xref: /linux/drivers/crypto/ccp/ccp-ops.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * AMD Cryptographic Coprocessor (CCP) driver
3  *
4  * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  * Author: Gary R Hook <gary.hook@amd.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/interrupt.h>
18 #include <crypto/scatterwalk.h>
19 #include <crypto/des.h>
20 #include <linux/ccp.h>
21 
22 #include "ccp-dev.h"
23 
24 /* SHA initial context values */
25 static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
26 	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
27 	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
28 	cpu_to_be32(SHA1_H4),
29 };
30 
31 static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
32 	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
33 	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
34 	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
35 	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
36 };
37 
38 static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
39 	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
40 	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
41 	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
42 	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
43 };
44 
45 static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
46 	cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
47 	cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
48 	cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
49 	cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
50 };
51 
52 static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
53 	cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
54 	cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
55 	cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
56 	cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
57 };
58 
59 #define	CCP_NEW_JOBID(ccp)	((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
60 					ccp_gen_jobid(ccp) : 0)
61 
62 static u32 ccp_gen_jobid(struct ccp_device *ccp)
63 {
64 	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
65 }
66 
67 static void ccp_sg_free(struct ccp_sg_workarea *wa)
68 {
69 	if (wa->dma_count)
70 		dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
71 
72 	wa->dma_count = 0;
73 }
74 
75 static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
76 				struct scatterlist *sg, u64 len,
77 				enum dma_data_direction dma_dir)
78 {
79 	memset(wa, 0, sizeof(*wa));
80 
81 	wa->sg = sg;
82 	if (!sg)
83 		return 0;
84 
85 	wa->nents = sg_nents_for_len(sg, len);
86 	if (wa->nents < 0)
87 		return wa->nents;
88 
89 	wa->bytes_left = len;
90 	wa->sg_used = 0;
91 
92 	if (len == 0)
93 		return 0;
94 
95 	if (dma_dir == DMA_NONE)
96 		return 0;
97 
98 	wa->dma_sg = sg;
99 	wa->dma_dev = dev;
100 	wa->dma_dir = dma_dir;
101 	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
102 	if (!wa->dma_count)
103 		return -ENOMEM;
104 
105 	return 0;
106 }
107 
108 static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
109 {
110 	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
111 
112 	if (!wa->sg)
113 		return;
114 
115 	wa->sg_used += nbytes;
116 	wa->bytes_left -= nbytes;
117 	if (wa->sg_used == wa->sg->length) {
118 		wa->sg = sg_next(wa->sg);
119 		wa->sg_used = 0;
120 	}
121 }
122 
123 static void ccp_dm_free(struct ccp_dm_workarea *wa)
124 {
125 	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
126 		if (wa->address)
127 			dma_pool_free(wa->dma_pool, wa->address,
128 				      wa->dma.address);
129 	} else {
130 		if (wa->dma.address)
131 			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
132 					 wa->dma.dir);
133 		kfree(wa->address);
134 	}
135 
136 	wa->address = NULL;
137 	wa->dma.address = 0;
138 }
139 
140 static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
141 				struct ccp_cmd_queue *cmd_q,
142 				unsigned int len,
143 				enum dma_data_direction dir)
144 {
145 	memset(wa, 0, sizeof(*wa));
146 
147 	if (!len)
148 		return 0;
149 
150 	wa->dev = cmd_q->ccp->dev;
151 	wa->length = len;
152 
153 	if (len <= CCP_DMAPOOL_MAX_SIZE) {
154 		wa->dma_pool = cmd_q->dma_pool;
155 
156 		wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
157 					     &wa->dma.address);
158 		if (!wa->address)
159 			return -ENOMEM;
160 
161 		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
162 
163 		memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
164 	} else {
165 		wa->address = kzalloc(len, GFP_KERNEL);
166 		if (!wa->address)
167 			return -ENOMEM;
168 
169 		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
170 						 dir);
171 		if (!wa->dma.address)
172 			return -ENOMEM;
173 
174 		wa->dma.length = len;
175 	}
176 	wa->dma.dir = dir;
177 
178 	return 0;
179 }
180 
181 static void ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
182 			    struct scatterlist *sg, unsigned int sg_offset,
183 			    unsigned int len)
184 {
185 	WARN_ON(!wa->address);
186 
187 	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
188 				 0);
189 }
190 
191 static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
192 			    struct scatterlist *sg, unsigned int sg_offset,
193 			    unsigned int len)
194 {
195 	WARN_ON(!wa->address);
196 
197 	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
198 				 1);
199 }
200 
201 static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
202 				   unsigned int wa_offset,
203 				   struct scatterlist *sg,
204 				   unsigned int sg_offset,
205 				   unsigned int len)
206 {
207 	u8 *p, *q;
208 
209 	ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
210 
211 	p = wa->address + wa_offset;
212 	q = p + len - 1;
213 	while (p < q) {
214 		*p = *p ^ *q;
215 		*q = *p ^ *q;
216 		*p = *p ^ *q;
217 		p++;
218 		q--;
219 	}
220 	return 0;
221 }
222 
223 static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
224 				    unsigned int wa_offset,
225 				    struct scatterlist *sg,
226 				    unsigned int sg_offset,
227 				    unsigned int len)
228 {
229 	u8 *p, *q;
230 
231 	p = wa->address + wa_offset;
232 	q = p + len - 1;
233 	while (p < q) {
234 		*p = *p ^ *q;
235 		*q = *p ^ *q;
236 		*p = *p ^ *q;
237 		p++;
238 		q--;
239 	}
240 
241 	ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
242 }
243 
244 static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
245 {
246 	ccp_dm_free(&data->dm_wa);
247 	ccp_sg_free(&data->sg_wa);
248 }
249 
250 static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
251 			 struct scatterlist *sg, u64 sg_len,
252 			 unsigned int dm_len,
253 			 enum dma_data_direction dir)
254 {
255 	int ret;
256 
257 	memset(data, 0, sizeof(*data));
258 
259 	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
260 				   dir);
261 	if (ret)
262 		goto e_err;
263 
264 	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
265 	if (ret)
266 		goto e_err;
267 
268 	return 0;
269 
270 e_err:
271 	ccp_free_data(data, cmd_q);
272 
273 	return ret;
274 }
275 
276 static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
277 {
278 	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
279 	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
280 	unsigned int buf_count, nbytes;
281 
282 	/* Clear the buffer if setting it */
283 	if (!from)
284 		memset(dm_wa->address, 0, dm_wa->length);
285 
286 	if (!sg_wa->sg)
287 		return 0;
288 
289 	/* Perform the copy operation
290 	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
291 	 *   an unsigned int
292 	 */
293 	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
294 	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
295 				 nbytes, from);
296 
297 	/* Update the structures and generate the count */
298 	buf_count = 0;
299 	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
300 		nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
301 			     dm_wa->length - buf_count);
302 		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
303 
304 		buf_count += nbytes;
305 		ccp_update_sg_workarea(sg_wa, nbytes);
306 	}
307 
308 	return buf_count;
309 }
310 
311 static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
312 {
313 	return ccp_queue_buf(data, 0);
314 }
315 
316 static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
317 {
318 	return ccp_queue_buf(data, 1);
319 }
320 
321 static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
322 			     struct ccp_op *op, unsigned int block_size,
323 			     bool blocksize_op)
324 {
325 	unsigned int sg_src_len, sg_dst_len, op_len;
326 
327 	/* The CCP can only DMA from/to one address each per operation. This
328 	 * requires that we find the smallest DMA area between the source
329 	 * and destination. The resulting len values will always be <= UINT_MAX
330 	 * because the dma length is an unsigned int.
331 	 */
332 	sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
333 	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
334 
335 	if (dst) {
336 		sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
337 		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
338 		op_len = min(sg_src_len, sg_dst_len);
339 	} else {
340 		op_len = sg_src_len;
341 	}
342 
343 	/* The data operation length will be at least block_size in length
344 	 * or the smaller of available sg room remaining for the source or
345 	 * the destination
346 	 */
347 	op_len = max(op_len, block_size);
348 
349 	/* Unless we have to buffer data, there's no reason to wait */
350 	op->soc = 0;
351 
352 	if (sg_src_len < block_size) {
353 		/* Not enough data in the sg element, so it
354 		 * needs to be buffered into a blocksize chunk
355 		 */
356 		int cp_len = ccp_fill_queue_buf(src);
357 
358 		op->soc = 1;
359 		op->src.u.dma.address = src->dm_wa.dma.address;
360 		op->src.u.dma.offset = 0;
361 		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
362 	} else {
363 		/* Enough data in the sg element, but we need to
364 		 * adjust for any previously copied data
365 		 */
366 		op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
367 		op->src.u.dma.offset = src->sg_wa.sg_used;
368 		op->src.u.dma.length = op_len & ~(block_size - 1);
369 
370 		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
371 	}
372 
373 	if (dst) {
374 		if (sg_dst_len < block_size) {
375 			/* Not enough room in the sg element or we're on the
376 			 * last piece of data (when using padding), so the
377 			 * output needs to be buffered into a blocksize chunk
378 			 */
379 			op->soc = 1;
380 			op->dst.u.dma.address = dst->dm_wa.dma.address;
381 			op->dst.u.dma.offset = 0;
382 			op->dst.u.dma.length = op->src.u.dma.length;
383 		} else {
384 			/* Enough room in the sg element, but we need to
385 			 * adjust for any previously used area
386 			 */
387 			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
388 			op->dst.u.dma.offset = dst->sg_wa.sg_used;
389 			op->dst.u.dma.length = op->src.u.dma.length;
390 		}
391 	}
392 }
393 
394 static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
395 			     struct ccp_op *op)
396 {
397 	op->init = 0;
398 
399 	if (dst) {
400 		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
401 			ccp_empty_queue_buf(dst);
402 		else
403 			ccp_update_sg_workarea(&dst->sg_wa,
404 					       op->dst.u.dma.length);
405 	}
406 }
407 
408 static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
409 			       struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
410 			       u32 byte_swap, bool from)
411 {
412 	struct ccp_op op;
413 
414 	memset(&op, 0, sizeof(op));
415 
416 	op.cmd_q = cmd_q;
417 	op.jobid = jobid;
418 	op.eom = 1;
419 
420 	if (from) {
421 		op.soc = 1;
422 		op.src.type = CCP_MEMTYPE_SB;
423 		op.src.u.sb = sb;
424 		op.dst.type = CCP_MEMTYPE_SYSTEM;
425 		op.dst.u.dma.address = wa->dma.address;
426 		op.dst.u.dma.length = wa->length;
427 	} else {
428 		op.src.type = CCP_MEMTYPE_SYSTEM;
429 		op.src.u.dma.address = wa->dma.address;
430 		op.src.u.dma.length = wa->length;
431 		op.dst.type = CCP_MEMTYPE_SB;
432 		op.dst.u.sb = sb;
433 	}
434 
435 	op.u.passthru.byte_swap = byte_swap;
436 
437 	return cmd_q->ccp->vdata->perform->passthru(&op);
438 }
439 
440 static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
441 			  struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
442 			  u32 byte_swap)
443 {
444 	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
445 }
446 
447 static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
448 			    struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
449 			    u32 byte_swap)
450 {
451 	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
452 }
453 
454 static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
455 				struct ccp_cmd *cmd)
456 {
457 	struct ccp_aes_engine *aes = &cmd->u.aes;
458 	struct ccp_dm_workarea key, ctx;
459 	struct ccp_data src;
460 	struct ccp_op op;
461 	unsigned int dm_offset;
462 	int ret;
463 
464 	if (!((aes->key_len == AES_KEYSIZE_128) ||
465 	      (aes->key_len == AES_KEYSIZE_192) ||
466 	      (aes->key_len == AES_KEYSIZE_256)))
467 		return -EINVAL;
468 
469 	if (aes->src_len & (AES_BLOCK_SIZE - 1))
470 		return -EINVAL;
471 
472 	if (aes->iv_len != AES_BLOCK_SIZE)
473 		return -EINVAL;
474 
475 	if (!aes->key || !aes->iv || !aes->src)
476 		return -EINVAL;
477 
478 	if (aes->cmac_final) {
479 		if (aes->cmac_key_len != AES_BLOCK_SIZE)
480 			return -EINVAL;
481 
482 		if (!aes->cmac_key)
483 			return -EINVAL;
484 	}
485 
486 	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
487 	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
488 
489 	ret = -EIO;
490 	memset(&op, 0, sizeof(op));
491 	op.cmd_q = cmd_q;
492 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
493 	op.sb_key = cmd_q->sb_key;
494 	op.sb_ctx = cmd_q->sb_ctx;
495 	op.init = 1;
496 	op.u.aes.type = aes->type;
497 	op.u.aes.mode = aes->mode;
498 	op.u.aes.action = aes->action;
499 
500 	/* All supported key sizes fit in a single (32-byte) SB entry
501 	 * and must be in little endian format. Use the 256-bit byte
502 	 * swap passthru option to convert from big endian to little
503 	 * endian.
504 	 */
505 	ret = ccp_init_dm_workarea(&key, cmd_q,
506 				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
507 				   DMA_TO_DEVICE);
508 	if (ret)
509 		return ret;
510 
511 	dm_offset = CCP_SB_BYTES - aes->key_len;
512 	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
513 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
514 			     CCP_PASSTHRU_BYTESWAP_256BIT);
515 	if (ret) {
516 		cmd->engine_error = cmd_q->cmd_error;
517 		goto e_key;
518 	}
519 
520 	/* The AES context fits in a single (32-byte) SB entry and
521 	 * must be in little endian format. Use the 256-bit byte swap
522 	 * passthru option to convert from big endian to little endian.
523 	 */
524 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
525 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
526 				   DMA_BIDIRECTIONAL);
527 	if (ret)
528 		goto e_key;
529 
530 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
531 	ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
532 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
533 			     CCP_PASSTHRU_BYTESWAP_256BIT);
534 	if (ret) {
535 		cmd->engine_error = cmd_q->cmd_error;
536 		goto e_ctx;
537 	}
538 
539 	/* Send data to the CCP AES engine */
540 	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
541 			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
542 	if (ret)
543 		goto e_ctx;
544 
545 	while (src.sg_wa.bytes_left) {
546 		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
547 		if (aes->cmac_final && !src.sg_wa.bytes_left) {
548 			op.eom = 1;
549 
550 			/* Push the K1/K2 key to the CCP now */
551 			ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
552 					       op.sb_ctx,
553 					       CCP_PASSTHRU_BYTESWAP_256BIT);
554 			if (ret) {
555 				cmd->engine_error = cmd_q->cmd_error;
556 				goto e_src;
557 			}
558 
559 			ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
560 					aes->cmac_key_len);
561 			ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
562 					     CCP_PASSTHRU_BYTESWAP_256BIT);
563 			if (ret) {
564 				cmd->engine_error = cmd_q->cmd_error;
565 				goto e_src;
566 			}
567 		}
568 
569 		ret = cmd_q->ccp->vdata->perform->aes(&op);
570 		if (ret) {
571 			cmd->engine_error = cmd_q->cmd_error;
572 			goto e_src;
573 		}
574 
575 		ccp_process_data(&src, NULL, &op);
576 	}
577 
578 	/* Retrieve the AES context - convert from LE to BE using
579 	 * 32-byte (256-bit) byteswapping
580 	 */
581 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
582 			       CCP_PASSTHRU_BYTESWAP_256BIT);
583 	if (ret) {
584 		cmd->engine_error = cmd_q->cmd_error;
585 		goto e_src;
586 	}
587 
588 	/* ...but we only need AES_BLOCK_SIZE bytes */
589 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
590 	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
591 
592 e_src:
593 	ccp_free_data(&src, cmd_q);
594 
595 e_ctx:
596 	ccp_dm_free(&ctx);
597 
598 e_key:
599 	ccp_dm_free(&key);
600 
601 	return ret;
602 }
603 
604 static int ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q,
605 			       struct ccp_cmd *cmd)
606 {
607 	struct ccp_aes_engine *aes = &cmd->u.aes;
608 	struct ccp_dm_workarea key, ctx, final_wa, tag;
609 	struct ccp_data src, dst;
610 	struct ccp_data aad;
611 	struct ccp_op op;
612 
613 	unsigned long long *final;
614 	unsigned int dm_offset;
615 	unsigned int ilen;
616 	bool in_place = true; /* Default value */
617 	int ret;
618 
619 	struct scatterlist *p_inp, sg_inp[2];
620 	struct scatterlist *p_tag, sg_tag[2];
621 	struct scatterlist *p_outp, sg_outp[2];
622 	struct scatterlist *p_aad;
623 
624 	if (!aes->iv)
625 		return -EINVAL;
626 
627 	if (!((aes->key_len == AES_KEYSIZE_128) ||
628 		(aes->key_len == AES_KEYSIZE_192) ||
629 		(aes->key_len == AES_KEYSIZE_256)))
630 		return -EINVAL;
631 
632 	if (!aes->key) /* Gotta have a key SGL */
633 		return -EINVAL;
634 
635 	/* First, decompose the source buffer into AAD & PT,
636 	 * and the destination buffer into AAD, CT & tag, or
637 	 * the input into CT & tag.
638 	 * It is expected that the input and output SGs will
639 	 * be valid, even if the AAD and input lengths are 0.
640 	 */
641 	p_aad = aes->src;
642 	p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
643 	p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
644 	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
645 		ilen = aes->src_len;
646 		p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
647 	} else {
648 		/* Input length for decryption includes tag */
649 		ilen = aes->src_len - AES_BLOCK_SIZE;
650 		p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
651 	}
652 
653 	memset(&op, 0, sizeof(op));
654 	op.cmd_q = cmd_q;
655 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
656 	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
657 	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
658 	op.init = 1;
659 	op.u.aes.type = aes->type;
660 
661 	/* Copy the key to the LSB */
662 	ret = ccp_init_dm_workarea(&key, cmd_q,
663 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
664 				   DMA_TO_DEVICE);
665 	if (ret)
666 		return ret;
667 
668 	dm_offset = CCP_SB_BYTES - aes->key_len;
669 	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
670 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
671 			     CCP_PASSTHRU_BYTESWAP_256BIT);
672 	if (ret) {
673 		cmd->engine_error = cmd_q->cmd_error;
674 		goto e_key;
675 	}
676 
677 	/* Copy the context (IV) to the LSB.
678 	 * There is an assumption here that the IV is 96 bits in length, plus
679 	 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
680 	 */
681 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
682 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
683 				   DMA_BIDIRECTIONAL);
684 	if (ret)
685 		goto e_key;
686 
687 	dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
688 	ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
689 
690 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
691 			     CCP_PASSTHRU_BYTESWAP_256BIT);
692 	if (ret) {
693 		cmd->engine_error = cmd_q->cmd_error;
694 		goto e_ctx;
695 	}
696 
697 	op.init = 1;
698 	if (aes->aad_len > 0) {
699 		/* Step 1: Run a GHASH over the Additional Authenticated Data */
700 		ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
701 				    AES_BLOCK_SIZE,
702 				    DMA_TO_DEVICE);
703 		if (ret)
704 			goto e_ctx;
705 
706 		op.u.aes.mode = CCP_AES_MODE_GHASH;
707 		op.u.aes.action = CCP_AES_GHASHAAD;
708 
709 		while (aad.sg_wa.bytes_left) {
710 			ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
711 
712 			ret = cmd_q->ccp->vdata->perform->aes(&op);
713 			if (ret) {
714 				cmd->engine_error = cmd_q->cmd_error;
715 				goto e_aad;
716 			}
717 
718 			ccp_process_data(&aad, NULL, &op);
719 			op.init = 0;
720 		}
721 	}
722 
723 	op.u.aes.mode = CCP_AES_MODE_GCTR;
724 	op.u.aes.action = aes->action;
725 
726 	if (ilen > 0) {
727 		/* Step 2: Run a GCTR over the plaintext */
728 		in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
729 
730 		ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
731 				    AES_BLOCK_SIZE,
732 				    in_place ? DMA_BIDIRECTIONAL
733 					     : DMA_TO_DEVICE);
734 		if (ret)
735 			goto e_ctx;
736 
737 		if (in_place) {
738 			dst = src;
739 		} else {
740 			ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
741 					    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
742 			if (ret)
743 				goto e_src;
744 		}
745 
746 		op.soc = 0;
747 		op.eom = 0;
748 		op.init = 1;
749 		while (src.sg_wa.bytes_left) {
750 			ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
751 			if (!src.sg_wa.bytes_left) {
752 				unsigned int nbytes = aes->src_len
753 						      % AES_BLOCK_SIZE;
754 
755 				if (nbytes) {
756 					op.eom = 1;
757 					op.u.aes.size = (nbytes * 8) - 1;
758 				}
759 			}
760 
761 			ret = cmd_q->ccp->vdata->perform->aes(&op);
762 			if (ret) {
763 				cmd->engine_error = cmd_q->cmd_error;
764 				goto e_dst;
765 			}
766 
767 			ccp_process_data(&src, &dst, &op);
768 			op.init = 0;
769 		}
770 	}
771 
772 	/* Step 3: Update the IV portion of the context with the original IV */
773 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
774 			       CCP_PASSTHRU_BYTESWAP_256BIT);
775 	if (ret) {
776 		cmd->engine_error = cmd_q->cmd_error;
777 		goto e_dst;
778 	}
779 
780 	ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
781 
782 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
783 			     CCP_PASSTHRU_BYTESWAP_256BIT);
784 	if (ret) {
785 		cmd->engine_error = cmd_q->cmd_error;
786 		goto e_dst;
787 	}
788 
789 	/* Step 4: Concatenate the lengths of the AAD and source, and
790 	 * hash that 16 byte buffer.
791 	 */
792 	ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
793 				   DMA_BIDIRECTIONAL);
794 	if (ret)
795 		goto e_dst;
796 	final = (unsigned long long *) final_wa.address;
797 	final[0] = cpu_to_be64(aes->aad_len * 8);
798 	final[1] = cpu_to_be64(ilen * 8);
799 
800 	op.u.aes.mode = CCP_AES_MODE_GHASH;
801 	op.u.aes.action = CCP_AES_GHASHFINAL;
802 	op.src.type = CCP_MEMTYPE_SYSTEM;
803 	op.src.u.dma.address = final_wa.dma.address;
804 	op.src.u.dma.length = AES_BLOCK_SIZE;
805 	op.dst.type = CCP_MEMTYPE_SYSTEM;
806 	op.dst.u.dma.address = final_wa.dma.address;
807 	op.dst.u.dma.length = AES_BLOCK_SIZE;
808 	op.eom = 1;
809 	op.u.aes.size = 0;
810 	ret = cmd_q->ccp->vdata->perform->aes(&op);
811 	if (ret)
812 		goto e_dst;
813 
814 	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
815 		/* Put the ciphered tag after the ciphertext. */
816 		ccp_get_dm_area(&final_wa, 0, p_tag, 0, AES_BLOCK_SIZE);
817 	} else {
818 		/* Does this ciphered tag match the input? */
819 		ret = ccp_init_dm_workarea(&tag, cmd_q, AES_BLOCK_SIZE,
820 					   DMA_BIDIRECTIONAL);
821 		if (ret)
822 			goto e_tag;
823 		ccp_set_dm_area(&tag, 0, p_tag, 0, AES_BLOCK_SIZE);
824 
825 		ret = memcmp(tag.address, final_wa.address, AES_BLOCK_SIZE);
826 		ccp_dm_free(&tag);
827 	}
828 
829 e_tag:
830 	ccp_dm_free(&final_wa);
831 
832 e_dst:
833 	if (aes->src_len && !in_place)
834 		ccp_free_data(&dst, cmd_q);
835 
836 e_src:
837 	if (aes->src_len)
838 		ccp_free_data(&src, cmd_q);
839 
840 e_aad:
841 	if (aes->aad_len)
842 		ccp_free_data(&aad, cmd_q);
843 
844 e_ctx:
845 	ccp_dm_free(&ctx);
846 
847 e_key:
848 	ccp_dm_free(&key);
849 
850 	return ret;
851 }
852 
853 static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
854 {
855 	struct ccp_aes_engine *aes = &cmd->u.aes;
856 	struct ccp_dm_workarea key, ctx;
857 	struct ccp_data src, dst;
858 	struct ccp_op op;
859 	unsigned int dm_offset;
860 	bool in_place = false;
861 	int ret;
862 
863 	if (aes->mode == CCP_AES_MODE_CMAC)
864 		return ccp_run_aes_cmac_cmd(cmd_q, cmd);
865 
866 	if (aes->mode == CCP_AES_MODE_GCM)
867 		return ccp_run_aes_gcm_cmd(cmd_q, cmd);
868 
869 	if (!((aes->key_len == AES_KEYSIZE_128) ||
870 	      (aes->key_len == AES_KEYSIZE_192) ||
871 	      (aes->key_len == AES_KEYSIZE_256)))
872 		return -EINVAL;
873 
874 	if (((aes->mode == CCP_AES_MODE_ECB) ||
875 	     (aes->mode == CCP_AES_MODE_CBC) ||
876 	     (aes->mode == CCP_AES_MODE_CFB)) &&
877 	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
878 		return -EINVAL;
879 
880 	if (!aes->key || !aes->src || !aes->dst)
881 		return -EINVAL;
882 
883 	if (aes->mode != CCP_AES_MODE_ECB) {
884 		if (aes->iv_len != AES_BLOCK_SIZE)
885 			return -EINVAL;
886 
887 		if (!aes->iv)
888 			return -EINVAL;
889 	}
890 
891 	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
892 	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
893 
894 	ret = -EIO;
895 	memset(&op, 0, sizeof(op));
896 	op.cmd_q = cmd_q;
897 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
898 	op.sb_key = cmd_q->sb_key;
899 	op.sb_ctx = cmd_q->sb_ctx;
900 	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
901 	op.u.aes.type = aes->type;
902 	op.u.aes.mode = aes->mode;
903 	op.u.aes.action = aes->action;
904 
905 	/* All supported key sizes fit in a single (32-byte) SB entry
906 	 * and must be in little endian format. Use the 256-bit byte
907 	 * swap passthru option to convert from big endian to little
908 	 * endian.
909 	 */
910 	ret = ccp_init_dm_workarea(&key, cmd_q,
911 				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
912 				   DMA_TO_DEVICE);
913 	if (ret)
914 		return ret;
915 
916 	dm_offset = CCP_SB_BYTES - aes->key_len;
917 	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
918 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
919 			     CCP_PASSTHRU_BYTESWAP_256BIT);
920 	if (ret) {
921 		cmd->engine_error = cmd_q->cmd_error;
922 		goto e_key;
923 	}
924 
925 	/* The AES context fits in a single (32-byte) SB entry and
926 	 * must be in little endian format. Use the 256-bit byte swap
927 	 * passthru option to convert from big endian to little endian.
928 	 */
929 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
930 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
931 				   DMA_BIDIRECTIONAL);
932 	if (ret)
933 		goto e_key;
934 
935 	if (aes->mode != CCP_AES_MODE_ECB) {
936 		/* Load the AES context - convert to LE */
937 		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
938 		ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
939 		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
940 				     CCP_PASSTHRU_BYTESWAP_256BIT);
941 		if (ret) {
942 			cmd->engine_error = cmd_q->cmd_error;
943 			goto e_ctx;
944 		}
945 	}
946 	switch (aes->mode) {
947 	case CCP_AES_MODE_CFB: /* CFB128 only */
948 	case CCP_AES_MODE_CTR:
949 		op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
950 		break;
951 	default:
952 		op.u.aes.size = 0;
953 	}
954 
955 	/* Prepare the input and output data workareas. For in-place
956 	 * operations we need to set the dma direction to BIDIRECTIONAL
957 	 * and copy the src workarea to the dst workarea.
958 	 */
959 	if (sg_virt(aes->src) == sg_virt(aes->dst))
960 		in_place = true;
961 
962 	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
963 			    AES_BLOCK_SIZE,
964 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
965 	if (ret)
966 		goto e_ctx;
967 
968 	if (in_place) {
969 		dst = src;
970 	} else {
971 		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
972 				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
973 		if (ret)
974 			goto e_src;
975 	}
976 
977 	/* Send data to the CCP AES engine */
978 	while (src.sg_wa.bytes_left) {
979 		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
980 		if (!src.sg_wa.bytes_left) {
981 			op.eom = 1;
982 
983 			/* Since we don't retrieve the AES context in ECB
984 			 * mode we have to wait for the operation to complete
985 			 * on the last piece of data
986 			 */
987 			if (aes->mode == CCP_AES_MODE_ECB)
988 				op.soc = 1;
989 		}
990 
991 		ret = cmd_q->ccp->vdata->perform->aes(&op);
992 		if (ret) {
993 			cmd->engine_error = cmd_q->cmd_error;
994 			goto e_dst;
995 		}
996 
997 		ccp_process_data(&src, &dst, &op);
998 	}
999 
1000 	if (aes->mode != CCP_AES_MODE_ECB) {
1001 		/* Retrieve the AES context - convert from LE to BE using
1002 		 * 32-byte (256-bit) byteswapping
1003 		 */
1004 		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1005 				       CCP_PASSTHRU_BYTESWAP_256BIT);
1006 		if (ret) {
1007 			cmd->engine_error = cmd_q->cmd_error;
1008 			goto e_dst;
1009 		}
1010 
1011 		/* ...but we only need AES_BLOCK_SIZE bytes */
1012 		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1013 		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1014 	}
1015 
1016 e_dst:
1017 	if (!in_place)
1018 		ccp_free_data(&dst, cmd_q);
1019 
1020 e_src:
1021 	ccp_free_data(&src, cmd_q);
1022 
1023 e_ctx:
1024 	ccp_dm_free(&ctx);
1025 
1026 e_key:
1027 	ccp_dm_free(&key);
1028 
1029 	return ret;
1030 }
1031 
1032 static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
1033 			       struct ccp_cmd *cmd)
1034 {
1035 	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1036 	struct ccp_dm_workarea key, ctx;
1037 	struct ccp_data src, dst;
1038 	struct ccp_op op;
1039 	unsigned int unit_size, dm_offset;
1040 	bool in_place = false;
1041 	int ret;
1042 
1043 	switch (xts->unit_size) {
1044 	case CCP_XTS_AES_UNIT_SIZE_16:
1045 		unit_size = 16;
1046 		break;
1047 	case CCP_XTS_AES_UNIT_SIZE_512:
1048 		unit_size = 512;
1049 		break;
1050 	case CCP_XTS_AES_UNIT_SIZE_1024:
1051 		unit_size = 1024;
1052 		break;
1053 	case CCP_XTS_AES_UNIT_SIZE_2048:
1054 		unit_size = 2048;
1055 		break;
1056 	case CCP_XTS_AES_UNIT_SIZE_4096:
1057 		unit_size = 4096;
1058 		break;
1059 
1060 	default:
1061 		return -EINVAL;
1062 	}
1063 
1064 	if (xts->key_len != AES_KEYSIZE_128)
1065 		return -EINVAL;
1066 
1067 	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1068 		return -EINVAL;
1069 
1070 	if (xts->iv_len != AES_BLOCK_SIZE)
1071 		return -EINVAL;
1072 
1073 	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1074 		return -EINVAL;
1075 
1076 	BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1077 	BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1078 
1079 	ret = -EIO;
1080 	memset(&op, 0, sizeof(op));
1081 	op.cmd_q = cmd_q;
1082 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1083 	op.sb_key = cmd_q->sb_key;
1084 	op.sb_ctx = cmd_q->sb_ctx;
1085 	op.init = 1;
1086 	op.u.xts.action = xts->action;
1087 	op.u.xts.unit_size = xts->unit_size;
1088 
1089 	/* All supported key sizes fit in a single (32-byte) SB entry
1090 	 * and must be in little endian format. Use the 256-bit byte
1091 	 * swap passthru option to convert from big endian to little
1092 	 * endian.
1093 	 */
1094 	ret = ccp_init_dm_workarea(&key, cmd_q,
1095 				   CCP_XTS_AES_KEY_SB_COUNT * CCP_SB_BYTES,
1096 				   DMA_TO_DEVICE);
1097 	if (ret)
1098 		return ret;
1099 
1100 	dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1101 	ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1102 	ccp_set_dm_area(&key, 0, xts->key, dm_offset, xts->key_len);
1103 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1104 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1105 	if (ret) {
1106 		cmd->engine_error = cmd_q->cmd_error;
1107 		goto e_key;
1108 	}
1109 
1110 	/* The AES context fits in a single (32-byte) SB entry and
1111 	 * for XTS is already in little endian format so no byte swapping
1112 	 * is needed.
1113 	 */
1114 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
1115 				   CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1116 				   DMA_BIDIRECTIONAL);
1117 	if (ret)
1118 		goto e_key;
1119 
1120 	ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1121 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1122 			     CCP_PASSTHRU_BYTESWAP_NOOP);
1123 	if (ret) {
1124 		cmd->engine_error = cmd_q->cmd_error;
1125 		goto e_ctx;
1126 	}
1127 
1128 	/* Prepare the input and output data workareas. For in-place
1129 	 * operations we need to set the dma direction to BIDIRECTIONAL
1130 	 * and copy the src workarea to the dst workarea.
1131 	 */
1132 	if (sg_virt(xts->src) == sg_virt(xts->dst))
1133 		in_place = true;
1134 
1135 	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1136 			    unit_size,
1137 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1138 	if (ret)
1139 		goto e_ctx;
1140 
1141 	if (in_place) {
1142 		dst = src;
1143 	} else {
1144 		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1145 				    unit_size, DMA_FROM_DEVICE);
1146 		if (ret)
1147 			goto e_src;
1148 	}
1149 
1150 	/* Send data to the CCP AES engine */
1151 	while (src.sg_wa.bytes_left) {
1152 		ccp_prepare_data(&src, &dst, &op, unit_size, true);
1153 		if (!src.sg_wa.bytes_left)
1154 			op.eom = 1;
1155 
1156 		ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1157 		if (ret) {
1158 			cmd->engine_error = cmd_q->cmd_error;
1159 			goto e_dst;
1160 		}
1161 
1162 		ccp_process_data(&src, &dst, &op);
1163 	}
1164 
1165 	/* Retrieve the AES context - convert from LE to BE using
1166 	 * 32-byte (256-bit) byteswapping
1167 	 */
1168 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1169 			       CCP_PASSTHRU_BYTESWAP_256BIT);
1170 	if (ret) {
1171 		cmd->engine_error = cmd_q->cmd_error;
1172 		goto e_dst;
1173 	}
1174 
1175 	/* ...but we only need AES_BLOCK_SIZE bytes */
1176 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1177 	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1178 
1179 e_dst:
1180 	if (!in_place)
1181 		ccp_free_data(&dst, cmd_q);
1182 
1183 e_src:
1184 	ccp_free_data(&src, cmd_q);
1185 
1186 e_ctx:
1187 	ccp_dm_free(&ctx);
1188 
1189 e_key:
1190 	ccp_dm_free(&key);
1191 
1192 	return ret;
1193 }
1194 
1195 static int ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1196 {
1197 	struct ccp_des3_engine *des3 = &cmd->u.des3;
1198 
1199 	struct ccp_dm_workarea key, ctx;
1200 	struct ccp_data src, dst;
1201 	struct ccp_op op;
1202 	unsigned int dm_offset;
1203 	unsigned int len_singlekey;
1204 	bool in_place = false;
1205 	int ret;
1206 
1207 	/* Error checks */
1208 	if (!cmd_q->ccp->vdata->perform->des3)
1209 		return -EINVAL;
1210 
1211 	if (des3->key_len != DES3_EDE_KEY_SIZE)
1212 		return -EINVAL;
1213 
1214 	if (((des3->mode == CCP_DES3_MODE_ECB) ||
1215 		(des3->mode == CCP_DES3_MODE_CBC)) &&
1216 		(des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1217 		return -EINVAL;
1218 
1219 	if (!des3->key || !des3->src || !des3->dst)
1220 		return -EINVAL;
1221 
1222 	if (des3->mode != CCP_DES3_MODE_ECB) {
1223 		if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
1224 			return -EINVAL;
1225 
1226 		if (!des3->iv)
1227 			return -EINVAL;
1228 	}
1229 
1230 	ret = -EIO;
1231 	/* Zero out all the fields of the command desc */
1232 	memset(&op, 0, sizeof(op));
1233 
1234 	/* Set up the Function field */
1235 	op.cmd_q = cmd_q;
1236 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1237 	op.sb_key = cmd_q->sb_key;
1238 
1239 	op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1240 	op.u.des3.type = des3->type;
1241 	op.u.des3.mode = des3->mode;
1242 	op.u.des3.action = des3->action;
1243 
1244 	/*
1245 	 * All supported key sizes fit in a single (32-byte) KSB entry and
1246 	 * (like AES) must be in little endian format. Use the 256-bit byte
1247 	 * swap passthru option to convert from big endian to little endian.
1248 	 */
1249 	ret = ccp_init_dm_workarea(&key, cmd_q,
1250 				   CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1251 				   DMA_TO_DEVICE);
1252 	if (ret)
1253 		return ret;
1254 
1255 	/*
1256 	 * The contents of the key triplet are in the reverse order of what
1257 	 * is required by the engine. Copy the 3 pieces individually to put
1258 	 * them where they belong.
1259 	 */
1260 	dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1261 
1262 	len_singlekey = des3->key_len / 3;
1263 	ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1264 			des3->key, 0, len_singlekey);
1265 	ccp_set_dm_area(&key, dm_offset + len_singlekey,
1266 			des3->key, len_singlekey, len_singlekey);
1267 	ccp_set_dm_area(&key, dm_offset,
1268 			des3->key, 2 * len_singlekey, len_singlekey);
1269 
1270 	/* Copy the key to the SB */
1271 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1272 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1273 	if (ret) {
1274 		cmd->engine_error = cmd_q->cmd_error;
1275 		goto e_key;
1276 	}
1277 
1278 	/*
1279 	 * The DES3 context fits in a single (32-byte) KSB entry and
1280 	 * must be in little endian format. Use the 256-bit byte swap
1281 	 * passthru option to convert from big endian to little endian.
1282 	 */
1283 	if (des3->mode != CCP_DES3_MODE_ECB) {
1284 		u32 load_mode;
1285 
1286 		op.sb_ctx = cmd_q->sb_ctx;
1287 
1288 		ret = ccp_init_dm_workarea(&ctx, cmd_q,
1289 					   CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1290 					   DMA_BIDIRECTIONAL);
1291 		if (ret)
1292 			goto e_key;
1293 
1294 		/* Load the context into the LSB */
1295 		dm_offset = CCP_SB_BYTES - des3->iv_len;
1296 		ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0, des3->iv_len);
1297 
1298 		if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1299 			load_mode = CCP_PASSTHRU_BYTESWAP_NOOP;
1300 		else
1301 			load_mode = CCP_PASSTHRU_BYTESWAP_256BIT;
1302 		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1303 				     load_mode);
1304 		if (ret) {
1305 			cmd->engine_error = cmd_q->cmd_error;
1306 			goto e_ctx;
1307 		}
1308 	}
1309 
1310 	/*
1311 	 * Prepare the input and output data workareas. For in-place
1312 	 * operations we need to set the dma direction to BIDIRECTIONAL
1313 	 * and copy the src workarea to the dst workarea.
1314 	 */
1315 	if (sg_virt(des3->src) == sg_virt(des3->dst))
1316 		in_place = true;
1317 
1318 	ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1319 			DES3_EDE_BLOCK_SIZE,
1320 			in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1321 	if (ret)
1322 		goto e_ctx;
1323 
1324 	if (in_place)
1325 		dst = src;
1326 	else {
1327 		ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1328 				DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1329 		if (ret)
1330 			goto e_src;
1331 	}
1332 
1333 	/* Send data to the CCP DES3 engine */
1334 	while (src.sg_wa.bytes_left) {
1335 		ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1336 		if (!src.sg_wa.bytes_left) {
1337 			op.eom = 1;
1338 
1339 			/* Since we don't retrieve the context in ECB mode
1340 			 * we have to wait for the operation to complete
1341 			 * on the last piece of data
1342 			 */
1343 			op.soc = 0;
1344 		}
1345 
1346 		ret = cmd_q->ccp->vdata->perform->des3(&op);
1347 		if (ret) {
1348 			cmd->engine_error = cmd_q->cmd_error;
1349 			goto e_dst;
1350 		}
1351 
1352 		ccp_process_data(&src, &dst, &op);
1353 	}
1354 
1355 	if (des3->mode != CCP_DES3_MODE_ECB) {
1356 		/* Retrieve the context and make BE */
1357 		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1358 				       CCP_PASSTHRU_BYTESWAP_256BIT);
1359 		if (ret) {
1360 			cmd->engine_error = cmd_q->cmd_error;
1361 			goto e_dst;
1362 		}
1363 
1364 		/* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1365 		if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1366 			dm_offset = CCP_SB_BYTES - des3->iv_len;
1367 		else
1368 			dm_offset = 0;
1369 		ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1370 				DES3_EDE_BLOCK_SIZE);
1371 	}
1372 e_dst:
1373 	if (!in_place)
1374 		ccp_free_data(&dst, cmd_q);
1375 
1376 e_src:
1377 	ccp_free_data(&src, cmd_q);
1378 
1379 e_ctx:
1380 	if (des3->mode != CCP_DES3_MODE_ECB)
1381 		ccp_dm_free(&ctx);
1382 
1383 e_key:
1384 	ccp_dm_free(&key);
1385 
1386 	return ret;
1387 }
1388 
1389 static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1390 {
1391 	struct ccp_sha_engine *sha = &cmd->u.sha;
1392 	struct ccp_dm_workarea ctx;
1393 	struct ccp_data src;
1394 	struct ccp_op op;
1395 	unsigned int ioffset, ooffset;
1396 	unsigned int digest_size;
1397 	int sb_count;
1398 	const void *init;
1399 	u64 block_size;
1400 	int ctx_size;
1401 	int ret;
1402 
1403 	switch (sha->type) {
1404 	case CCP_SHA_TYPE_1:
1405 		if (sha->ctx_len < SHA1_DIGEST_SIZE)
1406 			return -EINVAL;
1407 		block_size = SHA1_BLOCK_SIZE;
1408 		break;
1409 	case CCP_SHA_TYPE_224:
1410 		if (sha->ctx_len < SHA224_DIGEST_SIZE)
1411 			return -EINVAL;
1412 		block_size = SHA224_BLOCK_SIZE;
1413 		break;
1414 	case CCP_SHA_TYPE_256:
1415 		if (sha->ctx_len < SHA256_DIGEST_SIZE)
1416 			return -EINVAL;
1417 		block_size = SHA256_BLOCK_SIZE;
1418 		break;
1419 	case CCP_SHA_TYPE_384:
1420 		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1421 		    || sha->ctx_len < SHA384_DIGEST_SIZE)
1422 			return -EINVAL;
1423 		block_size = SHA384_BLOCK_SIZE;
1424 		break;
1425 	case CCP_SHA_TYPE_512:
1426 		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1427 		    || sha->ctx_len < SHA512_DIGEST_SIZE)
1428 			return -EINVAL;
1429 		block_size = SHA512_BLOCK_SIZE;
1430 		break;
1431 	default:
1432 		return -EINVAL;
1433 	}
1434 
1435 	if (!sha->ctx)
1436 		return -EINVAL;
1437 
1438 	if (!sha->final && (sha->src_len & (block_size - 1)))
1439 		return -EINVAL;
1440 
1441 	/* The version 3 device can't handle zero-length input */
1442 	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1443 
1444 		if (!sha->src_len) {
1445 			unsigned int digest_len;
1446 			const u8 *sha_zero;
1447 
1448 			/* Not final, just return */
1449 			if (!sha->final)
1450 				return 0;
1451 
1452 			/* CCP can't do a zero length sha operation so the
1453 			 * caller must buffer the data.
1454 			 */
1455 			if (sha->msg_bits)
1456 				return -EINVAL;
1457 
1458 			/* The CCP cannot perform zero-length sha operations
1459 			 * so the caller is required to buffer data for the
1460 			 * final operation. However, a sha operation for a
1461 			 * message with a total length of zero is valid so
1462 			 * known values are required to supply the result.
1463 			 */
1464 			switch (sha->type) {
1465 			case CCP_SHA_TYPE_1:
1466 				sha_zero = sha1_zero_message_hash;
1467 				digest_len = SHA1_DIGEST_SIZE;
1468 				break;
1469 			case CCP_SHA_TYPE_224:
1470 				sha_zero = sha224_zero_message_hash;
1471 				digest_len = SHA224_DIGEST_SIZE;
1472 				break;
1473 			case CCP_SHA_TYPE_256:
1474 				sha_zero = sha256_zero_message_hash;
1475 				digest_len = SHA256_DIGEST_SIZE;
1476 				break;
1477 			default:
1478 				return -EINVAL;
1479 			}
1480 
1481 			scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1482 						 digest_len, 1);
1483 
1484 			return 0;
1485 		}
1486 	}
1487 
1488 	/* Set variables used throughout */
1489 	switch (sha->type) {
1490 	case CCP_SHA_TYPE_1:
1491 		digest_size = SHA1_DIGEST_SIZE;
1492 		init = (void *) ccp_sha1_init;
1493 		ctx_size = SHA1_DIGEST_SIZE;
1494 		sb_count = 1;
1495 		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1496 			ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1497 		else
1498 			ooffset = ioffset = 0;
1499 		break;
1500 	case CCP_SHA_TYPE_224:
1501 		digest_size = SHA224_DIGEST_SIZE;
1502 		init = (void *) ccp_sha224_init;
1503 		ctx_size = SHA256_DIGEST_SIZE;
1504 		sb_count = 1;
1505 		ioffset = 0;
1506 		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1507 			ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1508 		else
1509 			ooffset = 0;
1510 		break;
1511 	case CCP_SHA_TYPE_256:
1512 		digest_size = SHA256_DIGEST_SIZE;
1513 		init = (void *) ccp_sha256_init;
1514 		ctx_size = SHA256_DIGEST_SIZE;
1515 		sb_count = 1;
1516 		ooffset = ioffset = 0;
1517 		break;
1518 	case CCP_SHA_TYPE_384:
1519 		digest_size = SHA384_DIGEST_SIZE;
1520 		init = (void *) ccp_sha384_init;
1521 		ctx_size = SHA512_DIGEST_SIZE;
1522 		sb_count = 2;
1523 		ioffset = 0;
1524 		ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1525 		break;
1526 	case CCP_SHA_TYPE_512:
1527 		digest_size = SHA512_DIGEST_SIZE;
1528 		init = (void *) ccp_sha512_init;
1529 		ctx_size = SHA512_DIGEST_SIZE;
1530 		sb_count = 2;
1531 		ooffset = ioffset = 0;
1532 		break;
1533 	default:
1534 		ret = -EINVAL;
1535 		goto e_data;
1536 	}
1537 
1538 	/* For zero-length plaintext the src pointer is ignored;
1539 	 * otherwise both parts must be valid
1540 	 */
1541 	if (sha->src_len && !sha->src)
1542 		return -EINVAL;
1543 
1544 	memset(&op, 0, sizeof(op));
1545 	op.cmd_q = cmd_q;
1546 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1547 	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1548 	op.u.sha.type = sha->type;
1549 	op.u.sha.msg_bits = sha->msg_bits;
1550 
1551 	/* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1552 	 * SHA384/512 require 2 adjacent SB slots, with the right half in the
1553 	 * first slot, and the left half in the second. Each portion must then
1554 	 * be in little endian format: use the 256-bit byte swap option.
1555 	 */
1556 	ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1557 				   DMA_BIDIRECTIONAL);
1558 	if (ret)
1559 		return ret;
1560 	if (sha->first) {
1561 		switch (sha->type) {
1562 		case CCP_SHA_TYPE_1:
1563 		case CCP_SHA_TYPE_224:
1564 		case CCP_SHA_TYPE_256:
1565 			memcpy(ctx.address + ioffset, init, ctx_size);
1566 			break;
1567 		case CCP_SHA_TYPE_384:
1568 		case CCP_SHA_TYPE_512:
1569 			memcpy(ctx.address + ctx_size / 2, init,
1570 			       ctx_size / 2);
1571 			memcpy(ctx.address, init + ctx_size / 2,
1572 			       ctx_size / 2);
1573 			break;
1574 		default:
1575 			ret = -EINVAL;
1576 			goto e_ctx;
1577 		}
1578 	} else {
1579 		/* Restore the context */
1580 		ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1581 				sb_count * CCP_SB_BYTES);
1582 	}
1583 
1584 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1585 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1586 	if (ret) {
1587 		cmd->engine_error = cmd_q->cmd_error;
1588 		goto e_ctx;
1589 	}
1590 
1591 	if (sha->src) {
1592 		/* Send data to the CCP SHA engine; block_size is set above */
1593 		ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1594 				    block_size, DMA_TO_DEVICE);
1595 		if (ret)
1596 			goto e_ctx;
1597 
1598 		while (src.sg_wa.bytes_left) {
1599 			ccp_prepare_data(&src, NULL, &op, block_size, false);
1600 			if (sha->final && !src.sg_wa.bytes_left)
1601 				op.eom = 1;
1602 
1603 			ret = cmd_q->ccp->vdata->perform->sha(&op);
1604 			if (ret) {
1605 				cmd->engine_error = cmd_q->cmd_error;
1606 				goto e_data;
1607 			}
1608 
1609 			ccp_process_data(&src, NULL, &op);
1610 		}
1611 	} else {
1612 		op.eom = 1;
1613 		ret = cmd_q->ccp->vdata->perform->sha(&op);
1614 		if (ret) {
1615 			cmd->engine_error = cmd_q->cmd_error;
1616 			goto e_data;
1617 		}
1618 	}
1619 
1620 	/* Retrieve the SHA context - convert from LE to BE using
1621 	 * 32-byte (256-bit) byteswapping to BE
1622 	 */
1623 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1624 			       CCP_PASSTHRU_BYTESWAP_256BIT);
1625 	if (ret) {
1626 		cmd->engine_error = cmd_q->cmd_error;
1627 		goto e_data;
1628 	}
1629 
1630 	if (sha->final) {
1631 		/* Finishing up, so get the digest */
1632 		switch (sha->type) {
1633 		case CCP_SHA_TYPE_1:
1634 		case CCP_SHA_TYPE_224:
1635 		case CCP_SHA_TYPE_256:
1636 			ccp_get_dm_area(&ctx, ooffset,
1637 					sha->ctx, 0,
1638 					digest_size);
1639 			break;
1640 		case CCP_SHA_TYPE_384:
1641 		case CCP_SHA_TYPE_512:
1642 			ccp_get_dm_area(&ctx, 0,
1643 					sha->ctx, LSB_ITEM_SIZE - ooffset,
1644 					LSB_ITEM_SIZE);
1645 			ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1646 					sha->ctx, 0,
1647 					LSB_ITEM_SIZE - ooffset);
1648 			break;
1649 		default:
1650 			ret = -EINVAL;
1651 			goto e_ctx;
1652 		}
1653 	} else {
1654 		/* Stash the context */
1655 		ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1656 				sb_count * CCP_SB_BYTES);
1657 	}
1658 
1659 	if (sha->final && sha->opad) {
1660 		/* HMAC operation, recursively perform final SHA */
1661 		struct ccp_cmd hmac_cmd;
1662 		struct scatterlist sg;
1663 		u8 *hmac_buf;
1664 
1665 		if (sha->opad_len != block_size) {
1666 			ret = -EINVAL;
1667 			goto e_data;
1668 		}
1669 
1670 		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1671 		if (!hmac_buf) {
1672 			ret = -ENOMEM;
1673 			goto e_data;
1674 		}
1675 		sg_init_one(&sg, hmac_buf, block_size + digest_size);
1676 
1677 		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1678 		switch (sha->type) {
1679 		case CCP_SHA_TYPE_1:
1680 		case CCP_SHA_TYPE_224:
1681 		case CCP_SHA_TYPE_256:
1682 			memcpy(hmac_buf + block_size,
1683 			       ctx.address + ooffset,
1684 			       digest_size);
1685 			break;
1686 		case CCP_SHA_TYPE_384:
1687 		case CCP_SHA_TYPE_512:
1688 			memcpy(hmac_buf + block_size,
1689 			       ctx.address + LSB_ITEM_SIZE + ooffset,
1690 			       LSB_ITEM_SIZE);
1691 			memcpy(hmac_buf + block_size +
1692 			       (LSB_ITEM_SIZE - ooffset),
1693 			       ctx.address,
1694 			       LSB_ITEM_SIZE);
1695 			break;
1696 		default:
1697 			ret = -EINVAL;
1698 			goto e_ctx;
1699 		}
1700 
1701 		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1702 		hmac_cmd.engine = CCP_ENGINE_SHA;
1703 		hmac_cmd.u.sha.type = sha->type;
1704 		hmac_cmd.u.sha.ctx = sha->ctx;
1705 		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1706 		hmac_cmd.u.sha.src = &sg;
1707 		hmac_cmd.u.sha.src_len = block_size + digest_size;
1708 		hmac_cmd.u.sha.opad = NULL;
1709 		hmac_cmd.u.sha.opad_len = 0;
1710 		hmac_cmd.u.sha.first = 1;
1711 		hmac_cmd.u.sha.final = 1;
1712 		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1713 
1714 		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1715 		if (ret)
1716 			cmd->engine_error = hmac_cmd.engine_error;
1717 
1718 		kfree(hmac_buf);
1719 	}
1720 
1721 e_data:
1722 	if (sha->src)
1723 		ccp_free_data(&src, cmd_q);
1724 
1725 e_ctx:
1726 	ccp_dm_free(&ctx);
1727 
1728 	return ret;
1729 }
1730 
1731 static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1732 {
1733 	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1734 	struct ccp_dm_workarea exp, src;
1735 	struct ccp_data dst;
1736 	struct ccp_op op;
1737 	unsigned int sb_count, i_len, o_len;
1738 	int ret;
1739 
1740 	if (rsa->key_size > CCP_RSA_MAX_WIDTH)
1741 		return -EINVAL;
1742 
1743 	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1744 		return -EINVAL;
1745 
1746 	/* The RSA modulus must precede the message being acted upon, so
1747 	 * it must be copied to a DMA area where the message and the
1748 	 * modulus can be concatenated.  Therefore the input buffer
1749 	 * length required is twice the output buffer length (which
1750 	 * must be a multiple of 256-bits).
1751 	 */
1752 	o_len = ((rsa->key_size + 255) / 256) * 32;
1753 	i_len = o_len * 2;
1754 
1755 	sb_count = o_len / CCP_SB_BYTES;
1756 
1757 	memset(&op, 0, sizeof(op));
1758 	op.cmd_q = cmd_q;
1759 	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1760 	op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q, sb_count);
1761 
1762 	if (!op.sb_key)
1763 		return -EIO;
1764 
1765 	/* The RSA exponent may span multiple (32-byte) SB entries and must
1766 	 * be in little endian format. Reverse copy each 32-byte chunk
1767 	 * of the exponent (En chunk to E0 chunk, E(n-1) chunk to E1 chunk)
1768 	 * and each byte within that chunk and do not perform any byte swap
1769 	 * operations on the passthru operation.
1770 	 */
1771 	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1772 	if (ret)
1773 		goto e_sb;
1774 
1775 	ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
1776 	if (ret)
1777 		goto e_exp;
1778 	ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1779 			     CCP_PASSTHRU_BYTESWAP_NOOP);
1780 	if (ret) {
1781 		cmd->engine_error = cmd_q->cmd_error;
1782 		goto e_exp;
1783 	}
1784 
1785 	/* Concatenate the modulus and the message. Both the modulus and
1786 	 * the operands must be in little endian format.  Since the input
1787 	 * is in big endian format it must be converted.
1788 	 */
1789 	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1790 	if (ret)
1791 		goto e_exp;
1792 
1793 	ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
1794 	if (ret)
1795 		goto e_src;
1796 	ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
1797 	if (ret)
1798 		goto e_src;
1799 
1800 	/* Prepare the output area for the operation */
1801 	ret = ccp_init_data(&dst, cmd_q, rsa->dst, rsa->mod_len,
1802 			    o_len, DMA_FROM_DEVICE);
1803 	if (ret)
1804 		goto e_src;
1805 
1806 	op.soc = 1;
1807 	op.src.u.dma.address = src.dma.address;
1808 	op.src.u.dma.offset = 0;
1809 	op.src.u.dma.length = i_len;
1810 	op.dst.u.dma.address = dst.dm_wa.dma.address;
1811 	op.dst.u.dma.offset = 0;
1812 	op.dst.u.dma.length = o_len;
1813 
1814 	op.u.rsa.mod_size = rsa->key_size;
1815 	op.u.rsa.input_len = i_len;
1816 
1817 	ret = cmd_q->ccp->vdata->perform->rsa(&op);
1818 	if (ret) {
1819 		cmd->engine_error = cmd_q->cmd_error;
1820 		goto e_dst;
1821 	}
1822 
1823 	ccp_reverse_get_dm_area(&dst.dm_wa, 0, rsa->dst, 0, rsa->mod_len);
1824 
1825 e_dst:
1826 	ccp_free_data(&dst, cmd_q);
1827 
1828 e_src:
1829 	ccp_dm_free(&src);
1830 
1831 e_exp:
1832 	ccp_dm_free(&exp);
1833 
1834 e_sb:
1835 	cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1836 
1837 	return ret;
1838 }
1839 
1840 static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
1841 				struct ccp_cmd *cmd)
1842 {
1843 	struct ccp_passthru_engine *pt = &cmd->u.passthru;
1844 	struct ccp_dm_workarea mask;
1845 	struct ccp_data src, dst;
1846 	struct ccp_op op;
1847 	bool in_place = false;
1848 	unsigned int i;
1849 	int ret = 0;
1850 
1851 	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1852 		return -EINVAL;
1853 
1854 	if (!pt->src || !pt->dst)
1855 		return -EINVAL;
1856 
1857 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1858 		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1859 			return -EINVAL;
1860 		if (!pt->mask)
1861 			return -EINVAL;
1862 	}
1863 
1864 	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1865 
1866 	memset(&op, 0, sizeof(op));
1867 	op.cmd_q = cmd_q;
1868 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1869 
1870 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1871 		/* Load the mask */
1872 		op.sb_key = cmd_q->sb_key;
1873 
1874 		ret = ccp_init_dm_workarea(&mask, cmd_q,
1875 					   CCP_PASSTHRU_SB_COUNT *
1876 					   CCP_SB_BYTES,
1877 					   DMA_TO_DEVICE);
1878 		if (ret)
1879 			return ret;
1880 
1881 		ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1882 		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1883 				     CCP_PASSTHRU_BYTESWAP_NOOP);
1884 		if (ret) {
1885 			cmd->engine_error = cmd_q->cmd_error;
1886 			goto e_mask;
1887 		}
1888 	}
1889 
1890 	/* Prepare the input and output data workareas. For in-place
1891 	 * operations we need to set the dma direction to BIDIRECTIONAL
1892 	 * and copy the src workarea to the dst workarea.
1893 	 */
1894 	if (sg_virt(pt->src) == sg_virt(pt->dst))
1895 		in_place = true;
1896 
1897 	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
1898 			    CCP_PASSTHRU_MASKSIZE,
1899 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1900 	if (ret)
1901 		goto e_mask;
1902 
1903 	if (in_place) {
1904 		dst = src;
1905 	} else {
1906 		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
1907 				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
1908 		if (ret)
1909 			goto e_src;
1910 	}
1911 
1912 	/* Send data to the CCP Passthru engine
1913 	 *   Because the CCP engine works on a single source and destination
1914 	 *   dma address at a time, each entry in the source scatterlist
1915 	 *   (after the dma_map_sg call) must be less than or equal to the
1916 	 *   (remaining) length in the destination scatterlist entry and the
1917 	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
1918 	 */
1919 	dst.sg_wa.sg_used = 0;
1920 	for (i = 1; i <= src.sg_wa.dma_count; i++) {
1921 		if (!dst.sg_wa.sg ||
1922 		    (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
1923 			ret = -EINVAL;
1924 			goto e_dst;
1925 		}
1926 
1927 		if (i == src.sg_wa.dma_count) {
1928 			op.eom = 1;
1929 			op.soc = 1;
1930 		}
1931 
1932 		op.src.type = CCP_MEMTYPE_SYSTEM;
1933 		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
1934 		op.src.u.dma.offset = 0;
1935 		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
1936 
1937 		op.dst.type = CCP_MEMTYPE_SYSTEM;
1938 		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
1939 		op.dst.u.dma.offset = dst.sg_wa.sg_used;
1940 		op.dst.u.dma.length = op.src.u.dma.length;
1941 
1942 		ret = cmd_q->ccp->vdata->perform->passthru(&op);
1943 		if (ret) {
1944 			cmd->engine_error = cmd_q->cmd_error;
1945 			goto e_dst;
1946 		}
1947 
1948 		dst.sg_wa.sg_used += src.sg_wa.sg->length;
1949 		if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
1950 			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
1951 			dst.sg_wa.sg_used = 0;
1952 		}
1953 		src.sg_wa.sg = sg_next(src.sg_wa.sg);
1954 	}
1955 
1956 e_dst:
1957 	if (!in_place)
1958 		ccp_free_data(&dst, cmd_q);
1959 
1960 e_src:
1961 	ccp_free_data(&src, cmd_q);
1962 
1963 e_mask:
1964 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
1965 		ccp_dm_free(&mask);
1966 
1967 	return ret;
1968 }
1969 
1970 static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
1971 				      struct ccp_cmd *cmd)
1972 {
1973 	struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
1974 	struct ccp_dm_workarea mask;
1975 	struct ccp_op op;
1976 	int ret;
1977 
1978 	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1979 		return -EINVAL;
1980 
1981 	if (!pt->src_dma || !pt->dst_dma)
1982 		return -EINVAL;
1983 
1984 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1985 		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1986 			return -EINVAL;
1987 		if (!pt->mask)
1988 			return -EINVAL;
1989 	}
1990 
1991 	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1992 
1993 	memset(&op, 0, sizeof(op));
1994 	op.cmd_q = cmd_q;
1995 	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1996 
1997 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1998 		/* Load the mask */
1999 		op.sb_key = cmd_q->sb_key;
2000 
2001 		mask.length = pt->mask_len;
2002 		mask.dma.address = pt->mask;
2003 		mask.dma.length = pt->mask_len;
2004 
2005 		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2006 				     CCP_PASSTHRU_BYTESWAP_NOOP);
2007 		if (ret) {
2008 			cmd->engine_error = cmd_q->cmd_error;
2009 			return ret;
2010 		}
2011 	}
2012 
2013 	/* Send data to the CCP Passthru engine */
2014 	op.eom = 1;
2015 	op.soc = 1;
2016 
2017 	op.src.type = CCP_MEMTYPE_SYSTEM;
2018 	op.src.u.dma.address = pt->src_dma;
2019 	op.src.u.dma.offset = 0;
2020 	op.src.u.dma.length = pt->src_len;
2021 
2022 	op.dst.type = CCP_MEMTYPE_SYSTEM;
2023 	op.dst.u.dma.address = pt->dst_dma;
2024 	op.dst.u.dma.offset = 0;
2025 	op.dst.u.dma.length = pt->src_len;
2026 
2027 	ret = cmd_q->ccp->vdata->perform->passthru(&op);
2028 	if (ret)
2029 		cmd->engine_error = cmd_q->cmd_error;
2030 
2031 	return ret;
2032 }
2033 
2034 static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2035 {
2036 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2037 	struct ccp_dm_workarea src, dst;
2038 	struct ccp_op op;
2039 	int ret;
2040 	u8 *save;
2041 
2042 	if (!ecc->u.mm.operand_1 ||
2043 	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2044 		return -EINVAL;
2045 
2046 	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2047 		if (!ecc->u.mm.operand_2 ||
2048 		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2049 			return -EINVAL;
2050 
2051 	if (!ecc->u.mm.result ||
2052 	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2053 		return -EINVAL;
2054 
2055 	memset(&op, 0, sizeof(op));
2056 	op.cmd_q = cmd_q;
2057 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2058 
2059 	/* Concatenate the modulus and the operands. Both the modulus and
2060 	 * the operands must be in little endian format.  Since the input
2061 	 * is in big endian format it must be converted and placed in a
2062 	 * fixed length buffer.
2063 	 */
2064 	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2065 				   DMA_TO_DEVICE);
2066 	if (ret)
2067 		return ret;
2068 
2069 	/* Save the workarea address since it is updated in order to perform
2070 	 * the concatenation
2071 	 */
2072 	save = src.address;
2073 
2074 	/* Copy the ECC modulus */
2075 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2076 	if (ret)
2077 		goto e_src;
2078 	src.address += CCP_ECC_OPERAND_SIZE;
2079 
2080 	/* Copy the first operand */
2081 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2082 				      ecc->u.mm.operand_1_len);
2083 	if (ret)
2084 		goto e_src;
2085 	src.address += CCP_ECC_OPERAND_SIZE;
2086 
2087 	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2088 		/* Copy the second operand */
2089 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2090 					      ecc->u.mm.operand_2_len);
2091 		if (ret)
2092 			goto e_src;
2093 		src.address += CCP_ECC_OPERAND_SIZE;
2094 	}
2095 
2096 	/* Restore the workarea address */
2097 	src.address = save;
2098 
2099 	/* Prepare the output area for the operation */
2100 	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2101 				   DMA_FROM_DEVICE);
2102 	if (ret)
2103 		goto e_src;
2104 
2105 	op.soc = 1;
2106 	op.src.u.dma.address = src.dma.address;
2107 	op.src.u.dma.offset = 0;
2108 	op.src.u.dma.length = src.length;
2109 	op.dst.u.dma.address = dst.dma.address;
2110 	op.dst.u.dma.offset = 0;
2111 	op.dst.u.dma.length = dst.length;
2112 
2113 	op.u.ecc.function = cmd->u.ecc.function;
2114 
2115 	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2116 	if (ret) {
2117 		cmd->engine_error = cmd_q->cmd_error;
2118 		goto e_dst;
2119 	}
2120 
2121 	ecc->ecc_result = le16_to_cpup(
2122 		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2123 	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2124 		ret = -EIO;
2125 		goto e_dst;
2126 	}
2127 
2128 	/* Save the ECC result */
2129 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2130 				CCP_ECC_MODULUS_BYTES);
2131 
2132 e_dst:
2133 	ccp_dm_free(&dst);
2134 
2135 e_src:
2136 	ccp_dm_free(&src);
2137 
2138 	return ret;
2139 }
2140 
2141 static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2142 {
2143 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2144 	struct ccp_dm_workarea src, dst;
2145 	struct ccp_op op;
2146 	int ret;
2147 	u8 *save;
2148 
2149 	if (!ecc->u.pm.point_1.x ||
2150 	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2151 	    !ecc->u.pm.point_1.y ||
2152 	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2153 		return -EINVAL;
2154 
2155 	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2156 		if (!ecc->u.pm.point_2.x ||
2157 		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2158 		    !ecc->u.pm.point_2.y ||
2159 		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2160 			return -EINVAL;
2161 	} else {
2162 		if (!ecc->u.pm.domain_a ||
2163 		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2164 			return -EINVAL;
2165 
2166 		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2167 			if (!ecc->u.pm.scalar ||
2168 			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2169 				return -EINVAL;
2170 	}
2171 
2172 	if (!ecc->u.pm.result.x ||
2173 	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2174 	    !ecc->u.pm.result.y ||
2175 	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2176 		return -EINVAL;
2177 
2178 	memset(&op, 0, sizeof(op));
2179 	op.cmd_q = cmd_q;
2180 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2181 
2182 	/* Concatenate the modulus and the operands. Both the modulus and
2183 	 * the operands must be in little endian format.  Since the input
2184 	 * is in big endian format it must be converted and placed in a
2185 	 * fixed length buffer.
2186 	 */
2187 	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2188 				   DMA_TO_DEVICE);
2189 	if (ret)
2190 		return ret;
2191 
2192 	/* Save the workarea address since it is updated in order to perform
2193 	 * the concatenation
2194 	 */
2195 	save = src.address;
2196 
2197 	/* Copy the ECC modulus */
2198 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2199 	if (ret)
2200 		goto e_src;
2201 	src.address += CCP_ECC_OPERAND_SIZE;
2202 
2203 	/* Copy the first point X and Y coordinate */
2204 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2205 				      ecc->u.pm.point_1.x_len);
2206 	if (ret)
2207 		goto e_src;
2208 	src.address += CCP_ECC_OPERAND_SIZE;
2209 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2210 				      ecc->u.pm.point_1.y_len);
2211 	if (ret)
2212 		goto e_src;
2213 	src.address += CCP_ECC_OPERAND_SIZE;
2214 
2215 	/* Set the first point Z coordinate to 1 */
2216 	*src.address = 0x01;
2217 	src.address += CCP_ECC_OPERAND_SIZE;
2218 
2219 	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2220 		/* Copy the second point X and Y coordinate */
2221 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2222 					      ecc->u.pm.point_2.x_len);
2223 		if (ret)
2224 			goto e_src;
2225 		src.address += CCP_ECC_OPERAND_SIZE;
2226 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2227 					      ecc->u.pm.point_2.y_len);
2228 		if (ret)
2229 			goto e_src;
2230 		src.address += CCP_ECC_OPERAND_SIZE;
2231 
2232 		/* Set the second point Z coordinate to 1 */
2233 		*src.address = 0x01;
2234 		src.address += CCP_ECC_OPERAND_SIZE;
2235 	} else {
2236 		/* Copy the Domain "a" parameter */
2237 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2238 					      ecc->u.pm.domain_a_len);
2239 		if (ret)
2240 			goto e_src;
2241 		src.address += CCP_ECC_OPERAND_SIZE;
2242 
2243 		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2244 			/* Copy the scalar value */
2245 			ret = ccp_reverse_set_dm_area(&src, 0,
2246 						      ecc->u.pm.scalar, 0,
2247 						      ecc->u.pm.scalar_len);
2248 			if (ret)
2249 				goto e_src;
2250 			src.address += CCP_ECC_OPERAND_SIZE;
2251 		}
2252 	}
2253 
2254 	/* Restore the workarea address */
2255 	src.address = save;
2256 
2257 	/* Prepare the output area for the operation */
2258 	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2259 				   DMA_FROM_DEVICE);
2260 	if (ret)
2261 		goto e_src;
2262 
2263 	op.soc = 1;
2264 	op.src.u.dma.address = src.dma.address;
2265 	op.src.u.dma.offset = 0;
2266 	op.src.u.dma.length = src.length;
2267 	op.dst.u.dma.address = dst.dma.address;
2268 	op.dst.u.dma.offset = 0;
2269 	op.dst.u.dma.length = dst.length;
2270 
2271 	op.u.ecc.function = cmd->u.ecc.function;
2272 
2273 	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2274 	if (ret) {
2275 		cmd->engine_error = cmd_q->cmd_error;
2276 		goto e_dst;
2277 	}
2278 
2279 	ecc->ecc_result = le16_to_cpup(
2280 		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2281 	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2282 		ret = -EIO;
2283 		goto e_dst;
2284 	}
2285 
2286 	/* Save the workarea address since it is updated as we walk through
2287 	 * to copy the point math result
2288 	 */
2289 	save = dst.address;
2290 
2291 	/* Save the ECC result X and Y coordinates */
2292 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2293 				CCP_ECC_MODULUS_BYTES);
2294 	dst.address += CCP_ECC_OUTPUT_SIZE;
2295 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2296 				CCP_ECC_MODULUS_BYTES);
2297 	dst.address += CCP_ECC_OUTPUT_SIZE;
2298 
2299 	/* Restore the workarea address */
2300 	dst.address = save;
2301 
2302 e_dst:
2303 	ccp_dm_free(&dst);
2304 
2305 e_src:
2306 	ccp_dm_free(&src);
2307 
2308 	return ret;
2309 }
2310 
2311 static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2312 {
2313 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2314 
2315 	ecc->ecc_result = 0;
2316 
2317 	if (!ecc->mod ||
2318 	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2319 		return -EINVAL;
2320 
2321 	switch (ecc->function) {
2322 	case CCP_ECC_FUNCTION_MMUL_384BIT:
2323 	case CCP_ECC_FUNCTION_MADD_384BIT:
2324 	case CCP_ECC_FUNCTION_MINV_384BIT:
2325 		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2326 
2327 	case CCP_ECC_FUNCTION_PADD_384BIT:
2328 	case CCP_ECC_FUNCTION_PMUL_384BIT:
2329 	case CCP_ECC_FUNCTION_PDBL_384BIT:
2330 		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2331 
2332 	default:
2333 		return -EINVAL;
2334 	}
2335 }
2336 
2337 int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2338 {
2339 	int ret;
2340 
2341 	cmd->engine_error = 0;
2342 	cmd_q->cmd_error = 0;
2343 	cmd_q->int_rcvd = 0;
2344 	cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2345 
2346 	switch (cmd->engine) {
2347 	case CCP_ENGINE_AES:
2348 		ret = ccp_run_aes_cmd(cmd_q, cmd);
2349 		break;
2350 	case CCP_ENGINE_XTS_AES_128:
2351 		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2352 		break;
2353 	case CCP_ENGINE_DES3:
2354 		ret = ccp_run_des3_cmd(cmd_q, cmd);
2355 		break;
2356 	case CCP_ENGINE_SHA:
2357 		ret = ccp_run_sha_cmd(cmd_q, cmd);
2358 		break;
2359 	case CCP_ENGINE_RSA:
2360 		ret = ccp_run_rsa_cmd(cmd_q, cmd);
2361 		break;
2362 	case CCP_ENGINE_PASSTHRU:
2363 		if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2364 			ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2365 		else
2366 			ret = ccp_run_passthru_cmd(cmd_q, cmd);
2367 		break;
2368 	case CCP_ENGINE_ECC:
2369 		ret = ccp_run_ecc_cmd(cmd_q, cmd);
2370 		break;
2371 	default:
2372 		ret = -EINVAL;
2373 	}
2374 
2375 	return ret;
2376 }
2377