		return -EIO;
330 	}
331 
332 	dev_dbg(sev->dev, "SEV: write successful to NV file\n");
333 
334 	return 0;
335 }
336 
337 static int sev_write_init_ex_file_if_required(int cmd_id)
338 {
339 	lockdep_assert_held(&sev_cmd_mutex);
340 
341 	if (!sev_init_ex_buffer)
342 		return 0;
343 
344 	/*
345 	 * Only a few platform commands modify the SPI/NV area, but none of the
346 	 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN,
347 	 * PEK_CERT_IMPORT, and PDH_GEN do.
348 	 */
349 	switch (cmd_id) {
350 	case SEV_CMD_FACTORY_RESET:
351 	case SEV_CMD_INIT_EX:
352 	case SEV_CMD_PDH_GEN:
353 	case SEV_CMD_PEK_CERT_IMPORT:
354 	case SEV_CMD_PEK_GEN:
355 		break;
356 	default:
357 		return 0;
358 	}
359 
360 	return sev_write_init_ex_file();
361 }
362 
363 /*
364  * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked()
365  * needs snp_reclaim_pages(), so a forward declaration is needed.
366  */
367 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret);
368 
369 static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked)
370 {
371 	int ret, err, i;
372 
373 	paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE));
374 
375 	for (i = 0; i < npages; i++, paddr += PAGE_SIZE) {
376 		struct sev_data_snp_page_reclaim data = {0};
377 
378 		data.paddr = paddr;
379 
380 		if (locked)
381 			ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
382 		else
383 			ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
384 
385 		if (ret)
386 			goto cleanup;
387 
388 		ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K);
389 		if (ret)
390 			goto cleanup;
391 	}
392 
393 	return 0;
394 
395 cleanup:
396 	/*
397 	 * If there was a failure reclaiming the page then it is no longer safe
398 	 * to release it back to the system; leak it instead.
399 	 */
400 	snp_leak_pages(__phys_to_pfn(paddr), npages - i);
401 	return ret;
402 }
403 
404 static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked)
405 {
406 	unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT;
407 	int rc, i;
408 
409 	for (i = 0; i < npages; i++, pfn++) {
410 		rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true);
411 		if (rc)
412 			goto cleanup;
413 	}
414 
415 	return 0;
416 
417 cleanup:
418 	/*
419 	 * Try unrolling the firmware state changes by
420 	 * reclaiming the pages which were already changed to the
421 	 * firmware state.
422 	 */
423 	snp_reclaim_pages(paddr, i, locked);
424 
425 	return rc;
426 }
427 
428 static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order)
429 {
430 	unsigned long npages = 1ul << order, paddr;
431 	struct sev_device *sev;
432 	struct page *page;
433 
434 	if (!psp_master || !psp_master->sev_data)
435 		return NULL;
436 
437 	page = alloc_pages(gfp_mask, order);
438 	if (!page)
439 		return NULL;
440 
441 	/* If SEV-SNP is initialized then add the page in RMP table. */
442 	sev = psp_master->sev_data;
443 	if (!sev->snp_initialized)
444 		return page;
445 
446 	paddr = __pa((unsigned long)page_address(page));
447 	if (rmp_mark_pages_firmware(paddr, npages, false))
448 		return NULL;
449 
450 	return page;
451 }
452 
453 void *snp_alloc_firmware_page(gfp_t gfp_mask)
454 {
455 	struct page *page;
456 
457 	page = __snp_alloc_firmware_pages(gfp_mask, 0);
458 
459 	return page ? page_address(page) : NULL;
460 }
461 EXPORT_SYMBOL_GPL(snp_alloc_firmware_page);
462 
463 static void __snp_free_firmware_pages(struct page *page, int order, bool locked)
464 {
465 	struct sev_device *sev = psp_master->sev_data;
466 	unsigned long paddr, npages = 1ul << order;
467 
468 	if (!page)
469 		return;
470 
471 	paddr = __pa((unsigned long)page_address(page));
472 	if (sev->snp_initialized &&
473 	    snp_reclaim_pages(paddr, npages, locked))
474 		return;
475 
476 	__free_pages(page, order);
477 }
478 
479 void snp_free_firmware_page(void *addr)
480 {
481 	if (!addr)
482 		return;
483 
484 	__snp_free_firmware_pages(virt_to_page(addr), 0, false);
485 }
486 EXPORT_SYMBOL_GPL(snp_free_firmware_page);
487 
488 static void *sev_fw_alloc(unsigned long len)
489 {
490 	struct page *page;
491 
492 	page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len));
493 	if (!page)
494 		return NULL;
495 
496 	return page_address(page);
497 }
498 
499 /**
500  * struct cmd_buf_desc - descriptors for managing legacy SEV command address
501  * parameters corresponding to buffers that may be written to by firmware.
502  *
503  * @paddr_ptr:  pointer to the address parameter in the command buffer which may
504  *              need to be saved/restored depending on whether a bounce buffer
505  *              is used. In the case of a bounce buffer, the command buffer
506  *              needs to be updated with the address of the new bounce buffer
507  *              snp_map_cmd_buf_desc() has allocated specifically for it. Must
508  *              be NULL if this descriptor is only an end-of-list indicator.
509  *
510  * @paddr_orig: storage for the original address parameter, which can be used to
511  *              restore the original value in @paddr_ptr in cases where it is
512  *              replaced with the address of a bounce buffer.
513  *
514  * @len: length of buffer located at the address originally stored at @paddr_ptr
515  *
516  * @guest_owned: true if the address corresponds to guest-owned pages, in which
517  *               case bounce buffers are not needed.
518  */
519 struct cmd_buf_desc {
520 	u64 *paddr_ptr;
521 	u64 paddr_orig;
522 	u32 len;
523 	bool guest_owned;
524 };
525 
526 /*
527  * If a legacy SEV command parameter is a memory address, those pages in
528  * turn need to be transitioned to/from firmware-owned before/after
529  * executing the firmware command.
530  *
531  * Additionally, in cases where those pages are not guest-owned, a bounce
532  * buffer is needed in place of the original memory address parameter.
533  *
534  * A set of descriptors are used to keep track of this handling, and
535  * initialized here based on the specific commands being executed.
536  */
537 static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf,
538 					   struct cmd_buf_desc *desc_list)
539 {
540 	switch (cmd) {
541 	case SEV_CMD_PDH_CERT_EXPORT: {
542 		struct sev_data_pdh_cert_export *data = cmd_buf;
543 
544 		desc_list[0].paddr_ptr = &data->pdh_cert_address;
545 		desc_list[0].len = data->pdh_cert_len;
546 		desc_list[1].paddr_ptr = &data->cert_chain_address;
547 		desc_list[1].len = data->cert_chain_len;
548 		break;
549 	}
550 	case SEV_CMD_GET_ID: {
551 		struct sev_data_get_id *data = cmd_buf;
552 
553 		desc_list[0].paddr_ptr = &data->address;
554 		desc_list[0].len = data->len;
555 		break;
556 	}
557 	case SEV_CMD_PEK_CSR: {
558 		struct sev_data_pek_csr *data = cmd_buf;
559 
560 		desc_list[0].paddr_ptr = &data->address;
561 		desc_list[0].len = data->len;
562 		break;
563 	}
564 	case SEV_CMD_LAUNCH_UPDATE_DATA: {
565 		struct sev_data_launch_update_data *data = cmd_buf;
566 
567 		desc_list[0].paddr_ptr = &data->address;
568 		desc_list[0].len = data->len;
569 		desc_list[0].guest_owned = true;
570 		break;
571 	}
572 	case SEV_CMD_LAUNCH_UPDATE_VMSA: {
573 		struct sev_data_launch_update_vmsa *data = cmd_buf;
574 
575 		desc_list[0].paddr_ptr = &data->address;
576 		desc_list[0].len = data->len;
577 		desc_list[0].guest_owned = true;
578 		break;
579 	}
580 	case SEV_CMD_LAUNCH_MEASURE: {
581 		struct sev_data_launch_measure *data = cmd_buf;
582 
583 		desc_list[0].paddr_ptr = &data->address;
584 		desc_list[0].len = data->len;
585 		break;
586 	}
587 	case SEV_CMD_LAUNCH_UPDATE_SECRET: {
588 		struct sev_data_launch_secret *data = cmd_buf;
589 
590 		desc_list[0].paddr_ptr = &data->guest_address;
591 		desc_list[0].len = data->guest_len;
592 		desc_list[0].guest_owned = true;
593 		break;
594 	}
595 	case SEV_CMD_DBG_DECRYPT: {
596 		struct sev_data_dbg *data = cmd_buf;
597 
598 		desc_list[0].paddr_ptr = &data->dst_addr;
599 		desc_list[0].len = data->len;
600 		desc_list[0].guest_owned = true;
601 		break;
602 	}
603 	case SEV_CMD_DBG_ENCRYPT: {
604 		struct sev_data_dbg *data = cmd_buf;
605 
606 		desc_list[0].paddr_ptr = &data->dst_addr;
607 		desc_list[0].len = data->len;
608 		desc_list[0].guest_owned = true;
609 		break;
610 	}
611 	case SEV_CMD_ATTESTATION_REPORT: {
612 		struct sev_data_attestation_report *data = cmd_buf;
613 
614 		desc_list[0].paddr_ptr = &data->address;
615 		desc_list[0].len = data->len;
616 		break;
617 	}
618 	case SEV_CMD_SEND_START: {
619 		struct sev_data_send_start *data = cmd_buf;
620 
621 		desc_list[0].paddr_ptr = &data->session_address;
622 		desc_list[0].len = data->session_len;
623 		break;
624 	}
625 	case SEV_CMD_SEND_UPDATE_DATA: {
626 		struct sev_data_send_update_data *data = cmd_buf;
627 
628 		desc_list[0].paddr_ptr = &data->hdr_address;
629 		desc_list[0].len = data->hdr_len;
630 		desc_list[1].paddr_ptr = &data->trans_address;
631 		desc_list[1].len = data->trans_len;
632 		break;
633 	}
634 	case SEV_CMD_SEND_UPDATE_VMSA: {
635 		struct sev_data_send_update_vmsa *data = cmd_buf;
636 
637 		desc_list[0].paddr_ptr = &data->hdr_address;
638 		desc_list[0].len = data->hdr_len;
639 		desc_list[1].paddr_ptr = &data->trans_address;
640 		desc_list[1].len = data->trans_len;
641 		break;
642 	}
643 	case SEV_CMD_RECEIVE_UPDATE_DATA: {
644 		struct sev_data_receive_update_data *data = cmd_buf;
645 
646 		desc_list[0].paddr_ptr = &data->guest_address;
647 		desc_list[0].len = data->guest_len;
648 		desc_list[0].guest_owned = true;
649 		break;
650 	}
651 	case SEV_CMD_RECEIVE_UPDATE_VMSA: {
652 		struct sev_data_receive_update_vmsa *data = cmd_buf;
653 
654 		desc_list[0].paddr_ptr = &data->guest_address;
655 		desc_list[0].len = data->guest_len;
656 		desc_list[0].guest_owned = true;
657 		break;
658 	}
659 	default:
660 		break;
661 	}
662 }
663 
664 static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc)
665 {
666 	unsigned int npages;
667 
668 	if (!desc->len)
669 		return 0;
670 
671 	/* Allocate a bounce buffer if this isn't a guest owned page. */
672 	if (!desc->guest_owned) {
673 		struct page *page;
674 
675 		page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len));
676 		if (!page) {
677 			pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n");
678 			return -ENOMEM;
679 		}
680 
681 		desc->paddr_orig = *desc->paddr_ptr;
682 		*desc->paddr_ptr = __psp_pa(page_to_virt(page));
683 	}
684 
685 	npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
686 
687 	/* Transition the buffer to firmware-owned. */
688 	if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) {
689 		pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n");
690 		return -EFAULT;
691 	}
692 
693 	return 0;
694 }
695 
696 static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc)
697 {
698 	unsigned int npages;
699 
700 	if (!desc->len)
701 		return 0;
702 
703 	npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
704 
705 	/* Transition the buffers back to hypervisor-owned. */
706 	if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) {
707 		pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n");
708 		return -EFAULT;
709 	}
710 
711 	/* Copy data from bounce buffer and then free it. */
712 	if (!desc->guest_owned) {
713 		void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr));
714 		void *dst_buf = __va(__sme_clr(desc->paddr_orig));
715 
716 		memcpy(dst_buf, bounce_buf, desc->len);
717 		__free_pages(virt_to_page(bounce_buf), get_order(desc->len));
718 
719 		/* Restore the original address in the command buffer. */
720 		*desc->paddr_ptr = desc->paddr_orig;
721 	}
722 
723 	return 0;
724 }
725 
726 static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
727 {
728 	int i;
729 
730 	snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list);
731 
732 	for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
733 		struct cmd_buf_desc *desc = &desc_list[i];
734 
735 		if (!desc->paddr_ptr)
736 			break;
737 
738 		if (snp_map_cmd_buf_desc(desc))
739 			goto err_unmap;
740 	}
741 
742 	return 0;
743 
744 err_unmap:
745 	for (i--; i >= 0; i--)
746 		snp_unmap_cmd_buf_desc(&desc_list[i]);
747 
748 	return -EFAULT;
749 }
750 
751 static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list)
752 {
753 	int i, ret = 0;
754 
755 	for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
756 		struct cmd_buf_desc *desc = &desc_list[i];
757 
758 		if (!desc->paddr_ptr)
759 			break;
760 
761 		if (snp_unmap_cmd_buf_desc(&desc_list[i]))
762 			ret = -EFAULT;
763 	}
764 
765 	return ret;
766 }
767 
768 static bool sev_cmd_buf_writable(int cmd)
769 {
770 	switch (cmd) {
771 	case SEV_CMD_PLATFORM_STATUS:
772 	case SEV_CMD_GUEST_STATUS:
773 	case SEV_CMD_LAUNCH_START:
774 	case SEV_CMD_RECEIVE_START:
775 	case SEV_CMD_LAUNCH_MEASURE:
776 	case SEV_CMD_SEND_START:
777 	case SEV_CMD_SEND_UPDATE_DATA:
778 	case SEV_CMD_SEND_UPDATE_VMSA:
779 	case SEV_CMD_PEK_CSR:
780 	case SEV_CMD_PDH_CERT_EXPORT:
781 	case SEV_CMD_GET_ID:
782 	case SEV_CMD_ATTESTATION_REPORT:
783 		return true;
784 	default:
785 		return false;
786 	}
787 }
788 
789 /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */
790 static bool snp_legacy_handling_needed(int cmd)
791 {
792 	struct sev_device *sev = psp_master->sev_data;
793 
794 	return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized;
795 }
796 
797 static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
798 {
799 	if (!snp_legacy_handling_needed(cmd))
800 		return 0;
801 
802 	if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list))
803 		return -EFAULT;
804 
805 	/*
806 	 * Before command execution, the command buffer needs to be put into
807 	 * the firmware-owned state.
808 	 */
809 	if (sev_cmd_buf_writable(cmd)) {
810 		if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true))
811 			return -EFAULT;
812 	}
813 
814 	return 0;
815 }
816 
817 static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf)
818 {
819 	if (!snp_legacy_handling_needed(cmd))
820 		return 0;
821 
822 	/*
823 	 * After command completion, the command buffer needs to be put back
824 	 * into the hypervisor-owned state.
825 	 */
826 	if (sev_cmd_buf_writable(cmd))
827 		if (snp_reclaim_pages(__pa(cmd_buf), 1, true))
828 			return -EFAULT;
829 
830 	return 0;
831 }
832 
833 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret)
834 {
835 	struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0};
836 	struct psp_device *psp = psp_master;
837 	struct sev_device *sev;
838 	unsigned int cmdbuff_hi, cmdbuff_lo;
839 	unsigned int phys_lsb, phys_msb;
840 	unsigned int reg, ret = 0;
841 	void *cmd_buf;
842 	int buf_len;
843 
844 	if (!psp || !psp->sev_data)
845 		return -ENODEV;
846 
847 	if (psp_dead)
848 		return -EBUSY;
849 
850 	sev = psp->sev_data;
851 
852 	buf_len = sev_cmd_buffer_len(cmd);
853 	if (WARN_ON_ONCE(!data != !buf_len))
854 		return -EINVAL;
855 
856 	/*
857 	 * Copy the incoming data to driver's scratch buffer as __pa() will not
858 	 * work for some memory, e.g. vmalloc'd addresses, and @data may not be
859 	 * physically contiguous.
860 	 */
861 	if (data) {
862 		/*
863 		 * Commands are generally issued one at a time and require the
864 		 * sev_cmd_mutex, but there could be recursive firmware requests
865 		 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while
866 		 * preparing buffers for another command. This is the only known
867 		 * case of nesting in the current code, so exactly one
868 		 * additional command buffer is available for that purpose.
869 		 */
870 		if (!sev->cmd_buf_active) {
871 			cmd_buf = sev->cmd_buf;
872 			sev->cmd_buf_active = true;
873 		} else if (!sev->cmd_buf_backup_active) {
874 			cmd_buf = sev->cmd_buf_backup;
875 			sev->cmd_buf_backup_active = true;
876 		} else {
877 			dev_err(sev->dev,
878 				"SEV: too many firmware commands in progress, no command buffers available.\n");
879 			return -EBUSY;
880 		}
881 
882 		memcpy(cmd_buf, data, buf_len);
883 
884 		/*
885 		 * The behavior of the SEV-legacy commands is altered when the
886 		 * SNP firmware is in the INIT state.
887 		 */
888 		ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list);
889 		if (ret) {
890 			dev_err(sev->dev,
891 				"SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n",
892 				cmd, ret);
893 			return ret;
894 		}
895 	} else {
896 		cmd_buf = sev->cmd_buf;
897 	}
898 
899 	/* Get the physical address of the command buffer */
900 	phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0;
901 	phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0;
902 
903 	dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n",
904 		cmd, phys_msb, phys_lsb, psp_timeout);
905 
906 	print_hex_dump_debug("(in):  ", DUMP_PREFIX_OFFSET, 16, 2, data,
907 			     buf_len, false);
908 
909 	iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
910 	iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
911 
912 	sev->int_rcvd = 0;
913 
914 	reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd);
915 
916 	/*
917 	 * If invoked during panic handling, local interrupts are disabled so
918 	 * the PSP command completion interrupt can't be used.
919 	 * sev_wait_cmd_ioc() already checks for interrupts disabled and
920 	 * polls for PSP command completion.  Ensure we do not request an
921 	 * interrupt from the PSP if irqs disabled.
922 	 */
923 	if (!irqs_disabled())
924 		reg |= SEV_CMDRESP_IOC;
925 
926 	iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg);
927 
928 	/* wait for command completion */
929 	ret = sev_wait_cmd_ioc(sev, &reg, psp_timeout);
930 	if (ret) {
931 		if (psp_ret)
932 			*psp_ret = 0;
933 
934 		dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd);
935 		psp_dead = true;
936 
937 		return ret;
938 	}
939 
940 	psp_timeout = psp_cmd_timeout;
941 
942 	if (psp_ret)
943 		*psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg);
944 
945 	if (FIELD_GET(PSP_CMDRESP_STS, reg)) {
946 		dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n",
947 			cmd, FIELD_GET(PSP_CMDRESP_STS, reg));
948 
949 		/*
950 		 * PSP firmware may report additional error information in the
951 		 * command buffer registers on error. Print contents of command
952 		 * buffer registers if they changed.
953 		 */
954 		cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
955 		cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
956 		if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) {
957 			dev_dbg(sev->dev, "Additional error information reported in cmdbuff:");
958 			dev_dbg(sev->dev, "  cmdbuff hi: %#010x\n", cmdbuff_hi);
959 			dev_dbg(sev->dev, "  cmdbuff lo: %#010x\n", cmdbuff_lo);
960 		}
961 		ret = -EIO;
962 	} else {
963 		ret = sev_write_init_ex_file_if_required(cmd);
964 	}
965 
966 	/*
967 	 * Copy potential output from the PSP back to data.  Do this even on
968 	 * failure in case the caller wants to glean something from the error.
969 	 */
970 	if (data) {
971 		int ret_reclaim;
972 		/*
973 		 * Restore the page state after the command completes.
974 		 */
975 		ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf);
976 		if (ret_reclaim) {
977 			dev_err(sev->dev,
978 				"SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n",
979 				cmd, ret_reclaim);
980 			return ret_reclaim;
981 		}
982 
983 		memcpy(data, cmd_buf, buf_len);
984 
985 		if (sev->cmd_buf_backup_active)
986 			sev->cmd_buf_backup_active = false;
987 		else
988 			sev->cmd_buf_active = false;
989 
990 		if (snp_unmap_cmd_buf_desc_list(desc_list))
991 			return -EFAULT;
992 	}
993 
994 	print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data,
995 			     buf_len, false);
996 
997 	return ret;
998 }
999 
1000 int sev_do_cmd(int cmd, void *data, int *psp_ret)
1001 {
1002 	int rc;
1003 
1004 	mutex_lock(&sev_cmd_mutex);
1005 	rc = __sev_do_cmd_locked(cmd, data, psp_ret);
1006 	mutex_unlock(&sev_cmd_mutex);
1007 
1008 	return rc;
1009 }
1010 EXPORT_SYMBOL_GPL(sev_do_cmd);
1011 
1012 static int __sev_init_locked(int *error)
1013 {
1014 	struct sev_data_init data;
1015 
1016 	memset(&data, 0, sizeof(data));
1017 	if (sev_es_tmr) {
1018 		/*
1019 		 * Do not include the encryption mask on the physical
1020 		 * address of the TMR (firmware should clear it anyway).
1021 		 */
1022 		data.tmr_address = __pa(sev_es_tmr);
1023 
1024 		data.flags |= SEV_INIT_FLAGS_SEV_ES;
1025 		data.tmr_len = sev_es_tmr_size;
1026 	}
1027 
1028 	return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error);
1029 }
1030 
1031 static int __sev_init_ex_locked(int *error)
1032 {
1033 	struct sev_data_init_ex data;
1034 
1035 	memset(&data, 0, sizeof(data));
1036 	data.length = sizeof(data);
1037 	data.nv_address = __psp_pa(sev_init_ex_buffer);
1038 	data.nv_len = NV_LENGTH;
1039 
1040 	if (sev_es_tmr) {
1041 		/*
1042 		 * Do not include the encryption mask on the physical
1043 		 * address of the TMR (firmware should clear it anyway).
1044 		 */
1045 		data.tmr_address = __pa(sev_es_tmr);
1046 
1047 		data.flags |= SEV_INIT_FLAGS_SEV_ES;
1048 		data.tmr_len = sev_es_tmr_size;
1049 	}
1050 
1051 	return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error);
1052 }
1053 
1054 static inline int __sev_do_init_locked(int *psp_ret)
1055 {
1056 	if (sev_init_ex_buffer)
1057 		return __sev_init_ex_locked(psp_ret);
1058 	else
1059 		return __sev_init_locked(psp_ret);
1060 }
1061 
1062 static void snp_set_hsave_pa(void *arg)
1063 {
1064 	wrmsrq(MSR_VM_HSAVE_PA, 0);
1065 }
1066 
1067 static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg)
1068 {
1069 	struct sev_data_range_list *range_list = arg;
1070 	struct sev_data_range *range = &range_list->ranges[range_list->num_elements];
1071 	size_t size;
1072 
1073 	/*
1074 	 * Ensure the list of HV_FIXED pages that will be passed to firmware
1075 	 * do not exceed the page-sized argument buffer.
1076 	 */
1077 	if ((range_list->num_elements * sizeof(struct sev_data_range) +
1078 	     sizeof(struct sev_data_range_list)) > PAGE_SIZE)
1079 		return -E2BIG;
1080 
1081 	switch (rs->desc) {
1082 	case E820_TYPE_RESERVED:
1083 	case E820_TYPE_PMEM:
1084 	case E820_TYPE_ACPI:
1085 		range->base = rs->start & PAGE_MASK;
1086 		size = PAGE_ALIGN((rs->end + 1) - rs->start);
1087 		range->page_count = size >> PAGE_SHIFT;
1088 		range_list->num_elements++;
1089 		break;
1090 	default:
1091 		break;
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 static int __sev_snp_init_locked(int *error)
1098 {
1099 	struct psp_device *psp = psp_master;
1100 	struct sev_data_snp_init_ex data;
1101 	struct sev_device *sev;
1102 	void *arg = &data;
1103 	int cmd, rc = 0;
1104 
1105 	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
1106 		return -ENODEV;
1107 
1108 	sev = psp->sev_data;
1109 
1110 	if (sev->snp_initialized)
1111 		return 0;
1112 
1113 	if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) {
1114 		dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n",
1115 			SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR);
1116 		return 0;
1117 	}
1118 
1119 	/* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */
1120 	on_each_cpu(snp_set_hsave_pa, NULL, 1);
1121 
1122 	/*
1123 	 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list
1124 	 * of system physical address ranges to convert into HV-fixed page
1125 	 * states during the RMP initialization.  For instance, the memory that
1126 	 * UEFI reserves should be included in the that list. This allows system
1127 	 * components that occasionally write to memory (e.g. logging to UEFI
1128 	 * reserved regions) to not fail due to RMP initialization and SNP
1129 	 * enablement.
1130 	 *
1131 	 */
1132 	if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) {
1133 		/*
1134 		 * Firmware checks that the pages containing the ranges enumerated
1135 		 * in the RANGES structure are either in the default page state or in the
1136 		 * firmware page state.
1137 		 */
1138 		snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL);
1139 		if (!snp_range_list) {
1140 			dev_err(sev->dev,
1141 				"SEV: SNP_INIT_EX range list memory allocation failed\n");
1142 			return -ENOMEM;
1143 		}
1144 
1145 		/*
1146 		 * Retrieve all reserved memory regions from the e820 memory map
1147 		 * to be setup as HV-fixed pages.
1148 		 */
1149 		rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0,
1150 					 snp_range_list, snp_filter_reserved_mem_regions);
1151 		if (rc) {
1152 			dev_err(sev->dev,
1153 				"SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc);
1154 			return rc;
1155 		}
1156 
1157 		memset(&data, 0, sizeof(data));
1158 		data.init_rmp = 1;
1159 		data.list_paddr_en = 1;
1160 		data.list_paddr = __psp_pa(snp_range_list);
1161 		cmd = SEV_CMD_SNP_INIT_EX;
1162 	} else {
1163 		cmd = SEV_CMD_SNP_INIT;
1164 		arg = NULL;
1165 	}
1166 
1167 	/*
1168 	 * The following sequence must be issued before launching the first SNP
1169 	 * guest to ensure all dirty cache lines are flushed, including from
1170 	 * updates to the RMP table itself via the RMPUPDATE instruction:
1171 	 *
1172 	 * - WBINVD on all running CPUs
1173 	 * - SEV_CMD_SNP_INIT[_EX] firmware command
1174 	 * - WBINVD on all running CPUs
1175 	 * - SEV_CMD_SNP_DF_FLUSH firmware command
1176 	 */
1177 	wbinvd_on_all_cpus();
1178 
1179 	rc = __sev_do_cmd_locked(cmd, arg, error);
1180 	if (rc)
1181 		return rc;
1182 
1183 	/* Prepare for first SNP guest launch after INIT. */
1184 	wbinvd_on_all_cpus();
1185 	rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error);
1186 	if (rc)
1187 		return rc;
1188 
1189 	sev->snp_initialized = true;
1190 	dev_dbg(sev->dev, "SEV-SNP firmware initialized\n");
1191 
1192 	sev_es_tmr_size = SNP_TMR_SIZE;
1193 
1194 	return rc;
1195 }
1196 
1197 static void __sev_platform_init_handle_tmr(struct sev_device *sev)
1198 {
1199 	if (sev_es_tmr)
1200 		return;
1201 
1202 	/* Obtain the TMR memory area for SEV-ES use */
1203 	sev_es_tmr = sev_fw_alloc(sev_es_tmr_size);
1204 	if (sev_es_tmr) {
1205 		/* Must flush the cache before giving it to the firmware */
1206 		if (!sev->snp_initialized)
1207 			clflush_cache_range(sev_es_tmr, sev_es_tmr_size);
1208 	} else {
1209 			dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n");
1210 	}
1211 }
1212 
1213 /*
1214  * If an init_ex_path is provided allocate a buffer for the file and
1215  * read in the contents. Additionally, if SNP is initialized, convert
1216  * the buffer pages to firmware pages.
1217  */
1218 static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev)
1219 {
1220 	struct page *page;
1221 	int rc;
1222 
1223 	if (!init_ex_path)
1224 		return 0;
1225 
1226 	if (sev_init_ex_buffer)
1227 		return 0;
1228 
1229 	page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH));
1230 	if (!page) {
1231 		dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n");
1232 		return -ENOMEM;
1233 	}
1234 
1235 	sev_init_ex_buffer = page_address(page);
1236 
1237 	rc = sev_read_init_ex_file();
1238 	if (rc)
1239 		return rc;
1240 
1241 	/* If SEV-SNP is initialized, transition to firmware page. */
1242 	if (sev->snp_initialized) {
1243 		unsigned long npages;
1244 
1245 		npages = 1UL << get_order(NV_LENGTH);
1246 		if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) {
1247 			dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n");
1248 			return -ENOMEM;
1249 		}
1250 	}
1251 
1252 	return 0;
1253 }
1254 
1255 static int __sev_platform_init_locked(int *error)
1256 {
1257 	int rc, psp_ret = SEV_RET_NO_FW_CALL;
1258 	struct sev_device *sev;
1259 
1260 	if (!psp_master || !psp_master->sev_data)
1261 		return -ENODEV;
1262 
1263 	sev = psp_master->sev_data;
1264 
1265 	if (sev->state == SEV_STATE_INIT)
1266 		return 0;
1267 
1268 	__sev_platform_init_handle_tmr(sev);
1269 
1270 	rc = __sev_platform_init_handle_init_ex_path(sev);
1271 	if (rc)
1272 		return rc;
1273 
1274 	rc = __sev_do_init_locked(&psp_ret);
1275 	if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) {
1276 		/*
1277 		 * Initialization command returned an integrity check failure
1278 		 * status code, meaning that firmware load and validation of SEV
1279 		 * related persistent data has failed. Retrying the
1280 		 * initialization function should succeed by replacing the state
1281 		 * with a reset state.
1282 		 */
1283 		dev_err(sev->dev,
1284 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state.");
1285 		rc = __sev_do_init_locked(&psp_ret);
1286 	}
1287 
1288 	if (error)
1289 		*error = psp_ret;
1290 
1291 	if (rc)
1292 		return rc;
1293 
1294 	sev->state = SEV_STATE_INIT;
1295 
1296 	/* Prepare for first SEV guest launch after INIT */
1297 	wbinvd_on_all_cpus();
1298 	rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error);
1299 	if (rc)
1300 		return rc;
1301 
1302 	dev_dbg(sev->dev, "SEV firmware initialized\n");
1303 
1304 	dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major,
1305 		 sev->api_minor, sev->build);
1306 
1307 	return 0;
1308 }
1309 
1310 static int _sev_platform_init_locked(struct sev_platform_init_args *args)
1311 {
1312 	struct sev_device *sev;
1313 	int rc;
1314 
1315 	if (!psp_master || !psp_master->sev_data)
1316 		return -ENODEV;
1317 
1318 	sev = psp_master->sev_data;
1319 
1320 	if (sev->state == SEV_STATE_INIT)
1321 		return 0;
1322 
1323 	/*
1324 	 * Legacy guests cannot be running while SNP_INIT(_EX) is executing,
1325 	 * so perform SEV-SNP initialization at probe time.
1326 	 */
1327 	rc = __sev_snp_init_locked(&args->error);
1328 	if (rc && rc != -ENODEV) {
1329 		/*
1330 		 * Don't abort the probe if SNP INIT failed,
1331 		 * continue to initialize the legacy SEV firmware.
1332 		 */
1333 		dev_err(sev->dev, "SEV-SNP: failed to INIT rc %d, error %#x\n",
1334 			rc, args->error);
1335 	}
1336 
1337 	/* Defer legacy SEV/SEV-ES support if allowed by caller/module. */
1338 	if (args->probe && !psp_init_on_probe)
1339 		return 0;
1340 
1341 	return __sev_platform_init_locked(&args->error);
1342 }
1343 
1344 int sev_platform_init(struct sev_platform_init_args *args)
1345 {
1346 	int rc;
1347 
1348 	mutex_lock(&sev_cmd_mutex);
1349 	rc = _sev_platform_init_locked(args);
1350 	mutex_unlock(&sev_cmd_mutex);
1351 
1352 	return rc;
1353 }
1354 EXPORT_SYMBOL_GPL(sev_platform_init);
1355 
1356 static int __sev_platform_shutdown_locked(int *error)
1357 {
1358 	struct psp_device *psp = psp_master;
1359 	struct sev_device *sev;
1360 	int ret;
1361 
1362 	if (!psp || !psp->sev_data)
1363 		return 0;
1364 
1365 	sev = psp->sev_data;
1366 
1367 	if (sev->state == SEV_STATE_UNINIT)
1368 		return 0;
1369 
1370 	ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error);
1371 	if (ret)
1372 		return ret;
1373 
1374 	sev->state = SEV_STATE_UNINIT;
1375 	dev_dbg(sev->dev, "SEV firmware shutdown\n");
1376 
1377 	return ret;
1378 }
1379 
1380 static int sev_get_platform_state(int *state, int *error)
1381 {
1382 	struct sev_user_data_status data;
1383 	int rc;
1384 
1385 	rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error);
1386 	if (rc)
1387 		return rc;
1388 
1389 	*state = data.state;
1390 	return rc;
1391 }
1392 
1393 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable)
1394 {
1395 	int state, rc;
1396 
1397 	if (!writable)
1398 		return -EPERM;
1399 
1400 	/*
1401 	 * The SEV spec requires that FACTORY_RESET must be issued in
1402 	 * UNINIT state. Before we go further lets check if any guest is
1403 	 * active.
1404 	 *
1405 	 * If FW is in WORKING state then deny the request otherwise issue
1406 	 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET.
1407 	 *
1408 	 */
1409 	rc = sev_get_platform_state(&state, &argp->error);
1410 	if (rc)
1411 		return rc;
1412 
1413 	if (state == SEV_STATE_WORKING)
1414 		return -EBUSY;
1415 
1416 	if (state == SEV_STATE_INIT) {
1417 		rc = __sev_platform_shutdown_locked(&argp->error);
1418 		if (rc)
1419 			return rc;
1420 	}
1421 
1422 	return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error);
1423 }
1424 
1425 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp)
1426 {
1427 	struct sev_user_data_status data;
1428 	int ret;
1429 
1430 	memset(&data, 0, sizeof(data));
1431 
1432 	ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error);
1433 	if (ret)
1434 		return ret;
1435 
1436 	if (copy_to_user((void __user *)argp->data, &data, sizeof(data)))
1437 		ret = -EFAULT;
1438 
1439 	return ret;
1440 }
1441 
1442 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable)
1443 {
1444 	struct sev_device *sev = psp_master->sev_data;
1445 	int rc;
1446 
1447 	if (!writable)
1448 		return -EPERM;
1449 
1450 	if (sev->state == SEV_STATE_UNINIT) {
1451 		rc = __sev_platform_init_locked(&argp->error);
1452 		if (rc)
1453 			return rc;
1454 	}
1455 
1456 	return __sev_do_cmd_locked(cmd, NULL, &argp->error);
1457 }
1458 
1459 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable)
1460 {
1461 	struct sev_device *sev = psp_master->sev_data;
1462 	struct sev_user_data_pek_csr input;
1463 	struct sev_data_pek_csr data;
1464 	void __user *input_address;
1465 	void *blob = NULL;
1466 	int ret;
1467 
1468 	if (!writable)
1469 		return -EPERM;
1470 
1471 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1472 		return -EFAULT;
1473 
1474 	memset(&data, 0, sizeof(data));
1475 
1476 	/* userspace wants to query CSR length */
1477 	if (!input.address || !input.length)
1478 		goto cmd;
1479 
1480 	/* allocate a physically contiguous buffer to store the CSR blob */
1481 	input_address = (void __user *)input.address;
1482 	if (input.length > SEV_FW_BLOB_MAX_SIZE)
1483 		return -EFAULT;
1484 
1485 	blob = kzalloc(input.length, GFP_KERNEL);
1486 	if (!blob)
1487 		return -ENOMEM;
1488 
1489 	data.address = __psp_pa(blob);
1490 	data.len = input.length;
1491 
1492 cmd:
1493 	if (sev->state == SEV_STATE_UNINIT) {
1494 		ret = __sev_platform_init_locked(&argp->error);
1495 		if (ret)
1496 			goto e_free_blob;
1497 	}
1498 
1499 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error);
1500 
1501 	 /* If we query the CSR length, FW responded with expected data. */
1502 	input.length = data.len;
1503 
1504 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1505 		ret = -EFAULT;
1506 		goto e_free_blob;
1507 	}
1508 
1509 	if (blob) {
1510 		if (copy_to_user(input_address, blob, input.length))
1511 			ret = -EFAULT;
1512 	}
1513 
1514 e_free_blob:
1515 	kfree(blob);
1516 	return ret;
1517 }
1518 
1519 void *psp_copy_user_blob(u64 uaddr, u32 len)
1520 {
1521 	if (!uaddr || !len)
1522 		return ERR_PTR(-EINVAL);
1523 
1524 	/* verify that blob length does not exceed our limit */
1525 	if (len > SEV_FW_BLOB_MAX_SIZE)
1526 		return ERR_PTR(-EINVAL);
1527 
1528 	return memdup_user((void __user *)uaddr, len);
1529 }
1530 EXPORT_SYMBOL_GPL(psp_copy_user_blob);
1531 
1532 static int sev_get_api_version(void)
1533 {
1534 	struct sev_device *sev = psp_master->sev_data;
1535 	struct sev_user_data_status status;
1536 	int error = 0, ret;
1537 
1538 	ret = sev_platform_status(&status, &error);
1539 	if (ret) {
1540 		dev_err(sev->dev,
1541 			"SEV: failed to get status. Error: %#x\n", error);
1542 		return 1;
1543 	}
1544 
1545 	sev->api_major = status.api_major;
1546 	sev->api_minor = status.api_minor;
1547 	sev->build = status.build;
1548 	sev->state = status.state;
1549 
1550 	return 0;
1551 }
1552 
1553 static int sev_get_firmware(struct device *dev,
1554 			    const struct firmware **firmware)
1555 {
1556 	char fw_name_specific[SEV_FW_NAME_SIZE];
1557 	char fw_name_subset[SEV_FW_NAME_SIZE];
1558 
1559 	snprintf(fw_name_specific, sizeof(fw_name_specific),
1560 		 "amd/amd_sev_fam%.2xh_model%.2xh.sbin",
1561 		 boot_cpu_data.x86, boot_cpu_data.x86_model);
1562 
1563 	snprintf(fw_name_subset, sizeof(fw_name_subset),
1564 		 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin",
1565 		 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4);
1566 
1567 	/* Check for SEV FW for a particular model.
1568 	 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h
1569 	 *
1570 	 * or
1571 	 *
1572 	 * Check for SEV FW common to a subset of models.
1573 	 * Ex. amd_sev_fam17h_model0xh.sbin for
1574 	 *     Family 17h Model 00h -- Family 17h Model 0Fh
1575 	 *
1576 	 * or
1577 	 *
1578 	 * Fall-back to using generic name: sev.fw
1579 	 */
1580 	if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) ||
1581 	    (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) ||
1582 	    (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0))
1583 		return 0;
1584 
1585 	return -ENOENT;
1586 }
1587 
1588 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */
1589 static int sev_update_firmware(struct device *dev)
1590 {
1591 	struct sev_data_download_firmware *data;
1592 	const struct firmware *firmware;
1593 	int ret, error, order;
1594 	struct page *p;
1595 	u64 data_size;
1596 
1597 	if (!sev_version_greater_or_equal(0, 15)) {
1598 		dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n");
1599 		return -1;
1600 	}
1601 
1602 	if (sev_get_firmware(dev, &firmware) == -ENOENT) {
1603 		dev_dbg(dev, "No SEV firmware file present\n");
1604 		return -1;
1605 	}
1606 
1607 	/*
1608 	 * SEV FW expects the physical address given to it to be 32
1609 	 * byte aligned. Memory allocated has structure placed at the
1610 	 * beginning followed by the firmware being passed to the SEV
1611 	 * FW. Allocate enough memory for data structure + alignment
1612 	 * padding + SEV FW.
1613 	 */
1614 	data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32);
1615 
1616 	order = get_order(firmware->size + data_size);
1617 	p = alloc_pages(GFP_KERNEL, order);
1618 	if (!p) {
1619 		ret = -1;
1620 		goto fw_err;
1621 	}
1622 
1623 	/*
1624 	 * Copy firmware data to a kernel allocated contiguous
1625 	 * memory region.
1626 	 */
1627 	data = page_address(p);
1628 	memcpy(page_address(p) + data_size, firmware->data, firmware->size);
1629 
1630 	data->address = __psp_pa(page_address(p) + data_size);
1631 	data->len = firmware->size;
1632 
1633 	ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1634 
1635 	/*
1636 	 * A quirk for fixing the committed TCB version, when upgrading from
1637 	 * earlier firmware version than 1.50.
1638 	 */
1639 	if (!ret && !sev_version_greater_or_equal(1, 50))
1640 		ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1641 
1642 	if (ret)
1643 		dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error);
1644 
1645 	__free_pages(p, order);
1646 
1647 fw_err:
1648 	release_firmware(firmware);
1649 
1650 	return ret;
1651 }
1652 
1653 static int __sev_snp_shutdown_locked(int *error, bool panic)
1654 {
1655 	struct psp_device *psp = psp_master;
1656 	struct sev_device *sev;
1657 	struct sev_data_snp_shutdown_ex data;
1658 	int ret;
1659 
1660 	if (!psp || !psp->sev_data)
1661 		return 0;
1662 
1663 	sev = psp->sev_data;
1664 
1665 	if (!sev->snp_initialized)
1666 		return 0;
1667 
1668 	memset(&data, 0, sizeof(data));
1669 	data.len = sizeof(data);
1670 	data.iommu_snp_shutdown = 1;
1671 
1672 	/*
1673 	 * If invoked during panic handling, local interrupts are disabled
1674 	 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called.
1675 	 * In that case, a wbinvd() is done on remote CPUs via the NMI
1676 	 * callback, so only a local wbinvd() is needed here.
1677 	 */
1678 	if (!panic)
1679 		wbinvd_on_all_cpus();
1680 	else
1681 		wbinvd();
1682 
1683 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error);
1684 	/* SHUTDOWN may require DF_FLUSH */
1685 	if (*error == SEV_RET_DFFLUSH_REQUIRED) {
1686 		ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, NULL);
1687 		if (ret) {
1688 			dev_err(sev->dev, "SEV-SNP DF_FLUSH failed\n");
1689 			return ret;
1690 		}
1691 		/* reissue the shutdown command */
1692 		ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data,
1693 					  error);
1694 	}
1695 	if (ret) {
1696 		dev_err(sev->dev, "SEV-SNP firmware shutdown failed\n");
1697 		return ret;
1698 	}
1699 
1700 	/*
1701 	 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP
1702 	 * enforcement by the IOMMU and also transitions all pages
1703 	 * associated with the IOMMU to the Reclaim state.
1704 	 * Firmware was transitioning the IOMMU pages to Hypervisor state
1705 	 * before version 1.53. But, accounting for the number of assigned
1706 	 * 4kB pages in a 2M page was done incorrectly by not transitioning
1707 	 * to the Reclaim state. This resulted in RMP #PF when later accessing
1708 	 * the 2M page containing those pages during kexec boot. Hence, the
1709 	 * firmware now transitions these pages to Reclaim state and hypervisor
1710 	 * needs to transition these pages to shared state. SNP Firmware
1711 	 * version 1.53 and above are needed for kexec boot.
1712 	 */
1713 	ret = amd_iommu_snp_disable();
1714 	if (ret) {
1715 		dev_err(sev->dev, "SNP IOMMU shutdown failed\n");
1716 		return ret;
1717 	}
1718 
1719 	sev->snp_initialized = false;
1720 	dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n");
1721 
1722 	return ret;
1723 }
1724 
1725 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable)
1726 {
1727 	struct sev_device *sev = psp_master->sev_data;
1728 	struct sev_user_data_pek_cert_import input;
1729 	struct sev_data_pek_cert_import data;
1730 	void *pek_blob, *oca_blob;
1731 	int ret;
1732 
1733 	if (!writable)
1734 		return -EPERM;
1735 
1736 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1737 		return -EFAULT;
1738 
1739 	/* copy PEK certificate blobs from userspace */
1740 	pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len);
1741 	if (IS_ERR(pek_blob))
1742 		return PTR_ERR(pek_blob);
1743 
1744 	data.reserved = 0;
1745 	data.pek_cert_address = __psp_pa(pek_blob);
1746 	data.pek_cert_len = input.pek_cert_len;
1747 
1748 	/* copy PEK certificate blobs from userspace */
1749 	oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len);
1750 	if (IS_ERR(oca_blob)) {
1751 		ret = PTR_ERR(oca_blob);
1752 		goto e_free_pek;
1753 	}
1754 
1755 	data.oca_cert_address = __psp_pa(oca_blob);
1756 	data.oca_cert_len = input.oca_cert_len;
1757 
1758 	/* If platform is not in INIT state then transition it to INIT */
1759 	if (sev->state != SEV_STATE_INIT) {
1760 		ret = __sev_platform_init_locked(&argp->error);
1761 		if (ret)
1762 			goto e_free_oca;
1763 	}
1764 
1765 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error);
1766 
1767 e_free_oca:
1768 	kfree(oca_blob);
1769 e_free_pek:
1770 	kfree(pek_blob);
1771 	return ret;
1772 }
1773 
1774 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp)
1775 {
1776 	struct sev_user_data_get_id2 input;
1777 	struct sev_data_get_id data;
1778 	void __user *input_address;
1779 	void *id_blob = NULL;
1780 	int ret;
1781 
1782 	/* SEV GET_ID is available from SEV API v0.16 and up */
1783 	if (!sev_version_greater_or_equal(0, 16))
1784 		return -ENOTSUPP;
1785 
1786 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1787 		return -EFAULT;
1788 
1789 	input_address = (void __user *)input.address;
1790 
1791 	if (input.address && input.length) {
1792 		/*
1793 		 * The length of the ID shouldn't be assumed by software since
1794 		 * it may change in the future.  The allocation size is limited
1795 		 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator.
1796 		 * If the allocation fails, simply return ENOMEM rather than
1797 		 * warning in the kernel log.
1798 		 */
1799 		id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN);
1800 		if (!id_blob)
1801 			return -ENOMEM;
1802 
1803 		data.address = __psp_pa(id_blob);
1804 		data.len = input.length;
1805 	} else {
1806 		data.address = 0;
1807 		data.len = 0;
1808 	}
1809 
1810 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error);
1811 
1812 	/*
1813 	 * Firmware will return the length of the ID value (either the minimum
1814 	 * required length or the actual length written), return it to the user.
1815 	 */
1816 	input.length = data.len;
1817 
1818 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1819 		ret = -EFAULT;
1820 		goto e_free;
1821 	}
1822 
1823 	if (id_blob) {
1824 		if (copy_to_user(input_address, id_blob, data.len)) {
1825 			ret = -EFAULT;
1826 			goto e_free;
1827 		}
1828 	}
1829 
1830 e_free:
1831 	kfree(id_blob);
1832 
1833 	return ret;
1834 }
1835 
1836 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp)
1837 {
1838 	struct sev_data_get_id *data;
1839 	u64 data_size, user_size;
1840 	void *id_blob, *mem;
1841 	int ret;
1842 
1843 	/* SEV GET_ID available from SEV API v0.16 and up */
1844 	if (!sev_version_greater_or_equal(0, 16))
1845 		return -ENOTSUPP;
1846 
1847 	/* SEV FW expects the buffer it fills with the ID to be
1848 	 * 8-byte aligned. Memory allocated should be enough to
1849 	 * hold data structure + alignment padding + memory
1850 	 * where SEV FW writes the ID.
1851 	 */
1852 	data_size = ALIGN(sizeof(struct sev_data_get_id), 8);
1853 	user_size = sizeof(struct sev_user_data_get_id);
1854 
1855 	mem = kzalloc(data_size + user_size, GFP_KERNEL);
1856 	if (!mem)
1857 		return -ENOMEM;
1858 
1859 	data = mem;
1860 	id_blob = mem + data_size;
1861 
1862 	data->address = __psp_pa(id_blob);
1863 	data->len = user_size;
1864 
1865 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error);
1866 	if (!ret) {
1867 		if (copy_to_user((void __user *)argp->data, id_blob, data->len))
1868 			ret = -EFAULT;
1869 	}
1870 
1871 	kfree(mem);
1872 
1873 	return ret;
1874 }
1875 
1876 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable)
1877 {
1878 	struct sev_device *sev = psp_master->sev_data;
1879 	struct sev_user_data_pdh_cert_export input;
1880 	void *pdh_blob = NULL, *cert_blob = NULL;
1881 	struct sev_data_pdh_cert_export data;
1882 	void __user *input_cert_chain_address;
1883 	void __user *input_pdh_cert_address;
1884 	int ret;
1885 
1886 	/* If platform is not in INIT state then transition it to INIT. */
1887 	if (sev->state != SEV_STATE_INIT) {
1888 		if (!writable)
1889 			return -EPERM;
1890 
1891 		ret = __sev_platform_init_locked(&argp->error);
1892 		if (ret)
1893 			return ret;
1894 	}
1895 
1896 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1897 		return -EFAULT;
1898 
1899 	memset(&data, 0, sizeof(data));
1900 
1901 	/* Userspace wants to query the certificate length. */
1902 	if (!input.pdh_cert_address ||
1903 	    !input.pdh_cert_len ||
1904 	    !input.cert_chain_address)
1905 		goto cmd;
1906 
1907 	input_pdh_cert_address = (void __user *)input.pdh_cert_address;
1908 	input_cert_chain_address = (void __user *)input.cert_chain_address;
1909 
1910 	/* Allocate a physically contiguous buffer to store the PDH blob. */
1911 	if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE)
1912 		return -EFAULT;
1913 
1914 	/* Allocate a physically contiguous buffer to store the cert chain blob. */
1915 	if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE)
1916 		return -EFAULT;
1917 
1918 	pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL);
1919 	if (!pdh_blob)
1920 		return -ENOMEM;
1921 
1922 	data.pdh_cert_address = __psp_pa(pdh_blob);
1923 	data.pdh_cert_len = input.pdh_cert_len;
1924 
1925 	cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL);
1926 	if (!cert_blob) {
1927 		ret = -ENOMEM;
1928 		goto e_free_pdh;
1929 	}
1930 
1931 	data.cert_chain_address = __psp_pa(cert_blob);
1932 	data.cert_chain_len = input.cert_chain_len;
1933 
1934 cmd:
1935 	ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error);
1936 
1937 	/* If we query the length, FW responded with expected data. */
1938 	input.cert_chain_len = data.cert_chain_len;
1939 	input.pdh_cert_len = data.pdh_cert_len;
1940 
1941 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1942 		ret = -EFAULT;
1943 		goto e_free_cert;
1944 	}
1945 
1946 	if (pdh_blob) {
1947 		if (copy_to_user(input_pdh_cert_address,
1948 				 pdh_blob, input.pdh_cert_len)) {
1949 			ret = -EFAULT;
1950 			goto e_free_cert;
1951 		}
1952 	}
1953 
1954 	if (cert_blob) {
1955 		if (copy_to_user(input_cert_chain_address,
1956 				 cert_blob, input.cert_chain_len))
1957 			ret = -EFAULT;
1958 	}
1959 
1960 e_free_cert:
1961 	kfree(cert_blob);
1962 e_free_pdh:
1963 	kfree(pdh_blob);
1964 	return ret;
1965 }
1966 
1967 static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp)
1968 {
1969 	struct sev_device *sev = psp_master->sev_data;
1970 	struct sev_data_snp_addr buf;
1971 	struct page *status_page;
1972 	void *data;
1973 	int ret;
1974 
1975 	if (!sev->snp_initialized || !argp->data)
1976 		return -EINVAL;
1977 
1978 	status_page = alloc_page(GFP_KERNEL_ACCOUNT);
1979 	if (!status_page)
1980 		return -ENOMEM;
1981 
1982 	data = page_address(status_page);
1983 
1984 	/*
1985 	 * Firmware expects status page to be in firmware-owned state, otherwise
1986 	 * it will report firmware error code INVALID_PAGE_STATE (0x1A).
1987 	 */
1988 	if (rmp_mark_pages_firmware(__pa(data), 1, true)) {
1989 		ret = -EFAULT;
1990 		goto cleanup;
1991 	}
1992 
1993 	buf.address = __psp_pa(data);
1994 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error);
1995 
1996 	/*
1997 	 * Status page will be transitioned to Reclaim state upon success, or
1998 	 * left in Firmware state in failure. Use snp_reclaim_pages() to
1999 	 * transition either case back to Hypervisor-owned state.
2000 	 */
2001 	if (snp_reclaim_pages(__pa(data), 1, true))
2002 		return -EFAULT;
2003 
2004 	if (ret)
2005 		goto cleanup;
2006 
2007 	if (copy_to_user((void __user *)argp->data, data,
2008 			 sizeof(struct sev_user_data_snp_status)))
2009 		ret = -EFAULT;
2010 
2011 cleanup:
2012 	__free_pages(status_page, 0);
2013 	return ret;
2014 }
2015 
2016 static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp)
2017 {
2018 	struct sev_device *sev = psp_master->sev_data;
2019 	struct sev_data_snp_commit buf;
2020 
2021 	if (!sev->snp_initialized)
2022 		return -EINVAL;
2023 
2024 	buf.len = sizeof(buf);
2025 
2026 	return __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error);
2027 }
2028 
2029 static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable)
2030 {
2031 	struct sev_device *sev = psp_master->sev_data;
2032 	struct sev_user_data_snp_config config;
2033 
2034 	if (!sev->snp_initialized || !argp->data)
2035 		return -EINVAL;
2036 
2037 	if (!writable)
2038 		return -EPERM;
2039 
2040 	if (copy_from_user(&config, (void __user *)argp->data, sizeof(config)))
2041 		return -EFAULT;
2042 
2043 	return __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error);
2044 }
2045 
2046 static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable)
2047 {
2048 	struct sev_device *sev = psp_master->sev_data;
2049 	struct sev_user_data_snp_vlek_load input;
2050 	void *blob;
2051 	int ret;
2052 
2053 	if (!sev->snp_initialized || !argp->data)
2054 		return -EINVAL;
2055 
2056 	if (!writable)
2057 		return -EPERM;
2058 
2059 	if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input)))
2060 		return -EFAULT;
2061 
2062 	if (input.len != sizeof(input) || input.vlek_wrapped_version != 0)
2063 		return -EINVAL;
2064 
2065 	blob = psp_copy_user_blob(input.vlek_wrapped_address,
2066 				  sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick));
2067 	if (IS_ERR(blob))
2068 		return PTR_ERR(blob);
2069 
2070 	input.vlek_wrapped_address = __psp_pa(blob);
2071 
2072 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error);
2073 
2074 	kfree(blob);
2075 
2076 	return ret;
2077 }
2078 
2079 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
2080 {
2081 	void __user *argp = (void __user *)arg;
2082 	struct sev_issue_cmd input;
2083 	int ret = -EFAULT;
2084 	bool writable = file->f_mode & FMODE_WRITE;
2085 
2086 	if (!psp_master || !psp_master->sev_data)
2087 		return -ENODEV;
2088 
2089 	if (ioctl != SEV_ISSUE_CMD)
2090 		return -EINVAL;
2091 
2092 	if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd)))
2093 		return -EFAULT;
2094 
2095 	if (input.cmd > SEV_MAX)
2096 		return -EINVAL;
2097 
2098 	mutex_lock(&sev_cmd_mutex);
2099 
2100 	switch (input.cmd) {
2101 
2102 	case SEV_FACTORY_RESET:
2103 		ret = sev_ioctl_do_reset(&input, writable);
2104 		break;
2105 	case SEV_PLATFORM_STATUS:
2106 		ret = sev_ioctl_do_platform_status(&input);
2107 		break;
2108 	case SEV_PEK_GEN:
2109 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable);
2110 		break;
2111 	case SEV_PDH_GEN:
2112 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable);
2113 		break;
2114 	case SEV_PEK_CSR:
2115 		ret = sev_ioctl_do_pek_csr(&input, writable);
2116 		break;
2117 	case SEV_PEK_CERT_IMPORT:
2118 		ret = sev_ioctl_do_pek_import(&input, writable);
2119 		break;
2120 	case SEV_PDH_CERT_EXPORT:
2121 		ret = sev_ioctl_do_pdh_export(&input, writable);
2122 		break;
2123 	case SEV_GET_ID:
2124 		pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n");
2125 		ret = sev_ioctl_do_get_id(&input);
2126 		break;
2127 	case SEV_GET_ID2:
2128 		ret = sev_ioctl_do_get_id2(&input);
2129 		break;
2130 	case SNP_PLATFORM_STATUS:
2131 		ret = sev_ioctl_do_snp_platform_status(&input);
2132 		break;
2133 	case SNP_COMMIT:
2134 		ret = sev_ioctl_do_snp_commit(&input);
2135 		break;
2136 	case SNP_SET_CONFIG:
2137 		ret = sev_ioctl_do_snp_set_config(&input, writable);
2138 		break;
2139 	case SNP_VLEK_LOAD:
2140 		ret = sev_ioctl_do_snp_vlek_load(&input, writable);
2141 		break;
2142 	default:
2143 		ret = -EINVAL;
2144 		goto out;
2145 	}
2146 
2147 	if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd)))
2148 		ret = -EFAULT;
2149 out:
2150 	mutex_unlock(&sev_cmd_mutex);
2151 
2152 	return ret;
2153 }
2154 
2155 static const struct file_operations sev_fops = {
2156 	.owner	= THIS_MODULE,
2157 	.unlocked_ioctl = sev_ioctl,
2158 };
2159 
2160 int sev_platform_status(struct sev_user_data_status *data, int *error)
2161 {
2162 	return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error);
2163 }
2164 EXPORT_SYMBOL_GPL(sev_platform_status);
2165 
2166 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error)
2167 {
2168 	return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error);
2169 }
2170 EXPORT_SYMBOL_GPL(sev_guest_deactivate);
2171 
2172 int sev_guest_activate(struct sev_data_activate *data, int *error)
2173 {
2174 	return sev_do_cmd(SEV_CMD_ACTIVATE, data, error);
2175 }
2176 EXPORT_SYMBOL_GPL(sev_guest_activate);
2177 
2178 int sev_guest_decommission(struct sev_data_decommission *data, int *error)
2179 {
2180 	return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error);
2181 }
2182 EXPORT_SYMBOL_GPL(sev_guest_decommission);
2183 
2184 int sev_guest_df_flush(int *error)
2185 {
2186 	return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error);
2187 }
2188 EXPORT_SYMBOL_GPL(sev_guest_df_flush);
2189 
2190 static void sev_exit(struct kref *ref)
2191 {
2192 	misc_deregister(&misc_dev->misc);
2193 	kfree(misc_dev);
2194 	misc_dev = NULL;
2195 }
2196 
2197 static int sev_misc_init(struct sev_device *sev)
2198 {
2199 	struct device *dev = sev->dev;
2200 	int ret;
2201 
2202 	/*
2203 	 * SEV feature support can be detected on multiple devices but the SEV
2204 	 * FW commands must be issued on the master. During probe, we do not
2205 	 * know the master hence we create /dev/sev on the first device probe.
2206 	 * sev_do_cmd() finds the right master device to which to issue the
2207 	 * command to the firmware.
2208 	 */
2209 	if (!misc_dev) {
2210 		struct miscdevice *misc;
2211 
2212 		misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL);
2213 		if (!misc_dev)
2214 			return -ENOMEM;
2215 
2216 		misc = &misc_dev->misc;
2217 		misc->minor = MISC_DYNAMIC_MINOR;
2218 		misc->name = DEVICE_NAME;
2219 		misc->fops = &sev_fops;
2220 
2221 		ret = misc_register(misc);
2222 		if (ret)
2223 			return ret;
2224 
2225 		kref_init(&misc_dev->refcount);
2226 	} else {
2227 		kref_get(&misc_dev->refcount);
2228 	}
2229 
2230 	init_waitqueue_head(&sev->int_queue);
2231 	sev->misc = misc_dev;
2232 	dev_dbg(dev, "registered SEV device\n");
2233 
2234 	return 0;
2235 }
2236 
2237 int sev_dev_init(struct psp_device *psp)
2238 {
2239 	struct device *dev = psp->dev;
2240 	struct sev_device *sev;
2241 	int ret = -ENOMEM;
2242 
2243 	if (!boot_cpu_has(X86_FEATURE_SEV)) {
2244 		dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n");
2245 		return 0;
2246 	}
2247 
2248 	sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL);
2249 	if (!sev)
2250 		goto e_err;
2251 
2252 	sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1);
2253 	if (!sev->cmd_buf)
2254 		goto e_sev;
2255 
2256 	sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE;
2257 
2258 	psp->sev_data = sev;
2259 
2260 	sev->dev = dev;
2261 	sev->psp = psp;
2262 
2263 	sev->io_regs = psp->io_regs;
2264 
2265 	sev->vdata = (struct sev_vdata *)psp->vdata->sev;
2266 	if (!sev->vdata) {
2267 		ret = -ENODEV;
2268 		dev_err(dev, "sev: missing driver data\n");
2269 		goto e_buf;
2270 	}
2271 
2272 	psp_set_sev_irq_handler(psp, sev_irq_handler, sev);
2273 
2274 	ret = sev_misc_init(sev);
2275 	if (ret)
2276 		goto e_irq;
2277 
2278 	dev_notice(dev, "sev enabled\n");
2279 
2280 	return 0;
2281 
2282 e_irq:
2283 	psp_clear_sev_irq_handler(psp);
2284 e_buf:
2285 	devm_free_pages(dev, (unsigned long)sev->cmd_buf);
2286 e_sev:
2287 	devm_kfree(dev, sev);
2288 e_err:
2289 	psp->sev_data = NULL;
2290 
2291 	dev_notice(dev, "sev initialization failed\n");
2292 
2293 	return ret;
2294 }
2295 
2296 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic)
2297 {
2298 	int error;
2299 
2300 	__sev_platform_shutdown_locked(NULL);
2301 
2302 	if (sev_es_tmr) {
2303 		/*
2304 		 * The TMR area was encrypted, flush it from the cache.
2305 		 *
2306 		 * If invoked during panic handling, local interrupts are
2307 		 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus()
2308 		 * can't be used. In that case, wbinvd() is done on remote CPUs
2309 		 * via the NMI callback, and done for this CPU later during
2310 		 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped.
2311 		 */
2312 		if (!panic)
2313 			wbinvd_on_all_cpus();
2314 
2315 		__snp_free_firmware_pages(virt_to_page(sev_es_tmr),
2316 					  get_order(sev_es_tmr_size),
2317 					  true);
2318 		sev_es_tmr = NULL;
2319 	}
2320 
2321 	if (sev_init_ex_buffer) {
2322 		__snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer),
2323 					  get_order(NV_LENGTH),
2324 					  true);
2325 		sev_init_ex_buffer = NULL;
2326 	}
2327 
2328 	if (snp_range_list) {
2329 		kfree(snp_range_list);
2330 		snp_range_list = NULL;
2331 	}
2332 
2333 	__sev_snp_shutdown_locked(&error, panic);
2334 }
2335 
2336 static void sev_firmware_shutdown(struct sev_device *sev)
2337 {
2338 	mutex_lock(&sev_cmd_mutex);
2339 	__sev_firmware_shutdown(sev, false);
2340 	mutex_unlock(&sev_cmd_mutex);
2341 }
2342 
2343 void sev_dev_destroy(struct psp_device *psp)
2344 {
2345 	struct sev_device *sev = psp->sev_data;
2346 
2347 	if (!sev)
2348 		return;
2349 
2350 	sev_firmware_shutdown(sev);
2351 
2352 	if (sev->misc)
2353 		kref_put(&misc_dev->refcount, sev_exit);
2354 
2355 	psp_clear_sev_irq_handler(psp);
2356 }
2357 
2358 static int snp_shutdown_on_panic(struct notifier_block *nb,
2359 				 unsigned long reason, void *arg)
2360 {
2361 	struct sev_device *sev = psp_master->sev_data;
2362 
2363 	/*
2364 	 * If sev_cmd_mutex is already acquired, then it's likely
2365 	 * another PSP command is in flight and issuing a shutdown
2366 	 * would fail in unexpected ways. Rather than create even
2367 	 * more confusion during a panic, just bail out here.
2368 	 */
2369 	if (mutex_is_locked(&sev_cmd_mutex))
2370 		return NOTIFY_DONE;
2371 
2372 	__sev_firmware_shutdown(sev, true);
2373 
2374 	return NOTIFY_DONE;
2375 }
2376 
2377 static struct notifier_block snp_panic_notifier = {
2378 	.notifier_call = snp_shutdown_on_panic,
2379 };
2380 
2381 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd,
2382 				void *data, int *error)
2383 {
2384 	if (!filep || filep->f_op != &sev_fops)
2385 		return -EBADF;
2386 
2387 	return sev_do_cmd(cmd, data, error);
2388 }
2389 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user);
2390 
2391 void sev_pci_init(void)
2392 {
2393 	struct sev_device *sev = psp_master->sev_data;
2394 	struct sev_platform_init_args args = {0};
2395 	u8 api_major, api_minor, build;
2396 	int rc;
2397 
2398 	if (!sev)
2399 		return;
2400 
2401 	psp_timeout = psp_probe_timeout;
2402 
2403 	if (sev_get_api_version())
2404 		goto err;
2405 
2406 	api_major = sev->api_major;
2407 	api_minor = sev->api_minor;
2408 	build     = sev->build;
2409 
2410 	if (sev_update_firmware(sev->dev) == 0)
2411 		sev_get_api_version();
2412 
2413 	if (api_major != sev->api_major || api_minor != sev->api_minor ||
2414 	    build != sev->build)
2415 		dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n",
2416 			 api_major, api_minor, build,
2417 			 sev->api_major, sev->api_minor, sev->build);
2418 
2419 	/* Initialize the platform */
2420 	args.probe = true;
2421 	rc = sev_platform_init(&args);
2422 	if (rc)
2423 		dev_err(sev->dev, "SEV: failed to INIT error %#x, rc %d\n",
2424 			args.error, rc);
2425 
2426 	dev_info(sev->dev, "SEV%s API:%d.%d build:%d\n", sev->snp_initialized ?
2427 		"-SNP" : "", sev->api_major, sev->api_minor, sev->build);
2428 
2429 	atomic_notifier_chain_register(&panic_notifier_list,
2430 				       &snp_panic_notifier);
2431 	return;
2432 
2433 err:
2434 	sev_dev_destroy(psp_master);
2435 
2436 	psp_master->sev_data = NULL;
2437 }
2438 
2439 void sev_pci_exit(void)
2440 {
2441 	struct sev_device *sev = psp_master->sev_data;
2442 
2443 	if (!sev)
2444 		return;
2445 
2446 	sev_firmware_shutdown(sev);
2447 
2448 	atomic_notifier_chain_unregister(&panic_notifier_list,
2449 					 &snp_panic_notifier);
2450 }
2451