1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Secure Encrypted Virtualization (SEV) interface 4 * 5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc. 6 * 7 * Author: Brijesh Singh <brijesh.singh@amd.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/kthread.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/spinlock.h> 17 #include <linux/spinlock_types.h> 18 #include <linux/types.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/hw_random.h> 22 #include <linux/ccp.h> 23 #include <linux/firmware.h> 24 #include <linux/panic_notifier.h> 25 #include <linux/gfp.h> 26 #include <linux/cpufeature.h> 27 #include <linux/fs.h> 28 #include <linux/fs_struct.h> 29 #include <linux/psp.h> 30 #include <linux/amd-iommu.h> 31 32 #include <asm/smp.h> 33 #include <asm/cacheflush.h> 34 #include <asm/e820/types.h> 35 #include <asm/sev.h> 36 #include <asm/msr.h> 37 38 #include "psp-dev.h" 39 #include "sev-dev.h" 40 41 #define DEVICE_NAME "sev" 42 #define SEV_FW_FILE "amd/sev.fw" 43 #define SEV_FW_NAME_SIZE 64 44 45 /* Minimum firmware version required for the SEV-SNP support */ 46 #define SNP_MIN_API_MAJOR 1 47 #define SNP_MIN_API_MINOR 51 48 49 /* 50 * Maximum number of firmware-writable buffers that might be specified 51 * in the parameters of a legacy SEV command buffer. 52 */ 53 #define CMD_BUF_FW_WRITABLE_MAX 2 54 55 /* Leave room in the descriptor array for an end-of-list indicator. */ 56 #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1) 57 58 static DEFINE_MUTEX(sev_cmd_mutex); 59 static struct sev_misc_dev *misc_dev; 60 61 static int psp_cmd_timeout = 100; 62 module_param(psp_cmd_timeout, int, 0644); 63 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands"); 64 65 static int psp_probe_timeout = 5; 66 module_param(psp_probe_timeout, int, 0644); 67 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe"); 68 69 static char *init_ex_path; 70 module_param(init_ex_path, charp, 0444); 71 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX"); 72 73 static bool psp_init_on_probe = true; 74 module_param(psp_init_on_probe, bool, 0444); 75 MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it"); 76 77 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */ 78 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */ 79 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */ 80 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */ 81 82 static bool psp_dead; 83 static int psp_timeout; 84 85 enum snp_hv_fixed_pages_state { 86 ALLOCATED, 87 HV_FIXED, 88 }; 89 90 struct snp_hv_fixed_pages_entry { 91 struct list_head list; 92 struct page *page; 93 unsigned int order; 94 bool free; 95 enum snp_hv_fixed_pages_state page_state; 96 }; 97 98 static LIST_HEAD(snp_hv_fixed_pages); 99 100 /* Trusted Memory Region (TMR): 101 * The TMR is a 1MB area that must be 1MB aligned. Use the page allocator 102 * to allocate the memory, which will return aligned memory for the specified 103 * allocation order. 104 * 105 * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized. 106 */ 107 #define SEV_TMR_SIZE (1024 * 1024) 108 #define SNP_TMR_SIZE (2 * 1024 * 1024) 109 110 static void *sev_es_tmr; 111 static size_t sev_es_tmr_size = SEV_TMR_SIZE; 112 113 /* INIT_EX NV Storage: 114 * The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page 115 * allocator to allocate the memory, which will return aligned memory for the 116 * specified allocation order. 117 */ 118 #define NV_LENGTH (32 * 1024) 119 static void *sev_init_ex_buffer; 120 121 /* 122 * SEV_DATA_RANGE_LIST: 123 * Array containing range of pages that firmware transitions to HV-fixed 124 * page state. 125 */ 126 static struct sev_data_range_list *snp_range_list; 127 128 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic); 129 130 static int snp_shutdown_on_panic(struct notifier_block *nb, 131 unsigned long reason, void *arg); 132 133 static struct notifier_block snp_panic_notifier = { 134 .notifier_call = snp_shutdown_on_panic, 135 }; 136 137 static inline bool sev_version_greater_or_equal(u8 maj, u8 min) 138 { 139 struct sev_device *sev = psp_master->sev_data; 140 141 if (sev->api_major > maj) 142 return true; 143 144 if (sev->api_major == maj && sev->api_minor >= min) 145 return true; 146 147 return false; 148 } 149 150 static void sev_irq_handler(int irq, void *data, unsigned int status) 151 { 152 struct sev_device *sev = data; 153 int reg; 154 155 /* Check if it is command completion: */ 156 if (!(status & SEV_CMD_COMPLETE)) 157 return; 158 159 /* Check if it is SEV command completion: */ 160 reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 161 if (FIELD_GET(PSP_CMDRESP_RESP, reg)) { 162 sev->int_rcvd = 1; 163 wake_up(&sev->int_queue); 164 } 165 } 166 167 static int sev_wait_cmd_ioc(struct sev_device *sev, 168 unsigned int *reg, unsigned int timeout) 169 { 170 int ret; 171 172 /* 173 * If invoked during panic handling, local interrupts are disabled, 174 * so the PSP command completion interrupt can't be used. Poll for 175 * PSP command completion instead. 176 */ 177 if (irqs_disabled()) { 178 unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10; 179 180 /* Poll for SEV command completion: */ 181 while (timeout_usecs--) { 182 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 183 if (*reg & PSP_CMDRESP_RESP) 184 return 0; 185 186 udelay(10); 187 } 188 return -ETIMEDOUT; 189 } 190 191 ret = wait_event_timeout(sev->int_queue, 192 sev->int_rcvd, timeout * HZ); 193 if (!ret) 194 return -ETIMEDOUT; 195 196 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg); 197 198 return 0; 199 } 200 201 static int sev_cmd_buffer_len(int cmd) 202 { 203 switch (cmd) { 204 case SEV_CMD_INIT: return sizeof(struct sev_data_init); 205 case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex); 206 case SEV_CMD_SNP_SHUTDOWN_EX: return sizeof(struct sev_data_snp_shutdown_ex); 207 case SEV_CMD_SNP_INIT_EX: return sizeof(struct sev_data_snp_init_ex); 208 case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status); 209 case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr); 210 case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import); 211 case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export); 212 case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start); 213 case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data); 214 case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa); 215 case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish); 216 case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure); 217 case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate); 218 case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate); 219 case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission); 220 case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status); 221 case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg); 222 case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg); 223 case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start); 224 case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data); 225 case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa); 226 case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish); 227 case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start); 228 case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish); 229 case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data); 230 case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa); 231 case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret); 232 case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware); 233 case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id); 234 case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report); 235 case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel); 236 case SEV_CMD_SNP_GCTX_CREATE: return sizeof(struct sev_data_snp_addr); 237 case SEV_CMD_SNP_LAUNCH_START: return sizeof(struct sev_data_snp_launch_start); 238 case SEV_CMD_SNP_LAUNCH_UPDATE: return sizeof(struct sev_data_snp_launch_update); 239 case SEV_CMD_SNP_ACTIVATE: return sizeof(struct sev_data_snp_activate); 240 case SEV_CMD_SNP_DECOMMISSION: return sizeof(struct sev_data_snp_addr); 241 case SEV_CMD_SNP_PAGE_RECLAIM: return sizeof(struct sev_data_snp_page_reclaim); 242 case SEV_CMD_SNP_GUEST_STATUS: return sizeof(struct sev_data_snp_guest_status); 243 case SEV_CMD_SNP_LAUNCH_FINISH: return sizeof(struct sev_data_snp_launch_finish); 244 case SEV_CMD_SNP_DBG_DECRYPT: return sizeof(struct sev_data_snp_dbg); 245 case SEV_CMD_SNP_DBG_ENCRYPT: return sizeof(struct sev_data_snp_dbg); 246 case SEV_CMD_SNP_PAGE_UNSMASH: return sizeof(struct sev_data_snp_page_unsmash); 247 case SEV_CMD_SNP_PLATFORM_STATUS: return sizeof(struct sev_data_snp_addr); 248 case SEV_CMD_SNP_GUEST_REQUEST: return sizeof(struct sev_data_snp_guest_request); 249 case SEV_CMD_SNP_CONFIG: return sizeof(struct sev_user_data_snp_config); 250 case SEV_CMD_SNP_COMMIT: return sizeof(struct sev_data_snp_commit); 251 default: return 0; 252 } 253 254 return 0; 255 } 256 257 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode) 258 { 259 struct file *fp; 260 struct path root; 261 struct cred *cred; 262 const struct cred *old_cred; 263 264 task_lock(&init_task); 265 get_fs_root(init_task.fs, &root); 266 task_unlock(&init_task); 267 268 cred = prepare_creds(); 269 if (!cred) 270 return ERR_PTR(-ENOMEM); 271 cred->fsuid = GLOBAL_ROOT_UID; 272 old_cred = override_creds(cred); 273 274 fp = file_open_root(&root, filename, flags, mode); 275 path_put(&root); 276 277 put_cred(revert_creds(old_cred)); 278 279 return fp; 280 } 281 282 static int sev_read_init_ex_file(void) 283 { 284 struct sev_device *sev = psp_master->sev_data; 285 struct file *fp; 286 ssize_t nread; 287 288 lockdep_assert_held(&sev_cmd_mutex); 289 290 if (!sev_init_ex_buffer) 291 return -EOPNOTSUPP; 292 293 fp = open_file_as_root(init_ex_path, O_RDONLY, 0); 294 if (IS_ERR(fp)) { 295 int ret = PTR_ERR(fp); 296 297 if (ret == -ENOENT) { 298 dev_info(sev->dev, 299 "SEV: %s does not exist and will be created later.\n", 300 init_ex_path); 301 ret = 0; 302 } else { 303 dev_err(sev->dev, 304 "SEV: could not open %s for read, error %d\n", 305 init_ex_path, ret); 306 } 307 return ret; 308 } 309 310 nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL); 311 if (nread != NV_LENGTH) { 312 dev_info(sev->dev, 313 "SEV: could not read %u bytes to non volatile memory area, ret %ld\n", 314 NV_LENGTH, nread); 315 } 316 317 dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread); 318 filp_close(fp, NULL); 319 320 return 0; 321 } 322 323 static int sev_write_init_ex_file(void) 324 { 325 struct sev_device *sev = psp_master->sev_data; 326 struct file *fp; 327 loff_t offset = 0; 328 ssize_t nwrite; 329 330 lockdep_assert_held(&sev_cmd_mutex); 331 332 if (!sev_init_ex_buffer) 333 return 0; 334 335 fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600); 336 if (IS_ERR(fp)) { 337 int ret = PTR_ERR(fp); 338 339 dev_err(sev->dev, 340 "SEV: could not open file for write, error %d\n", 341 ret); 342 return ret; 343 } 344 345 nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset); 346 vfs_fsync(fp, 0); 347 filp_close(fp, NULL); 348 349 if (nwrite != NV_LENGTH) { 350 dev_err(sev->dev, 351 "SEV: failed to write %u bytes to non volatile memory area, ret %ld\n", 352 NV_LENGTH, nwrite); 353 return -EIO; 354 } 355 356 dev_dbg(sev->dev, "SEV: write successful to NV file\n"); 357 358 return 0; 359 } 360 361 static int sev_write_init_ex_file_if_required(int cmd_id) 362 { 363 lockdep_assert_held(&sev_cmd_mutex); 364 365 if (!sev_init_ex_buffer) 366 return 0; 367 368 /* 369 * Only a few platform commands modify the SPI/NV area, but none of the 370 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN, 371 * PEK_CERT_IMPORT, and PDH_GEN do. 372 */ 373 switch (cmd_id) { 374 case SEV_CMD_FACTORY_RESET: 375 case SEV_CMD_INIT_EX: 376 case SEV_CMD_PDH_GEN: 377 case SEV_CMD_PEK_CERT_IMPORT: 378 case SEV_CMD_PEK_GEN: 379 break; 380 default: 381 return 0; 382 } 383 384 return sev_write_init_ex_file(); 385 } 386 387 /* 388 * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked() 389 * needs snp_reclaim_pages(), so a forward declaration is needed. 390 */ 391 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret); 392 393 static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked) 394 { 395 int ret, err, i; 396 397 paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE)); 398 399 for (i = 0; i < npages; i++, paddr += PAGE_SIZE) { 400 struct sev_data_snp_page_reclaim data = {0}; 401 402 data.paddr = paddr; 403 404 if (locked) 405 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 406 else 407 ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err); 408 409 if (ret) 410 goto cleanup; 411 412 ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K); 413 if (ret) 414 goto cleanup; 415 } 416 417 return 0; 418 419 cleanup: 420 /* 421 * If there was a failure reclaiming the page then it is no longer safe 422 * to release it back to the system; leak it instead. 423 */ 424 snp_leak_pages(__phys_to_pfn(paddr), npages - i); 425 return ret; 426 } 427 428 static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked) 429 { 430 unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT; 431 int rc, i; 432 433 for (i = 0; i < npages; i++, pfn++) { 434 rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true); 435 if (rc) 436 goto cleanup; 437 } 438 439 return 0; 440 441 cleanup: 442 /* 443 * Try unrolling the firmware state changes by 444 * reclaiming the pages which were already changed to the 445 * firmware state. 446 */ 447 snp_reclaim_pages(paddr, i, locked); 448 449 return rc; 450 } 451 452 static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order, bool locked) 453 { 454 unsigned long npages = 1ul << order, paddr; 455 struct sev_device *sev; 456 struct page *page; 457 458 if (!psp_master || !psp_master->sev_data) 459 return NULL; 460 461 page = alloc_pages(gfp_mask, order); 462 if (!page) 463 return NULL; 464 465 /* If SEV-SNP is initialized then add the page in RMP table. */ 466 sev = psp_master->sev_data; 467 if (!sev->snp_initialized) 468 return page; 469 470 paddr = __pa((unsigned long)page_address(page)); 471 if (rmp_mark_pages_firmware(paddr, npages, locked)) 472 return NULL; 473 474 return page; 475 } 476 477 void *snp_alloc_firmware_page(gfp_t gfp_mask) 478 { 479 struct page *page; 480 481 page = __snp_alloc_firmware_pages(gfp_mask, 0, false); 482 483 return page ? page_address(page) : NULL; 484 } 485 EXPORT_SYMBOL_GPL(snp_alloc_firmware_page); 486 487 static void __snp_free_firmware_pages(struct page *page, int order, bool locked) 488 { 489 struct sev_device *sev = psp_master->sev_data; 490 unsigned long paddr, npages = 1ul << order; 491 492 if (!page) 493 return; 494 495 paddr = __pa((unsigned long)page_address(page)); 496 if (sev->snp_initialized && 497 snp_reclaim_pages(paddr, npages, locked)) 498 return; 499 500 __free_pages(page, order); 501 } 502 503 void snp_free_firmware_page(void *addr) 504 { 505 if (!addr) 506 return; 507 508 __snp_free_firmware_pages(virt_to_page(addr), 0, false); 509 } 510 EXPORT_SYMBOL_GPL(snp_free_firmware_page); 511 512 static void *sev_fw_alloc(unsigned long len) 513 { 514 struct page *page; 515 516 page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len), true); 517 if (!page) 518 return NULL; 519 520 return page_address(page); 521 } 522 523 /** 524 * struct cmd_buf_desc - descriptors for managing legacy SEV command address 525 * parameters corresponding to buffers that may be written to by firmware. 526 * 527 * @paddr_ptr: pointer to the address parameter in the command buffer which may 528 * need to be saved/restored depending on whether a bounce buffer 529 * is used. In the case of a bounce buffer, the command buffer 530 * needs to be updated with the address of the new bounce buffer 531 * snp_map_cmd_buf_desc() has allocated specifically for it. Must 532 * be NULL if this descriptor is only an end-of-list indicator. 533 * 534 * @paddr_orig: storage for the original address parameter, which can be used to 535 * restore the original value in @paddr_ptr in cases where it is 536 * replaced with the address of a bounce buffer. 537 * 538 * @len: length of buffer located at the address originally stored at @paddr_ptr 539 * 540 * @guest_owned: true if the address corresponds to guest-owned pages, in which 541 * case bounce buffers are not needed. 542 */ 543 struct cmd_buf_desc { 544 u64 *paddr_ptr; 545 u64 paddr_orig; 546 u32 len; 547 bool guest_owned; 548 }; 549 550 /* 551 * If a legacy SEV command parameter is a memory address, those pages in 552 * turn need to be transitioned to/from firmware-owned before/after 553 * executing the firmware command. 554 * 555 * Additionally, in cases where those pages are not guest-owned, a bounce 556 * buffer is needed in place of the original memory address parameter. 557 * 558 * A set of descriptors are used to keep track of this handling, and 559 * initialized here based on the specific commands being executed. 560 */ 561 static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf, 562 struct cmd_buf_desc *desc_list) 563 { 564 switch (cmd) { 565 case SEV_CMD_PDH_CERT_EXPORT: { 566 struct sev_data_pdh_cert_export *data = cmd_buf; 567 568 desc_list[0].paddr_ptr = &data->pdh_cert_address; 569 desc_list[0].len = data->pdh_cert_len; 570 desc_list[1].paddr_ptr = &data->cert_chain_address; 571 desc_list[1].len = data->cert_chain_len; 572 break; 573 } 574 case SEV_CMD_GET_ID: { 575 struct sev_data_get_id *data = cmd_buf; 576 577 desc_list[0].paddr_ptr = &data->address; 578 desc_list[0].len = data->len; 579 break; 580 } 581 case SEV_CMD_PEK_CSR: { 582 struct sev_data_pek_csr *data = cmd_buf; 583 584 desc_list[0].paddr_ptr = &data->address; 585 desc_list[0].len = data->len; 586 break; 587 } 588 case SEV_CMD_LAUNCH_UPDATE_DATA: { 589 struct sev_data_launch_update_data *data = cmd_buf; 590 591 desc_list[0].paddr_ptr = &data->address; 592 desc_list[0].len = data->len; 593 desc_list[0].guest_owned = true; 594 break; 595 } 596 case SEV_CMD_LAUNCH_UPDATE_VMSA: { 597 struct sev_data_launch_update_vmsa *data = cmd_buf; 598 599 desc_list[0].paddr_ptr = &data->address; 600 desc_list[0].len = data->len; 601 desc_list[0].guest_owned = true; 602 break; 603 } 604 case SEV_CMD_LAUNCH_MEASURE: { 605 struct sev_data_launch_measure *data = cmd_buf; 606 607 desc_list[0].paddr_ptr = &data->address; 608 desc_list[0].len = data->len; 609 break; 610 } 611 case SEV_CMD_LAUNCH_UPDATE_SECRET: { 612 struct sev_data_launch_secret *data = cmd_buf; 613 614 desc_list[0].paddr_ptr = &data->guest_address; 615 desc_list[0].len = data->guest_len; 616 desc_list[0].guest_owned = true; 617 break; 618 } 619 case SEV_CMD_DBG_DECRYPT: { 620 struct sev_data_dbg *data = cmd_buf; 621 622 desc_list[0].paddr_ptr = &data->dst_addr; 623 desc_list[0].len = data->len; 624 desc_list[0].guest_owned = true; 625 break; 626 } 627 case SEV_CMD_DBG_ENCRYPT: { 628 struct sev_data_dbg *data = cmd_buf; 629 630 desc_list[0].paddr_ptr = &data->dst_addr; 631 desc_list[0].len = data->len; 632 desc_list[0].guest_owned = true; 633 break; 634 } 635 case SEV_CMD_ATTESTATION_REPORT: { 636 struct sev_data_attestation_report *data = cmd_buf; 637 638 desc_list[0].paddr_ptr = &data->address; 639 desc_list[0].len = data->len; 640 break; 641 } 642 case SEV_CMD_SEND_START: { 643 struct sev_data_send_start *data = cmd_buf; 644 645 desc_list[0].paddr_ptr = &data->session_address; 646 desc_list[0].len = data->session_len; 647 break; 648 } 649 case SEV_CMD_SEND_UPDATE_DATA: { 650 struct sev_data_send_update_data *data = cmd_buf; 651 652 desc_list[0].paddr_ptr = &data->hdr_address; 653 desc_list[0].len = data->hdr_len; 654 desc_list[1].paddr_ptr = &data->trans_address; 655 desc_list[1].len = data->trans_len; 656 break; 657 } 658 case SEV_CMD_SEND_UPDATE_VMSA: { 659 struct sev_data_send_update_vmsa *data = cmd_buf; 660 661 desc_list[0].paddr_ptr = &data->hdr_address; 662 desc_list[0].len = data->hdr_len; 663 desc_list[1].paddr_ptr = &data->trans_address; 664 desc_list[1].len = data->trans_len; 665 break; 666 } 667 case SEV_CMD_RECEIVE_UPDATE_DATA: { 668 struct sev_data_receive_update_data *data = cmd_buf; 669 670 desc_list[0].paddr_ptr = &data->guest_address; 671 desc_list[0].len = data->guest_len; 672 desc_list[0].guest_owned = true; 673 break; 674 } 675 case SEV_CMD_RECEIVE_UPDATE_VMSA: { 676 struct sev_data_receive_update_vmsa *data = cmd_buf; 677 678 desc_list[0].paddr_ptr = &data->guest_address; 679 desc_list[0].len = data->guest_len; 680 desc_list[0].guest_owned = true; 681 break; 682 } 683 default: 684 break; 685 } 686 } 687 688 static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc) 689 { 690 unsigned int npages; 691 692 if (!desc->len) 693 return 0; 694 695 /* Allocate a bounce buffer if this isn't a guest owned page. */ 696 if (!desc->guest_owned) { 697 struct page *page; 698 699 page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len)); 700 if (!page) { 701 pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n"); 702 return -ENOMEM; 703 } 704 705 desc->paddr_orig = *desc->paddr_ptr; 706 *desc->paddr_ptr = __psp_pa(page_to_virt(page)); 707 } 708 709 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 710 711 /* Transition the buffer to firmware-owned. */ 712 if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) { 713 pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n"); 714 return -EFAULT; 715 } 716 717 return 0; 718 } 719 720 static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc) 721 { 722 unsigned int npages; 723 724 if (!desc->len) 725 return 0; 726 727 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT; 728 729 /* Transition the buffers back to hypervisor-owned. */ 730 if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) { 731 pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n"); 732 return -EFAULT; 733 } 734 735 /* Copy data from bounce buffer and then free it. */ 736 if (!desc->guest_owned) { 737 void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr)); 738 void *dst_buf = __va(__sme_clr(desc->paddr_orig)); 739 740 memcpy(dst_buf, bounce_buf, desc->len); 741 __free_pages(virt_to_page(bounce_buf), get_order(desc->len)); 742 743 /* Restore the original address in the command buffer. */ 744 *desc->paddr_ptr = desc->paddr_orig; 745 } 746 747 return 0; 748 } 749 750 static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 751 { 752 int i; 753 754 snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list); 755 756 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 757 struct cmd_buf_desc *desc = &desc_list[i]; 758 759 if (!desc->paddr_ptr) 760 break; 761 762 if (snp_map_cmd_buf_desc(desc)) 763 goto err_unmap; 764 } 765 766 return 0; 767 768 err_unmap: 769 for (i--; i >= 0; i--) 770 snp_unmap_cmd_buf_desc(&desc_list[i]); 771 772 return -EFAULT; 773 } 774 775 static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list) 776 { 777 int i, ret = 0; 778 779 for (i = 0; i < CMD_BUF_DESC_MAX; i++) { 780 struct cmd_buf_desc *desc = &desc_list[i]; 781 782 if (!desc->paddr_ptr) 783 break; 784 785 if (snp_unmap_cmd_buf_desc(&desc_list[i])) 786 ret = -EFAULT; 787 } 788 789 return ret; 790 } 791 792 static bool sev_cmd_buf_writable(int cmd) 793 { 794 switch (cmd) { 795 case SEV_CMD_PLATFORM_STATUS: 796 case SEV_CMD_GUEST_STATUS: 797 case SEV_CMD_LAUNCH_START: 798 case SEV_CMD_RECEIVE_START: 799 case SEV_CMD_LAUNCH_MEASURE: 800 case SEV_CMD_SEND_START: 801 case SEV_CMD_SEND_UPDATE_DATA: 802 case SEV_CMD_SEND_UPDATE_VMSA: 803 case SEV_CMD_PEK_CSR: 804 case SEV_CMD_PDH_CERT_EXPORT: 805 case SEV_CMD_GET_ID: 806 case SEV_CMD_ATTESTATION_REPORT: 807 return true; 808 default: 809 return false; 810 } 811 } 812 813 /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */ 814 static bool snp_legacy_handling_needed(int cmd) 815 { 816 struct sev_device *sev = psp_master->sev_data; 817 818 return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized; 819 } 820 821 static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list) 822 { 823 if (!snp_legacy_handling_needed(cmd)) 824 return 0; 825 826 if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list)) 827 return -EFAULT; 828 829 /* 830 * Before command execution, the command buffer needs to be put into 831 * the firmware-owned state. 832 */ 833 if (sev_cmd_buf_writable(cmd)) { 834 if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true)) 835 return -EFAULT; 836 } 837 838 return 0; 839 } 840 841 static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf) 842 { 843 if (!snp_legacy_handling_needed(cmd)) 844 return 0; 845 846 /* 847 * After command completion, the command buffer needs to be put back 848 * into the hypervisor-owned state. 849 */ 850 if (sev_cmd_buf_writable(cmd)) 851 if (snp_reclaim_pages(__pa(cmd_buf), 1, true)) 852 return -EFAULT; 853 854 return 0; 855 } 856 857 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret) 858 { 859 struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0}; 860 struct psp_device *psp = psp_master; 861 struct sev_device *sev; 862 unsigned int cmdbuff_hi, cmdbuff_lo; 863 unsigned int phys_lsb, phys_msb; 864 unsigned int reg, ret = 0; 865 void *cmd_buf; 866 int buf_len; 867 868 if (!psp || !psp->sev_data) 869 return -ENODEV; 870 871 if (psp_dead) 872 return -EBUSY; 873 874 sev = psp->sev_data; 875 876 buf_len = sev_cmd_buffer_len(cmd); 877 if (WARN_ON_ONCE(!data != !buf_len)) 878 return -EINVAL; 879 880 /* 881 * Copy the incoming data to driver's scratch buffer as __pa() will not 882 * work for some memory, e.g. vmalloc'd addresses, and @data may not be 883 * physically contiguous. 884 */ 885 if (data) { 886 /* 887 * Commands are generally issued one at a time and require the 888 * sev_cmd_mutex, but there could be recursive firmware requests 889 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while 890 * preparing buffers for another command. This is the only known 891 * case of nesting in the current code, so exactly one 892 * additional command buffer is available for that purpose. 893 */ 894 if (!sev->cmd_buf_active) { 895 cmd_buf = sev->cmd_buf; 896 sev->cmd_buf_active = true; 897 } else if (!sev->cmd_buf_backup_active) { 898 cmd_buf = sev->cmd_buf_backup; 899 sev->cmd_buf_backup_active = true; 900 } else { 901 dev_err(sev->dev, 902 "SEV: too many firmware commands in progress, no command buffers available.\n"); 903 return -EBUSY; 904 } 905 906 memcpy(cmd_buf, data, buf_len); 907 908 /* 909 * The behavior of the SEV-legacy commands is altered when the 910 * SNP firmware is in the INIT state. 911 */ 912 ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list); 913 if (ret) { 914 dev_err(sev->dev, 915 "SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n", 916 cmd, ret); 917 return ret; 918 } 919 } else { 920 cmd_buf = sev->cmd_buf; 921 } 922 923 /* Get the physical address of the command buffer */ 924 phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0; 925 phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0; 926 927 dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n", 928 cmd, phys_msb, phys_lsb, psp_timeout); 929 930 print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data, 931 buf_len, false); 932 933 iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 934 iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 935 936 sev->int_rcvd = 0; 937 938 reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd); 939 940 /* 941 * If invoked during panic handling, local interrupts are disabled so 942 * the PSP command completion interrupt can't be used. 943 * sev_wait_cmd_ioc() already checks for interrupts disabled and 944 * polls for PSP command completion. Ensure we do not request an 945 * interrupt from the PSP if irqs disabled. 946 */ 947 if (!irqs_disabled()) 948 reg |= SEV_CMDRESP_IOC; 949 950 iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg); 951 952 /* wait for command completion */ 953 ret = sev_wait_cmd_ioc(sev, ®, psp_timeout); 954 if (ret) { 955 if (psp_ret) 956 *psp_ret = 0; 957 958 dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd); 959 psp_dead = true; 960 961 return ret; 962 } 963 964 psp_timeout = psp_cmd_timeout; 965 966 if (psp_ret) 967 *psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg); 968 969 if (FIELD_GET(PSP_CMDRESP_STS, reg)) { 970 dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n", 971 cmd, FIELD_GET(PSP_CMDRESP_STS, reg)); 972 973 /* 974 * PSP firmware may report additional error information in the 975 * command buffer registers on error. Print contents of command 976 * buffer registers if they changed. 977 */ 978 cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg); 979 cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg); 980 if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) { 981 dev_dbg(sev->dev, "Additional error information reported in cmdbuff:"); 982 dev_dbg(sev->dev, " cmdbuff hi: %#010x\n", cmdbuff_hi); 983 dev_dbg(sev->dev, " cmdbuff lo: %#010x\n", cmdbuff_lo); 984 } 985 ret = -EIO; 986 } else { 987 ret = sev_write_init_ex_file_if_required(cmd); 988 } 989 990 /* 991 * Copy potential output from the PSP back to data. Do this even on 992 * failure in case the caller wants to glean something from the error. 993 */ 994 if (data) { 995 int ret_reclaim; 996 /* 997 * Restore the page state after the command completes. 998 */ 999 ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf); 1000 if (ret_reclaim) { 1001 dev_err(sev->dev, 1002 "SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n", 1003 cmd, ret_reclaim); 1004 return ret_reclaim; 1005 } 1006 1007 memcpy(data, cmd_buf, buf_len); 1008 1009 if (sev->cmd_buf_backup_active) 1010 sev->cmd_buf_backup_active = false; 1011 else 1012 sev->cmd_buf_active = false; 1013 1014 if (snp_unmap_cmd_buf_desc_list(desc_list)) 1015 return -EFAULT; 1016 } 1017 1018 print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data, 1019 buf_len, false); 1020 1021 return ret; 1022 } 1023 1024 int sev_do_cmd(int cmd, void *data, int *psp_ret) 1025 { 1026 int rc; 1027 1028 mutex_lock(&sev_cmd_mutex); 1029 rc = __sev_do_cmd_locked(cmd, data, psp_ret); 1030 mutex_unlock(&sev_cmd_mutex); 1031 1032 return rc; 1033 } 1034 EXPORT_SYMBOL_GPL(sev_do_cmd); 1035 1036 static int __sev_init_locked(int *error) 1037 { 1038 struct sev_data_init data; 1039 1040 memset(&data, 0, sizeof(data)); 1041 if (sev_es_tmr) { 1042 /* 1043 * Do not include the encryption mask on the physical 1044 * address of the TMR (firmware should clear it anyway). 1045 */ 1046 data.tmr_address = __pa(sev_es_tmr); 1047 1048 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1049 data.tmr_len = sev_es_tmr_size; 1050 } 1051 1052 return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error); 1053 } 1054 1055 static int __sev_init_ex_locked(int *error) 1056 { 1057 struct sev_data_init_ex data; 1058 1059 memset(&data, 0, sizeof(data)); 1060 data.length = sizeof(data); 1061 data.nv_address = __psp_pa(sev_init_ex_buffer); 1062 data.nv_len = NV_LENGTH; 1063 1064 if (sev_es_tmr) { 1065 /* 1066 * Do not include the encryption mask on the physical 1067 * address of the TMR (firmware should clear it anyway). 1068 */ 1069 data.tmr_address = __pa(sev_es_tmr); 1070 1071 data.flags |= SEV_INIT_FLAGS_SEV_ES; 1072 data.tmr_len = sev_es_tmr_size; 1073 } 1074 1075 return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error); 1076 } 1077 1078 static inline int __sev_do_init_locked(int *psp_ret) 1079 { 1080 if (sev_init_ex_buffer) 1081 return __sev_init_ex_locked(psp_ret); 1082 else 1083 return __sev_init_locked(psp_ret); 1084 } 1085 1086 static void snp_set_hsave_pa(void *arg) 1087 { 1088 wrmsrq(MSR_VM_HSAVE_PA, 0); 1089 } 1090 1091 /* Hypervisor Fixed pages API interface */ 1092 static void snp_hv_fixed_pages_state_update(struct sev_device *sev, 1093 enum snp_hv_fixed_pages_state page_state) 1094 { 1095 struct snp_hv_fixed_pages_entry *entry; 1096 1097 /* List is protected by sev_cmd_mutex */ 1098 lockdep_assert_held(&sev_cmd_mutex); 1099 1100 if (list_empty(&snp_hv_fixed_pages)) 1101 return; 1102 1103 list_for_each_entry(entry, &snp_hv_fixed_pages, list) 1104 entry->page_state = page_state; 1105 } 1106 1107 /* 1108 * Allocate HV_FIXED pages in 2MB aligned sizes to ensure the whole 1109 * 2MB pages are marked as HV_FIXED. 1110 */ 1111 struct page *snp_alloc_hv_fixed_pages(unsigned int num_2mb_pages) 1112 { 1113 struct psp_device *psp_master = psp_get_master_device(); 1114 struct snp_hv_fixed_pages_entry *entry; 1115 struct sev_device *sev; 1116 unsigned int order; 1117 struct page *page; 1118 1119 if (!psp_master || !psp_master->sev_data) 1120 return NULL; 1121 1122 sev = psp_master->sev_data; 1123 1124 order = get_order(PMD_SIZE * num_2mb_pages); 1125 1126 /* 1127 * SNP_INIT_EX is protected by sev_cmd_mutex, therefore this list 1128 * also needs to be protected using the same mutex. 1129 */ 1130 guard(mutex)(&sev_cmd_mutex); 1131 1132 /* 1133 * This API uses SNP_INIT_EX to transition allocated pages to HV_Fixed 1134 * page state, fail if SNP is already initialized. 1135 */ 1136 if (sev->snp_initialized) 1137 return NULL; 1138 1139 /* Re-use freed pages that match the request */ 1140 list_for_each_entry(entry, &snp_hv_fixed_pages, list) { 1141 /* Hypervisor fixed page allocator implements exact fit policy */ 1142 if (entry->order == order && entry->free) { 1143 entry->free = false; 1144 memset(page_address(entry->page), 0, 1145 (1 << entry->order) * PAGE_SIZE); 1146 return entry->page; 1147 } 1148 } 1149 1150 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, order); 1151 if (!page) 1152 return NULL; 1153 1154 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 1155 if (!entry) { 1156 __free_pages(page, order); 1157 return NULL; 1158 } 1159 1160 entry->page = page; 1161 entry->order = order; 1162 list_add_tail(&entry->list, &snp_hv_fixed_pages); 1163 1164 return page; 1165 } 1166 1167 void snp_free_hv_fixed_pages(struct page *page) 1168 { 1169 struct psp_device *psp_master = psp_get_master_device(); 1170 struct snp_hv_fixed_pages_entry *entry, *nentry; 1171 1172 if (!psp_master || !psp_master->sev_data) 1173 return; 1174 1175 /* 1176 * SNP_INIT_EX is protected by sev_cmd_mutex, therefore this list 1177 * also needs to be protected using the same mutex. 1178 */ 1179 guard(mutex)(&sev_cmd_mutex); 1180 1181 list_for_each_entry_safe(entry, nentry, &snp_hv_fixed_pages, list) { 1182 if (entry->page != page) 1183 continue; 1184 1185 /* 1186 * HV_FIXED page state cannot be changed until reboot 1187 * and they cannot be used by an SNP guest, so they cannot 1188 * be returned back to the page allocator. 1189 * Mark the pages as free internally to allow possible re-use. 1190 */ 1191 if (entry->page_state == HV_FIXED) { 1192 entry->free = true; 1193 } else { 1194 __free_pages(page, entry->order); 1195 list_del(&entry->list); 1196 kfree(entry); 1197 } 1198 return; 1199 } 1200 } 1201 1202 static void snp_add_hv_fixed_pages(struct sev_device *sev, struct sev_data_range_list *range_list) 1203 { 1204 struct snp_hv_fixed_pages_entry *entry; 1205 struct sev_data_range *range; 1206 int num_elements; 1207 1208 lockdep_assert_held(&sev_cmd_mutex); 1209 1210 if (list_empty(&snp_hv_fixed_pages)) 1211 return; 1212 1213 num_elements = list_count_nodes(&snp_hv_fixed_pages) + 1214 range_list->num_elements; 1215 1216 /* 1217 * Ensure the list of HV_FIXED pages that will be passed to firmware 1218 * do not exceed the page-sized argument buffer. 1219 */ 1220 if (num_elements * sizeof(*range) + sizeof(*range_list) > PAGE_SIZE) { 1221 dev_warn(sev->dev, "Additional HV_Fixed pages cannot be accommodated, omitting\n"); 1222 return; 1223 } 1224 1225 range = &range_list->ranges[range_list->num_elements]; 1226 list_for_each_entry(entry, &snp_hv_fixed_pages, list) { 1227 range->base = page_to_pfn(entry->page) << PAGE_SHIFT; 1228 range->page_count = 1 << entry->order; 1229 range++; 1230 } 1231 range_list->num_elements = num_elements; 1232 } 1233 1234 static void snp_leak_hv_fixed_pages(void) 1235 { 1236 struct snp_hv_fixed_pages_entry *entry; 1237 1238 /* List is protected by sev_cmd_mutex */ 1239 lockdep_assert_held(&sev_cmd_mutex); 1240 1241 if (list_empty(&snp_hv_fixed_pages)) 1242 return; 1243 1244 list_for_each_entry(entry, &snp_hv_fixed_pages, list) 1245 if (entry->page_state == HV_FIXED) 1246 __snp_leak_pages(page_to_pfn(entry->page), 1247 1 << entry->order, false); 1248 } 1249 1250 static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg) 1251 { 1252 struct sev_data_range_list *range_list = arg; 1253 struct sev_data_range *range = &range_list->ranges[range_list->num_elements]; 1254 size_t size; 1255 1256 /* 1257 * Ensure the list of HV_FIXED pages that will be passed to firmware 1258 * do not exceed the page-sized argument buffer. 1259 */ 1260 if ((range_list->num_elements * sizeof(struct sev_data_range) + 1261 sizeof(struct sev_data_range_list)) > PAGE_SIZE) 1262 return -E2BIG; 1263 1264 switch (rs->desc) { 1265 case E820_TYPE_RESERVED: 1266 case E820_TYPE_PMEM: 1267 case E820_TYPE_ACPI: 1268 range->base = rs->start & PAGE_MASK; 1269 size = PAGE_ALIGN((rs->end + 1) - rs->start); 1270 range->page_count = size >> PAGE_SHIFT; 1271 range_list->num_elements++; 1272 break; 1273 default: 1274 break; 1275 } 1276 1277 return 0; 1278 } 1279 1280 static int __sev_snp_init_locked(int *error) 1281 { 1282 struct psp_device *psp = psp_master; 1283 struct sev_data_snp_init_ex data; 1284 struct sev_device *sev; 1285 void *arg = &data; 1286 int cmd, rc = 0; 1287 1288 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 1289 return -ENODEV; 1290 1291 sev = psp->sev_data; 1292 1293 if (sev->snp_initialized) 1294 return 0; 1295 1296 if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) { 1297 dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n", 1298 SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR); 1299 return -EOPNOTSUPP; 1300 } 1301 1302 /* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */ 1303 on_each_cpu(snp_set_hsave_pa, NULL, 1); 1304 1305 /* 1306 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list 1307 * of system physical address ranges to convert into HV-fixed page 1308 * states during the RMP initialization. For instance, the memory that 1309 * UEFI reserves should be included in the that list. This allows system 1310 * components that occasionally write to memory (e.g. logging to UEFI 1311 * reserved regions) to not fail due to RMP initialization and SNP 1312 * enablement. 1313 * 1314 */ 1315 if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) { 1316 /* 1317 * Firmware checks that the pages containing the ranges enumerated 1318 * in the RANGES structure are either in the default page state or in the 1319 * firmware page state. 1320 */ 1321 snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL); 1322 if (!snp_range_list) { 1323 dev_err(sev->dev, 1324 "SEV: SNP_INIT_EX range list memory allocation failed\n"); 1325 return -ENOMEM; 1326 } 1327 1328 /* 1329 * Retrieve all reserved memory regions from the e820 memory map 1330 * to be setup as HV-fixed pages. 1331 */ 1332 rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0, 1333 snp_range_list, snp_filter_reserved_mem_regions); 1334 if (rc) { 1335 dev_err(sev->dev, 1336 "SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc); 1337 return rc; 1338 } 1339 1340 /* 1341 * Add HV_Fixed pages from other PSP sub-devices, such as SFS to the 1342 * HV_Fixed page list. 1343 */ 1344 snp_add_hv_fixed_pages(sev, snp_range_list); 1345 1346 memset(&data, 0, sizeof(data)); 1347 data.init_rmp = 1; 1348 data.list_paddr_en = 1; 1349 data.list_paddr = __psp_pa(snp_range_list); 1350 cmd = SEV_CMD_SNP_INIT_EX; 1351 } else { 1352 cmd = SEV_CMD_SNP_INIT; 1353 arg = NULL; 1354 } 1355 1356 /* 1357 * The following sequence must be issued before launching the first SNP 1358 * guest to ensure all dirty cache lines are flushed, including from 1359 * updates to the RMP table itself via the RMPUPDATE instruction: 1360 * 1361 * - WBINVD on all running CPUs 1362 * - SEV_CMD_SNP_INIT[_EX] firmware command 1363 * - WBINVD on all running CPUs 1364 * - SEV_CMD_SNP_DF_FLUSH firmware command 1365 */ 1366 wbinvd_on_all_cpus(); 1367 1368 rc = __sev_do_cmd_locked(cmd, arg, error); 1369 if (rc) { 1370 dev_err(sev->dev, "SEV-SNP: %s failed rc %d, error %#x\n", 1371 cmd == SEV_CMD_SNP_INIT_EX ? "SNP_INIT_EX" : "SNP_INIT", 1372 rc, *error); 1373 return rc; 1374 } 1375 1376 /* Prepare for first SNP guest launch after INIT. */ 1377 wbinvd_on_all_cpus(); 1378 rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error); 1379 if (rc) { 1380 dev_err(sev->dev, "SEV-SNP: SNP_DF_FLUSH failed rc %d, error %#x\n", 1381 rc, *error); 1382 return rc; 1383 } 1384 1385 snp_hv_fixed_pages_state_update(sev, HV_FIXED); 1386 sev->snp_initialized = true; 1387 dev_dbg(sev->dev, "SEV-SNP firmware initialized\n"); 1388 1389 dev_info(sev->dev, "SEV-SNP API:%d.%d build:%d\n", sev->api_major, 1390 sev->api_minor, sev->build); 1391 1392 atomic_notifier_chain_register(&panic_notifier_list, 1393 &snp_panic_notifier); 1394 1395 sev_es_tmr_size = SNP_TMR_SIZE; 1396 1397 return 0; 1398 } 1399 1400 static void __sev_platform_init_handle_tmr(struct sev_device *sev) 1401 { 1402 if (sev_es_tmr) 1403 return; 1404 1405 /* Obtain the TMR memory area for SEV-ES use */ 1406 sev_es_tmr = sev_fw_alloc(sev_es_tmr_size); 1407 if (sev_es_tmr) { 1408 /* Must flush the cache before giving it to the firmware */ 1409 if (!sev->snp_initialized) 1410 clflush_cache_range(sev_es_tmr, sev_es_tmr_size); 1411 } else { 1412 dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n"); 1413 } 1414 } 1415 1416 /* 1417 * If an init_ex_path is provided allocate a buffer for the file and 1418 * read in the contents. Additionally, if SNP is initialized, convert 1419 * the buffer pages to firmware pages. 1420 */ 1421 static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev) 1422 { 1423 struct page *page; 1424 int rc; 1425 1426 if (!init_ex_path) 1427 return 0; 1428 1429 if (sev_init_ex_buffer) 1430 return 0; 1431 1432 page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH)); 1433 if (!page) { 1434 dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n"); 1435 return -ENOMEM; 1436 } 1437 1438 sev_init_ex_buffer = page_address(page); 1439 1440 rc = sev_read_init_ex_file(); 1441 if (rc) 1442 return rc; 1443 1444 /* If SEV-SNP is initialized, transition to firmware page. */ 1445 if (sev->snp_initialized) { 1446 unsigned long npages; 1447 1448 npages = 1UL << get_order(NV_LENGTH); 1449 if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) { 1450 dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n"); 1451 return -ENOMEM; 1452 } 1453 } 1454 1455 return 0; 1456 } 1457 1458 static int __sev_platform_init_locked(int *error) 1459 { 1460 int rc, psp_ret, dfflush_error; 1461 struct sev_device *sev; 1462 1463 psp_ret = dfflush_error = SEV_RET_NO_FW_CALL; 1464 1465 if (!psp_master || !psp_master->sev_data) 1466 return -ENODEV; 1467 1468 sev = psp_master->sev_data; 1469 1470 if (sev->state == SEV_STATE_INIT) 1471 return 0; 1472 1473 __sev_platform_init_handle_tmr(sev); 1474 1475 rc = __sev_platform_init_handle_init_ex_path(sev); 1476 if (rc) 1477 return rc; 1478 1479 rc = __sev_do_init_locked(&psp_ret); 1480 if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) { 1481 /* 1482 * Initialization command returned an integrity check failure 1483 * status code, meaning that firmware load and validation of SEV 1484 * related persistent data has failed. Retrying the 1485 * initialization function should succeed by replacing the state 1486 * with a reset state. 1487 */ 1488 dev_err(sev->dev, 1489 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state."); 1490 rc = __sev_do_init_locked(&psp_ret); 1491 } 1492 1493 if (error) 1494 *error = psp_ret; 1495 1496 if (rc) { 1497 dev_err(sev->dev, "SEV: %s failed %#x, rc %d\n", 1498 sev_init_ex_buffer ? "INIT_EX" : "INIT", psp_ret, rc); 1499 return rc; 1500 } 1501 1502 sev->state = SEV_STATE_INIT; 1503 1504 /* Prepare for first SEV guest launch after INIT */ 1505 wbinvd_on_all_cpus(); 1506 rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, &dfflush_error); 1507 if (rc) { 1508 dev_err(sev->dev, "SEV: DF_FLUSH failed %#x, rc %d\n", 1509 dfflush_error, rc); 1510 return rc; 1511 } 1512 1513 dev_dbg(sev->dev, "SEV firmware initialized\n"); 1514 1515 dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major, 1516 sev->api_minor, sev->build); 1517 1518 return 0; 1519 } 1520 1521 static int _sev_platform_init_locked(struct sev_platform_init_args *args) 1522 { 1523 struct sev_device *sev; 1524 int rc; 1525 1526 if (!psp_master || !psp_master->sev_data) 1527 return -ENODEV; 1528 1529 sev = psp_master->sev_data; 1530 1531 if (sev->state == SEV_STATE_INIT) 1532 return 0; 1533 1534 rc = __sev_snp_init_locked(&args->error); 1535 if (rc && rc != -ENODEV) 1536 return rc; 1537 1538 /* Defer legacy SEV/SEV-ES support if allowed by caller/module. */ 1539 if (args->probe && !psp_init_on_probe) 1540 return 0; 1541 1542 return __sev_platform_init_locked(&args->error); 1543 } 1544 1545 int sev_platform_init(struct sev_platform_init_args *args) 1546 { 1547 int rc; 1548 1549 mutex_lock(&sev_cmd_mutex); 1550 rc = _sev_platform_init_locked(args); 1551 mutex_unlock(&sev_cmd_mutex); 1552 1553 return rc; 1554 } 1555 EXPORT_SYMBOL_GPL(sev_platform_init); 1556 1557 static int __sev_platform_shutdown_locked(int *error) 1558 { 1559 struct psp_device *psp = psp_master; 1560 struct sev_device *sev; 1561 int ret; 1562 1563 if (!psp || !psp->sev_data) 1564 return 0; 1565 1566 sev = psp->sev_data; 1567 1568 if (sev->state == SEV_STATE_UNINIT) 1569 return 0; 1570 1571 ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error); 1572 if (ret) { 1573 dev_err(sev->dev, "SEV: failed to SHUTDOWN error %#x, rc %d\n", 1574 *error, ret); 1575 return ret; 1576 } 1577 1578 sev->state = SEV_STATE_UNINIT; 1579 dev_dbg(sev->dev, "SEV firmware shutdown\n"); 1580 1581 return ret; 1582 } 1583 1584 static int sev_get_platform_state(int *state, int *error) 1585 { 1586 struct sev_user_data_status data; 1587 int rc; 1588 1589 rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error); 1590 if (rc) 1591 return rc; 1592 1593 *state = data.state; 1594 return rc; 1595 } 1596 1597 static int sev_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required) 1598 { 1599 struct sev_platform_init_args init_args = {0}; 1600 int rc; 1601 1602 rc = _sev_platform_init_locked(&init_args); 1603 if (rc) { 1604 argp->error = SEV_RET_INVALID_PLATFORM_STATE; 1605 return rc; 1606 } 1607 1608 *shutdown_required = true; 1609 1610 return 0; 1611 } 1612 1613 static int snp_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required) 1614 { 1615 int error, rc; 1616 1617 rc = __sev_snp_init_locked(&error); 1618 if (rc) { 1619 argp->error = SEV_RET_INVALID_PLATFORM_STATE; 1620 return rc; 1621 } 1622 1623 *shutdown_required = true; 1624 1625 return 0; 1626 } 1627 1628 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable) 1629 { 1630 int state, rc; 1631 1632 if (!writable) 1633 return -EPERM; 1634 1635 /* 1636 * The SEV spec requires that FACTORY_RESET must be issued in 1637 * UNINIT state. Before we go further lets check if any guest is 1638 * active. 1639 * 1640 * If FW is in WORKING state then deny the request otherwise issue 1641 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET. 1642 * 1643 */ 1644 rc = sev_get_platform_state(&state, &argp->error); 1645 if (rc) 1646 return rc; 1647 1648 if (state == SEV_STATE_WORKING) 1649 return -EBUSY; 1650 1651 if (state == SEV_STATE_INIT) { 1652 rc = __sev_platform_shutdown_locked(&argp->error); 1653 if (rc) 1654 return rc; 1655 } 1656 1657 return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error); 1658 } 1659 1660 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp) 1661 { 1662 struct sev_user_data_status data; 1663 int ret; 1664 1665 memset(&data, 0, sizeof(data)); 1666 1667 ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error); 1668 if (ret) 1669 return ret; 1670 1671 if (copy_to_user((void __user *)argp->data, &data, sizeof(data))) 1672 ret = -EFAULT; 1673 1674 return ret; 1675 } 1676 1677 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable) 1678 { 1679 struct sev_device *sev = psp_master->sev_data; 1680 bool shutdown_required = false; 1681 int rc; 1682 1683 if (!writable) 1684 return -EPERM; 1685 1686 if (sev->state == SEV_STATE_UNINIT) { 1687 rc = sev_move_to_init_state(argp, &shutdown_required); 1688 if (rc) 1689 return rc; 1690 } 1691 1692 rc = __sev_do_cmd_locked(cmd, NULL, &argp->error); 1693 1694 if (shutdown_required) 1695 __sev_firmware_shutdown(sev, false); 1696 1697 return rc; 1698 } 1699 1700 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable) 1701 { 1702 struct sev_device *sev = psp_master->sev_data; 1703 struct sev_user_data_pek_csr input; 1704 bool shutdown_required = false; 1705 struct sev_data_pek_csr data; 1706 void __user *input_address; 1707 void *blob = NULL; 1708 int ret; 1709 1710 if (!writable) 1711 return -EPERM; 1712 1713 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 1714 return -EFAULT; 1715 1716 memset(&data, 0, sizeof(data)); 1717 1718 /* userspace wants to query CSR length */ 1719 if (!input.address || !input.length) 1720 goto cmd; 1721 1722 /* allocate a physically contiguous buffer to store the CSR blob */ 1723 input_address = (void __user *)input.address; 1724 if (input.length > SEV_FW_BLOB_MAX_SIZE) 1725 return -EFAULT; 1726 1727 blob = kzalloc(input.length, GFP_KERNEL); 1728 if (!blob) 1729 return -ENOMEM; 1730 1731 data.address = __psp_pa(blob); 1732 data.len = input.length; 1733 1734 cmd: 1735 if (sev->state == SEV_STATE_UNINIT) { 1736 ret = sev_move_to_init_state(argp, &shutdown_required); 1737 if (ret) 1738 goto e_free_blob; 1739 } 1740 1741 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error); 1742 1743 /* If we query the CSR length, FW responded with expected data. */ 1744 input.length = data.len; 1745 1746 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 1747 ret = -EFAULT; 1748 goto e_free_blob; 1749 } 1750 1751 if (blob) { 1752 if (copy_to_user(input_address, blob, input.length)) 1753 ret = -EFAULT; 1754 } 1755 1756 e_free_blob: 1757 if (shutdown_required) 1758 __sev_firmware_shutdown(sev, false); 1759 1760 kfree(blob); 1761 return ret; 1762 } 1763 1764 void *psp_copy_user_blob(u64 uaddr, u32 len) 1765 { 1766 if (!uaddr || !len) 1767 return ERR_PTR(-EINVAL); 1768 1769 /* verify that blob length does not exceed our limit */ 1770 if (len > SEV_FW_BLOB_MAX_SIZE) 1771 return ERR_PTR(-EINVAL); 1772 1773 return memdup_user((void __user *)uaddr, len); 1774 } 1775 EXPORT_SYMBOL_GPL(psp_copy_user_blob); 1776 1777 static int sev_get_api_version(void) 1778 { 1779 struct sev_device *sev = psp_master->sev_data; 1780 struct sev_user_data_status status; 1781 int error = 0, ret; 1782 1783 ret = sev_platform_status(&status, &error); 1784 if (ret) { 1785 dev_err(sev->dev, 1786 "SEV: failed to get status. Error: %#x\n", error); 1787 return 1; 1788 } 1789 1790 sev->api_major = status.api_major; 1791 sev->api_minor = status.api_minor; 1792 sev->build = status.build; 1793 sev->state = status.state; 1794 1795 return 0; 1796 } 1797 1798 static int sev_get_firmware(struct device *dev, 1799 const struct firmware **firmware) 1800 { 1801 char fw_name_specific[SEV_FW_NAME_SIZE]; 1802 char fw_name_subset[SEV_FW_NAME_SIZE]; 1803 1804 snprintf(fw_name_specific, sizeof(fw_name_specific), 1805 "amd/amd_sev_fam%.2xh_model%.2xh.sbin", 1806 boot_cpu_data.x86, boot_cpu_data.x86_model); 1807 1808 snprintf(fw_name_subset, sizeof(fw_name_subset), 1809 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin", 1810 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4); 1811 1812 /* Check for SEV FW for a particular model. 1813 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h 1814 * 1815 * or 1816 * 1817 * Check for SEV FW common to a subset of models. 1818 * Ex. amd_sev_fam17h_model0xh.sbin for 1819 * Family 17h Model 00h -- Family 17h Model 0Fh 1820 * 1821 * or 1822 * 1823 * Fall-back to using generic name: sev.fw 1824 */ 1825 if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) || 1826 (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) || 1827 (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0)) 1828 return 0; 1829 1830 return -ENOENT; 1831 } 1832 1833 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */ 1834 static int sev_update_firmware(struct device *dev) 1835 { 1836 struct sev_data_download_firmware *data; 1837 const struct firmware *firmware; 1838 int ret, error, order; 1839 struct page *p; 1840 u64 data_size; 1841 1842 if (!sev_version_greater_or_equal(0, 15)) { 1843 dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n"); 1844 return -1; 1845 } 1846 1847 if (sev_get_firmware(dev, &firmware) == -ENOENT) { 1848 dev_dbg(dev, "No SEV firmware file present\n"); 1849 return -1; 1850 } 1851 1852 /* 1853 * SEV FW expects the physical address given to it to be 32 1854 * byte aligned. Memory allocated has structure placed at the 1855 * beginning followed by the firmware being passed to the SEV 1856 * FW. Allocate enough memory for data structure + alignment 1857 * padding + SEV FW. 1858 */ 1859 data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32); 1860 1861 order = get_order(firmware->size + data_size); 1862 p = alloc_pages(GFP_KERNEL, order); 1863 if (!p) { 1864 ret = -1; 1865 goto fw_err; 1866 } 1867 1868 /* 1869 * Copy firmware data to a kernel allocated contiguous 1870 * memory region. 1871 */ 1872 data = page_address(p); 1873 memcpy(page_address(p) + data_size, firmware->data, firmware->size); 1874 1875 data->address = __psp_pa(page_address(p) + data_size); 1876 data->len = firmware->size; 1877 1878 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1879 1880 /* 1881 * A quirk for fixing the committed TCB version, when upgrading from 1882 * earlier firmware version than 1.50. 1883 */ 1884 if (!ret && !sev_version_greater_or_equal(1, 50)) 1885 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error); 1886 1887 if (ret) 1888 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error); 1889 1890 __free_pages(p, order); 1891 1892 fw_err: 1893 release_firmware(firmware); 1894 1895 return ret; 1896 } 1897 1898 static int __sev_snp_shutdown_locked(int *error, bool panic) 1899 { 1900 struct psp_device *psp = psp_master; 1901 struct sev_device *sev; 1902 struct sev_data_snp_shutdown_ex data; 1903 int ret; 1904 1905 if (!psp || !psp->sev_data) 1906 return 0; 1907 1908 sev = psp->sev_data; 1909 1910 if (!sev->snp_initialized) 1911 return 0; 1912 1913 memset(&data, 0, sizeof(data)); 1914 data.len = sizeof(data); 1915 data.iommu_snp_shutdown = 1; 1916 1917 /* 1918 * If invoked during panic handling, local interrupts are disabled 1919 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called. 1920 * In that case, a wbinvd() is done on remote CPUs via the NMI 1921 * callback, so only a local wbinvd() is needed here. 1922 */ 1923 if (!panic) 1924 wbinvd_on_all_cpus(); 1925 else 1926 wbinvd(); 1927 1928 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error); 1929 /* SHUTDOWN may require DF_FLUSH */ 1930 if (*error == SEV_RET_DFFLUSH_REQUIRED) { 1931 int dfflush_error = SEV_RET_NO_FW_CALL; 1932 1933 ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, &dfflush_error); 1934 if (ret) { 1935 dev_err(sev->dev, "SEV-SNP DF_FLUSH failed, ret = %d, error = %#x\n", 1936 ret, dfflush_error); 1937 return ret; 1938 } 1939 /* reissue the shutdown command */ 1940 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, 1941 error); 1942 } 1943 if (ret) { 1944 dev_err(sev->dev, "SEV-SNP firmware shutdown failed, rc %d, error %#x\n", 1945 ret, *error); 1946 return ret; 1947 } 1948 1949 /* 1950 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP 1951 * enforcement by the IOMMU and also transitions all pages 1952 * associated with the IOMMU to the Reclaim state. 1953 * Firmware was transitioning the IOMMU pages to Hypervisor state 1954 * before version 1.53. But, accounting for the number of assigned 1955 * 4kB pages in a 2M page was done incorrectly by not transitioning 1956 * to the Reclaim state. This resulted in RMP #PF when later accessing 1957 * the 2M page containing those pages during kexec boot. Hence, the 1958 * firmware now transitions these pages to Reclaim state and hypervisor 1959 * needs to transition these pages to shared state. SNP Firmware 1960 * version 1.53 and above are needed for kexec boot. 1961 */ 1962 ret = amd_iommu_snp_disable(); 1963 if (ret) { 1964 dev_err(sev->dev, "SNP IOMMU shutdown failed\n"); 1965 return ret; 1966 } 1967 1968 snp_leak_hv_fixed_pages(); 1969 sev->snp_initialized = false; 1970 dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n"); 1971 1972 /* 1973 * __sev_snp_shutdown_locked() deadlocks when it tries to unregister 1974 * itself during panic as the panic notifier is called with RCU read 1975 * lock held and notifier unregistration does RCU synchronization. 1976 */ 1977 if (!panic) 1978 atomic_notifier_chain_unregister(&panic_notifier_list, 1979 &snp_panic_notifier); 1980 1981 /* Reset TMR size back to default */ 1982 sev_es_tmr_size = SEV_TMR_SIZE; 1983 1984 return ret; 1985 } 1986 1987 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable) 1988 { 1989 struct sev_device *sev = psp_master->sev_data; 1990 struct sev_user_data_pek_cert_import input; 1991 struct sev_data_pek_cert_import data; 1992 bool shutdown_required = false; 1993 void *pek_blob, *oca_blob; 1994 int ret; 1995 1996 if (!writable) 1997 return -EPERM; 1998 1999 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 2000 return -EFAULT; 2001 2002 /* copy PEK certificate blobs from userspace */ 2003 pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len); 2004 if (IS_ERR(pek_blob)) 2005 return PTR_ERR(pek_blob); 2006 2007 data.reserved = 0; 2008 data.pek_cert_address = __psp_pa(pek_blob); 2009 data.pek_cert_len = input.pek_cert_len; 2010 2011 /* copy PEK certificate blobs from userspace */ 2012 oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len); 2013 if (IS_ERR(oca_blob)) { 2014 ret = PTR_ERR(oca_blob); 2015 goto e_free_pek; 2016 } 2017 2018 data.oca_cert_address = __psp_pa(oca_blob); 2019 data.oca_cert_len = input.oca_cert_len; 2020 2021 /* If platform is not in INIT state then transition it to INIT */ 2022 if (sev->state != SEV_STATE_INIT) { 2023 ret = sev_move_to_init_state(argp, &shutdown_required); 2024 if (ret) 2025 goto e_free_oca; 2026 } 2027 2028 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error); 2029 2030 e_free_oca: 2031 if (shutdown_required) 2032 __sev_firmware_shutdown(sev, false); 2033 2034 kfree(oca_blob); 2035 e_free_pek: 2036 kfree(pek_blob); 2037 return ret; 2038 } 2039 2040 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp) 2041 { 2042 struct sev_user_data_get_id2 input; 2043 struct sev_data_get_id data; 2044 void __user *input_address; 2045 void *id_blob = NULL; 2046 int ret; 2047 2048 /* SEV GET_ID is available from SEV API v0.16 and up */ 2049 if (!sev_version_greater_or_equal(0, 16)) 2050 return -ENOTSUPP; 2051 2052 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 2053 return -EFAULT; 2054 2055 input_address = (void __user *)input.address; 2056 2057 if (input.address && input.length) { 2058 /* 2059 * The length of the ID shouldn't be assumed by software since 2060 * it may change in the future. The allocation size is limited 2061 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator. 2062 * If the allocation fails, simply return ENOMEM rather than 2063 * warning in the kernel log. 2064 */ 2065 id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN); 2066 if (!id_blob) 2067 return -ENOMEM; 2068 2069 data.address = __psp_pa(id_blob); 2070 data.len = input.length; 2071 } else { 2072 data.address = 0; 2073 data.len = 0; 2074 } 2075 2076 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error); 2077 2078 /* 2079 * Firmware will return the length of the ID value (either the minimum 2080 * required length or the actual length written), return it to the user. 2081 */ 2082 input.length = data.len; 2083 2084 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 2085 ret = -EFAULT; 2086 goto e_free; 2087 } 2088 2089 if (id_blob) { 2090 if (copy_to_user(input_address, id_blob, data.len)) { 2091 ret = -EFAULT; 2092 goto e_free; 2093 } 2094 } 2095 2096 e_free: 2097 kfree(id_blob); 2098 2099 return ret; 2100 } 2101 2102 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp) 2103 { 2104 struct sev_data_get_id *data; 2105 u64 data_size, user_size; 2106 void *id_blob, *mem; 2107 int ret; 2108 2109 /* SEV GET_ID available from SEV API v0.16 and up */ 2110 if (!sev_version_greater_or_equal(0, 16)) 2111 return -ENOTSUPP; 2112 2113 /* SEV FW expects the buffer it fills with the ID to be 2114 * 8-byte aligned. Memory allocated should be enough to 2115 * hold data structure + alignment padding + memory 2116 * where SEV FW writes the ID. 2117 */ 2118 data_size = ALIGN(sizeof(struct sev_data_get_id), 8); 2119 user_size = sizeof(struct sev_user_data_get_id); 2120 2121 mem = kzalloc(data_size + user_size, GFP_KERNEL); 2122 if (!mem) 2123 return -ENOMEM; 2124 2125 data = mem; 2126 id_blob = mem + data_size; 2127 2128 data->address = __psp_pa(id_blob); 2129 data->len = user_size; 2130 2131 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error); 2132 if (!ret) { 2133 if (copy_to_user((void __user *)argp->data, id_blob, data->len)) 2134 ret = -EFAULT; 2135 } 2136 2137 kfree(mem); 2138 2139 return ret; 2140 } 2141 2142 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable) 2143 { 2144 struct sev_device *sev = psp_master->sev_data; 2145 struct sev_user_data_pdh_cert_export input; 2146 void *pdh_blob = NULL, *cert_blob = NULL; 2147 struct sev_data_pdh_cert_export data; 2148 void __user *input_cert_chain_address; 2149 void __user *input_pdh_cert_address; 2150 bool shutdown_required = false; 2151 int ret; 2152 2153 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input))) 2154 return -EFAULT; 2155 2156 memset(&data, 0, sizeof(data)); 2157 2158 input_pdh_cert_address = (void __user *)input.pdh_cert_address; 2159 input_cert_chain_address = (void __user *)input.cert_chain_address; 2160 2161 /* Userspace wants to query the certificate length. */ 2162 if (!input.pdh_cert_address || 2163 !input.pdh_cert_len || 2164 !input.cert_chain_address) 2165 goto cmd; 2166 2167 /* Allocate a physically contiguous buffer to store the PDH blob. */ 2168 if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE) 2169 return -EFAULT; 2170 2171 /* Allocate a physically contiguous buffer to store the cert chain blob. */ 2172 if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE) 2173 return -EFAULT; 2174 2175 pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL); 2176 if (!pdh_blob) 2177 return -ENOMEM; 2178 2179 data.pdh_cert_address = __psp_pa(pdh_blob); 2180 data.pdh_cert_len = input.pdh_cert_len; 2181 2182 cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL); 2183 if (!cert_blob) { 2184 ret = -ENOMEM; 2185 goto e_free_pdh; 2186 } 2187 2188 data.cert_chain_address = __psp_pa(cert_blob); 2189 data.cert_chain_len = input.cert_chain_len; 2190 2191 cmd: 2192 /* If platform is not in INIT state then transition it to INIT. */ 2193 if (sev->state != SEV_STATE_INIT) { 2194 if (!writable) { 2195 ret = -EPERM; 2196 goto e_free_cert; 2197 } 2198 ret = sev_move_to_init_state(argp, &shutdown_required); 2199 if (ret) 2200 goto e_free_cert; 2201 } 2202 2203 ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error); 2204 2205 /* If we query the length, FW responded with expected data. */ 2206 input.cert_chain_len = data.cert_chain_len; 2207 input.pdh_cert_len = data.pdh_cert_len; 2208 2209 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) { 2210 ret = -EFAULT; 2211 goto e_free_cert; 2212 } 2213 2214 if (pdh_blob) { 2215 if (copy_to_user(input_pdh_cert_address, 2216 pdh_blob, input.pdh_cert_len)) { 2217 ret = -EFAULT; 2218 goto e_free_cert; 2219 } 2220 } 2221 2222 if (cert_blob) { 2223 if (copy_to_user(input_cert_chain_address, 2224 cert_blob, input.cert_chain_len)) 2225 ret = -EFAULT; 2226 } 2227 2228 e_free_cert: 2229 if (shutdown_required) 2230 __sev_firmware_shutdown(sev, false); 2231 2232 kfree(cert_blob); 2233 e_free_pdh: 2234 kfree(pdh_blob); 2235 return ret; 2236 } 2237 2238 static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp) 2239 { 2240 struct sev_device *sev = psp_master->sev_data; 2241 bool shutdown_required = false; 2242 struct sev_data_snp_addr buf; 2243 struct page *status_page; 2244 int ret, error; 2245 void *data; 2246 2247 if (!argp->data) 2248 return -EINVAL; 2249 2250 status_page = alloc_page(GFP_KERNEL_ACCOUNT); 2251 if (!status_page) 2252 return -ENOMEM; 2253 2254 data = page_address(status_page); 2255 2256 if (!sev->snp_initialized) { 2257 ret = snp_move_to_init_state(argp, &shutdown_required); 2258 if (ret) 2259 goto cleanup; 2260 } 2261 2262 /* 2263 * Firmware expects status page to be in firmware-owned state, otherwise 2264 * it will report firmware error code INVALID_PAGE_STATE (0x1A). 2265 */ 2266 if (rmp_mark_pages_firmware(__pa(data), 1, true)) { 2267 ret = -EFAULT; 2268 goto cleanup; 2269 } 2270 2271 buf.address = __psp_pa(data); 2272 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error); 2273 2274 /* 2275 * Status page will be transitioned to Reclaim state upon success, or 2276 * left in Firmware state in failure. Use snp_reclaim_pages() to 2277 * transition either case back to Hypervisor-owned state. 2278 */ 2279 if (snp_reclaim_pages(__pa(data), 1, true)) 2280 return -EFAULT; 2281 2282 if (ret) 2283 goto cleanup; 2284 2285 if (copy_to_user((void __user *)argp->data, data, 2286 sizeof(struct sev_user_data_snp_status))) 2287 ret = -EFAULT; 2288 2289 cleanup: 2290 if (shutdown_required) 2291 __sev_snp_shutdown_locked(&error, false); 2292 2293 __free_pages(status_page, 0); 2294 return ret; 2295 } 2296 2297 static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp) 2298 { 2299 struct sev_device *sev = psp_master->sev_data; 2300 struct sev_data_snp_commit buf; 2301 bool shutdown_required = false; 2302 int ret, error; 2303 2304 if (!sev->snp_initialized) { 2305 ret = snp_move_to_init_state(argp, &shutdown_required); 2306 if (ret) 2307 return ret; 2308 } 2309 2310 buf.len = sizeof(buf); 2311 2312 ret = __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error); 2313 2314 if (shutdown_required) 2315 __sev_snp_shutdown_locked(&error, false); 2316 2317 return ret; 2318 } 2319 2320 static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable) 2321 { 2322 struct sev_device *sev = psp_master->sev_data; 2323 struct sev_user_data_snp_config config; 2324 bool shutdown_required = false; 2325 int ret, error; 2326 2327 if (!argp->data) 2328 return -EINVAL; 2329 2330 if (!writable) 2331 return -EPERM; 2332 2333 if (copy_from_user(&config, (void __user *)argp->data, sizeof(config))) 2334 return -EFAULT; 2335 2336 if (!sev->snp_initialized) { 2337 ret = snp_move_to_init_state(argp, &shutdown_required); 2338 if (ret) 2339 return ret; 2340 } 2341 2342 ret = __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error); 2343 2344 if (shutdown_required) 2345 __sev_snp_shutdown_locked(&error, false); 2346 2347 return ret; 2348 } 2349 2350 static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable) 2351 { 2352 struct sev_device *sev = psp_master->sev_data; 2353 struct sev_user_data_snp_vlek_load input; 2354 bool shutdown_required = false; 2355 int ret, error; 2356 void *blob; 2357 2358 if (!argp->data) 2359 return -EINVAL; 2360 2361 if (!writable) 2362 return -EPERM; 2363 2364 if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input))) 2365 return -EFAULT; 2366 2367 if (input.len != sizeof(input) || input.vlek_wrapped_version != 0) 2368 return -EINVAL; 2369 2370 blob = psp_copy_user_blob(input.vlek_wrapped_address, 2371 sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick)); 2372 if (IS_ERR(blob)) 2373 return PTR_ERR(blob); 2374 2375 input.vlek_wrapped_address = __psp_pa(blob); 2376 2377 if (!sev->snp_initialized) { 2378 ret = snp_move_to_init_state(argp, &shutdown_required); 2379 if (ret) 2380 goto cleanup; 2381 } 2382 2383 ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error); 2384 2385 if (shutdown_required) 2386 __sev_snp_shutdown_locked(&error, false); 2387 2388 cleanup: 2389 kfree(blob); 2390 2391 return ret; 2392 } 2393 2394 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) 2395 { 2396 void __user *argp = (void __user *)arg; 2397 struct sev_issue_cmd input; 2398 int ret = -EFAULT; 2399 bool writable = file->f_mode & FMODE_WRITE; 2400 2401 if (!psp_master || !psp_master->sev_data) 2402 return -ENODEV; 2403 2404 if (ioctl != SEV_ISSUE_CMD) 2405 return -EINVAL; 2406 2407 if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd))) 2408 return -EFAULT; 2409 2410 if (input.cmd > SEV_MAX) 2411 return -EINVAL; 2412 2413 mutex_lock(&sev_cmd_mutex); 2414 2415 switch (input.cmd) { 2416 2417 case SEV_FACTORY_RESET: 2418 ret = sev_ioctl_do_reset(&input, writable); 2419 break; 2420 case SEV_PLATFORM_STATUS: 2421 ret = sev_ioctl_do_platform_status(&input); 2422 break; 2423 case SEV_PEK_GEN: 2424 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable); 2425 break; 2426 case SEV_PDH_GEN: 2427 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable); 2428 break; 2429 case SEV_PEK_CSR: 2430 ret = sev_ioctl_do_pek_csr(&input, writable); 2431 break; 2432 case SEV_PEK_CERT_IMPORT: 2433 ret = sev_ioctl_do_pek_import(&input, writable); 2434 break; 2435 case SEV_PDH_CERT_EXPORT: 2436 ret = sev_ioctl_do_pdh_export(&input, writable); 2437 break; 2438 case SEV_GET_ID: 2439 pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n"); 2440 ret = sev_ioctl_do_get_id(&input); 2441 break; 2442 case SEV_GET_ID2: 2443 ret = sev_ioctl_do_get_id2(&input); 2444 break; 2445 case SNP_PLATFORM_STATUS: 2446 ret = sev_ioctl_do_snp_platform_status(&input); 2447 break; 2448 case SNP_COMMIT: 2449 ret = sev_ioctl_do_snp_commit(&input); 2450 break; 2451 case SNP_SET_CONFIG: 2452 ret = sev_ioctl_do_snp_set_config(&input, writable); 2453 break; 2454 case SNP_VLEK_LOAD: 2455 ret = sev_ioctl_do_snp_vlek_load(&input, writable); 2456 break; 2457 default: 2458 ret = -EINVAL; 2459 goto out; 2460 } 2461 2462 if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd))) 2463 ret = -EFAULT; 2464 out: 2465 mutex_unlock(&sev_cmd_mutex); 2466 2467 return ret; 2468 } 2469 2470 static const struct file_operations sev_fops = { 2471 .owner = THIS_MODULE, 2472 .unlocked_ioctl = sev_ioctl, 2473 }; 2474 2475 int sev_platform_status(struct sev_user_data_status *data, int *error) 2476 { 2477 return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error); 2478 } 2479 EXPORT_SYMBOL_GPL(sev_platform_status); 2480 2481 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error) 2482 { 2483 return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error); 2484 } 2485 EXPORT_SYMBOL_GPL(sev_guest_deactivate); 2486 2487 int sev_guest_activate(struct sev_data_activate *data, int *error) 2488 { 2489 return sev_do_cmd(SEV_CMD_ACTIVATE, data, error); 2490 } 2491 EXPORT_SYMBOL_GPL(sev_guest_activate); 2492 2493 int sev_guest_decommission(struct sev_data_decommission *data, int *error) 2494 { 2495 return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error); 2496 } 2497 EXPORT_SYMBOL_GPL(sev_guest_decommission); 2498 2499 int sev_guest_df_flush(int *error) 2500 { 2501 return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error); 2502 } 2503 EXPORT_SYMBOL_GPL(sev_guest_df_flush); 2504 2505 static void sev_exit(struct kref *ref) 2506 { 2507 misc_deregister(&misc_dev->misc); 2508 kfree(misc_dev); 2509 misc_dev = NULL; 2510 } 2511 2512 static int sev_misc_init(struct sev_device *sev) 2513 { 2514 struct device *dev = sev->dev; 2515 int ret; 2516 2517 /* 2518 * SEV feature support can be detected on multiple devices but the SEV 2519 * FW commands must be issued on the master. During probe, we do not 2520 * know the master hence we create /dev/sev on the first device probe. 2521 * sev_do_cmd() finds the right master device to which to issue the 2522 * command to the firmware. 2523 */ 2524 if (!misc_dev) { 2525 struct miscdevice *misc; 2526 2527 misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL); 2528 if (!misc_dev) 2529 return -ENOMEM; 2530 2531 misc = &misc_dev->misc; 2532 misc->minor = MISC_DYNAMIC_MINOR; 2533 misc->name = DEVICE_NAME; 2534 misc->fops = &sev_fops; 2535 2536 ret = misc_register(misc); 2537 if (ret) 2538 return ret; 2539 2540 kref_init(&misc_dev->refcount); 2541 } else { 2542 kref_get(&misc_dev->refcount); 2543 } 2544 2545 init_waitqueue_head(&sev->int_queue); 2546 sev->misc = misc_dev; 2547 dev_dbg(dev, "registered SEV device\n"); 2548 2549 return 0; 2550 } 2551 2552 int sev_dev_init(struct psp_device *psp) 2553 { 2554 struct device *dev = psp->dev; 2555 struct sev_device *sev; 2556 int ret = -ENOMEM; 2557 2558 if (!boot_cpu_has(X86_FEATURE_SEV)) { 2559 dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n"); 2560 return 0; 2561 } 2562 2563 sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL); 2564 if (!sev) 2565 goto e_err; 2566 2567 sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1); 2568 if (!sev->cmd_buf) 2569 goto e_sev; 2570 2571 sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE; 2572 2573 psp->sev_data = sev; 2574 2575 sev->dev = dev; 2576 sev->psp = psp; 2577 2578 sev->io_regs = psp->io_regs; 2579 2580 sev->vdata = (struct sev_vdata *)psp->vdata->sev; 2581 if (!sev->vdata) { 2582 ret = -ENODEV; 2583 dev_err(dev, "sev: missing driver data\n"); 2584 goto e_buf; 2585 } 2586 2587 psp_set_sev_irq_handler(psp, sev_irq_handler, sev); 2588 2589 ret = sev_misc_init(sev); 2590 if (ret) 2591 goto e_irq; 2592 2593 dev_notice(dev, "sev enabled\n"); 2594 2595 return 0; 2596 2597 e_irq: 2598 psp_clear_sev_irq_handler(psp); 2599 e_buf: 2600 devm_free_pages(dev, (unsigned long)sev->cmd_buf); 2601 e_sev: 2602 devm_kfree(dev, sev); 2603 e_err: 2604 psp->sev_data = NULL; 2605 2606 dev_notice(dev, "sev initialization failed\n"); 2607 2608 return ret; 2609 } 2610 2611 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic) 2612 { 2613 int error; 2614 2615 __sev_platform_shutdown_locked(&error); 2616 2617 if (sev_es_tmr) { 2618 /* 2619 * The TMR area was encrypted, flush it from the cache. 2620 * 2621 * If invoked during panic handling, local interrupts are 2622 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus() 2623 * can't be used. In that case, wbinvd() is done on remote CPUs 2624 * via the NMI callback, and done for this CPU later during 2625 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped. 2626 */ 2627 if (!panic) 2628 wbinvd_on_all_cpus(); 2629 2630 __snp_free_firmware_pages(virt_to_page(sev_es_tmr), 2631 get_order(sev_es_tmr_size), 2632 true); 2633 sev_es_tmr = NULL; 2634 } 2635 2636 if (sev_init_ex_buffer) { 2637 __snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer), 2638 get_order(NV_LENGTH), 2639 true); 2640 sev_init_ex_buffer = NULL; 2641 } 2642 2643 if (snp_range_list) { 2644 kfree(snp_range_list); 2645 snp_range_list = NULL; 2646 } 2647 2648 __sev_snp_shutdown_locked(&error, panic); 2649 } 2650 2651 static void sev_firmware_shutdown(struct sev_device *sev) 2652 { 2653 mutex_lock(&sev_cmd_mutex); 2654 __sev_firmware_shutdown(sev, false); 2655 mutex_unlock(&sev_cmd_mutex); 2656 } 2657 2658 void sev_platform_shutdown(void) 2659 { 2660 if (!psp_master || !psp_master->sev_data) 2661 return; 2662 2663 sev_firmware_shutdown(psp_master->sev_data); 2664 } 2665 EXPORT_SYMBOL_GPL(sev_platform_shutdown); 2666 2667 void sev_dev_destroy(struct psp_device *psp) 2668 { 2669 struct sev_device *sev = psp->sev_data; 2670 2671 if (!sev) 2672 return; 2673 2674 sev_firmware_shutdown(sev); 2675 2676 if (sev->misc) 2677 kref_put(&misc_dev->refcount, sev_exit); 2678 2679 psp_clear_sev_irq_handler(psp); 2680 } 2681 2682 static int snp_shutdown_on_panic(struct notifier_block *nb, 2683 unsigned long reason, void *arg) 2684 { 2685 struct sev_device *sev = psp_master->sev_data; 2686 2687 /* 2688 * If sev_cmd_mutex is already acquired, then it's likely 2689 * another PSP command is in flight and issuing a shutdown 2690 * would fail in unexpected ways. Rather than create even 2691 * more confusion during a panic, just bail out here. 2692 */ 2693 if (mutex_is_locked(&sev_cmd_mutex)) 2694 return NOTIFY_DONE; 2695 2696 __sev_firmware_shutdown(sev, true); 2697 2698 return NOTIFY_DONE; 2699 } 2700 2701 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd, 2702 void *data, int *error) 2703 { 2704 if (!filep || filep->f_op != &sev_fops) 2705 return -EBADF; 2706 2707 return sev_do_cmd(cmd, data, error); 2708 } 2709 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user); 2710 2711 void sev_pci_init(void) 2712 { 2713 struct sev_device *sev = psp_master->sev_data; 2714 u8 api_major, api_minor, build; 2715 2716 if (!sev) 2717 return; 2718 2719 psp_timeout = psp_probe_timeout; 2720 2721 if (sev_get_api_version()) 2722 goto err; 2723 2724 api_major = sev->api_major; 2725 api_minor = sev->api_minor; 2726 build = sev->build; 2727 2728 if (sev_update_firmware(sev->dev) == 0) 2729 sev_get_api_version(); 2730 2731 if (api_major != sev->api_major || api_minor != sev->api_minor || 2732 build != sev->build) 2733 dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n", 2734 api_major, api_minor, build, 2735 sev->api_major, sev->api_minor, sev->build); 2736 2737 return; 2738 2739 err: 2740 sev_dev_destroy(psp_master); 2741 2742 psp_master->sev_data = NULL; 2743 } 2744 2745 void sev_pci_exit(void) 2746 { 2747 struct sev_device *sev = psp_master->sev_data; 2748 2749 if (!sev) 2750 return; 2751 2752 sev_firmware_shutdown(sev); 2753 } 2754