1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Secure Encrypted Virtualization (SEV) interface 4 * 5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc. 6 * 7 * Author: Brijesh Singh <brijesh.singh@amd.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/kthread.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/spinlock.h> 17 #include <linux/spinlock_types.h> 18 #include <linux/types.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/hw_random.h> 22 #include <linux/ccp.h> 23 #include <linux/firmware.h> 24 #include <linux/panic_notifier.h> 25 #include <linux/gfp.h> 26 #include <linux/cpufeature.h> 27 #include <linux/fs.h> 28 #include <linux/fs_struct.h> 29 #include <linux/psp.h> 30 #include <linux/amd-iommu.h> 31 32 #include <asm/smp.h> 33 #include <asm/cacheflush.h> 34 #include <asm/e820/types.h> 35 #include <asm/sev.h> 36 #include <asm/msr.h> 37 38 #include "psp-dev.h" 39 #include "sev-dev.h" 40 41 #define DEVICE_NAME "sev" 42 #define SEV_FW_FILE "amd/sev.fw" 43 #define SEV_FW_NAME_SIZE 64 44 45 /* Minimum firmware version required for the SEV-SNP support */ 46 #define SNP_MIN_API_MAJOR 1 47 #define SNP_MIN_API_MINOR 51 48 49 /* 50 * Maximum number of firmware-writable buffers that might be specified 51 * in the parameters of a legacy SEV command buffer. 52 */ 53 #define CMD_BUF_FW_WRITABLE_MAX 2 54 55 /* Leave room in the descriptor array for an end-of-list indicator. */ 56 #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1) 57 58 static DEFINE_MUTEX(sev_cmd_mutex); 59 static struct sev_misc_dev *misc_dev; 60 61 static int psp_cmd_timeout = 100; 62 module_param(psp_cmd_timeout, int, 0644); 63 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands"); 64 65 static int psp_probe_timeout = 5; 66 module_param(psp_probe_timeout, int, 0644); 67 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe"); 68 69 static char *init_ex_path; 70 module_param(init_ex_path, charp, 0444); 71 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX"); 72 73 static bool psp_init_on_probe = true; 74 module_param(psp_init_on_probe, bool, 0444); 75 MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it"); 76 77 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */ 78 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */ 79 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */ 80 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */ 81 82 static bool psp_dead; 83 static int psp_timeout; 84 85 /* Trusted Memory Region (TMR): 86 * The TMR is a 1MB area that must be 1MB aligned. Use the page allocator 87 * to allocate the memory, which will return aligned memory for the specified 88 * allocation order. 89 * 90 * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized. 91 */ 92 #define SEV_TMR_SIZE (1024 * 1024) 93 #define SNP_TMR_SIZE (2 * 1024 * 1024) 94 95 static void *sev_es_tmr; 96 static size_t sev_es_tmr_size = SEV_TMR_SIZE; 97 98 /* INIT_EX NV Storage: 99 * The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page 100 * allocator to allocate the memory, which will return aligned memory for the 101 * specified allocation order. 102 */ 103 #define NV_LENGTH (32 * 1024) 104 static void *sev_init_ex_buffer; 105 106 /* 107 * SEV_DATA_RANGE_LIST: 108 * Array containing range of pages that firmware transitions to HV-fixed 109 * page state. 110 */ 111 static struct sev_data_range_list *snp_range_list; 112 113 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic); 114 115 static int snp_shutdown_on_panic(struct notifier_block *nb, 116 unsigned long reason, void *arg); 117 118 static struct notifier_block snp_panic_notifier = { 119 .notifier_call = snp_shutdown_on_panic, 120 }; 121 122 static inline bool sev_version_greater_or_equal(u8 maj, u8 min) 123 { 124 struct sev_device *sev = psp_master->sev_data; 125 126 if (sev->api_major > maj) 127 return true; 128 129 if (sev->api_major == maj && sev->api_minor >= min) 130 return true; 131 132 return false; 133 } 134 135 static void sev_irq_handler(int irq, void *data, unsigned int status) 136 { 137 struct sev_device *sev = data; 138 int reg; 139 140 /* Check if it is command completion: */ 141 if (!(status & SEV_CMD_COMPLETE)) 142 return; 143 144 /* Check if it is SEV command completion: */ 145 reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 146 if (FIELD_GET(PSP_CMDRESP_RESP, reg)) { 147 sev->int_rcvd = 1; 148 wake_up(&sev->int_queue); 149 } 150 } 151 152 static int sev_wait_cmd_ioc(struct sev_device *sev, 153 unsigned int *reg, unsigned int timeout) 154 { 155 int ret; 156 157 /* 158 * If invoked during panic handling, local interrupts are disabled, 159 * so the PSP command completion interrupt can't be used. Poll for 160 * PSP command completion instead. 161 */ 162 if (irqs_disabled()) { 163 unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10; 164 165 /* Poll for SEV command completion: */ 166 while (timeout_usecs--) { 167 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 168 if (*reg & PSP_CMDRESP_RESP) 169 return 0; 170 171 udelay(10); 172 } 173 return -ETIMEDOUT; 174 } 175 176 ret = wait_event_timeout(sev->int_queue, 177 sev->int_rcvd, timeout * HZ); 178 if (!ret) 179 return -ETIMEDOUT; 180 181 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 182 183 return 0; 184 } 185 186 static int sev_cmd_buffer_len(int cmd) 187 { 188 switch (cmd) { 189 case SEV_CMD_INIT: return sizeof(struct sev_data_init); 190 case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex); 191 case SEV_CMD_SNP_SHUTDOWN_EX: return sizeof(struct sev_data_snp_shutdown_ex); 192 case SEV_CMD_SNP_INIT_EX: return sizeof(struct sev_data_snp_init_ex); 193 case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status); 194 case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr); 195 case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import); 196 case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export); 197 case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start); 198 case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data); 199 case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa); 200 case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish); 201 case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure); 202 case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate); 203 case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate); 204 case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission); 205 case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status); 206 case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg); 207 case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg); 208 case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start); 209 case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data); 210 case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa); 211 case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish); 212 case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start); 213 case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish); 214 case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data); 215 case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa); 216 case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret); 217 case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware); 218 case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id); 219 case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report); 220 case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel); 221 case SEV_CMD_SNP_GCTX_CREATE: return sizeof(struct sev_data_snp_addr); 222 case SEV_CMD_SNP_LAUNCH_START: return sizeof(struct sev_data_snp_launch_start); 223 case SEV_CMD_SNP_LAUNCH_UPDATE: return sizeof(struct sev_data_snp_launch_update); 224 case SEV_CMD_SNP_ACTIVATE: return sizeof(struct sev_data_snp_activate); 225 case SEV_CMD_SNP_DECOMMISSION: return sizeof(struct sev_data_snp_addr); 226 case SEV_CMD_SNP_PAGE_RECLAIM: return sizeof(struct sev_data_snp_page_reclaim); 227 case SEV_CMD_SNP_GUEST_STATUS: return sizeof(struct sev_data_snp_guest_status); 228 case SEV_CMD_SNP_LAUNCH_FINISH: return sizeof(struct sev_data_snp_launch_finish); 229 case SEV_CMD_SNP_DBG_DECRYPT: return sizeof(struct sev_data_snp_dbg); 230 case SEV_CMD_SNP_DBG_ENCRYPT: return sizeof(struct sev_data_snp_dbg); 231 case SEV_CMD_SNP_PAGE_UNSMASH: return sizeof(struct sev_data_snp_page_unsmash); 232 case SEV_CMD_SNP_PLATFORM_STATUS: return sizeof(struct sev_data_snp_addr); 233 case SEV_CMD_SNP_GUEST_REQUEST: return sizeof(struct sev_data_snp_guest_request); 234 case SEV_CMD_SNP_CONFIG: return sizeof(struct sev_user_data_snp_config); 235 case SEV_CMD_SNP_COMMIT: return sizeof(struct sev_data_snp_commit); 236 default: return 0; 237 } 238 239 return 0; 240 } 241 242 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode) 243 { 244 struct file *fp; 245 struct path root; 246 struct cred *cred; 247 const struct cred *old_cred; 248 249 task_lock(&init_task); 250 get_fs_root(init_task.fs, &root); 251 task_unlock(&init_task); 252 253 cred = prepare_creds(); 254 if (!cred) 255 return ERR_PTR(-ENOMEM); 256 cred->fsuid = GLOBAL_ROOT_UID; 257 old_cred = override_creds(cred); 258 259 fp = file_open_root(&root, filename, flags, mode); 260 path_put(&root); 261 262 put_cred(revert_creds(old_cred)); 263 264 return fp; 265 } 266 267 static int sev_read_init_ex_file(void) 268 { 269 struct sev_device *sev = psp_master->sev_data; 270 struct file *fp; 271 ssize_t nread; 272 273 lockdep_assert_held(&sev_cmd_mutex); 274 275 if (!sev_init_ex_buffer) 276 return -EOPNOTSUPP; 277 278 fp = open_file_as_root(init_ex_path, O_RDONLY, 0); 279 if (IS_ERR(fp)) { 280 int ret = PTR_ERR(fp); 281 282 if (ret == -ENOENT) { 283 dev_info(sev->dev, 284 "SEV: %s does not exist and will be created later.\n", 285 init_ex_path); 286 ret = 0; 287 } else { 288 dev_err(sev->dev, 289 "SEV: could not open %s for read, error %d\n", 290 init_ex_path, ret); 291 } 292 return ret; 293 } 294 295 nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL); 296 if (nread != NV_LENGTH) { 297 dev_info(sev->dev, 298 "SEV: could not read %u bytes to non volatile memory area, ret %ld\n", 299 NV_LENGTH, nread); 300 } 301 302 dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread); 303 filp_close(fp, NULL); 304 305 return 0; 306 } 307 308 static int sev_write_init_ex_file(void) 309 { 310 struct sev_device *sev = psp_master->sev_data; 311 struct file *fp; 312 loff_t offset = 0; 313 ssize_t nwrite; 314 315 lockdep_assert_held(&sev_cmd_mutex); 316 317 if (!sev_init_ex_buffer) 318 return 0; 319 320 fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600); 321 if (IS_ERR(fp)) { 322 int ret = PTR_ERR(fp); 323 324 dev_err(sev->dev, 325 "SEV: could not open file for write, error %d\n", 326 ret); 327 return ret; 328 } 329 330 nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset); 331 vfs_fsync(fp, 0); 332 filp_close(fp, NULL); 333 334 if (nwrite != NV_LENGTH) { 335 dev_err(sev->dev, 336 "SEV: failed to write %u bytes to non volatile memory area, ret %ld\n", 337 NV_LENGTH, nwrite); 338 return -EIO; 339 } 340 341 dev_dbg(sev->dev, "SEV: write successful to NV file\n"); 342 343 return 0; 344 } 345 346 static int sev_write_init_ex_file_if_required(int cmd_id) 347 { 348 lockdep_assert_held(&sev_cmd_mutex); 349 350 if (!sev_init_ex_buffer) 351 return 0; 352 353 /* 354 * Only a few platform commands modify the SPI/NV area, but none of the 355 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN, 356 * PEK_CERT_IMPORT, and PDH_GEN do. 357 */ 358 switch (cmd_id) { 359 case SEV_CMD_FACTORY_RESET: 360 case SEV_CMD_INIT_EX: 361 case SEV_CMD_PDH_GEN: 362 case SEV_CMD_PEK_CERT_IMPORT: 363 case SEV_CMD_PEK_GEN: 364 break; 365 default: 366 return 0; 367 } 368 369 return sev_write_init_ex_file(); 370 } 371 372 /* 373 * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked() 374 * needs snp_reclaim_pages(), so a forward declaration is needed. 375 */ 376 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret); 377 378 static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked) 379 { 380 int ret, err, i; 381 382 paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE)); 383 384 for (i = 0; i < npages; i++, paddr += PAGE_SIZE) { 385 struct sev_data_snp_page_reclaim data = {0}; 386 387 data.paddr = paddr; 388 389 if (locked) 390 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 391 else 392 ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 393 394 if (ret) 395 goto cleanup; 396 397 ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K); 398 if (ret) 399 goto cleanup; 400 } 401 402 return 0; 403 404 cleanup: 405 /* 406 * If there was a failure reclaiming the page then it is no longer safe 407 * to release it back to the system; leak it instead. 408 */ 409 snp_leak_pages(__phys_to_pfn(paddr), npages - i); 410 return ret; 411 } 412 413 static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked) 414 { 415 unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT; 416 int rc, i; 417 418 for (i = 0; i < npages; i++, pfn++) { 419 rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true); 420 if (rc) 421 goto cleanup; 422 } 423 424 return 0; 425 426 cleanup: 427 /* 428 * Try unrolling the firmware state changes by 429 * reclaiming the pages which were already changed to the 430 * firmware state. 431 */ 432 snp_reclaim_pages(paddr, i, locked); 433 434 return rc; 435 } 436 437 static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order, bool locked) 438 { 439 unsigned long npages = 1ul << order, paddr; 440 struct sev_device *sev; 441 struct page *page; 442 443 if (!psp_master || !psp_master->sev_data) 444 return NULL; 445 446 page = alloc_pages(gfp_mask, order); 447 if (!page) 448 return NULL; 449 450 /* If SEV-SNP is initialized then add the page in RMP table. */ 451 sev = psp_master->sev_data; 452 if (!sev->snp_initialized) 453 return page; 454 455 paddr = __pa((unsigned long)page_address(page)); 456 if (rmp_mark_pages_firmware(paddr, npages, locked)) 457 return NULL; 458 459 return page; 460 } 461 462 void *snp_alloc_firmware_page(gfp_t gfp_mask) 463 { 464 struct page *page; 465 466 page = __snp_alloc_firmware_pages(gfp_mask, 0, false); 467 468 return page ? page_address(page) : NULL; 469 } 470 EXPORT_SYMBOL_GPL(snp_alloc_firmware_page); 471 472 static void __snp_free_firmware_pages(struct page *page, int order, bool locked) 473 { 474 struct sev_device *sev = psp_master->sev_data; 475 unsigned long paddr, npages = 1ul << order; 476 477 if (!page) 478 return; 479 480 paddr = __pa((unsigned long)page_address(page)); 481 if (sev->snp_initialized && 482 snp_reclaim_pages(paddr, npages, locked)) 483 return; 484 485 __free_pages(page, order); 486 } 487 488 void snp_free_firmware_page(void *addr) 489 { 490 if (!addr) 491 return; 492 493 __snp_free_firmware_pages(virt_to_page(addr), 0, false); 494 } 495 EXPORT_SYMBOL_GPL(snp_free_firmware_page); 496 497 static void *sev_fw_alloc(unsigned long len) 498 { 499 struct page *page; 500 501 page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len), true); 502 if (!page) 503 return NULL; 504 505 return page_address(page); 506 } 507 508 /** 509 * struct cmd_buf_desc - descriptors for managing legacy SEV command address 510 * parameters corresponding to buffers that may be written to by firmware. 511 * 512 * @paddr_ptr: pointer to the address parameter in the command buffer which may 513 * need to be saved/restored depending on whether a bounce buffer 514 * is used. In the case of a bounce buffer, the command buffer 515 * needs to be updated with the address of the new bounce buffer 516 * snp_map_cmd_buf_desc() has allocated specifically for it. Must 517 * be NULL if this descriptor is only an end-of-list indicator. 518 * 519 * @paddr_orig: storage for the original address parameter, which can be used to 520 * restore the original value in @paddr_ptr in cases where it is 521 * replaced with the address of a bounce buffer. 522 * 523 * @len: length of buffer located at the address originally stored at @paddr_ptr 524 * 525 * @guest_owned: true if the address corresponds to guest-owned pages, in which 526 * case bounce buffers are not needed. 527 */ 528 struct cmd_buf_desc { 529 u64 *paddr_ptr; 530 u64 paddr_orig; 531 u32 len; 532 bool guest_owned; 533 }; 534 535 /* 536 * If a legacy SEV command parameter is a memory address, those pages in 537 * turn need to be transitioned to/from firmware-owned before/after 538 * executing the firmware command. 539 * 540 * Additionally, in cases where those pages are not guest-owned, a bounce 541 * buffer is needed in place of the original memory address parameter. 542 * 543 * A set of descriptors are used to keep track of this handling, and 544 * initialized here based on the specific commands being executed. 545 */ 546 static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf, 547 struct cmd_buf_desc *desc_list) 548 { 549 switch (cmd) { 550 case SEV_CMD_PDH_CERT_EXPORT: { 551 struct sev_data_pdh_cert_export *data = cmd_buf; 552 553 desc_list[0].paddr_ptr = &data->pdh_cert_address; 554 desc_list[0].len = data->pdh_cert_len; 555 desc_list[1].paddr_ptr = &data->cert_chain_address; 556 desc_list[1].len = data->cert_chain_len; 557 break; 558 } 559 case SEV_CMD_GET_ID: { 560 struct sev_data_get_id *data = cmd_buf; 561 562 desc_list[0].paddr_ptr = &data->address; 563 desc_list[0].len = data->len; 564 break; 565 } 566 case SEV_CMD_PEK_CSR: { 567 struct sev_data_pek_csr *data = cmd_buf; 568 569 desc_list[0].paddr_ptr = &data->address; 570 desc_list[0].len = data->len; 571 break; 572 } 573 case SEV_CMD_LAUNCH_UPDATE_DATA: { 574 struct sev_data_launch_update_data *data = cmd_buf; 575 576 desc_list[0].paddr_ptr = &data->address; 577 desc_list[0].len = data->len; 578 desc_list[0].guest_owned = true; 579 break; 580 } 581 case SEV_CMD_LAUNCH_UPDATE_VMSA: { 582 struct sev_data_launch_update_vmsa *data = cmd_buf; 583 584 desc_list[0].paddr_ptr = &data->address; 585 desc_list[0].len = data->len; 586 desc_list[0].guest_owned = true; 587 break; 588 } 589 case SEV_CMD_LAUNCH_MEASURE: { 590 struct sev_data_launch_measure *data = cmd_buf; 591 592 desc_list[0].paddr_ptr = &data->address; 593 desc_list[0].len = data->len; 594 break; 595 } 596 case SEV_CMD_LAUNCH_UPDATE_SECRET: { 597 struct sev_data_launch_secret *data = cmd_buf; 598 599 desc_list[0].paddr_ptr = &data->guest_address; 600 desc_list[0].len = data->guest_len; 601 desc_list[0].guest_owned = true; 602 break; 603 } 604 case SEV_CMD_DBG_DECRYPT: { 605 struct sev_data_dbg *data = cmd_buf; 606 607 desc_list[0].paddr_ptr = &data->dst_addr; 608 desc_list[0].len = data->len; 609 desc_list[0].guest_owned = true; 610 break; 611 } 612 case SEV_CMD_DBG_ENCRYPT: { 613 struct sev_data_dbg *data = cmd_buf; 614 615 desc_list[0].paddr_ptr = &data->dst_addr; 616 desc_list[0].len = data->len; 617 desc_list[0].guest_owned = true; 618 break; 619 } 620 case SEV_CMD_ATTESTATION_REPORT: { 621 struct sev_data_attestation_report *data = cmd_buf; 622 623 desc_list[0].paddr_ptr = &data->address; 624 desc_list[0].len = data->len; 625 break; 626 } 627 case SEV_CMD_SEND_START: { 628 struct sev_data_send_start *data = cmd_buf; 629 630 desc_list[0].paddr_ptr = &data->session_address; 631 desc_list[0].len = data->session_len; 632 break; 633 } 634 case SEV_CMD_SEND_UPDATE_DATA: { 635 struct sev_data_send_update_data *data = cmd_buf; 636 637 desc_list[0].paddr_ptr = &data->hdr_address; 638 desc_list[0].len = data->hdr_len; 639 desc_list[1].paddr_ptr = &data->trans_address; 640 desc_list[1].len = data->trans_len; 641 break; 642 } 643 case SEV_CMD_SEND_UPDATE_VMSA: { 644 struct sev_data_send_update_vmsa *data = cmd_buf; 645 646 desc_list[0].paddr_ptr = &data->hdr_address; 647 desc_list[0].len = data->hdr_len; 648 desc_list[1].paddr_ptr = &data->trans_address; 649 desc_list[1].len = data->trans_len; 650 break; 651 } 652 case SEV_CMD_RECEIVE_UPDATE_DATA: { 653 struct sev_data_receive_update_data *data = cmd_buf; 654 655 desc_list[0].paddr_ptr = &data->guest_address; 656 desc_list[0].len = data->guest_len; 657 desc_list[0].guest_owned = true; 658 break; 659 } 660 case SEV_CMD_RECEIVE_UPDATE_VMSA: { 661 struct sev_data_receive_update_vmsa *data = cmd_buf; 662 663 desc_list[0].paddr_ptr = &data->guest_address; 664 desc_list[0].len = data->guest_len; 665 desc_list[0].guest_owned = true; 666 break; 667 } 668 default: 669 break; 670 } 671 } 672 673 static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc) 674 { 675 unsigned int npages; 676 677 if (!desc->len) 678 return 0; 679 680 /* Allocate a bounce buffer if this isn't a guest owned page. */ 681 if (!desc->guest_owned) { 682 struct page *page; 683 684 page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len)); 685 if (!page) { 686 pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n"); 687 return -ENOMEM; 688 } 689 690 desc->paddr_orig = *desc->paddr_ptr; 691 *desc->paddr_ptr = __psp_pa(page_to_virt(page)); 692 } 693 694 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 695 696 /* Transition the buffer to firmware-owned. */ 697 if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) { 698 pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n"); 699 return -EFAULT; 700 } 701 702 return 0; 703 } 704 705 static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc) 706 { 707 unsigned int npages; 708 709 if (!desc->len) 710 return 0; 711 712 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 713 714 /* Transition the buffers back to hypervisor-owned. */ 715 if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) { 716 pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n"); 717 return -EFAULT; 718 } 719 720 /* Copy data from bounce buffer and then free it. */ 721 if (!desc->guest_owned) { 722 void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr)); 723 void *dst_buf = __va(__sme_clr(desc->paddr_orig)); 724 725 memcpy(dst_buf, bounce_buf, desc->len); 726 __free_pages(virt_to_page(bounce_buf), get_order(desc->len)); 727 728 /* Restore the original address in the command buffer. */ 729 *desc->paddr_ptr = desc->paddr_orig; 730 } 731 732 return 0; 733 } 734 735 static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 736 { 737 int i; 738 739 snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list); 740 741 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 742 struct cmd_buf_desc *desc = &desc_list[i]; 743 744 if (!desc->paddr_ptr) 745 break; 746 747 if (snp_map_cmd_buf_desc(desc)) 748 goto err_unmap; 749 } 750 751 return 0; 752 753 err_unmap: 754 for (i--; i >= 0; i--) 755 snp_unmap_cmd_buf_desc(&desc_list[i]); 756 757 return -EFAULT; 758 } 759 760 static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list) 761 { 762 int i, ret = 0; 763 764 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 765 struct cmd_buf_desc *desc = &desc_list[i]; 766 767 if (!desc->paddr_ptr) 768 break; 769 770 if (snp_unmap_cmd_buf_desc(&desc_list[i])) 771 ret = -EFAULT; 772 } 773 774 return ret; 775 } 776 777 static bool sev_cmd_buf_writable(int cmd) 778 { 779 switch (cmd) { 780 case SEV_CMD_PLATFORM_STATUS: 781 case SEV_CMD_GUEST_STATUS: 782 case SEV_CMD_LAUNCH_START: 783 case SEV_CMD_RECEIVE_START: 784 case SEV_CMD_LAUNCH_MEASURE: 785 case SEV_CMD_SEND_START: 786 case SEV_CMD_SEND_UPDATE_DATA: 787 case SEV_CMD_SEND_UPDATE_VMSA: 788 case SEV_CMD_PEK_CSR: 789 case SEV_CMD_PDH_CERT_EXPORT: 790 case SEV_CMD_GET_ID: 791 case SEV_CMD_ATTESTATION_REPORT: 792 return true; 793 default: 794 return false; 795 } 796 } 797 798 /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */ 799 static bool snp_legacy_handling_needed(int cmd) 800 { 801 struct sev_device *sev = psp_master->sev_data; 802 803 return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized; 804 } 805 806 static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 807 { 808 if (!snp_legacy_handling_needed(cmd)) 809 return 0; 810 811 if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list)) 812 return -EFAULT; 813 814 /* 815 * Before command execution, the command buffer needs to be put into 816 * the firmware-owned state. 817 */ 818 if (sev_cmd_buf_writable(cmd)) { 819 if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true)) 820 return -EFAULT; 821 } 822 823 return 0; 824 } 825 826 static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf) 827 { 828 if (!snp_legacy_handling_needed(cmd)) 829 return 0; 830 831 /* 832 * After command completion, the command buffer needs to be put back 833 * into the hypervisor-owned state. 834 */ 835 if (sev_cmd_buf_writable(cmd)) 836 if (snp_reclaim_pages(__pa(cmd_buf), 1, true)) 837 return -EFAULT; 838 839 return 0; 840 } 841 842 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret) 843 { 844 struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0}; 845 struct psp_device *psp = psp_master; 846 struct sev_device *sev; 847 unsigned int cmdbuff_hi, cmdbuff_lo; 848 unsigned int phys_lsb, phys_msb; 849 unsigned int reg, ret = 0; 850 void *cmd_buf; 851 int buf_len; 852 853 if (!psp || !psp->sev_data) 854 return -ENODEV; 855 856 if (psp_dead) 857 return -EBUSY; 858 859 sev = psp->sev_data; 860 861 buf_len = sev_cmd_buffer_len(cmd); 862 if (WARN_ON_ONCE(!data != !buf_len)) 863 return -EINVAL; 864 865 /* 866 * Copy the incoming data to driver's scratch buffer as __pa() will not 867 * work for some memory, e.g. vmalloc'd addresses, and @data may not be 868 * physically contiguous. 869 */ 870 if (data) { 871 /* 872 * Commands are generally issued one at a time and require the 873 * sev_cmd_mutex, but there could be recursive firmware requests 874 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while 875 * preparing buffers for another command. This is the only known 876 * case of nesting in the current code, so exactly one 877 * additional command buffer is available for that purpose. 878 */ 879 if (!sev->cmd_buf_active) { 880 cmd_buf = sev->cmd_buf; 881 sev->cmd_buf_active = true; 882 } else if (!sev->cmd_buf_backup_active) { 883 cmd_buf = sev->cmd_buf_backup; 884 sev->cmd_buf_backup_active = true; 885 } else { 886 dev_err(sev->dev, 887 "SEV: too many firmware commands in progress, no command buffers available.\n"); 888 return -EBUSY; 889 } 890 891 memcpy(cmd_buf, data, buf_len); 892 893 /* 894 * The behavior of the SEV-legacy commands is altered when the 895 * SNP firmware is in the INIT state. 896 */ 897 ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list); 898 if (ret) { 899 dev_err(sev->dev, 900 "SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n", 901 cmd, ret); 902 return ret; 903 } 904 } else { 905 cmd_buf = sev->cmd_buf; 906 } 907 908 /* Get the physical address of the command buffer */ 909 phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0; 910 phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0; 911 912 dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n", 913 cmd, phys_msb, phys_lsb, psp_timeout); 914 915 print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data, 916 buf_len, false); 917 918 iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 919 iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 920 921 sev->int_rcvd = 0; 922 923 reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd); 924 925 /* 926 * If invoked during panic handling, local interrupts are disabled so 927 * the PSP command completion interrupt can't be used. 928 * sev_wait_cmd_ioc() already checks for interrupts disabled and 929 * polls for PSP command completion. Ensure we do not request an 930 * interrupt from the PSP if irqs disabled. 931 */ 932 if (!irqs_disabled()) 933 reg |= SEV_CMDRESP_IOC; 934 935 iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg); 936 937 /* wait for command completion */ 938 ret = sev_wait_cmd_ioc(sev, ®, psp_timeout); 939 if (ret) { 940 if (psp_ret) 941 *psp_ret = 0; 942 943 dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd); 944 psp_dead = true; 945 946 return ret; 947 } 948 949 psp_timeout = psp_cmd_timeout; 950 951 if (psp_ret) 952 *psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg); 953 954 if (FIELD_GET(PSP_CMDRESP_STS, reg)) { 955 dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n", 956 cmd, FIELD_GET(PSP_CMDRESP_STS, reg)); 957 958 /* 959 * PSP firmware may report additional error information in the 960 * command buffer registers on error. Print contents of command 961 * buffer registers if they changed. 962 */ 963 cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 964 cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 965 if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) { 966 dev_dbg(sev->dev, "Additional error information reported in cmdbuff:"); 967 dev_dbg(sev->dev, " cmdbuff hi: %#010x\n", cmdbuff_hi); 968 dev_dbg(sev->dev, " cmdbuff lo: %#010x\n", cmdbuff_lo); 969 } 970 ret = -EIO; 971 } else { 972 ret = sev_write_init_ex_file_if_required(cmd); 973 } 974 975 /* 976 * Copy potential output from the PSP back to data. Do this even on 977 * failure in case the caller wants to glean something from the error. 978 */ 979 if (data) { 980 int ret_reclaim; 981 /* 982 * Restore the page state after the command completes. 983 */ 984 ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf); 985 if (ret_reclaim) { 986 dev_err(sev->dev, 987 "SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n", 988 cmd, ret_reclaim); 989 return ret_reclaim; 990 } 991 992 memcpy(data, cmd_buf, buf_len); 993 994 if (sev->cmd_buf_backup_active) 995 sev->cmd_buf_backup_active = false; 996 else 997 sev->cmd_buf_active = false; 998 999 if (snp_unmap_cmd_buf_desc_list(desc_list)) 1000 return -EFAULT; 1001 } 1002 1003 print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data, 1004 buf_len, false); 1005 1006 return ret; 1007 } 1008 1009 int sev_do_cmd(int cmd, void *data, int *psp_ret) 1010 { 1011 int rc; 1012 1013 mutex_lock(&sev_cmd_mutex); 1014 rc = __sev_do_cmd_locked(cmd, data, psp_ret); 1015 mutex_unlock(&sev_cmd_mutex); 1016 1017 return rc; 1018 } 1019 EXPORT_SYMBOL_GPL(sev_do_cmd); 1020 1021 static int __sev_init_locked(int *error) 1022 { 1023 struct sev_data_init data; 1024 1025 memset(&data, 0, sizeof(data)); 1026 if (sev_es_tmr) { 1027 /* 1028 * Do not include the encryption mask on the physical 1029 * address of the TMR (firmware should clear it anyway). 1030 */ 1031 data.tmr_address = __pa(sev_es_tmr); 1032 1033 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1034 data.tmr_len = sev_es_tmr_size; 1035 } 1036 1037 return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error); 1038 } 1039 1040 static int __sev_init_ex_locked(int *error) 1041 { 1042 struct sev_data_init_ex data; 1043 1044 memset(&data, 0, sizeof(data)); 1045 data.length = sizeof(data); 1046 data.nv_address = __psp_pa(sev_init_ex_buffer); 1047 data.nv_len = NV_LENGTH; 1048 1049 if (sev_es_tmr) { 1050 /* 1051 * Do not include the encryption mask on the physical 1052 * address of the TMR (firmware should clear it anyway). 1053 */ 1054 data.tmr_address = __pa(sev_es_tmr); 1055 1056 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1057 data.tmr_len = sev_es_tmr_size; 1058 } 1059 1060 return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error); 1061 } 1062 1063 static inline int __sev_do_init_locked(int *psp_ret) 1064 { 1065 if (sev_init_ex_buffer) 1066 return __sev_init_ex_locked(psp_ret); 1067 else 1068 return __sev_init_locked(psp_ret); 1069 } 1070 1071 static void snp_set_hsave_pa(void *arg) 1072 { 1073 wrmsrq(MSR_VM_HSAVE_PA, 0); 1074 } 1075 1076 static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg) 1077 { 1078 struct sev_data_range_list *range_list = arg; 1079 struct sev_data_range *range = &range_list->ranges[range_list->num_elements]; 1080 size_t size; 1081 1082 /* 1083 * Ensure the list of HV_FIXED pages that will be passed to firmware 1084 * do not exceed the page-sized argument buffer. 1085 */ 1086 if ((range_list->num_elements * sizeof(struct sev_data_range) + 1087 sizeof(struct sev_data_range_list)) > PAGE_SIZE) 1088 return -E2BIG; 1089 1090 switch (rs->desc) { 1091 case E820_TYPE_RESERVED: 1092 case E820_TYPE_PMEM: 1093 case E820_TYPE_ACPI: 1094 range->base = rs->start & PAGE_MASK; 1095 size = PAGE_ALIGN((rs->end + 1) - rs->start); 1096 range->page_count = size >> PAGE_SHIFT; 1097 range_list->num_elements++; 1098 break; 1099 default: 1100 break; 1101 } 1102 1103 return 0; 1104 } 1105 1106 static int __sev_snp_init_locked(int *error) 1107 { 1108 struct psp_device *psp = psp_master; 1109 struct sev_data_snp_init_ex data; 1110 struct sev_device *sev; 1111 void *arg = &data; 1112 int cmd, rc = 0; 1113 1114 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 1115 return -ENODEV; 1116 1117 sev = psp->sev_data; 1118 1119 if (sev->snp_initialized) 1120 return 0; 1121 1122 if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) { 1123 dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n", 1124 SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR); 1125 return -EOPNOTSUPP; 1126 } 1127 1128 /* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */ 1129 on_each_cpu(snp_set_hsave_pa, NULL, 1); 1130 1131 /* 1132 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list 1133 * of system physical address ranges to convert into HV-fixed page 1134 * states during the RMP initialization. For instance, the memory that 1135 * UEFI reserves should be included in the that list. This allows system 1136 * components that occasionally write to memory (e.g. logging to UEFI 1137 * reserved regions) to not fail due to RMP initialization and SNP 1138 * enablement. 1139 * 1140 */ 1141 if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) { 1142 /* 1143 * Firmware checks that the pages containing the ranges enumerated 1144 * in the RANGES structure are either in the default page state or in the 1145 * firmware page state. 1146 */ 1147 snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL); 1148 if (!snp_range_list) { 1149 dev_err(sev->dev, 1150 "SEV: SNP_INIT_EX range list memory allocation failed\n"); 1151 return -ENOMEM; 1152 } 1153 1154 /* 1155 * Retrieve all reserved memory regions from the e820 memory map 1156 * to be setup as HV-fixed pages. 1157 */ 1158 rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0, 1159 snp_range_list, snp_filter_reserved_mem_regions); 1160 if (rc) { 1161 dev_err(sev->dev, 1162 "SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc); 1163 return rc; 1164 } 1165 1166 memset(&data, 0, sizeof(data)); 1167 data.init_rmp = 1; 1168 data.list_paddr_en = 1; 1169 data.list_paddr = __psp_pa(snp_range_list); 1170 cmd = SEV_CMD_SNP_INIT_EX; 1171 } else { 1172 cmd = SEV_CMD_SNP_INIT; 1173 arg = NULL; 1174 } 1175 1176 /* 1177 * The following sequence must be issued before launching the first SNP 1178 * guest to ensure all dirty cache lines are flushed, including from 1179 * updates to the RMP table itself via the RMPUPDATE instruction: 1180 * 1181 * - WBINVD on all running CPUs 1182 * - SEV_CMD_SNP_INIT[_EX] firmware command 1183 * - WBINVD on all running CPUs 1184 * - SEV_CMD_SNP_DF_FLUSH firmware command 1185 */ 1186 wbinvd_on_all_cpus(); 1187 1188 rc = __sev_do_cmd_locked(cmd, arg, error); 1189 if (rc) { 1190 dev_err(sev->dev, "SEV-SNP: %s failed rc %d, error %#x\n", 1191 cmd == SEV_CMD_SNP_INIT_EX ? "SNP_INIT_EX" : "SNP_INIT", 1192 rc, *error); 1193 return rc; 1194 } 1195 1196 /* Prepare for first SNP guest launch after INIT. */ 1197 wbinvd_on_all_cpus(); 1198 rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error); 1199 if (rc) { 1200 dev_err(sev->dev, "SEV-SNP: SNP_DF_FLUSH failed rc %d, error %#x\n", 1201 rc, *error); 1202 return rc; 1203 } 1204 1205 sev->snp_initialized = true; 1206 dev_dbg(sev->dev, "SEV-SNP firmware initialized\n"); 1207 1208 dev_info(sev->dev, "SEV-SNP API:%d.%d build:%d\n", sev->api_major, 1209 sev->api_minor, sev->build); 1210 1211 atomic_notifier_chain_register(&panic_notifier_list, 1212 &snp_panic_notifier); 1213 1214 sev_es_tmr_size = SNP_TMR_SIZE; 1215 1216 return 0; 1217 } 1218 1219 static void __sev_platform_init_handle_tmr(struct sev_device *sev) 1220 { 1221 if (sev_es_tmr) 1222 return; 1223 1224 /* Obtain the TMR memory area for SEV-ES use */ 1225 sev_es_tmr = sev_fw_alloc(sev_es_tmr_size); 1226 if (sev_es_tmr) { 1227 /* Must flush the cache before giving it to the firmware */ 1228 if (!sev->snp_initialized) 1229 clflush_cache_range(sev_es_tmr, sev_es_tmr_size); 1230 } else { 1231 dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n"); 1232 } 1233 } 1234 1235 /* 1236 * If an init_ex_path is provided allocate a buffer for the file and 1237 * read in the contents. Additionally, if SNP is initialized, convert 1238 * the buffer pages to firmware pages. 1239 */ 1240 static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev) 1241 { 1242 struct page *page; 1243 int rc; 1244 1245 if (!init_ex_path) 1246 return 0; 1247 1248 if (sev_init_ex_buffer) 1249 return 0; 1250 1251 page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH)); 1252 if (!page) { 1253 dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n"); 1254 return -ENOMEM; 1255 } 1256 1257 sev_init_ex_buffer = page_address(page); 1258 1259 rc = sev_read_init_ex_file(); 1260 if (rc) 1261 return rc; 1262 1263 /* If SEV-SNP is initialized, transition to firmware page. */ 1264 if (sev->snp_initialized) { 1265 unsigned long npages; 1266 1267 npages = 1UL << get_order(NV_LENGTH); 1268 if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) { 1269 dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n"); 1270 return -ENOMEM; 1271 } 1272 } 1273 1274 return 0; 1275 } 1276 1277 static int __sev_platform_init_locked(int *error) 1278 { 1279 int rc, psp_ret, dfflush_error; 1280 struct sev_device *sev; 1281 1282 psp_ret = dfflush_error = SEV_RET_NO_FW_CALL; 1283 1284 if (!psp_master || !psp_master->sev_data) 1285 return -ENODEV; 1286 1287 sev = psp_master->sev_data; 1288 1289 if (sev->state == SEV_STATE_INIT) 1290 return 0; 1291 1292 __sev_platform_init_handle_tmr(sev); 1293 1294 rc = __sev_platform_init_handle_init_ex_path(sev); 1295 if (rc) 1296 return rc; 1297 1298 rc = __sev_do_init_locked(&psp_ret); 1299 if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) { 1300 /* 1301 * Initialization command returned an integrity check failure 1302 * status code, meaning that firmware load and validation of SEV 1303 * related persistent data has failed. Retrying the 1304 * initialization function should succeed by replacing the state 1305 * with a reset state. 1306 */ 1307 dev_err(sev->dev, 1308 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state."); 1309 rc = __sev_do_init_locked(&psp_ret); 1310 } 1311 1312 if (error) 1313 *error = psp_ret; 1314 1315 if (rc) { 1316 dev_err(sev->dev, "SEV: %s failed %#x, rc %d\n", 1317 sev_init_ex_buffer ? "INIT_EX" : "INIT", psp_ret, rc); 1318 return rc; 1319 } 1320 1321 sev->state = SEV_STATE_INIT; 1322 1323 /* Prepare for first SEV guest launch after INIT */ 1324 wbinvd_on_all_cpus(); 1325 rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, &dfflush_error); 1326 if (rc) { 1327 dev_err(sev->dev, "SEV: DF_FLUSH failed %#x, rc %d\n", 1328 dfflush_error, rc); 1329 return rc; 1330 } 1331 1332 dev_dbg(sev->dev, "SEV firmware initialized\n"); 1333 1334 dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major, 1335 sev->api_minor, sev->build); 1336 1337 return 0; 1338 } 1339 1340 static int _sev_platform_init_locked(struct sev_platform_init_args *args) 1341 { 1342 struct sev_device *sev; 1343 int rc; 1344 1345 if (!psp_master || !psp_master->sev_data) 1346 return -ENODEV; 1347 1348 sev = psp_master->sev_data; 1349 1350 if (sev->state == SEV_STATE_INIT) 1351 return 0; 1352 1353 rc = __sev_snp_init_locked(&args->error); 1354 if (rc && rc != -ENODEV) 1355 return rc; 1356 1357 /* Defer legacy SEV/SEV-ES support if allowed by caller/module. */ 1358 if (args->probe && !psp_init_on_probe) 1359 return 0; 1360 1361 return __sev_platform_init_locked(&args->error); 1362 } 1363 1364 int sev_platform_init(struct sev_platform_init_args *args) 1365 { 1366 int rc; 1367 1368 mutex_lock(&sev_cmd_mutex); 1369 rc = _sev_platform_init_locked(args); 1370 mutex_unlock(&sev_cmd_mutex); 1371 1372 return rc; 1373 } 1374 EXPORT_SYMBOL_GPL(sev_platform_init); 1375 1376 static int __sev_platform_shutdown_locked(int *error) 1377 { 1378 struct psp_device *psp = psp_master; 1379 struct sev_device *sev; 1380 int ret; 1381 1382 if (!psp || !psp->sev_data) 1383 return 0; 1384 1385 sev = psp->sev_data; 1386 1387 if (sev->state == SEV_STATE_UNINIT) 1388 return 0; 1389 1390 ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error); 1391 if (ret) { 1392 dev_err(sev->dev, "SEV: failed to SHUTDOWN error %#x, rc %d\n", 1393 *error, ret); 1394 return ret; 1395 } 1396 1397 sev->state = SEV_STATE_UNINIT; 1398 dev_dbg(sev->dev, "SEV firmware shutdown\n"); 1399 1400 return ret; 1401 } 1402 1403 static int sev_get_platform_state(int *state, int *error) 1404 { 1405 struct sev_user_data_status data; 1406 int rc; 1407 1408 rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error); 1409 if (rc) 1410 return rc; 1411 1412 *state = data.state; 1413 return rc; 1414 } 1415 1416 static int sev_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required) 1417 { 1418 struct sev_platform_init_args init_args = {0}; 1419 int rc; 1420 1421 rc = _sev_platform_init_locked(&init_args); 1422 if (rc) { 1423 argp->error = SEV_RET_INVALID_PLATFORM_STATE; 1424 return rc; 1425 } 1426 1427 *shutdown_required = true; 1428 1429 return 0; 1430 } 1431 1432 static int snp_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required) 1433 { 1434 int error, rc; 1435 1436 rc = __sev_snp_init_locked(&error); 1437 if (rc) { 1438 argp->error = SEV_RET_INVALID_PLATFORM_STATE; 1439 return rc; 1440 } 1441 1442 *shutdown_required = true; 1443 1444 return 0; 1445 } 1446 1447 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable) 1448 { 1449 int state, rc; 1450 1451 if (!writable) 1452 return -EPERM; 1453 1454 /* 1455 * The SEV spec requires that FACTORY_RESET must be issued in 1456 * UNINIT state. Before we go further lets check if any guest is 1457 * active. 1458 * 1459 * If FW is in WORKING state then deny the request otherwise issue 1460 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET. 1461 * 1462 */ 1463 rc = sev_get_platform_state(&state, &argp->error); 1464 if (rc) 1465 return rc; 1466 1467 if (state == SEV_STATE_WORKING) 1468 return -EBUSY; 1469 1470 if (state == SEV_STATE_INIT) { 1471 rc = __sev_platform_shutdown_locked(&argp->error); 1472 if (rc) 1473 return rc; 1474 } 1475 1476 return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error); 1477 } 1478 1479 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp) 1480 { 1481 struct sev_user_data_status data; 1482 int ret; 1483 1484 memset(&data, 0, sizeof(data)); 1485 1486 ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error); 1487 if (ret) 1488 return ret; 1489 1490 if (copy_to_user((void __user *)argp->data, &data, sizeof(data))) 1491 ret = -EFAULT; 1492 1493 return ret; 1494 } 1495 1496 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable) 1497 { 1498 struct sev_device *sev = psp_master->sev_data; 1499 bool shutdown_required = false; 1500 int rc; 1501 1502 if (!writable) 1503 return -EPERM; 1504 1505 if (sev->state == SEV_STATE_UNINIT) { 1506 rc = sev_move_to_init_state(argp, &shutdown_required); 1507 if (rc) 1508 return rc; 1509 } 1510 1511 rc = __sev_do_cmd_locked(cmd, NULL, &argp->error); 1512 1513 if (shutdown_required) 1514 __sev_firmware_shutdown(sev, false); 1515 1516 return rc; 1517 } 1518 1519 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable) 1520 { 1521 struct sev_device *sev = psp_master->sev_data; 1522 struct sev_user_data_pek_csr input; 1523 bool shutdown_required = false; 1524 struct sev_data_pek_csr data; 1525 void __user *input_address; 1526 void *blob = NULL; 1527 int ret; 1528 1529 if (!writable) 1530 return -EPERM; 1531 1532 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1533 return -EFAULT; 1534 1535 memset(&data, 0, sizeof(data)); 1536 1537 /* userspace wants to query CSR length */ 1538 if (!input.address || !input.length) 1539 goto cmd; 1540 1541 /* allocate a physically contiguous buffer to store the CSR blob */ 1542 input_address = (void __user *)input.address; 1543 if (input.length > SEV_FW_BLOB_MAX_SIZE) 1544 return -EFAULT; 1545 1546 blob = kzalloc(input.length, GFP_KERNEL); 1547 if (!blob) 1548 return -ENOMEM; 1549 1550 data.address = __psp_pa(blob); 1551 data.len = input.length; 1552 1553 cmd: 1554 if (sev->state == SEV_STATE_UNINIT) { 1555 ret = sev_move_to_init_state(argp, &shutdown_required); 1556 if (ret) 1557 goto e_free_blob; 1558 } 1559 1560 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error); 1561 1562 /* If we query the CSR length, FW responded with expected data. */ 1563 input.length = data.len; 1564 1565 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1566 ret = -EFAULT; 1567 goto e_free_blob; 1568 } 1569 1570 if (blob) { 1571 if (copy_to_user(input_address, blob, input.length)) 1572 ret = -EFAULT; 1573 } 1574 1575 e_free_blob: 1576 if (shutdown_required) 1577 __sev_firmware_shutdown(sev, false); 1578 1579 kfree(blob); 1580 return ret; 1581 } 1582 1583 void *psp_copy_user_blob(u64 uaddr, u32 len) 1584 { 1585 if (!uaddr || !len) 1586 return ERR_PTR(-EINVAL); 1587 1588 /* verify that blob length does not exceed our limit */ 1589 if (len > SEV_FW_BLOB_MAX_SIZE) 1590 return ERR_PTR(-EINVAL); 1591 1592 return memdup_user((void __user *)uaddr, len); 1593 } 1594 EXPORT_SYMBOL_GPL(psp_copy_user_blob); 1595 1596 static int sev_get_api_version(void) 1597 { 1598 struct sev_device *sev = psp_master->sev_data; 1599 struct sev_user_data_status status; 1600 int error = 0, ret; 1601 1602 ret = sev_platform_status(&status, &error); 1603 if (ret) { 1604 dev_err(sev->dev, 1605 "SEV: failed to get status. Error: %#x\n", error); 1606 return 1; 1607 } 1608 1609 sev->api_major = status.api_major; 1610 sev->api_minor = status.api_minor; 1611 sev->build = status.build; 1612 sev->state = status.state; 1613 1614 return 0; 1615 } 1616 1617 static int sev_get_firmware(struct device *dev, 1618 const struct firmware **firmware) 1619 { 1620 char fw_name_specific[SEV_FW_NAME_SIZE]; 1621 char fw_name_subset[SEV_FW_NAME_SIZE]; 1622 1623 snprintf(fw_name_specific, sizeof(fw_name_specific), 1624 "amd/amd_sev_fam%.2xh_model%.2xh.sbin", 1625 boot_cpu_data.x86, boot_cpu_data.x86_model); 1626 1627 snprintf(fw_name_subset, sizeof(fw_name_subset), 1628 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin", 1629 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4); 1630 1631 /* Check for SEV FW for a particular model. 1632 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h 1633 * 1634 * or 1635 * 1636 * Check for SEV FW common to a subset of models. 1637 * Ex. amd_sev_fam17h_model0xh.sbin for 1638 * Family 17h Model 00h -- Family 17h Model 0Fh 1639 * 1640 * or 1641 * 1642 * Fall-back to using generic name: sev.fw 1643 */ 1644 if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) || 1645 (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) || 1646 (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0)) 1647 return 0; 1648 1649 return -ENOENT; 1650 } 1651 1652 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */ 1653 static int sev_update_firmware(struct device *dev) 1654 { 1655 struct sev_data_download_firmware *data; 1656 const struct firmware *firmware; 1657 int ret, error, order; 1658 struct page *p; 1659 u64 data_size; 1660 1661 if (!sev_version_greater_or_equal(0, 15)) { 1662 dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n"); 1663 return -1; 1664 } 1665 1666 if (sev_get_firmware(dev, &firmware) == -ENOENT) { 1667 dev_dbg(dev, "No SEV firmware file present\n"); 1668 return -1; 1669 } 1670 1671 /* 1672 * SEV FW expects the physical address given to it to be 32 1673 * byte aligned. Memory allocated has structure placed at the 1674 * beginning followed by the firmware being passed to the SEV 1675 * FW. Allocate enough memory for data structure + alignment 1676 * padding + SEV FW. 1677 */ 1678 data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32); 1679 1680 order = get_order(firmware->size + data_size); 1681 p = alloc_pages(GFP_KERNEL, order); 1682 if (!p) { 1683 ret = -1; 1684 goto fw_err; 1685 } 1686 1687 /* 1688 * Copy firmware data to a kernel allocated contiguous 1689 * memory region. 1690 */ 1691 data = page_address(p); 1692 memcpy(page_address(p) + data_size, firmware->data, firmware->size); 1693 1694 data->address = __psp_pa(page_address(p) + data_size); 1695 data->len = firmware->size; 1696 1697 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1698 1699 /* 1700 * A quirk for fixing the committed TCB version, when upgrading from 1701 * earlier firmware version than 1.50. 1702 */ 1703 if (!ret && !sev_version_greater_or_equal(1, 50)) 1704 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1705 1706 if (ret) 1707 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error); 1708 1709 __free_pages(p, order); 1710 1711 fw_err: 1712 release_firmware(firmware); 1713 1714 return ret; 1715 } 1716 1717 static int __sev_snp_shutdown_locked(int *error, bool panic) 1718 { 1719 struct psp_device *psp = psp_master; 1720 struct sev_device *sev; 1721 struct sev_data_snp_shutdown_ex data; 1722 int ret; 1723 1724 if (!psp || !psp->sev_data) 1725 return 0; 1726 1727 sev = psp->sev_data; 1728 1729 if (!sev->snp_initialized) 1730 return 0; 1731 1732 memset(&data, 0, sizeof(data)); 1733 data.len = sizeof(data); 1734 data.iommu_snp_shutdown = 1; 1735 1736 /* 1737 * If invoked during panic handling, local interrupts are disabled 1738 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called. 1739 * In that case, a wbinvd() is done on remote CPUs via the NMI 1740 * callback, so only a local wbinvd() is needed here. 1741 */ 1742 if (!panic) 1743 wbinvd_on_all_cpus(); 1744 else 1745 wbinvd(); 1746 1747 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error); 1748 /* SHUTDOWN may require DF_FLUSH */ 1749 if (*error == SEV_RET_DFFLUSH_REQUIRED) { 1750 int dfflush_error = SEV_RET_NO_FW_CALL; 1751 1752 ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, &dfflush_error); 1753 if (ret) { 1754 dev_err(sev->dev, "SEV-SNP DF_FLUSH failed, ret = %d, error = %#x\n", 1755 ret, dfflush_error); 1756 return ret; 1757 } 1758 /* reissue the shutdown command */ 1759 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, 1760 error); 1761 } 1762 if (ret) { 1763 dev_err(sev->dev, "SEV-SNP firmware shutdown failed, rc %d, error %#x\n", 1764 ret, *error); 1765 return ret; 1766 } 1767 1768 /* 1769 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP 1770 * enforcement by the IOMMU and also transitions all pages 1771 * associated with the IOMMU to the Reclaim state. 1772 * Firmware was transitioning the IOMMU pages to Hypervisor state 1773 * before version 1.53. But, accounting for the number of assigned 1774 * 4kB pages in a 2M page was done incorrectly by not transitioning 1775 * to the Reclaim state. This resulted in RMP #PF when later accessing 1776 * the 2M page containing those pages during kexec boot. Hence, the 1777 * firmware now transitions these pages to Reclaim state and hypervisor 1778 * needs to transition these pages to shared state. SNP Firmware 1779 * version 1.53 and above are needed for kexec boot. 1780 */ 1781 ret = amd_iommu_snp_disable(); 1782 if (ret) { 1783 dev_err(sev->dev, "SNP IOMMU shutdown failed\n"); 1784 return ret; 1785 } 1786 1787 sev->snp_initialized = false; 1788 dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n"); 1789 1790 /* 1791 * __sev_snp_shutdown_locked() deadlocks when it tries to unregister 1792 * itself during panic as the panic notifier is called with RCU read 1793 * lock held and notifier unregistration does RCU synchronization. 1794 */ 1795 if (!panic) 1796 atomic_notifier_chain_unregister(&panic_notifier_list, 1797 &snp_panic_notifier); 1798 1799 /* Reset TMR size back to default */ 1800 sev_es_tmr_size = SEV_TMR_SIZE; 1801 1802 return ret; 1803 } 1804 1805 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable) 1806 { 1807 struct sev_device *sev = psp_master->sev_data; 1808 struct sev_user_data_pek_cert_import input; 1809 struct sev_data_pek_cert_import data; 1810 bool shutdown_required = false; 1811 void *pek_blob, *oca_blob; 1812 int ret; 1813 1814 if (!writable) 1815 return -EPERM; 1816 1817 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1818 return -EFAULT; 1819 1820 /* copy PEK certificate blobs from userspace */ 1821 pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len); 1822 if (IS_ERR(pek_blob)) 1823 return PTR_ERR(pek_blob); 1824 1825 data.reserved = 0; 1826 data.pek_cert_address = __psp_pa(pek_blob); 1827 data.pek_cert_len = input.pek_cert_len; 1828 1829 /* copy PEK certificate blobs from userspace */ 1830 oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len); 1831 if (IS_ERR(oca_blob)) { 1832 ret = PTR_ERR(oca_blob); 1833 goto e_free_pek; 1834 } 1835 1836 data.oca_cert_address = __psp_pa(oca_blob); 1837 data.oca_cert_len = input.oca_cert_len; 1838 1839 /* If platform is not in INIT state then transition it to INIT */ 1840 if (sev->state != SEV_STATE_INIT) { 1841 ret = sev_move_to_init_state(argp, &shutdown_required); 1842 if (ret) 1843 goto e_free_oca; 1844 } 1845 1846 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error); 1847 1848 e_free_oca: 1849 if (shutdown_required) 1850 __sev_firmware_shutdown(sev, false); 1851 1852 kfree(oca_blob); 1853 e_free_pek: 1854 kfree(pek_blob); 1855 return ret; 1856 } 1857 1858 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp) 1859 { 1860 struct sev_user_data_get_id2 input; 1861 struct sev_data_get_id data; 1862 void __user *input_address; 1863 void *id_blob = NULL; 1864 int ret; 1865 1866 /* SEV GET_ID is available from SEV API v0.16 and up */ 1867 if (!sev_version_greater_or_equal(0, 16)) 1868 return -ENOTSUPP; 1869 1870 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1871 return -EFAULT; 1872 1873 input_address = (void __user *)input.address; 1874 1875 if (input.address && input.length) { 1876 /* 1877 * The length of the ID shouldn't be assumed by software since 1878 * it may change in the future. The allocation size is limited 1879 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator. 1880 * If the allocation fails, simply return ENOMEM rather than 1881 * warning in the kernel log. 1882 */ 1883 id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN); 1884 if (!id_blob) 1885 return -ENOMEM; 1886 1887 data.address = __psp_pa(id_blob); 1888 data.len = input.length; 1889 } else { 1890 data.address = 0; 1891 data.len = 0; 1892 } 1893 1894 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error); 1895 1896 /* 1897 * Firmware will return the length of the ID value (either the minimum 1898 * required length or the actual length written), return it to the user. 1899 */ 1900 input.length = data.len; 1901 1902 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1903 ret = -EFAULT; 1904 goto e_free; 1905 } 1906 1907 if (id_blob) { 1908 if (copy_to_user(input_address, id_blob, data.len)) { 1909 ret = -EFAULT; 1910 goto e_free; 1911 } 1912 } 1913 1914 e_free: 1915 kfree(id_blob); 1916 1917 return ret; 1918 } 1919 1920 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp) 1921 { 1922 struct sev_data_get_id *data; 1923 u64 data_size, user_size; 1924 void *id_blob, *mem; 1925 int ret; 1926 1927 /* SEV GET_ID available from SEV API v0.16 and up */ 1928 if (!sev_version_greater_or_equal(0, 16)) 1929 return -ENOTSUPP; 1930 1931 /* SEV FW expects the buffer it fills with the ID to be 1932 * 8-byte aligned. Memory allocated should be enough to 1933 * hold data structure + alignment padding + memory 1934 * where SEV FW writes the ID. 1935 */ 1936 data_size = ALIGN(sizeof(struct sev_data_get_id), 8); 1937 user_size = sizeof(struct sev_user_data_get_id); 1938 1939 mem = kzalloc(data_size + user_size, GFP_KERNEL); 1940 if (!mem) 1941 return -ENOMEM; 1942 1943 data = mem; 1944 id_blob = mem + data_size; 1945 1946 data->address = __psp_pa(id_blob); 1947 data->len = user_size; 1948 1949 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); 1950 if (!ret) { 1951 if (copy_to_user((void __user *)argp->data, id_blob, data->len)) 1952 ret = -EFAULT; 1953 } 1954 1955 kfree(mem); 1956 1957 return ret; 1958 } 1959 1960 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable) 1961 { 1962 struct sev_device *sev = psp_master->sev_data; 1963 struct sev_user_data_pdh_cert_export input; 1964 void *pdh_blob = NULL, *cert_blob = NULL; 1965 struct sev_data_pdh_cert_export data; 1966 void __user *input_cert_chain_address; 1967 void __user *input_pdh_cert_address; 1968 bool shutdown_required = false; 1969 int ret; 1970 1971 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1972 return -EFAULT; 1973 1974 memset(&data, 0, sizeof(data)); 1975 1976 input_pdh_cert_address = (void __user *)input.pdh_cert_address; 1977 input_cert_chain_address = (void __user *)input.cert_chain_address; 1978 1979 /* Userspace wants to query the certificate length. */ 1980 if (!input.pdh_cert_address || 1981 !input.pdh_cert_len || 1982 !input.cert_chain_address) 1983 goto cmd; 1984 1985 /* Allocate a physically contiguous buffer to store the PDH blob. */ 1986 if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE) 1987 return -EFAULT; 1988 1989 /* Allocate a physically contiguous buffer to store the cert chain blob. */ 1990 if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE) 1991 return -EFAULT; 1992 1993 pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL); 1994 if (!pdh_blob) 1995 return -ENOMEM; 1996 1997 data.pdh_cert_address = __psp_pa(pdh_blob); 1998 data.pdh_cert_len = input.pdh_cert_len; 1999 2000 cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL); 2001 if (!cert_blob) { 2002 ret = -ENOMEM; 2003 goto e_free_pdh; 2004 } 2005 2006 data.cert_chain_address = __psp_pa(cert_blob); 2007 data.cert_chain_len = input.cert_chain_len; 2008 2009 cmd: 2010 /* If platform is not in INIT state then transition it to INIT. */ 2011 if (sev->state != SEV_STATE_INIT) { 2012 if (!writable) { 2013 ret = -EPERM; 2014 goto e_free_cert; 2015 } 2016 ret = sev_move_to_init_state(argp, &shutdown_required); 2017 if (ret) 2018 goto e_free_cert; 2019 } 2020 2021 ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error); 2022 2023 /* If we query the length, FW responded with expected data. */ 2024 input.cert_chain_len = data.cert_chain_len; 2025 input.pdh_cert_len = data.pdh_cert_len; 2026 2027 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 2028 ret = -EFAULT; 2029 goto e_free_cert; 2030 } 2031 2032 if (pdh_blob) { 2033 if (copy_to_user(input_pdh_cert_address, 2034 pdh_blob, input.pdh_cert_len)) { 2035 ret = -EFAULT; 2036 goto e_free_cert; 2037 } 2038 } 2039 2040 if (cert_blob) { 2041 if (copy_to_user(input_cert_chain_address, 2042 cert_blob, input.cert_chain_len)) 2043 ret = -EFAULT; 2044 } 2045 2046 e_free_cert: 2047 if (shutdown_required) 2048 __sev_firmware_shutdown(sev, false); 2049 2050 kfree(cert_blob); 2051 e_free_pdh: 2052 kfree(pdh_blob); 2053 return ret; 2054 } 2055 2056 static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp) 2057 { 2058 struct sev_device *sev = psp_master->sev_data; 2059 bool shutdown_required = false; 2060 struct sev_data_snp_addr buf; 2061 struct page *status_page; 2062 int ret, error; 2063 void *data; 2064 2065 if (!argp->data) 2066 return -EINVAL; 2067 2068 status_page = alloc_page(GFP_KERNEL_ACCOUNT); 2069 if (!status_page) 2070 return -ENOMEM; 2071 2072 data = page_address(status_page); 2073 2074 if (!sev->snp_initialized) { 2075 ret = snp_move_to_init_state(argp, &shutdown_required); 2076 if (ret) 2077 goto cleanup; 2078 } 2079 2080 /* 2081 * Firmware expects status page to be in firmware-owned state, otherwise 2082 * it will report firmware error code INVALID_PAGE_STATE (0x1A). 2083 */ 2084 if (rmp_mark_pages_firmware(__pa(data), 1, true)) { 2085 ret = -EFAULT; 2086 goto cleanup; 2087 } 2088 2089 buf.address = __psp_pa(data); 2090 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error); 2091 2092 /* 2093 * Status page will be transitioned to Reclaim state upon success, or 2094 * left in Firmware state in failure. Use snp_reclaim_pages() to 2095 * transition either case back to Hypervisor-owned state. 2096 */ 2097 if (snp_reclaim_pages(__pa(data), 1, true)) 2098 return -EFAULT; 2099 2100 if (ret) 2101 goto cleanup; 2102 2103 if (copy_to_user((void __user *)argp->data, data, 2104 sizeof(struct sev_user_data_snp_status))) 2105 ret = -EFAULT; 2106 2107 cleanup: 2108 if (shutdown_required) 2109 __sev_snp_shutdown_locked(&error, false); 2110 2111 __free_pages(status_page, 0); 2112 return ret; 2113 } 2114 2115 static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp) 2116 { 2117 struct sev_device *sev = psp_master->sev_data; 2118 struct sev_data_snp_commit buf; 2119 bool shutdown_required = false; 2120 int ret, error; 2121 2122 if (!sev->snp_initialized) { 2123 ret = snp_move_to_init_state(argp, &shutdown_required); 2124 if (ret) 2125 return ret; 2126 } 2127 2128 buf.len = sizeof(buf); 2129 2130 ret = __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error); 2131 2132 if (shutdown_required) 2133 __sev_snp_shutdown_locked(&error, false); 2134 2135 return ret; 2136 } 2137 2138 static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable) 2139 { 2140 struct sev_device *sev = psp_master->sev_data; 2141 struct sev_user_data_snp_config config; 2142 bool shutdown_required = false; 2143 int ret, error; 2144 2145 if (!argp->data) 2146 return -EINVAL; 2147 2148 if (!writable) 2149 return -EPERM; 2150 2151 if (copy_from_user(&config, (void __user *)argp->data, sizeof(config))) 2152 return -EFAULT; 2153 2154 if (!sev->snp_initialized) { 2155 ret = snp_move_to_init_state(argp, &shutdown_required); 2156 if (ret) 2157 return ret; 2158 } 2159 2160 ret = __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error); 2161 2162 if (shutdown_required) 2163 __sev_snp_shutdown_locked(&error, false); 2164 2165 return ret; 2166 } 2167 2168 static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable) 2169 { 2170 struct sev_device *sev = psp_master->sev_data; 2171 struct sev_user_data_snp_vlek_load input; 2172 bool shutdown_required = false; 2173 int ret, error; 2174 void *blob; 2175 2176 if (!argp->data) 2177 return -EINVAL; 2178 2179 if (!writable) 2180 return -EPERM; 2181 2182 if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input))) 2183 return -EFAULT; 2184 2185 if (input.len != sizeof(input) || input.vlek_wrapped_version != 0) 2186 return -EINVAL; 2187 2188 blob = psp_copy_user_blob(input.vlek_wrapped_address, 2189 sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick)); 2190 if (IS_ERR(blob)) 2191 return PTR_ERR(blob); 2192 2193 input.vlek_wrapped_address = __psp_pa(blob); 2194 2195 if (!sev->snp_initialized) { 2196 ret = snp_move_to_init_state(argp, &shutdown_required); 2197 if (ret) 2198 goto cleanup; 2199 } 2200 2201 ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error); 2202 2203 if (shutdown_required) 2204 __sev_snp_shutdown_locked(&error, false); 2205 2206 cleanup: 2207 kfree(blob); 2208 2209 return ret; 2210 } 2211 2212 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) 2213 { 2214 void __user *argp = (void __user *)arg; 2215 struct sev_issue_cmd input; 2216 int ret = -EFAULT; 2217 bool writable = file->f_mode & FMODE_WRITE; 2218 2219 if (!psp_master || !psp_master->sev_data) 2220 return -ENODEV; 2221 2222 if (ioctl != SEV_ISSUE_CMD) 2223 return -EINVAL; 2224 2225 if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd))) 2226 return -EFAULT; 2227 2228 if (input.cmd > SEV_MAX) 2229 return -EINVAL; 2230 2231 mutex_lock(&sev_cmd_mutex); 2232 2233 switch (input.cmd) { 2234 2235 case SEV_FACTORY_RESET: 2236 ret = sev_ioctl_do_reset(&input, writable); 2237 break; 2238 case SEV_PLATFORM_STATUS: 2239 ret = sev_ioctl_do_platform_status(&input); 2240 break; 2241 case SEV_PEK_GEN: 2242 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable); 2243 break; 2244 case SEV_PDH_GEN: 2245 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable); 2246 break; 2247 case SEV_PEK_CSR: 2248 ret = sev_ioctl_do_pek_csr(&input, writable); 2249 break; 2250 case SEV_PEK_CERT_IMPORT: 2251 ret = sev_ioctl_do_pek_import(&input, writable); 2252 break; 2253 case SEV_PDH_CERT_EXPORT: 2254 ret = sev_ioctl_do_pdh_export(&input, writable); 2255 break; 2256 case SEV_GET_ID: 2257 pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n"); 2258 ret = sev_ioctl_do_get_id(&input); 2259 break; 2260 case SEV_GET_ID2: 2261 ret = sev_ioctl_do_get_id2(&input); 2262 break; 2263 case SNP_PLATFORM_STATUS: 2264 ret = sev_ioctl_do_snp_platform_status(&input); 2265 break; 2266 case SNP_COMMIT: 2267 ret = sev_ioctl_do_snp_commit(&input); 2268 break; 2269 case SNP_SET_CONFIG: 2270 ret = sev_ioctl_do_snp_set_config(&input, writable); 2271 break; 2272 case SNP_VLEK_LOAD: 2273 ret = sev_ioctl_do_snp_vlek_load(&input, writable); 2274 break; 2275 default: 2276 ret = -EINVAL; 2277 goto out; 2278 } 2279 2280 if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd))) 2281 ret = -EFAULT; 2282 out: 2283 mutex_unlock(&sev_cmd_mutex); 2284 2285 return ret; 2286 } 2287 2288 static const struct file_operations sev_fops = { 2289 .owner = THIS_MODULE, 2290 .unlocked_ioctl = sev_ioctl, 2291 }; 2292 2293 int sev_platform_status(struct sev_user_data_status *data, int *error) 2294 { 2295 return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error); 2296 } 2297 EXPORT_SYMBOL_GPL(sev_platform_status); 2298 2299 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error) 2300 { 2301 return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error); 2302 } 2303 EXPORT_SYMBOL_GPL(sev_guest_deactivate); 2304 2305 int sev_guest_activate(struct sev_data_activate *data, int *error) 2306 { 2307 return sev_do_cmd(SEV_CMD_ACTIVATE, data, error); 2308 } 2309 EXPORT_SYMBOL_GPL(sev_guest_activate); 2310 2311 int sev_guest_decommission(struct sev_data_decommission *data, int *error) 2312 { 2313 return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error); 2314 } 2315 EXPORT_SYMBOL_GPL(sev_guest_decommission); 2316 2317 int sev_guest_df_flush(int *error) 2318 { 2319 return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error); 2320 } 2321 EXPORT_SYMBOL_GPL(sev_guest_df_flush); 2322 2323 static void sev_exit(struct kref *ref) 2324 { 2325 misc_deregister(&misc_dev->misc); 2326 kfree(misc_dev); 2327 misc_dev = NULL; 2328 } 2329 2330 static int sev_misc_init(struct sev_device *sev) 2331 { 2332 struct device *dev = sev->dev; 2333 int ret; 2334 2335 /* 2336 * SEV feature support can be detected on multiple devices but the SEV 2337 * FW commands must be issued on the master. During probe, we do not 2338 * know the master hence we create /dev/sev on the first device probe. 2339 * sev_do_cmd() finds the right master device to which to issue the 2340 * command to the firmware. 2341 */ 2342 if (!misc_dev) { 2343 struct miscdevice *misc; 2344 2345 misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL); 2346 if (!misc_dev) 2347 return -ENOMEM; 2348 2349 misc = &misc_dev->misc; 2350 misc->minor = MISC_DYNAMIC_MINOR; 2351 misc->name = DEVICE_NAME; 2352 misc->fops = &sev_fops; 2353 2354 ret = misc_register(misc); 2355 if (ret) 2356 return ret; 2357 2358 kref_init(&misc_dev->refcount); 2359 } else { 2360 kref_get(&misc_dev->refcount); 2361 } 2362 2363 init_waitqueue_head(&sev->int_queue); 2364 sev->misc = misc_dev; 2365 dev_dbg(dev, "registered SEV device\n"); 2366 2367 return 0; 2368 } 2369 2370 int sev_dev_init(struct psp_device *psp) 2371 { 2372 struct device *dev = psp->dev; 2373 struct sev_device *sev; 2374 int ret = -ENOMEM; 2375 2376 if (!boot_cpu_has(X86_FEATURE_SEV)) { 2377 dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n"); 2378 return 0; 2379 } 2380 2381 sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL); 2382 if (!sev) 2383 goto e_err; 2384 2385 sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1); 2386 if (!sev->cmd_buf) 2387 goto e_sev; 2388 2389 sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE; 2390 2391 psp->sev_data = sev; 2392 2393 sev->dev = dev; 2394 sev->psp = psp; 2395 2396 sev->io_regs = psp->io_regs; 2397 2398 sev->vdata = (struct sev_vdata *)psp->vdata->sev; 2399 if (!sev->vdata) { 2400 ret = -ENODEV; 2401 dev_err(dev, "sev: missing driver data\n"); 2402 goto e_buf; 2403 } 2404 2405 psp_set_sev_irq_handler(psp, sev_irq_handler, sev); 2406 2407 ret = sev_misc_init(sev); 2408 if (ret) 2409 goto e_irq; 2410 2411 dev_notice(dev, "sev enabled\n"); 2412 2413 return 0; 2414 2415 e_irq: 2416 psp_clear_sev_irq_handler(psp); 2417 e_buf: 2418 devm_free_pages(dev, (unsigned long)sev->cmd_buf); 2419 e_sev: 2420 devm_kfree(dev, sev); 2421 e_err: 2422 psp->sev_data = NULL; 2423 2424 dev_notice(dev, "sev initialization failed\n"); 2425 2426 return ret; 2427 } 2428 2429 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic) 2430 { 2431 int error; 2432 2433 __sev_platform_shutdown_locked(NULL); 2434 2435 if (sev_es_tmr) { 2436 /* 2437 * The TMR area was encrypted, flush it from the cache. 2438 * 2439 * If invoked during panic handling, local interrupts are 2440 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus() 2441 * can't be used. In that case, wbinvd() is done on remote CPUs 2442 * via the NMI callback, and done for this CPU later during 2443 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped. 2444 */ 2445 if (!panic) 2446 wbinvd_on_all_cpus(); 2447 2448 __snp_free_firmware_pages(virt_to_page(sev_es_tmr), 2449 get_order(sev_es_tmr_size), 2450 true); 2451 sev_es_tmr = NULL; 2452 } 2453 2454 if (sev_init_ex_buffer) { 2455 __snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer), 2456 get_order(NV_LENGTH), 2457 true); 2458 sev_init_ex_buffer = NULL; 2459 } 2460 2461 if (snp_range_list) { 2462 kfree(snp_range_list); 2463 snp_range_list = NULL; 2464 } 2465 2466 __sev_snp_shutdown_locked(&error, panic); 2467 } 2468 2469 static void sev_firmware_shutdown(struct sev_device *sev) 2470 { 2471 mutex_lock(&sev_cmd_mutex); 2472 __sev_firmware_shutdown(sev, false); 2473 mutex_unlock(&sev_cmd_mutex); 2474 } 2475 2476 void sev_platform_shutdown(void) 2477 { 2478 if (!psp_master || !psp_master->sev_data) 2479 return; 2480 2481 sev_firmware_shutdown(psp_master->sev_data); 2482 } 2483 EXPORT_SYMBOL_GPL(sev_platform_shutdown); 2484 2485 void sev_dev_destroy(struct psp_device *psp) 2486 { 2487 struct sev_device *sev = psp->sev_data; 2488 2489 if (!sev) 2490 return; 2491 2492 sev_firmware_shutdown(sev); 2493 2494 if (sev->misc) 2495 kref_put(&misc_dev->refcount, sev_exit); 2496 2497 psp_clear_sev_irq_handler(psp); 2498 } 2499 2500 static int snp_shutdown_on_panic(struct notifier_block *nb, 2501 unsigned long reason, void *arg) 2502 { 2503 struct sev_device *sev = psp_master->sev_data; 2504 2505 /* 2506 * If sev_cmd_mutex is already acquired, then it's likely 2507 * another PSP command is in flight and issuing a shutdown 2508 * would fail in unexpected ways. Rather than create even 2509 * more confusion during a panic, just bail out here. 2510 */ 2511 if (mutex_is_locked(&sev_cmd_mutex)) 2512 return NOTIFY_DONE; 2513 2514 __sev_firmware_shutdown(sev, true); 2515 2516 return NOTIFY_DONE; 2517 } 2518 2519 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd, 2520 void *data, int *error) 2521 { 2522 if (!filep || filep->f_op != &sev_fops) 2523 return -EBADF; 2524 2525 return sev_do_cmd(cmd, data, error); 2526 } 2527 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user); 2528 2529 void sev_pci_init(void) 2530 { 2531 struct sev_device *sev = psp_master->sev_data; 2532 u8 api_major, api_minor, build; 2533 2534 if (!sev) 2535 return; 2536 2537 psp_timeout = psp_probe_timeout; 2538 2539 if (sev_get_api_version()) 2540 goto err; 2541 2542 api_major = sev->api_major; 2543 api_minor = sev->api_minor; 2544 build = sev->build; 2545 2546 if (sev_update_firmware(sev->dev) == 0) 2547 sev_get_api_version(); 2548 2549 if (api_major != sev->api_major || api_minor != sev->api_minor || 2550 build != sev->build) 2551 dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n", 2552 api_major, api_minor, build, 2553 sev->api_major, sev->api_minor, sev->build); 2554 2555 return; 2556 2557 err: 2558 sev_dev_destroy(psp_master); 2559 2560 psp_master->sev_data = NULL; 2561 } 2562 2563 void sev_pci_exit(void) 2564 { 2565 struct sev_device *sev = psp_master->sev_data; 2566 2567 if (!sev) 2568 return; 2569 2570 sev_firmware_shutdown(sev); 2571 } 2572