1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Secure Encrypted Virtualization (SEV) interface 4 * 5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc. 6 * 7 * Author: Brijesh Singh <brijesh.singh@amd.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/kthread.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/spinlock.h> 17 #include <linux/spinlock_types.h> 18 #include <linux/types.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/hw_random.h> 22 #include <linux/ccp.h> 23 #include <linux/firmware.h> 24 #include <linux/panic_notifier.h> 25 #include <linux/gfp.h> 26 #include <linux/cpufeature.h> 27 #include <linux/fs.h> 28 #include <linux/fs_struct.h> 29 #include <linux/psp.h> 30 #include <linux/amd-iommu.h> 31 32 #include <asm/smp.h> 33 #include <asm/cacheflush.h> 34 #include <asm/e820/types.h> 35 #include <asm/sev.h> 36 37 #include "psp-dev.h" 38 #include "sev-dev.h" 39 40 #define DEVICE_NAME "sev" 41 #define SEV_FW_FILE "amd/sev.fw" 42 #define SEV_FW_NAME_SIZE 64 43 44 /* Minimum firmware version required for the SEV-SNP support */ 45 #define SNP_MIN_API_MAJOR 1 46 #define SNP_MIN_API_MINOR 51 47 48 /* 49 * Maximum number of firmware-writable buffers that might be specified 50 * in the parameters of a legacy SEV command buffer. 51 */ 52 #define CMD_BUF_FW_WRITABLE_MAX 2 53 54 /* Leave room in the descriptor array for an end-of-list indicator. */ 55 #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1) 56 57 static DEFINE_MUTEX(sev_cmd_mutex); 58 static struct sev_misc_dev *misc_dev; 59 60 static int psp_cmd_timeout = 100; 61 module_param(psp_cmd_timeout, int, 0644); 62 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands"); 63 64 static int psp_probe_timeout = 5; 65 module_param(psp_probe_timeout, int, 0644); 66 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe"); 67 68 static char *init_ex_path; 69 module_param(init_ex_path, charp, 0444); 70 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX"); 71 72 static bool psp_init_on_probe = true; 73 module_param(psp_init_on_probe, bool, 0444); 74 MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it"); 75 76 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */ 77 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */ 78 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */ 79 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */ 80 81 static bool psp_dead; 82 static int psp_timeout; 83 84 /* Trusted Memory Region (TMR): 85 * The TMR is a 1MB area that must be 1MB aligned. Use the page allocator 86 * to allocate the memory, which will return aligned memory for the specified 87 * allocation order. 88 * 89 * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized. 90 */ 91 #define SEV_TMR_SIZE (1024 * 1024) 92 #define SNP_TMR_SIZE (2 * 1024 * 1024) 93 94 static void *sev_es_tmr; 95 static size_t sev_es_tmr_size = SEV_TMR_SIZE; 96 97 /* INIT_EX NV Storage: 98 * The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page 99 * allocator to allocate the memory, which will return aligned memory for the 100 * specified allocation order. 101 */ 102 #define NV_LENGTH (32 * 1024) 103 static void *sev_init_ex_buffer; 104 105 /* 106 * SEV_DATA_RANGE_LIST: 107 * Array containing range of pages that firmware transitions to HV-fixed 108 * page state. 109 */ 110 static struct sev_data_range_list *snp_range_list; 111 112 static inline bool sev_version_greater_or_equal(u8 maj, u8 min) 113 { 114 struct sev_device *sev = psp_master->sev_data; 115 116 if (sev->api_major > maj) 117 return true; 118 119 if (sev->api_major == maj && sev->api_minor >= min) 120 return true; 121 122 return false; 123 } 124 125 static void sev_irq_handler(int irq, void *data, unsigned int status) 126 { 127 struct sev_device *sev = data; 128 int reg; 129 130 /* Check if it is command completion: */ 131 if (!(status & SEV_CMD_COMPLETE)) 132 return; 133 134 /* Check if it is SEV command completion: */ 135 reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 136 if (FIELD_GET(PSP_CMDRESP_RESP, reg)) { 137 sev->int_rcvd = 1; 138 wake_up(&sev->int_queue); 139 } 140 } 141 142 static int sev_wait_cmd_ioc(struct sev_device *sev, 143 unsigned int *reg, unsigned int timeout) 144 { 145 int ret; 146 147 /* 148 * If invoked during panic handling, local interrupts are disabled, 149 * so the PSP command completion interrupt can't be used. Poll for 150 * PSP command completion instead. 151 */ 152 if (irqs_disabled()) { 153 unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10; 154 155 /* Poll for SEV command completion: */ 156 while (timeout_usecs--) { 157 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 158 if (*reg & PSP_CMDRESP_RESP) 159 return 0; 160 161 udelay(10); 162 } 163 return -ETIMEDOUT; 164 } 165 166 ret = wait_event_timeout(sev->int_queue, 167 sev->int_rcvd, timeout * HZ); 168 if (!ret) 169 return -ETIMEDOUT; 170 171 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 172 173 return 0; 174 } 175 176 static int sev_cmd_buffer_len(int cmd) 177 { 178 switch (cmd) { 179 case SEV_CMD_INIT: return sizeof(struct sev_data_init); 180 case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex); 181 case SEV_CMD_SNP_SHUTDOWN_EX: return sizeof(struct sev_data_snp_shutdown_ex); 182 case SEV_CMD_SNP_INIT_EX: return sizeof(struct sev_data_snp_init_ex); 183 case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status); 184 case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr); 185 case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import); 186 case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export); 187 case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start); 188 case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data); 189 case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa); 190 case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish); 191 case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure); 192 case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate); 193 case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate); 194 case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission); 195 case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status); 196 case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg); 197 case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg); 198 case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start); 199 case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data); 200 case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa); 201 case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish); 202 case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start); 203 case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish); 204 case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data); 205 case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa); 206 case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret); 207 case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware); 208 case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id); 209 case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report); 210 case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel); 211 case SEV_CMD_SNP_GCTX_CREATE: return sizeof(struct sev_data_snp_addr); 212 case SEV_CMD_SNP_LAUNCH_START: return sizeof(struct sev_data_snp_launch_start); 213 case SEV_CMD_SNP_LAUNCH_UPDATE: return sizeof(struct sev_data_snp_launch_update); 214 case SEV_CMD_SNP_ACTIVATE: return sizeof(struct sev_data_snp_activate); 215 case SEV_CMD_SNP_DECOMMISSION: return sizeof(struct sev_data_snp_addr); 216 case SEV_CMD_SNP_PAGE_RECLAIM: return sizeof(struct sev_data_snp_page_reclaim); 217 case SEV_CMD_SNP_GUEST_STATUS: return sizeof(struct sev_data_snp_guest_status); 218 case SEV_CMD_SNP_LAUNCH_FINISH: return sizeof(struct sev_data_snp_launch_finish); 219 case SEV_CMD_SNP_DBG_DECRYPT: return sizeof(struct sev_data_snp_dbg); 220 case SEV_CMD_SNP_DBG_ENCRYPT: return sizeof(struct sev_data_snp_dbg); 221 case SEV_CMD_SNP_PAGE_UNSMASH: return sizeof(struct sev_data_snp_page_unsmash); 222 case SEV_CMD_SNP_PLATFORM_STATUS: return sizeof(struct sev_data_snp_addr); 223 case SEV_CMD_SNP_GUEST_REQUEST: return sizeof(struct sev_data_snp_guest_request); 224 case SEV_CMD_SNP_CONFIG: return sizeof(struct sev_user_data_snp_config); 225 case SEV_CMD_SNP_COMMIT: return sizeof(struct sev_data_snp_commit); 226 default: return 0; 227 } 228 229 return 0; 230 } 231 232 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode) 233 { 234 struct file *fp; 235 struct path root; 236 struct cred *cred; 237 const struct cred *old_cred; 238 239 task_lock(&init_task); 240 get_fs_root(init_task.fs, &root); 241 task_unlock(&init_task); 242 243 cred = prepare_creds(); 244 if (!cred) 245 return ERR_PTR(-ENOMEM); 246 cred->fsuid = GLOBAL_ROOT_UID; 247 old_cred = override_creds(cred); 248 249 fp = file_open_root(&root, filename, flags, mode); 250 path_put(&root); 251 252 revert_creds(old_cred); 253 254 return fp; 255 } 256 257 static int sev_read_init_ex_file(void) 258 { 259 struct sev_device *sev = psp_master->sev_data; 260 struct file *fp; 261 ssize_t nread; 262 263 lockdep_assert_held(&sev_cmd_mutex); 264 265 if (!sev_init_ex_buffer) 266 return -EOPNOTSUPP; 267 268 fp = open_file_as_root(init_ex_path, O_RDONLY, 0); 269 if (IS_ERR(fp)) { 270 int ret = PTR_ERR(fp); 271 272 if (ret == -ENOENT) { 273 dev_info(sev->dev, 274 "SEV: %s does not exist and will be created later.\n", 275 init_ex_path); 276 ret = 0; 277 } else { 278 dev_err(sev->dev, 279 "SEV: could not open %s for read, error %d\n", 280 init_ex_path, ret); 281 } 282 return ret; 283 } 284 285 nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL); 286 if (nread != NV_LENGTH) { 287 dev_info(sev->dev, 288 "SEV: could not read %u bytes to non volatile memory area, ret %ld\n", 289 NV_LENGTH, nread); 290 } 291 292 dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread); 293 filp_close(fp, NULL); 294 295 return 0; 296 } 297 298 static int sev_write_init_ex_file(void) 299 { 300 struct sev_device *sev = psp_master->sev_data; 301 struct file *fp; 302 loff_t offset = 0; 303 ssize_t nwrite; 304 305 lockdep_assert_held(&sev_cmd_mutex); 306 307 if (!sev_init_ex_buffer) 308 return 0; 309 310 fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600); 311 if (IS_ERR(fp)) { 312 int ret = PTR_ERR(fp); 313 314 dev_err(sev->dev, 315 "SEV: could not open file for write, error %d\n", 316 ret); 317 return ret; 318 } 319 320 nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset); 321 vfs_fsync(fp, 0); 322 filp_close(fp, NULL); 323 324 if (nwrite != NV_LENGTH) { 325 dev_err(sev->dev, 326 "SEV: failed to write %u bytes to non volatile memory area, ret %ld\n", 327 NV_LENGTH, nwrite); 328 return -EIO; 329 } 330 331 dev_dbg(sev->dev, "SEV: write successful to NV file\n"); 332 333 return 0; 334 } 335 336 static int sev_write_init_ex_file_if_required(int cmd_id) 337 { 338 lockdep_assert_held(&sev_cmd_mutex); 339 340 if (!sev_init_ex_buffer) 341 return 0; 342 343 /* 344 * Only a few platform commands modify the SPI/NV area, but none of the 345 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN, 346 * PEK_CERT_IMPORT, and PDH_GEN do. 347 */ 348 switch (cmd_id) { 349 case SEV_CMD_FACTORY_RESET: 350 case SEV_CMD_INIT_EX: 351 case SEV_CMD_PDH_GEN: 352 case SEV_CMD_PEK_CERT_IMPORT: 353 case SEV_CMD_PEK_GEN: 354 break; 355 default: 356 return 0; 357 } 358 359 return sev_write_init_ex_file(); 360 } 361 362 /* 363 * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked() 364 * needs snp_reclaim_pages(), so a forward declaration is needed. 365 */ 366 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret); 367 368 static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked) 369 { 370 int ret, err, i; 371 372 paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE)); 373 374 for (i = 0; i < npages; i++, paddr += PAGE_SIZE) { 375 struct sev_data_snp_page_reclaim data = {0}; 376 377 data.paddr = paddr; 378 379 if (locked) 380 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 381 else 382 ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 383 384 if (ret) 385 goto cleanup; 386 387 ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K); 388 if (ret) 389 goto cleanup; 390 } 391 392 return 0; 393 394 cleanup: 395 /* 396 * If there was a failure reclaiming the page then it is no longer safe 397 * to release it back to the system; leak it instead. 398 */ 399 snp_leak_pages(__phys_to_pfn(paddr), npages - i); 400 return ret; 401 } 402 403 static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked) 404 { 405 unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT; 406 int rc, i; 407 408 for (i = 0; i < npages; i++, pfn++) { 409 rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true); 410 if (rc) 411 goto cleanup; 412 } 413 414 return 0; 415 416 cleanup: 417 /* 418 * Try unrolling the firmware state changes by 419 * reclaiming the pages which were already changed to the 420 * firmware state. 421 */ 422 snp_reclaim_pages(paddr, i, locked); 423 424 return rc; 425 } 426 427 static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order) 428 { 429 unsigned long npages = 1ul << order, paddr; 430 struct sev_device *sev; 431 struct page *page; 432 433 if (!psp_master || !psp_master->sev_data) 434 return NULL; 435 436 page = alloc_pages(gfp_mask, order); 437 if (!page) 438 return NULL; 439 440 /* If SEV-SNP is initialized then add the page in RMP table. */ 441 sev = psp_master->sev_data; 442 if (!sev->snp_initialized) 443 return page; 444 445 paddr = __pa((unsigned long)page_address(page)); 446 if (rmp_mark_pages_firmware(paddr, npages, false)) 447 return NULL; 448 449 return page; 450 } 451 452 void *snp_alloc_firmware_page(gfp_t gfp_mask) 453 { 454 struct page *page; 455 456 page = __snp_alloc_firmware_pages(gfp_mask, 0); 457 458 return page ? page_address(page) : NULL; 459 } 460 EXPORT_SYMBOL_GPL(snp_alloc_firmware_page); 461 462 static void __snp_free_firmware_pages(struct page *page, int order, bool locked) 463 { 464 struct sev_device *sev = psp_master->sev_data; 465 unsigned long paddr, npages = 1ul << order; 466 467 if (!page) 468 return; 469 470 paddr = __pa((unsigned long)page_address(page)); 471 if (sev->snp_initialized && 472 snp_reclaim_pages(paddr, npages, locked)) 473 return; 474 475 __free_pages(page, order); 476 } 477 478 void snp_free_firmware_page(void *addr) 479 { 480 if (!addr) 481 return; 482 483 __snp_free_firmware_pages(virt_to_page(addr), 0, false); 484 } 485 EXPORT_SYMBOL_GPL(snp_free_firmware_page); 486 487 static void *sev_fw_alloc(unsigned long len) 488 { 489 struct page *page; 490 491 page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len)); 492 if (!page) 493 return NULL; 494 495 return page_address(page); 496 } 497 498 /** 499 * struct cmd_buf_desc - descriptors for managing legacy SEV command address 500 * parameters corresponding to buffers that may be written to by firmware. 501 * 502 * @paddr_ptr: pointer to the address parameter in the command buffer which may 503 * need to be saved/restored depending on whether a bounce buffer 504 * is used. In the case of a bounce buffer, the command buffer 505 * needs to be updated with the address of the new bounce buffer 506 * snp_map_cmd_buf_desc() has allocated specifically for it. Must 507 * be NULL if this descriptor is only an end-of-list indicator. 508 * 509 * @paddr_orig: storage for the original address parameter, which can be used to 510 * restore the original value in @paddr_ptr in cases where it is 511 * replaced with the address of a bounce buffer. 512 * 513 * @len: length of buffer located at the address originally stored at @paddr_ptr 514 * 515 * @guest_owned: true if the address corresponds to guest-owned pages, in which 516 * case bounce buffers are not needed. 517 */ 518 struct cmd_buf_desc { 519 u64 *paddr_ptr; 520 u64 paddr_orig; 521 u32 len; 522 bool guest_owned; 523 }; 524 525 /* 526 * If a legacy SEV command parameter is a memory address, those pages in 527 * turn need to be transitioned to/from firmware-owned before/after 528 * executing the firmware command. 529 * 530 * Additionally, in cases where those pages are not guest-owned, a bounce 531 * buffer is needed in place of the original memory address parameter. 532 * 533 * A set of descriptors are used to keep track of this handling, and 534 * initialized here based on the specific commands being executed. 535 */ 536 static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf, 537 struct cmd_buf_desc *desc_list) 538 { 539 switch (cmd) { 540 case SEV_CMD_PDH_CERT_EXPORT: { 541 struct sev_data_pdh_cert_export *data = cmd_buf; 542 543 desc_list[0].paddr_ptr = &data->pdh_cert_address; 544 desc_list[0].len = data->pdh_cert_len; 545 desc_list[1].paddr_ptr = &data->cert_chain_address; 546 desc_list[1].len = data->cert_chain_len; 547 break; 548 } 549 case SEV_CMD_GET_ID: { 550 struct sev_data_get_id *data = cmd_buf; 551 552 desc_list[0].paddr_ptr = &data->address; 553 desc_list[0].len = data->len; 554 break; 555 } 556 case SEV_CMD_PEK_CSR: { 557 struct sev_data_pek_csr *data = cmd_buf; 558 559 desc_list[0].paddr_ptr = &data->address; 560 desc_list[0].len = data->len; 561 break; 562 } 563 case SEV_CMD_LAUNCH_UPDATE_DATA: { 564 struct sev_data_launch_update_data *data = cmd_buf; 565 566 desc_list[0].paddr_ptr = &data->address; 567 desc_list[0].len = data->len; 568 desc_list[0].guest_owned = true; 569 break; 570 } 571 case SEV_CMD_LAUNCH_UPDATE_VMSA: { 572 struct sev_data_launch_update_vmsa *data = cmd_buf; 573 574 desc_list[0].paddr_ptr = &data->address; 575 desc_list[0].len = data->len; 576 desc_list[0].guest_owned = true; 577 break; 578 } 579 case SEV_CMD_LAUNCH_MEASURE: { 580 struct sev_data_launch_measure *data = cmd_buf; 581 582 desc_list[0].paddr_ptr = &data->address; 583 desc_list[0].len = data->len; 584 break; 585 } 586 case SEV_CMD_LAUNCH_UPDATE_SECRET: { 587 struct sev_data_launch_secret *data = cmd_buf; 588 589 desc_list[0].paddr_ptr = &data->guest_address; 590 desc_list[0].len = data->guest_len; 591 desc_list[0].guest_owned = true; 592 break; 593 } 594 case SEV_CMD_DBG_DECRYPT: { 595 struct sev_data_dbg *data = cmd_buf; 596 597 desc_list[0].paddr_ptr = &data->dst_addr; 598 desc_list[0].len = data->len; 599 desc_list[0].guest_owned = true; 600 break; 601 } 602 case SEV_CMD_DBG_ENCRYPT: { 603 struct sev_data_dbg *data = cmd_buf; 604 605 desc_list[0].paddr_ptr = &data->dst_addr; 606 desc_list[0].len = data->len; 607 desc_list[0].guest_owned = true; 608 break; 609 } 610 case SEV_CMD_ATTESTATION_REPORT: { 611 struct sev_data_attestation_report *data = cmd_buf; 612 613 desc_list[0].paddr_ptr = &data->address; 614 desc_list[0].len = data->len; 615 break; 616 } 617 case SEV_CMD_SEND_START: { 618 struct sev_data_send_start *data = cmd_buf; 619 620 desc_list[0].paddr_ptr = &data->session_address; 621 desc_list[0].len = data->session_len; 622 break; 623 } 624 case SEV_CMD_SEND_UPDATE_DATA: { 625 struct sev_data_send_update_data *data = cmd_buf; 626 627 desc_list[0].paddr_ptr = &data->hdr_address; 628 desc_list[0].len = data->hdr_len; 629 desc_list[1].paddr_ptr = &data->trans_address; 630 desc_list[1].len = data->trans_len; 631 break; 632 } 633 case SEV_CMD_SEND_UPDATE_VMSA: { 634 struct sev_data_send_update_vmsa *data = cmd_buf; 635 636 desc_list[0].paddr_ptr = &data->hdr_address; 637 desc_list[0].len = data->hdr_len; 638 desc_list[1].paddr_ptr = &data->trans_address; 639 desc_list[1].len = data->trans_len; 640 break; 641 } 642 case SEV_CMD_RECEIVE_UPDATE_DATA: { 643 struct sev_data_receive_update_data *data = cmd_buf; 644 645 desc_list[0].paddr_ptr = &data->guest_address; 646 desc_list[0].len = data->guest_len; 647 desc_list[0].guest_owned = true; 648 break; 649 } 650 case SEV_CMD_RECEIVE_UPDATE_VMSA: { 651 struct sev_data_receive_update_vmsa *data = cmd_buf; 652 653 desc_list[0].paddr_ptr = &data->guest_address; 654 desc_list[0].len = data->guest_len; 655 desc_list[0].guest_owned = true; 656 break; 657 } 658 default: 659 break; 660 } 661 } 662 663 static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc) 664 { 665 unsigned int npages; 666 667 if (!desc->len) 668 return 0; 669 670 /* Allocate a bounce buffer if this isn't a guest owned page. */ 671 if (!desc->guest_owned) { 672 struct page *page; 673 674 page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len)); 675 if (!page) { 676 pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n"); 677 return -ENOMEM; 678 } 679 680 desc->paddr_orig = *desc->paddr_ptr; 681 *desc->paddr_ptr = __psp_pa(page_to_virt(page)); 682 } 683 684 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 685 686 /* Transition the buffer to firmware-owned. */ 687 if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) { 688 pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n"); 689 return -EFAULT; 690 } 691 692 return 0; 693 } 694 695 static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc) 696 { 697 unsigned int npages; 698 699 if (!desc->len) 700 return 0; 701 702 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 703 704 /* Transition the buffers back to hypervisor-owned. */ 705 if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) { 706 pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n"); 707 return -EFAULT; 708 } 709 710 /* Copy data from bounce buffer and then free it. */ 711 if (!desc->guest_owned) { 712 void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr)); 713 void *dst_buf = __va(__sme_clr(desc->paddr_orig)); 714 715 memcpy(dst_buf, bounce_buf, desc->len); 716 __free_pages(virt_to_page(bounce_buf), get_order(desc->len)); 717 718 /* Restore the original address in the command buffer. */ 719 *desc->paddr_ptr = desc->paddr_orig; 720 } 721 722 return 0; 723 } 724 725 static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 726 { 727 int i; 728 729 snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list); 730 731 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 732 struct cmd_buf_desc *desc = &desc_list[i]; 733 734 if (!desc->paddr_ptr) 735 break; 736 737 if (snp_map_cmd_buf_desc(desc)) 738 goto err_unmap; 739 } 740 741 return 0; 742 743 err_unmap: 744 for (i--; i >= 0; i--) 745 snp_unmap_cmd_buf_desc(&desc_list[i]); 746 747 return -EFAULT; 748 } 749 750 static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list) 751 { 752 int i, ret = 0; 753 754 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 755 struct cmd_buf_desc *desc = &desc_list[i]; 756 757 if (!desc->paddr_ptr) 758 break; 759 760 if (snp_unmap_cmd_buf_desc(&desc_list[i])) 761 ret = -EFAULT; 762 } 763 764 return ret; 765 } 766 767 static bool sev_cmd_buf_writable(int cmd) 768 { 769 switch (cmd) { 770 case SEV_CMD_PLATFORM_STATUS: 771 case SEV_CMD_GUEST_STATUS: 772 case SEV_CMD_LAUNCH_START: 773 case SEV_CMD_RECEIVE_START: 774 case SEV_CMD_LAUNCH_MEASURE: 775 case SEV_CMD_SEND_START: 776 case SEV_CMD_SEND_UPDATE_DATA: 777 case SEV_CMD_SEND_UPDATE_VMSA: 778 case SEV_CMD_PEK_CSR: 779 case SEV_CMD_PDH_CERT_EXPORT: 780 case SEV_CMD_GET_ID: 781 case SEV_CMD_ATTESTATION_REPORT: 782 return true; 783 default: 784 return false; 785 } 786 } 787 788 /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */ 789 static bool snp_legacy_handling_needed(int cmd) 790 { 791 struct sev_device *sev = psp_master->sev_data; 792 793 return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized; 794 } 795 796 static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 797 { 798 if (!snp_legacy_handling_needed(cmd)) 799 return 0; 800 801 if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list)) 802 return -EFAULT; 803 804 /* 805 * Before command execution, the command buffer needs to be put into 806 * the firmware-owned state. 807 */ 808 if (sev_cmd_buf_writable(cmd)) { 809 if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true)) 810 return -EFAULT; 811 } 812 813 return 0; 814 } 815 816 static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf) 817 { 818 if (!snp_legacy_handling_needed(cmd)) 819 return 0; 820 821 /* 822 * After command completion, the command buffer needs to be put back 823 * into the hypervisor-owned state. 824 */ 825 if (sev_cmd_buf_writable(cmd)) 826 if (snp_reclaim_pages(__pa(cmd_buf), 1, true)) 827 return -EFAULT; 828 829 return 0; 830 } 831 832 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret) 833 { 834 struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0}; 835 struct psp_device *psp = psp_master; 836 struct sev_device *sev; 837 unsigned int cmdbuff_hi, cmdbuff_lo; 838 unsigned int phys_lsb, phys_msb; 839 unsigned int reg, ret = 0; 840 void *cmd_buf; 841 int buf_len; 842 843 if (!psp || !psp->sev_data) 844 return -ENODEV; 845 846 if (psp_dead) 847 return -EBUSY; 848 849 sev = psp->sev_data; 850 851 buf_len = sev_cmd_buffer_len(cmd); 852 if (WARN_ON_ONCE(!data != !buf_len)) 853 return -EINVAL; 854 855 /* 856 * Copy the incoming data to driver's scratch buffer as __pa() will not 857 * work for some memory, e.g. vmalloc'd addresses, and @data may not be 858 * physically contiguous. 859 */ 860 if (data) { 861 /* 862 * Commands are generally issued one at a time and require the 863 * sev_cmd_mutex, but there could be recursive firmware requests 864 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while 865 * preparing buffers for another command. This is the only known 866 * case of nesting in the current code, so exactly one 867 * additional command buffer is available for that purpose. 868 */ 869 if (!sev->cmd_buf_active) { 870 cmd_buf = sev->cmd_buf; 871 sev->cmd_buf_active = true; 872 } else if (!sev->cmd_buf_backup_active) { 873 cmd_buf = sev->cmd_buf_backup; 874 sev->cmd_buf_backup_active = true; 875 } else { 876 dev_err(sev->dev, 877 "SEV: too many firmware commands in progress, no command buffers available.\n"); 878 return -EBUSY; 879 } 880 881 memcpy(cmd_buf, data, buf_len); 882 883 /* 884 * The behavior of the SEV-legacy commands is altered when the 885 * SNP firmware is in the INIT state. 886 */ 887 ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list); 888 if (ret) { 889 dev_err(sev->dev, 890 "SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n", 891 cmd, ret); 892 return ret; 893 } 894 } else { 895 cmd_buf = sev->cmd_buf; 896 } 897 898 /* Get the physical address of the command buffer */ 899 phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0; 900 phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0; 901 902 dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n", 903 cmd, phys_msb, phys_lsb, psp_timeout); 904 905 print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data, 906 buf_len, false); 907 908 iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 909 iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 910 911 sev->int_rcvd = 0; 912 913 reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd); 914 915 /* 916 * If invoked during panic handling, local interrupts are disabled so 917 * the PSP command completion interrupt can't be used. 918 * sev_wait_cmd_ioc() already checks for interrupts disabled and 919 * polls for PSP command completion. Ensure we do not request an 920 * interrupt from the PSP if irqs disabled. 921 */ 922 if (!irqs_disabled()) 923 reg |= SEV_CMDRESP_IOC; 924 925 iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg); 926 927 /* wait for command completion */ 928 ret = sev_wait_cmd_ioc(sev, ®, psp_timeout); 929 if (ret) { 930 if (psp_ret) 931 *psp_ret = 0; 932 933 dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd); 934 psp_dead = true; 935 936 return ret; 937 } 938 939 psp_timeout = psp_cmd_timeout; 940 941 if (psp_ret) 942 *psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg); 943 944 if (FIELD_GET(PSP_CMDRESP_STS, reg)) { 945 dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n", 946 cmd, FIELD_GET(PSP_CMDRESP_STS, reg)); 947 948 /* 949 * PSP firmware may report additional error information in the 950 * command buffer registers on error. Print contents of command 951 * buffer registers if they changed. 952 */ 953 cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 954 cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 955 if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) { 956 dev_dbg(sev->dev, "Additional error information reported in cmdbuff:"); 957 dev_dbg(sev->dev, " cmdbuff hi: %#010x\n", cmdbuff_hi); 958 dev_dbg(sev->dev, " cmdbuff lo: %#010x\n", cmdbuff_lo); 959 } 960 ret = -EIO; 961 } else { 962 ret = sev_write_init_ex_file_if_required(cmd); 963 } 964 965 /* 966 * Copy potential output from the PSP back to data. Do this even on 967 * failure in case the caller wants to glean something from the error. 968 */ 969 if (data) { 970 int ret_reclaim; 971 /* 972 * Restore the page state after the command completes. 973 */ 974 ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf); 975 if (ret_reclaim) { 976 dev_err(sev->dev, 977 "SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n", 978 cmd, ret_reclaim); 979 return ret_reclaim; 980 } 981 982 memcpy(data, cmd_buf, buf_len); 983 984 if (sev->cmd_buf_backup_active) 985 sev->cmd_buf_backup_active = false; 986 else 987 sev->cmd_buf_active = false; 988 989 if (snp_unmap_cmd_buf_desc_list(desc_list)) 990 return -EFAULT; 991 } 992 993 print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data, 994 buf_len, false); 995 996 return ret; 997 } 998 999 int sev_do_cmd(int cmd, void *data, int *psp_ret) 1000 { 1001 int rc; 1002 1003 mutex_lock(&sev_cmd_mutex); 1004 rc = __sev_do_cmd_locked(cmd, data, psp_ret); 1005 mutex_unlock(&sev_cmd_mutex); 1006 1007 return rc; 1008 } 1009 EXPORT_SYMBOL_GPL(sev_do_cmd); 1010 1011 static int __sev_init_locked(int *error) 1012 { 1013 struct sev_data_init data; 1014 1015 memset(&data, 0, sizeof(data)); 1016 if (sev_es_tmr) { 1017 /* 1018 * Do not include the encryption mask on the physical 1019 * address of the TMR (firmware should clear it anyway). 1020 */ 1021 data.tmr_address = __pa(sev_es_tmr); 1022 1023 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1024 data.tmr_len = sev_es_tmr_size; 1025 } 1026 1027 return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error); 1028 } 1029 1030 static int __sev_init_ex_locked(int *error) 1031 { 1032 struct sev_data_init_ex data; 1033 1034 memset(&data, 0, sizeof(data)); 1035 data.length = sizeof(data); 1036 data.nv_address = __psp_pa(sev_init_ex_buffer); 1037 data.nv_len = NV_LENGTH; 1038 1039 if (sev_es_tmr) { 1040 /* 1041 * Do not include the encryption mask on the physical 1042 * address of the TMR (firmware should clear it anyway). 1043 */ 1044 data.tmr_address = __pa(sev_es_tmr); 1045 1046 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1047 data.tmr_len = sev_es_tmr_size; 1048 } 1049 1050 return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error); 1051 } 1052 1053 static inline int __sev_do_init_locked(int *psp_ret) 1054 { 1055 if (sev_init_ex_buffer) 1056 return __sev_init_ex_locked(psp_ret); 1057 else 1058 return __sev_init_locked(psp_ret); 1059 } 1060 1061 static void snp_set_hsave_pa(void *arg) 1062 { 1063 wrmsrl(MSR_VM_HSAVE_PA, 0); 1064 } 1065 1066 static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg) 1067 { 1068 struct sev_data_range_list *range_list = arg; 1069 struct sev_data_range *range = &range_list->ranges[range_list->num_elements]; 1070 size_t size; 1071 1072 /* 1073 * Ensure the list of HV_FIXED pages that will be passed to firmware 1074 * do not exceed the page-sized argument buffer. 1075 */ 1076 if ((range_list->num_elements * sizeof(struct sev_data_range) + 1077 sizeof(struct sev_data_range_list)) > PAGE_SIZE) 1078 return -E2BIG; 1079 1080 switch (rs->desc) { 1081 case E820_TYPE_RESERVED: 1082 case E820_TYPE_PMEM: 1083 case E820_TYPE_ACPI: 1084 range->base = rs->start & PAGE_MASK; 1085 size = PAGE_ALIGN((rs->end + 1) - rs->start); 1086 range->page_count = size >> PAGE_SHIFT; 1087 range_list->num_elements++; 1088 break; 1089 default: 1090 break; 1091 } 1092 1093 return 0; 1094 } 1095 1096 static int __sev_snp_init_locked(int *error) 1097 { 1098 struct psp_device *psp = psp_master; 1099 struct sev_data_snp_init_ex data; 1100 struct sev_device *sev; 1101 void *arg = &data; 1102 int cmd, rc = 0; 1103 1104 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 1105 return -ENODEV; 1106 1107 sev = psp->sev_data; 1108 1109 if (sev->snp_initialized) 1110 return 0; 1111 1112 if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) { 1113 dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n", 1114 SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR); 1115 return 0; 1116 } 1117 1118 /* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */ 1119 on_each_cpu(snp_set_hsave_pa, NULL, 1); 1120 1121 /* 1122 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list 1123 * of system physical address ranges to convert into HV-fixed page 1124 * states during the RMP initialization. For instance, the memory that 1125 * UEFI reserves should be included in the that list. This allows system 1126 * components that occasionally write to memory (e.g. logging to UEFI 1127 * reserved regions) to not fail due to RMP initialization and SNP 1128 * enablement. 1129 * 1130 */ 1131 if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) { 1132 /* 1133 * Firmware checks that the pages containing the ranges enumerated 1134 * in the RANGES structure are either in the default page state or in the 1135 * firmware page state. 1136 */ 1137 snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL); 1138 if (!snp_range_list) { 1139 dev_err(sev->dev, 1140 "SEV: SNP_INIT_EX range list memory allocation failed\n"); 1141 return -ENOMEM; 1142 } 1143 1144 /* 1145 * Retrieve all reserved memory regions from the e820 memory map 1146 * to be setup as HV-fixed pages. 1147 */ 1148 rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0, 1149 snp_range_list, snp_filter_reserved_mem_regions); 1150 if (rc) { 1151 dev_err(sev->dev, 1152 "SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc); 1153 return rc; 1154 } 1155 1156 memset(&data, 0, sizeof(data)); 1157 data.init_rmp = 1; 1158 data.list_paddr_en = 1; 1159 data.list_paddr = __psp_pa(snp_range_list); 1160 cmd = SEV_CMD_SNP_INIT_EX; 1161 } else { 1162 cmd = SEV_CMD_SNP_INIT; 1163 arg = NULL; 1164 } 1165 1166 /* 1167 * The following sequence must be issued before launching the first SNP 1168 * guest to ensure all dirty cache lines are flushed, including from 1169 * updates to the RMP table itself via the RMPUPDATE instruction: 1170 * 1171 * - WBINVD on all running CPUs 1172 * - SEV_CMD_SNP_INIT[_EX] firmware command 1173 * - WBINVD on all running CPUs 1174 * - SEV_CMD_SNP_DF_FLUSH firmware command 1175 */ 1176 wbinvd_on_all_cpus(); 1177 1178 rc = __sev_do_cmd_locked(cmd, arg, error); 1179 if (rc) 1180 return rc; 1181 1182 /* Prepare for first SNP guest launch after INIT. */ 1183 wbinvd_on_all_cpus(); 1184 rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error); 1185 if (rc) 1186 return rc; 1187 1188 sev->snp_initialized = true; 1189 dev_dbg(sev->dev, "SEV-SNP firmware initialized\n"); 1190 1191 sev_es_tmr_size = SNP_TMR_SIZE; 1192 1193 return rc; 1194 } 1195 1196 static void __sev_platform_init_handle_tmr(struct sev_device *sev) 1197 { 1198 if (sev_es_tmr) 1199 return; 1200 1201 /* Obtain the TMR memory area for SEV-ES use */ 1202 sev_es_tmr = sev_fw_alloc(sev_es_tmr_size); 1203 if (sev_es_tmr) { 1204 /* Must flush the cache before giving it to the firmware */ 1205 if (!sev->snp_initialized) 1206 clflush_cache_range(sev_es_tmr, sev_es_tmr_size); 1207 } else { 1208 dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n"); 1209 } 1210 } 1211 1212 /* 1213 * If an init_ex_path is provided allocate a buffer for the file and 1214 * read in the contents. Additionally, if SNP is initialized, convert 1215 * the buffer pages to firmware pages. 1216 */ 1217 static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev) 1218 { 1219 struct page *page; 1220 int rc; 1221 1222 if (!init_ex_path) 1223 return 0; 1224 1225 if (sev_init_ex_buffer) 1226 return 0; 1227 1228 page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH)); 1229 if (!page) { 1230 dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n"); 1231 return -ENOMEM; 1232 } 1233 1234 sev_init_ex_buffer = page_address(page); 1235 1236 rc = sev_read_init_ex_file(); 1237 if (rc) 1238 return rc; 1239 1240 /* If SEV-SNP is initialized, transition to firmware page. */ 1241 if (sev->snp_initialized) { 1242 unsigned long npages; 1243 1244 npages = 1UL << get_order(NV_LENGTH); 1245 if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) { 1246 dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n"); 1247 return -ENOMEM; 1248 } 1249 } 1250 1251 return 0; 1252 } 1253 1254 static int __sev_platform_init_locked(int *error) 1255 { 1256 int rc, psp_ret = SEV_RET_NO_FW_CALL; 1257 struct sev_device *sev; 1258 1259 if (!psp_master || !psp_master->sev_data) 1260 return -ENODEV; 1261 1262 sev = psp_master->sev_data; 1263 1264 if (sev->state == SEV_STATE_INIT) 1265 return 0; 1266 1267 __sev_platform_init_handle_tmr(sev); 1268 1269 rc = __sev_platform_init_handle_init_ex_path(sev); 1270 if (rc) 1271 return rc; 1272 1273 rc = __sev_do_init_locked(&psp_ret); 1274 if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) { 1275 /* 1276 * Initialization command returned an integrity check failure 1277 * status code, meaning that firmware load and validation of SEV 1278 * related persistent data has failed. Retrying the 1279 * initialization function should succeed by replacing the state 1280 * with a reset state. 1281 */ 1282 dev_err(sev->dev, 1283 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state."); 1284 rc = __sev_do_init_locked(&psp_ret); 1285 } 1286 1287 if (error) 1288 *error = psp_ret; 1289 1290 if (rc) 1291 return rc; 1292 1293 sev->state = SEV_STATE_INIT; 1294 1295 /* Prepare for first SEV guest launch after INIT */ 1296 wbinvd_on_all_cpus(); 1297 rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error); 1298 if (rc) 1299 return rc; 1300 1301 dev_dbg(sev->dev, "SEV firmware initialized\n"); 1302 1303 dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major, 1304 sev->api_minor, sev->build); 1305 1306 return 0; 1307 } 1308 1309 static int _sev_platform_init_locked(struct sev_platform_init_args *args) 1310 { 1311 struct sev_device *sev; 1312 int rc; 1313 1314 if (!psp_master || !psp_master->sev_data) 1315 return -ENODEV; 1316 1317 sev = psp_master->sev_data; 1318 1319 if (sev->state == SEV_STATE_INIT) 1320 return 0; 1321 1322 /* 1323 * Legacy guests cannot be running while SNP_INIT(_EX) is executing, 1324 * so perform SEV-SNP initialization at probe time. 1325 */ 1326 rc = __sev_snp_init_locked(&args->error); 1327 if (rc && rc != -ENODEV) { 1328 /* 1329 * Don't abort the probe if SNP INIT failed, 1330 * continue to initialize the legacy SEV firmware. 1331 */ 1332 dev_err(sev->dev, "SEV-SNP: failed to INIT rc %d, error %#x\n", 1333 rc, args->error); 1334 } 1335 1336 /* Defer legacy SEV/SEV-ES support if allowed by caller/module. */ 1337 if (args->probe && !psp_init_on_probe) 1338 return 0; 1339 1340 return __sev_platform_init_locked(&args->error); 1341 } 1342 1343 int sev_platform_init(struct sev_platform_init_args *args) 1344 { 1345 int rc; 1346 1347 mutex_lock(&sev_cmd_mutex); 1348 rc = _sev_platform_init_locked(args); 1349 mutex_unlock(&sev_cmd_mutex); 1350 1351 return rc; 1352 } 1353 EXPORT_SYMBOL_GPL(sev_platform_init); 1354 1355 static int __sev_platform_shutdown_locked(int *error) 1356 { 1357 struct psp_device *psp = psp_master; 1358 struct sev_device *sev; 1359 int ret; 1360 1361 if (!psp || !psp->sev_data) 1362 return 0; 1363 1364 sev = psp->sev_data; 1365 1366 if (sev->state == SEV_STATE_UNINIT) 1367 return 0; 1368 1369 ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error); 1370 if (ret) 1371 return ret; 1372 1373 sev->state = SEV_STATE_UNINIT; 1374 dev_dbg(sev->dev, "SEV firmware shutdown\n"); 1375 1376 return ret; 1377 } 1378 1379 static int sev_get_platform_state(int *state, int *error) 1380 { 1381 struct sev_user_data_status data; 1382 int rc; 1383 1384 rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error); 1385 if (rc) 1386 return rc; 1387 1388 *state = data.state; 1389 return rc; 1390 } 1391 1392 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable) 1393 { 1394 int state, rc; 1395 1396 if (!writable) 1397 return -EPERM; 1398 1399 /* 1400 * The SEV spec requires that FACTORY_RESET must be issued in 1401 * UNINIT state. Before we go further lets check if any guest is 1402 * active. 1403 * 1404 * If FW is in WORKING state then deny the request otherwise issue 1405 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET. 1406 * 1407 */ 1408 rc = sev_get_platform_state(&state, &argp->error); 1409 if (rc) 1410 return rc; 1411 1412 if (state == SEV_STATE_WORKING) 1413 return -EBUSY; 1414 1415 if (state == SEV_STATE_INIT) { 1416 rc = __sev_platform_shutdown_locked(&argp->error); 1417 if (rc) 1418 return rc; 1419 } 1420 1421 return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error); 1422 } 1423 1424 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp) 1425 { 1426 struct sev_user_data_status data; 1427 int ret; 1428 1429 memset(&data, 0, sizeof(data)); 1430 1431 ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error); 1432 if (ret) 1433 return ret; 1434 1435 if (copy_to_user((void __user *)argp->data, &data, sizeof(data))) 1436 ret = -EFAULT; 1437 1438 return ret; 1439 } 1440 1441 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable) 1442 { 1443 struct sev_device *sev = psp_master->sev_data; 1444 int rc; 1445 1446 if (!writable) 1447 return -EPERM; 1448 1449 if (sev->state == SEV_STATE_UNINIT) { 1450 rc = __sev_platform_init_locked(&argp->error); 1451 if (rc) 1452 return rc; 1453 } 1454 1455 return __sev_do_cmd_locked(cmd, NULL, &argp->error); 1456 } 1457 1458 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable) 1459 { 1460 struct sev_device *sev = psp_master->sev_data; 1461 struct sev_user_data_pek_csr input; 1462 struct sev_data_pek_csr data; 1463 void __user *input_address; 1464 void *blob = NULL; 1465 int ret; 1466 1467 if (!writable) 1468 return -EPERM; 1469 1470 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1471 return -EFAULT; 1472 1473 memset(&data, 0, sizeof(data)); 1474 1475 /* userspace wants to query CSR length */ 1476 if (!input.address || !input.length) 1477 goto cmd; 1478 1479 /* allocate a physically contiguous buffer to store the CSR blob */ 1480 input_address = (void __user *)input.address; 1481 if (input.length > SEV_FW_BLOB_MAX_SIZE) 1482 return -EFAULT; 1483 1484 blob = kzalloc(input.length, GFP_KERNEL); 1485 if (!blob) 1486 return -ENOMEM; 1487 1488 data.address = __psp_pa(blob); 1489 data.len = input.length; 1490 1491 cmd: 1492 if (sev->state == SEV_STATE_UNINIT) { 1493 ret = __sev_platform_init_locked(&argp->error); 1494 if (ret) 1495 goto e_free_blob; 1496 } 1497 1498 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error); 1499 1500 /* If we query the CSR length, FW responded with expected data. */ 1501 input.length = data.len; 1502 1503 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1504 ret = -EFAULT; 1505 goto e_free_blob; 1506 } 1507 1508 if (blob) { 1509 if (copy_to_user(input_address, blob, input.length)) 1510 ret = -EFAULT; 1511 } 1512 1513 e_free_blob: 1514 kfree(blob); 1515 return ret; 1516 } 1517 1518 void *psp_copy_user_blob(u64 uaddr, u32 len) 1519 { 1520 if (!uaddr || !len) 1521 return ERR_PTR(-EINVAL); 1522 1523 /* verify that blob length does not exceed our limit */ 1524 if (len > SEV_FW_BLOB_MAX_SIZE) 1525 return ERR_PTR(-EINVAL); 1526 1527 return memdup_user((void __user *)uaddr, len); 1528 } 1529 EXPORT_SYMBOL_GPL(psp_copy_user_blob); 1530 1531 static int sev_get_api_version(void) 1532 { 1533 struct sev_device *sev = psp_master->sev_data; 1534 struct sev_user_data_status status; 1535 int error = 0, ret; 1536 1537 ret = sev_platform_status(&status, &error); 1538 if (ret) { 1539 dev_err(sev->dev, 1540 "SEV: failed to get status. Error: %#x\n", error); 1541 return 1; 1542 } 1543 1544 sev->api_major = status.api_major; 1545 sev->api_minor = status.api_minor; 1546 sev->build = status.build; 1547 sev->state = status.state; 1548 1549 return 0; 1550 } 1551 1552 static int sev_get_firmware(struct device *dev, 1553 const struct firmware **firmware) 1554 { 1555 char fw_name_specific[SEV_FW_NAME_SIZE]; 1556 char fw_name_subset[SEV_FW_NAME_SIZE]; 1557 1558 snprintf(fw_name_specific, sizeof(fw_name_specific), 1559 "amd/amd_sev_fam%.2xh_model%.2xh.sbin", 1560 boot_cpu_data.x86, boot_cpu_data.x86_model); 1561 1562 snprintf(fw_name_subset, sizeof(fw_name_subset), 1563 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin", 1564 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4); 1565 1566 /* Check for SEV FW for a particular model. 1567 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h 1568 * 1569 * or 1570 * 1571 * Check for SEV FW common to a subset of models. 1572 * Ex. amd_sev_fam17h_model0xh.sbin for 1573 * Family 17h Model 00h -- Family 17h Model 0Fh 1574 * 1575 * or 1576 * 1577 * Fall-back to using generic name: sev.fw 1578 */ 1579 if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) || 1580 (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) || 1581 (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0)) 1582 return 0; 1583 1584 return -ENOENT; 1585 } 1586 1587 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */ 1588 static int sev_update_firmware(struct device *dev) 1589 { 1590 struct sev_data_download_firmware *data; 1591 const struct firmware *firmware; 1592 int ret, error, order; 1593 struct page *p; 1594 u64 data_size; 1595 1596 if (!sev_version_greater_or_equal(0, 15)) { 1597 dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n"); 1598 return -1; 1599 } 1600 1601 if (sev_get_firmware(dev, &firmware) == -ENOENT) { 1602 dev_dbg(dev, "No SEV firmware file present\n"); 1603 return -1; 1604 } 1605 1606 /* 1607 * SEV FW expects the physical address given to it to be 32 1608 * byte aligned. Memory allocated has structure placed at the 1609 * beginning followed by the firmware being passed to the SEV 1610 * FW. Allocate enough memory for data structure + alignment 1611 * padding + SEV FW. 1612 */ 1613 data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32); 1614 1615 order = get_order(firmware->size + data_size); 1616 p = alloc_pages(GFP_KERNEL, order); 1617 if (!p) { 1618 ret = -1; 1619 goto fw_err; 1620 } 1621 1622 /* 1623 * Copy firmware data to a kernel allocated contiguous 1624 * memory region. 1625 */ 1626 data = page_address(p); 1627 memcpy(page_address(p) + data_size, firmware->data, firmware->size); 1628 1629 data->address = __psp_pa(page_address(p) + data_size); 1630 data->len = firmware->size; 1631 1632 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1633 1634 /* 1635 * A quirk for fixing the committed TCB version, when upgrading from 1636 * earlier firmware version than 1.50. 1637 */ 1638 if (!ret && !sev_version_greater_or_equal(1, 50)) 1639 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1640 1641 if (ret) 1642 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error); 1643 1644 __free_pages(p, order); 1645 1646 fw_err: 1647 release_firmware(firmware); 1648 1649 return ret; 1650 } 1651 1652 static int __sev_snp_shutdown_locked(int *error, bool panic) 1653 { 1654 struct psp_device *psp = psp_master; 1655 struct sev_device *sev; 1656 struct sev_data_snp_shutdown_ex data; 1657 int ret; 1658 1659 if (!psp || !psp->sev_data) 1660 return 0; 1661 1662 sev = psp->sev_data; 1663 1664 if (!sev->snp_initialized) 1665 return 0; 1666 1667 memset(&data, 0, sizeof(data)); 1668 data.len = sizeof(data); 1669 data.iommu_snp_shutdown = 1; 1670 1671 /* 1672 * If invoked during panic handling, local interrupts are disabled 1673 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called. 1674 * In that case, a wbinvd() is done on remote CPUs via the NMI 1675 * callback, so only a local wbinvd() is needed here. 1676 */ 1677 if (!panic) 1678 wbinvd_on_all_cpus(); 1679 else 1680 wbinvd(); 1681 1682 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error); 1683 /* SHUTDOWN may require DF_FLUSH */ 1684 if (*error == SEV_RET_DFFLUSH_REQUIRED) { 1685 ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, NULL); 1686 if (ret) { 1687 dev_err(sev->dev, "SEV-SNP DF_FLUSH failed\n"); 1688 return ret; 1689 } 1690 /* reissue the shutdown command */ 1691 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, 1692 error); 1693 } 1694 if (ret) { 1695 dev_err(sev->dev, "SEV-SNP firmware shutdown failed\n"); 1696 return ret; 1697 } 1698 1699 /* 1700 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP 1701 * enforcement by the IOMMU and also transitions all pages 1702 * associated with the IOMMU to the Reclaim state. 1703 * Firmware was transitioning the IOMMU pages to Hypervisor state 1704 * before version 1.53. But, accounting for the number of assigned 1705 * 4kB pages in a 2M page was done incorrectly by not transitioning 1706 * to the Reclaim state. This resulted in RMP #PF when later accessing 1707 * the 2M page containing those pages during kexec boot. Hence, the 1708 * firmware now transitions these pages to Reclaim state and hypervisor 1709 * needs to transition these pages to shared state. SNP Firmware 1710 * version 1.53 and above are needed for kexec boot. 1711 */ 1712 ret = amd_iommu_snp_disable(); 1713 if (ret) { 1714 dev_err(sev->dev, "SNP IOMMU shutdown failed\n"); 1715 return ret; 1716 } 1717 1718 sev->snp_initialized = false; 1719 dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n"); 1720 1721 return ret; 1722 } 1723 1724 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable) 1725 { 1726 struct sev_device *sev = psp_master->sev_data; 1727 struct sev_user_data_pek_cert_import input; 1728 struct sev_data_pek_cert_import data; 1729 void *pek_blob, *oca_blob; 1730 int ret; 1731 1732 if (!writable) 1733 return -EPERM; 1734 1735 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1736 return -EFAULT; 1737 1738 /* copy PEK certificate blobs from userspace */ 1739 pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len); 1740 if (IS_ERR(pek_blob)) 1741 return PTR_ERR(pek_blob); 1742 1743 data.reserved = 0; 1744 data.pek_cert_address = __psp_pa(pek_blob); 1745 data.pek_cert_len = input.pek_cert_len; 1746 1747 /* copy PEK certificate blobs from userspace */ 1748 oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len); 1749 if (IS_ERR(oca_blob)) { 1750 ret = PTR_ERR(oca_blob); 1751 goto e_free_pek; 1752 } 1753 1754 data.oca_cert_address = __psp_pa(oca_blob); 1755 data.oca_cert_len = input.oca_cert_len; 1756 1757 /* If platform is not in INIT state then transition it to INIT */ 1758 if (sev->state != SEV_STATE_INIT) { 1759 ret = __sev_platform_init_locked(&argp->error); 1760 if (ret) 1761 goto e_free_oca; 1762 } 1763 1764 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error); 1765 1766 e_free_oca: 1767 kfree(oca_blob); 1768 e_free_pek: 1769 kfree(pek_blob); 1770 return ret; 1771 } 1772 1773 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp) 1774 { 1775 struct sev_user_data_get_id2 input; 1776 struct sev_data_get_id data; 1777 void __user *input_address; 1778 void *id_blob = NULL; 1779 int ret; 1780 1781 /* SEV GET_ID is available from SEV API v0.16 and up */ 1782 if (!sev_version_greater_or_equal(0, 16)) 1783 return -ENOTSUPP; 1784 1785 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1786 return -EFAULT; 1787 1788 input_address = (void __user *)input.address; 1789 1790 if (input.address && input.length) { 1791 /* 1792 * The length of the ID shouldn't be assumed by software since 1793 * it may change in the future. The allocation size is limited 1794 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator. 1795 * If the allocation fails, simply return ENOMEM rather than 1796 * warning in the kernel log. 1797 */ 1798 id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN); 1799 if (!id_blob) 1800 return -ENOMEM; 1801 1802 data.address = __psp_pa(id_blob); 1803 data.len = input.length; 1804 } else { 1805 data.address = 0; 1806 data.len = 0; 1807 } 1808 1809 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error); 1810 1811 /* 1812 * Firmware will return the length of the ID value (either the minimum 1813 * required length or the actual length written), return it to the user. 1814 */ 1815 input.length = data.len; 1816 1817 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1818 ret = -EFAULT; 1819 goto e_free; 1820 } 1821 1822 if (id_blob) { 1823 if (copy_to_user(input_address, id_blob, data.len)) { 1824 ret = -EFAULT; 1825 goto e_free; 1826 } 1827 } 1828 1829 e_free: 1830 kfree(id_blob); 1831 1832 return ret; 1833 } 1834 1835 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp) 1836 { 1837 struct sev_data_get_id *data; 1838 u64 data_size, user_size; 1839 void *id_blob, *mem; 1840 int ret; 1841 1842 /* SEV GET_ID available from SEV API v0.16 and up */ 1843 if (!sev_version_greater_or_equal(0, 16)) 1844 return -ENOTSUPP; 1845 1846 /* SEV FW expects the buffer it fills with the ID to be 1847 * 8-byte aligned. Memory allocated should be enough to 1848 * hold data structure + alignment padding + memory 1849 * where SEV FW writes the ID. 1850 */ 1851 data_size = ALIGN(sizeof(struct sev_data_get_id), 8); 1852 user_size = sizeof(struct sev_user_data_get_id); 1853 1854 mem = kzalloc(data_size + user_size, GFP_KERNEL); 1855 if (!mem) 1856 return -ENOMEM; 1857 1858 data = mem; 1859 id_blob = mem + data_size; 1860 1861 data->address = __psp_pa(id_blob); 1862 data->len = user_size; 1863 1864 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); 1865 if (!ret) { 1866 if (copy_to_user((void __user *)argp->data, id_blob, data->len)) 1867 ret = -EFAULT; 1868 } 1869 1870 kfree(mem); 1871 1872 return ret; 1873 } 1874 1875 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable) 1876 { 1877 struct sev_device *sev = psp_master->sev_data; 1878 struct sev_user_data_pdh_cert_export input; 1879 void *pdh_blob = NULL, *cert_blob = NULL; 1880 struct sev_data_pdh_cert_export data; 1881 void __user *input_cert_chain_address; 1882 void __user *input_pdh_cert_address; 1883 int ret; 1884 1885 /* If platform is not in INIT state then transition it to INIT. */ 1886 if (sev->state != SEV_STATE_INIT) { 1887 if (!writable) 1888 return -EPERM; 1889 1890 ret = __sev_platform_init_locked(&argp->error); 1891 if (ret) 1892 return ret; 1893 } 1894 1895 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1896 return -EFAULT; 1897 1898 memset(&data, 0, sizeof(data)); 1899 1900 /* Userspace wants to query the certificate length. */ 1901 if (!input.pdh_cert_address || 1902 !input.pdh_cert_len || 1903 !input.cert_chain_address) 1904 goto cmd; 1905 1906 input_pdh_cert_address = (void __user *)input.pdh_cert_address; 1907 input_cert_chain_address = (void __user *)input.cert_chain_address; 1908 1909 /* Allocate a physically contiguous buffer to store the PDH blob. */ 1910 if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE) 1911 return -EFAULT; 1912 1913 /* Allocate a physically contiguous buffer to store the cert chain blob. */ 1914 if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE) 1915 return -EFAULT; 1916 1917 pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL); 1918 if (!pdh_blob) 1919 return -ENOMEM; 1920 1921 data.pdh_cert_address = __psp_pa(pdh_blob); 1922 data.pdh_cert_len = input.pdh_cert_len; 1923 1924 cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL); 1925 if (!cert_blob) { 1926 ret = -ENOMEM; 1927 goto e_free_pdh; 1928 } 1929 1930 data.cert_chain_address = __psp_pa(cert_blob); 1931 data.cert_chain_len = input.cert_chain_len; 1932 1933 cmd: 1934 ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error); 1935 1936 /* If we query the length, FW responded with expected data. */ 1937 input.cert_chain_len = data.cert_chain_len; 1938 input.pdh_cert_len = data.pdh_cert_len; 1939 1940 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1941 ret = -EFAULT; 1942 goto e_free_cert; 1943 } 1944 1945 if (pdh_blob) { 1946 if (copy_to_user(input_pdh_cert_address, 1947 pdh_blob, input.pdh_cert_len)) { 1948 ret = -EFAULT; 1949 goto e_free_cert; 1950 } 1951 } 1952 1953 if (cert_blob) { 1954 if (copy_to_user(input_cert_chain_address, 1955 cert_blob, input.cert_chain_len)) 1956 ret = -EFAULT; 1957 } 1958 1959 e_free_cert: 1960 kfree(cert_blob); 1961 e_free_pdh: 1962 kfree(pdh_blob); 1963 return ret; 1964 } 1965 1966 static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp) 1967 { 1968 struct sev_device *sev = psp_master->sev_data; 1969 struct sev_data_snp_addr buf; 1970 struct page *status_page; 1971 void *data; 1972 int ret; 1973 1974 if (!sev->snp_initialized || !argp->data) 1975 return -EINVAL; 1976 1977 status_page = alloc_page(GFP_KERNEL_ACCOUNT); 1978 if (!status_page) 1979 return -ENOMEM; 1980 1981 data = page_address(status_page); 1982 1983 /* 1984 * Firmware expects status page to be in firmware-owned state, otherwise 1985 * it will report firmware error code INVALID_PAGE_STATE (0x1A). 1986 */ 1987 if (rmp_mark_pages_firmware(__pa(data), 1, true)) { 1988 ret = -EFAULT; 1989 goto cleanup; 1990 } 1991 1992 buf.address = __psp_pa(data); 1993 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error); 1994 1995 /* 1996 * Status page will be transitioned to Reclaim state upon success, or 1997 * left in Firmware state in failure. Use snp_reclaim_pages() to 1998 * transition either case back to Hypervisor-owned state. 1999 */ 2000 if (snp_reclaim_pages(__pa(data), 1, true)) 2001 return -EFAULT; 2002 2003 if (ret) 2004 goto cleanup; 2005 2006 if (copy_to_user((void __user *)argp->data, data, 2007 sizeof(struct sev_user_data_snp_status))) 2008 ret = -EFAULT; 2009 2010 cleanup: 2011 __free_pages(status_page, 0); 2012 return ret; 2013 } 2014 2015 static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp) 2016 { 2017 struct sev_device *sev = psp_master->sev_data; 2018 struct sev_data_snp_commit buf; 2019 2020 if (!sev->snp_initialized) 2021 return -EINVAL; 2022 2023 buf.len = sizeof(buf); 2024 2025 return __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error); 2026 } 2027 2028 static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable) 2029 { 2030 struct sev_device *sev = psp_master->sev_data; 2031 struct sev_user_data_snp_config config; 2032 2033 if (!sev->snp_initialized || !argp->data) 2034 return -EINVAL; 2035 2036 if (!writable) 2037 return -EPERM; 2038 2039 if (copy_from_user(&config, (void __user *)argp->data, sizeof(config))) 2040 return -EFAULT; 2041 2042 return __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error); 2043 } 2044 2045 static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable) 2046 { 2047 struct sev_device *sev = psp_master->sev_data; 2048 struct sev_user_data_snp_vlek_load input; 2049 void *blob; 2050 int ret; 2051 2052 if (!sev->snp_initialized || !argp->data) 2053 return -EINVAL; 2054 2055 if (!writable) 2056 return -EPERM; 2057 2058 if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input))) 2059 return -EFAULT; 2060 2061 if (input.len != sizeof(input) || input.vlek_wrapped_version != 0) 2062 return -EINVAL; 2063 2064 blob = psp_copy_user_blob(input.vlek_wrapped_address, 2065 sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick)); 2066 if (IS_ERR(blob)) 2067 return PTR_ERR(blob); 2068 2069 input.vlek_wrapped_address = __psp_pa(blob); 2070 2071 ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error); 2072 2073 kfree(blob); 2074 2075 return ret; 2076 } 2077 2078 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) 2079 { 2080 void __user *argp = (void __user *)arg; 2081 struct sev_issue_cmd input; 2082 int ret = -EFAULT; 2083 bool writable = file->f_mode & FMODE_WRITE; 2084 2085 if (!psp_master || !psp_master->sev_data) 2086 return -ENODEV; 2087 2088 if (ioctl != SEV_ISSUE_CMD) 2089 return -EINVAL; 2090 2091 if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd))) 2092 return -EFAULT; 2093 2094 if (input.cmd > SEV_MAX) 2095 return -EINVAL; 2096 2097 mutex_lock(&sev_cmd_mutex); 2098 2099 switch (input.cmd) { 2100 2101 case SEV_FACTORY_RESET: 2102 ret = sev_ioctl_do_reset(&input, writable); 2103 break; 2104 case SEV_PLATFORM_STATUS: 2105 ret = sev_ioctl_do_platform_status(&input); 2106 break; 2107 case SEV_PEK_GEN: 2108 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable); 2109 break; 2110 case SEV_PDH_GEN: 2111 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable); 2112 break; 2113 case SEV_PEK_CSR: 2114 ret = sev_ioctl_do_pek_csr(&input, writable); 2115 break; 2116 case SEV_PEK_CERT_IMPORT: 2117 ret = sev_ioctl_do_pek_import(&input, writable); 2118 break; 2119 case SEV_PDH_CERT_EXPORT: 2120 ret = sev_ioctl_do_pdh_export(&input, writable); 2121 break; 2122 case SEV_GET_ID: 2123 pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n"); 2124 ret = sev_ioctl_do_get_id(&input); 2125 break; 2126 case SEV_GET_ID2: 2127 ret = sev_ioctl_do_get_id2(&input); 2128 break; 2129 case SNP_PLATFORM_STATUS: 2130 ret = sev_ioctl_do_snp_platform_status(&input); 2131 break; 2132 case SNP_COMMIT: 2133 ret = sev_ioctl_do_snp_commit(&input); 2134 break; 2135 case SNP_SET_CONFIG: 2136 ret = sev_ioctl_do_snp_set_config(&input, writable); 2137 break; 2138 case SNP_VLEK_LOAD: 2139 ret = sev_ioctl_do_snp_vlek_load(&input, writable); 2140 break; 2141 default: 2142 ret = -EINVAL; 2143 goto out; 2144 } 2145 2146 if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd))) 2147 ret = -EFAULT; 2148 out: 2149 mutex_unlock(&sev_cmd_mutex); 2150 2151 return ret; 2152 } 2153 2154 static const struct file_operations sev_fops = { 2155 .owner = THIS_MODULE, 2156 .unlocked_ioctl = sev_ioctl, 2157 }; 2158 2159 int sev_platform_status(struct sev_user_data_status *data, int *error) 2160 { 2161 return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error); 2162 } 2163 EXPORT_SYMBOL_GPL(sev_platform_status); 2164 2165 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error) 2166 { 2167 return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error); 2168 } 2169 EXPORT_SYMBOL_GPL(sev_guest_deactivate); 2170 2171 int sev_guest_activate(struct sev_data_activate *data, int *error) 2172 { 2173 return sev_do_cmd(SEV_CMD_ACTIVATE, data, error); 2174 } 2175 EXPORT_SYMBOL_GPL(sev_guest_activate); 2176 2177 int sev_guest_decommission(struct sev_data_decommission *data, int *error) 2178 { 2179 return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error); 2180 } 2181 EXPORT_SYMBOL_GPL(sev_guest_decommission); 2182 2183 int sev_guest_df_flush(int *error) 2184 { 2185 return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error); 2186 } 2187 EXPORT_SYMBOL_GPL(sev_guest_df_flush); 2188 2189 static void sev_exit(struct kref *ref) 2190 { 2191 misc_deregister(&misc_dev->misc); 2192 kfree(misc_dev); 2193 misc_dev = NULL; 2194 } 2195 2196 static int sev_misc_init(struct sev_device *sev) 2197 { 2198 struct device *dev = sev->dev; 2199 int ret; 2200 2201 /* 2202 * SEV feature support can be detected on multiple devices but the SEV 2203 * FW commands must be issued on the master. During probe, we do not 2204 * know the master hence we create /dev/sev on the first device probe. 2205 * sev_do_cmd() finds the right master device to which to issue the 2206 * command to the firmware. 2207 */ 2208 if (!misc_dev) { 2209 struct miscdevice *misc; 2210 2211 misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL); 2212 if (!misc_dev) 2213 return -ENOMEM; 2214 2215 misc = &misc_dev->misc; 2216 misc->minor = MISC_DYNAMIC_MINOR; 2217 misc->name = DEVICE_NAME; 2218 misc->fops = &sev_fops; 2219 2220 ret = misc_register(misc); 2221 if (ret) 2222 return ret; 2223 2224 kref_init(&misc_dev->refcount); 2225 } else { 2226 kref_get(&misc_dev->refcount); 2227 } 2228 2229 init_waitqueue_head(&sev->int_queue); 2230 sev->misc = misc_dev; 2231 dev_dbg(dev, "registered SEV device\n"); 2232 2233 return 0; 2234 } 2235 2236 int sev_dev_init(struct psp_device *psp) 2237 { 2238 struct device *dev = psp->dev; 2239 struct sev_device *sev; 2240 int ret = -ENOMEM; 2241 2242 if (!boot_cpu_has(X86_FEATURE_SEV)) { 2243 dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n"); 2244 return 0; 2245 } 2246 2247 sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL); 2248 if (!sev) 2249 goto e_err; 2250 2251 sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1); 2252 if (!sev->cmd_buf) 2253 goto e_sev; 2254 2255 sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE; 2256 2257 psp->sev_data = sev; 2258 2259 sev->dev = dev; 2260 sev->psp = psp; 2261 2262 sev->io_regs = psp->io_regs; 2263 2264 sev->vdata = (struct sev_vdata *)psp->vdata->sev; 2265 if (!sev->vdata) { 2266 ret = -ENODEV; 2267 dev_err(dev, "sev: missing driver data\n"); 2268 goto e_buf; 2269 } 2270 2271 psp_set_sev_irq_handler(psp, sev_irq_handler, sev); 2272 2273 ret = sev_misc_init(sev); 2274 if (ret) 2275 goto e_irq; 2276 2277 dev_notice(dev, "sev enabled\n"); 2278 2279 return 0; 2280 2281 e_irq: 2282 psp_clear_sev_irq_handler(psp); 2283 e_buf: 2284 devm_free_pages(dev, (unsigned long)sev->cmd_buf); 2285 e_sev: 2286 devm_kfree(dev, sev); 2287 e_err: 2288 psp->sev_data = NULL; 2289 2290 dev_notice(dev, "sev initialization failed\n"); 2291 2292 return ret; 2293 } 2294 2295 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic) 2296 { 2297 int error; 2298 2299 __sev_platform_shutdown_locked(NULL); 2300 2301 if (sev_es_tmr) { 2302 /* 2303 * The TMR area was encrypted, flush it from the cache. 2304 * 2305 * If invoked during panic handling, local interrupts are 2306 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus() 2307 * can't be used. In that case, wbinvd() is done on remote CPUs 2308 * via the NMI callback, and done for this CPU later during 2309 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped. 2310 */ 2311 if (!panic) 2312 wbinvd_on_all_cpus(); 2313 2314 __snp_free_firmware_pages(virt_to_page(sev_es_tmr), 2315 get_order(sev_es_tmr_size), 2316 true); 2317 sev_es_tmr = NULL; 2318 } 2319 2320 if (sev_init_ex_buffer) { 2321 __snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer), 2322 get_order(NV_LENGTH), 2323 true); 2324 sev_init_ex_buffer = NULL; 2325 } 2326 2327 if (snp_range_list) { 2328 kfree(snp_range_list); 2329 snp_range_list = NULL; 2330 } 2331 2332 __sev_snp_shutdown_locked(&error, panic); 2333 } 2334 2335 static void sev_firmware_shutdown(struct sev_device *sev) 2336 { 2337 mutex_lock(&sev_cmd_mutex); 2338 __sev_firmware_shutdown(sev, false); 2339 mutex_unlock(&sev_cmd_mutex); 2340 } 2341 2342 void sev_dev_destroy(struct psp_device *psp) 2343 { 2344 struct sev_device *sev = psp->sev_data; 2345 2346 if (!sev) 2347 return; 2348 2349 sev_firmware_shutdown(sev); 2350 2351 if (sev->misc) 2352 kref_put(&misc_dev->refcount, sev_exit); 2353 2354 psp_clear_sev_irq_handler(psp); 2355 } 2356 2357 static int snp_shutdown_on_panic(struct notifier_block *nb, 2358 unsigned long reason, void *arg) 2359 { 2360 struct sev_device *sev = psp_master->sev_data; 2361 2362 /* 2363 * If sev_cmd_mutex is already acquired, then it's likely 2364 * another PSP command is in flight and issuing a shutdown 2365 * would fail in unexpected ways. Rather than create even 2366 * more confusion during a panic, just bail out here. 2367 */ 2368 if (mutex_is_locked(&sev_cmd_mutex)) 2369 return NOTIFY_DONE; 2370 2371 __sev_firmware_shutdown(sev, true); 2372 2373 return NOTIFY_DONE; 2374 } 2375 2376 static struct notifier_block snp_panic_notifier = { 2377 .notifier_call = snp_shutdown_on_panic, 2378 }; 2379 2380 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd, 2381 void *data, int *error) 2382 { 2383 if (!filep || filep->f_op != &sev_fops) 2384 return -EBADF; 2385 2386 return sev_do_cmd(cmd, data, error); 2387 } 2388 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user); 2389 2390 void sev_pci_init(void) 2391 { 2392 struct sev_device *sev = psp_master->sev_data; 2393 struct sev_platform_init_args args = {0}; 2394 u8 api_major, api_minor, build; 2395 int rc; 2396 2397 if (!sev) 2398 return; 2399 2400 psp_timeout = psp_probe_timeout; 2401 2402 if (sev_get_api_version()) 2403 goto err; 2404 2405 api_major = sev->api_major; 2406 api_minor = sev->api_minor; 2407 build = sev->build; 2408 2409 if (sev_update_firmware(sev->dev) == 0) 2410 sev_get_api_version(); 2411 2412 if (api_major != sev->api_major || api_minor != sev->api_minor || 2413 build != sev->build) 2414 dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n", 2415 api_major, api_minor, build, 2416 sev->api_major, sev->api_minor, sev->build); 2417 2418 /* Initialize the platform */ 2419 args.probe = true; 2420 rc = sev_platform_init(&args); 2421 if (rc) 2422 dev_err(sev->dev, "SEV: failed to INIT error %#x, rc %d\n", 2423 args.error, rc); 2424 2425 dev_info(sev->dev, "SEV%s API:%d.%d build:%d\n", sev->snp_initialized ? 2426 "-SNP" : "", sev->api_major, sev->api_minor, sev->build); 2427 2428 atomic_notifier_chain_register(&panic_notifier_list, 2429 &snp_panic_notifier); 2430 return; 2431 2432 err: 2433 sev_dev_destroy(psp_master); 2434 2435 psp_master->sev_data = NULL; 2436 } 2437 2438 void sev_pci_exit(void) 2439 { 2440 struct sev_device *sev = psp_master->sev_data; 2441 2442 if (!sev) 2443 return; 2444 2445 sev_firmware_shutdown(sev); 2446 2447 atomic_notifier_chain_unregister(&panic_notifier_list, 2448 &snp_panic_notifier); 2449 } 2450