xref: /linux/drivers/crypto/ccp/ccp-ops.c (revision bb4e89b34d1bf46156b7e880a0f34205fb7ce2a5)
1 /*
2  * AMD Cryptographic Coprocessor (CCP) driver
3  *
4  * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  * Author: Gary R Hook <gary.hook@amd.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/interrupt.h>
18 #include <crypto/scatterwalk.h>
19 #include <linux/ccp.h>
20 
21 #include "ccp-dev.h"
22 
23 /* SHA initial context values */
24 static const __be32 ccp_sha1_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
25 	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
26 	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
27 	cpu_to_be32(SHA1_H4), 0, 0, 0,
28 };
29 
30 static const __be32 ccp_sha224_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
31 	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
32 	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
33 	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
34 	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
35 };
36 
37 static const __be32 ccp_sha256_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
38 	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
39 	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
40 	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
41 	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
42 };
43 
44 static u32 ccp_gen_jobid(struct ccp_device *ccp)
45 {
46 	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
47 }
48 
49 static void ccp_sg_free(struct ccp_sg_workarea *wa)
50 {
51 	if (wa->dma_count)
52 		dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
53 
54 	wa->dma_count = 0;
55 }
56 
57 static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
58 				struct scatterlist *sg, u64 len,
59 				enum dma_data_direction dma_dir)
60 {
61 	memset(wa, 0, sizeof(*wa));
62 
63 	wa->sg = sg;
64 	if (!sg)
65 		return 0;
66 
67 	wa->nents = sg_nents_for_len(sg, len);
68 	if (wa->nents < 0)
69 		return wa->nents;
70 
71 	wa->bytes_left = len;
72 	wa->sg_used = 0;
73 
74 	if (len == 0)
75 		return 0;
76 
77 	if (dma_dir == DMA_NONE)
78 		return 0;
79 
80 	wa->dma_sg = sg;
81 	wa->dma_dev = dev;
82 	wa->dma_dir = dma_dir;
83 	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
84 	if (!wa->dma_count)
85 		return -ENOMEM;
86 
87 	return 0;
88 }
89 
90 static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
91 {
92 	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
93 
94 	if (!wa->sg)
95 		return;
96 
97 	wa->sg_used += nbytes;
98 	wa->bytes_left -= nbytes;
99 	if (wa->sg_used == wa->sg->length) {
100 		wa->sg = sg_next(wa->sg);
101 		wa->sg_used = 0;
102 	}
103 }
104 
105 static void ccp_dm_free(struct ccp_dm_workarea *wa)
106 {
107 	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
108 		if (wa->address)
109 			dma_pool_free(wa->dma_pool, wa->address,
110 				      wa->dma.address);
111 	} else {
112 		if (wa->dma.address)
113 			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
114 					 wa->dma.dir);
115 		kfree(wa->address);
116 	}
117 
118 	wa->address = NULL;
119 	wa->dma.address = 0;
120 }
121 
122 static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
123 				struct ccp_cmd_queue *cmd_q,
124 				unsigned int len,
125 				enum dma_data_direction dir)
126 {
127 	memset(wa, 0, sizeof(*wa));
128 
129 	if (!len)
130 		return 0;
131 
132 	wa->dev = cmd_q->ccp->dev;
133 	wa->length = len;
134 
135 	if (len <= CCP_DMAPOOL_MAX_SIZE) {
136 		wa->dma_pool = cmd_q->dma_pool;
137 
138 		wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
139 					     &wa->dma.address);
140 		if (!wa->address)
141 			return -ENOMEM;
142 
143 		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
144 
145 		memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
146 	} else {
147 		wa->address = kzalloc(len, GFP_KERNEL);
148 		if (!wa->address)
149 			return -ENOMEM;
150 
151 		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
152 						 dir);
153 		if (!wa->dma.address)
154 			return -ENOMEM;
155 
156 		wa->dma.length = len;
157 	}
158 	wa->dma.dir = dir;
159 
160 	return 0;
161 }
162 
163 static void ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
164 			    struct scatterlist *sg, unsigned int sg_offset,
165 			    unsigned int len)
166 {
167 	WARN_ON(!wa->address);
168 
169 	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
170 				 0);
171 }
172 
173 static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
174 			    struct scatterlist *sg, unsigned int sg_offset,
175 			    unsigned int len)
176 {
177 	WARN_ON(!wa->address);
178 
179 	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
180 				 1);
181 }
182 
183 static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
184 				   struct scatterlist *sg,
185 				   unsigned int len, unsigned int se_len,
186 				   bool sign_extend)
187 {
188 	unsigned int nbytes, sg_offset, dm_offset, sb_len, i;
189 	u8 buffer[CCP_REVERSE_BUF_SIZE];
190 
191 	if (WARN_ON(se_len > sizeof(buffer)))
192 		return -EINVAL;
193 
194 	sg_offset = len;
195 	dm_offset = 0;
196 	nbytes = len;
197 	while (nbytes) {
198 		sb_len = min_t(unsigned int, nbytes, se_len);
199 		sg_offset -= sb_len;
200 
201 		scatterwalk_map_and_copy(buffer, sg, sg_offset, sb_len, 0);
202 		for (i = 0; i < sb_len; i++)
203 			wa->address[dm_offset + i] = buffer[sb_len - i - 1];
204 
205 		dm_offset += sb_len;
206 		nbytes -= sb_len;
207 
208 		if ((sb_len != se_len) && sign_extend) {
209 			/* Must sign-extend to nearest sign-extend length */
210 			if (wa->address[dm_offset - 1] & 0x80)
211 				memset(wa->address + dm_offset, 0xff,
212 				       se_len - sb_len);
213 		}
214 	}
215 
216 	return 0;
217 }
218 
219 static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
220 				    struct scatterlist *sg,
221 				    unsigned int len)
222 {
223 	unsigned int nbytes, sg_offset, dm_offset, sb_len, i;
224 	u8 buffer[CCP_REVERSE_BUF_SIZE];
225 
226 	sg_offset = 0;
227 	dm_offset = len;
228 	nbytes = len;
229 	while (nbytes) {
230 		sb_len = min_t(unsigned int, nbytes, sizeof(buffer));
231 		dm_offset -= sb_len;
232 
233 		for (i = 0; i < sb_len; i++)
234 			buffer[sb_len - i - 1] = wa->address[dm_offset + i];
235 		scatterwalk_map_and_copy(buffer, sg, sg_offset, sb_len, 1);
236 
237 		sg_offset += sb_len;
238 		nbytes -= sb_len;
239 	}
240 }
241 
242 static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
243 {
244 	ccp_dm_free(&data->dm_wa);
245 	ccp_sg_free(&data->sg_wa);
246 }
247 
248 static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
249 			 struct scatterlist *sg, u64 sg_len,
250 			 unsigned int dm_len,
251 			 enum dma_data_direction dir)
252 {
253 	int ret;
254 
255 	memset(data, 0, sizeof(*data));
256 
257 	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
258 				   dir);
259 	if (ret)
260 		goto e_err;
261 
262 	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
263 	if (ret)
264 		goto e_err;
265 
266 	return 0;
267 
268 e_err:
269 	ccp_free_data(data, cmd_q);
270 
271 	return ret;
272 }
273 
274 static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
275 {
276 	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
277 	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
278 	unsigned int buf_count, nbytes;
279 
280 	/* Clear the buffer if setting it */
281 	if (!from)
282 		memset(dm_wa->address, 0, dm_wa->length);
283 
284 	if (!sg_wa->sg)
285 		return 0;
286 
287 	/* Perform the copy operation
288 	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
289 	 *   an unsigned int
290 	 */
291 	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
292 	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
293 				 nbytes, from);
294 
295 	/* Update the structures and generate the count */
296 	buf_count = 0;
297 	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
298 		nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
299 			     dm_wa->length - buf_count);
300 		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
301 
302 		buf_count += nbytes;
303 		ccp_update_sg_workarea(sg_wa, nbytes);
304 	}
305 
306 	return buf_count;
307 }
308 
309 static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
310 {
311 	return ccp_queue_buf(data, 0);
312 }
313 
314 static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
315 {
316 	return ccp_queue_buf(data, 1);
317 }
318 
319 static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
320 			     struct ccp_op *op, unsigned int block_size,
321 			     bool blocksize_op)
322 {
323 	unsigned int sg_src_len, sg_dst_len, op_len;
324 
325 	/* The CCP can only DMA from/to one address each per operation. This
326 	 * requires that we find the smallest DMA area between the source
327 	 * and destination. The resulting len values will always be <= UINT_MAX
328 	 * because the dma length is an unsigned int.
329 	 */
330 	sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
331 	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
332 
333 	if (dst) {
334 		sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
335 		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
336 		op_len = min(sg_src_len, sg_dst_len);
337 	} else {
338 		op_len = sg_src_len;
339 	}
340 
341 	/* The data operation length will be at least block_size in length
342 	 * or the smaller of available sg room remaining for the source or
343 	 * the destination
344 	 */
345 	op_len = max(op_len, block_size);
346 
347 	/* Unless we have to buffer data, there's no reason to wait */
348 	op->soc = 0;
349 
350 	if (sg_src_len < block_size) {
351 		/* Not enough data in the sg element, so it
352 		 * needs to be buffered into a blocksize chunk
353 		 */
354 		int cp_len = ccp_fill_queue_buf(src);
355 
356 		op->soc = 1;
357 		op->src.u.dma.address = src->dm_wa.dma.address;
358 		op->src.u.dma.offset = 0;
359 		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
360 	} else {
361 		/* Enough data in the sg element, but we need to
362 		 * adjust for any previously copied data
363 		 */
364 		op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
365 		op->src.u.dma.offset = src->sg_wa.sg_used;
366 		op->src.u.dma.length = op_len & ~(block_size - 1);
367 
368 		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
369 	}
370 
371 	if (dst) {
372 		if (sg_dst_len < block_size) {
373 			/* Not enough room in the sg element or we're on the
374 			 * last piece of data (when using padding), so the
375 			 * output needs to be buffered into a blocksize chunk
376 			 */
377 			op->soc = 1;
378 			op->dst.u.dma.address = dst->dm_wa.dma.address;
379 			op->dst.u.dma.offset = 0;
380 			op->dst.u.dma.length = op->src.u.dma.length;
381 		} else {
382 			/* Enough room in the sg element, but we need to
383 			 * adjust for any previously used area
384 			 */
385 			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
386 			op->dst.u.dma.offset = dst->sg_wa.sg_used;
387 			op->dst.u.dma.length = op->src.u.dma.length;
388 		}
389 	}
390 }
391 
392 static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
393 			     struct ccp_op *op)
394 {
395 	op->init = 0;
396 
397 	if (dst) {
398 		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
399 			ccp_empty_queue_buf(dst);
400 		else
401 			ccp_update_sg_workarea(&dst->sg_wa,
402 					       op->dst.u.dma.length);
403 	}
404 }
405 
406 static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
407 			       struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
408 			       u32 byte_swap, bool from)
409 {
410 	struct ccp_op op;
411 
412 	memset(&op, 0, sizeof(op));
413 
414 	op.cmd_q = cmd_q;
415 	op.jobid = jobid;
416 	op.eom = 1;
417 
418 	if (from) {
419 		op.soc = 1;
420 		op.src.type = CCP_MEMTYPE_SB;
421 		op.src.u.sb = sb;
422 		op.dst.type = CCP_MEMTYPE_SYSTEM;
423 		op.dst.u.dma.address = wa->dma.address;
424 		op.dst.u.dma.length = wa->length;
425 	} else {
426 		op.src.type = CCP_MEMTYPE_SYSTEM;
427 		op.src.u.dma.address = wa->dma.address;
428 		op.src.u.dma.length = wa->length;
429 		op.dst.type = CCP_MEMTYPE_SB;
430 		op.dst.u.sb = sb;
431 	}
432 
433 	op.u.passthru.byte_swap = byte_swap;
434 
435 	return cmd_q->ccp->vdata->perform->passthru(&op);
436 }
437 
438 static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
439 			  struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
440 			  u32 byte_swap)
441 {
442 	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
443 }
444 
445 static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
446 			    struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
447 			    u32 byte_swap)
448 {
449 	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
450 }
451 
452 static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
453 				struct ccp_cmd *cmd)
454 {
455 	struct ccp_aes_engine *aes = &cmd->u.aes;
456 	struct ccp_dm_workarea key, ctx;
457 	struct ccp_data src;
458 	struct ccp_op op;
459 	unsigned int dm_offset;
460 	int ret;
461 
462 	if (!((aes->key_len == AES_KEYSIZE_128) ||
463 	      (aes->key_len == AES_KEYSIZE_192) ||
464 	      (aes->key_len == AES_KEYSIZE_256)))
465 		return -EINVAL;
466 
467 	if (aes->src_len & (AES_BLOCK_SIZE - 1))
468 		return -EINVAL;
469 
470 	if (aes->iv_len != AES_BLOCK_SIZE)
471 		return -EINVAL;
472 
473 	if (!aes->key || !aes->iv || !aes->src)
474 		return -EINVAL;
475 
476 	if (aes->cmac_final) {
477 		if (aes->cmac_key_len != AES_BLOCK_SIZE)
478 			return -EINVAL;
479 
480 		if (!aes->cmac_key)
481 			return -EINVAL;
482 	}
483 
484 	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
485 	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
486 
487 	ret = -EIO;
488 	memset(&op, 0, sizeof(op));
489 	op.cmd_q = cmd_q;
490 	op.jobid = ccp_gen_jobid(cmd_q->ccp);
491 	op.sb_key = cmd_q->sb_key;
492 	op.sb_ctx = cmd_q->sb_ctx;
493 	op.init = 1;
494 	op.u.aes.type = aes->type;
495 	op.u.aes.mode = aes->mode;
496 	op.u.aes.action = aes->action;
497 
498 	/* All supported key sizes fit in a single (32-byte) SB entry
499 	 * and must be in little endian format. Use the 256-bit byte
500 	 * swap passthru option to convert from big endian to little
501 	 * endian.
502 	 */
503 	ret = ccp_init_dm_workarea(&key, cmd_q,
504 				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
505 				   DMA_TO_DEVICE);
506 	if (ret)
507 		return ret;
508 
509 	dm_offset = CCP_SB_BYTES - aes->key_len;
510 	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
511 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
512 			     CCP_PASSTHRU_BYTESWAP_256BIT);
513 	if (ret) {
514 		cmd->engine_error = cmd_q->cmd_error;
515 		goto e_key;
516 	}
517 
518 	/* The AES context fits in a single (32-byte) SB entry and
519 	 * must be in little endian format. Use the 256-bit byte swap
520 	 * passthru option to convert from big endian to little endian.
521 	 */
522 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
523 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
524 				   DMA_BIDIRECTIONAL);
525 	if (ret)
526 		goto e_key;
527 
528 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
529 	ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
530 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
531 			     CCP_PASSTHRU_BYTESWAP_256BIT);
532 	if (ret) {
533 		cmd->engine_error = cmd_q->cmd_error;
534 		goto e_ctx;
535 	}
536 
537 	/* Send data to the CCP AES engine */
538 	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
539 			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
540 	if (ret)
541 		goto e_ctx;
542 
543 	while (src.sg_wa.bytes_left) {
544 		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
545 		if (aes->cmac_final && !src.sg_wa.bytes_left) {
546 			op.eom = 1;
547 
548 			/* Push the K1/K2 key to the CCP now */
549 			ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
550 					       op.sb_ctx,
551 					       CCP_PASSTHRU_BYTESWAP_256BIT);
552 			if (ret) {
553 				cmd->engine_error = cmd_q->cmd_error;
554 				goto e_src;
555 			}
556 
557 			ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
558 					aes->cmac_key_len);
559 			ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
560 					     CCP_PASSTHRU_BYTESWAP_256BIT);
561 			if (ret) {
562 				cmd->engine_error = cmd_q->cmd_error;
563 				goto e_src;
564 			}
565 		}
566 
567 		ret = cmd_q->ccp->vdata->perform->aes(&op);
568 		if (ret) {
569 			cmd->engine_error = cmd_q->cmd_error;
570 			goto e_src;
571 		}
572 
573 		ccp_process_data(&src, NULL, &op);
574 	}
575 
576 	/* Retrieve the AES context - convert from LE to BE using
577 	 * 32-byte (256-bit) byteswapping
578 	 */
579 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
580 			       CCP_PASSTHRU_BYTESWAP_256BIT);
581 	if (ret) {
582 		cmd->engine_error = cmd_q->cmd_error;
583 		goto e_src;
584 	}
585 
586 	/* ...but we only need AES_BLOCK_SIZE bytes */
587 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
588 	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
589 
590 e_src:
591 	ccp_free_data(&src, cmd_q);
592 
593 e_ctx:
594 	ccp_dm_free(&ctx);
595 
596 e_key:
597 	ccp_dm_free(&key);
598 
599 	return ret;
600 }
601 
602 static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
603 {
604 	struct ccp_aes_engine *aes = &cmd->u.aes;
605 	struct ccp_dm_workarea key, ctx;
606 	struct ccp_data src, dst;
607 	struct ccp_op op;
608 	unsigned int dm_offset;
609 	bool in_place = false;
610 	int ret;
611 
612 	if (aes->mode == CCP_AES_MODE_CMAC)
613 		return ccp_run_aes_cmac_cmd(cmd_q, cmd);
614 
615 	if (!((aes->key_len == AES_KEYSIZE_128) ||
616 	      (aes->key_len == AES_KEYSIZE_192) ||
617 	      (aes->key_len == AES_KEYSIZE_256)))
618 		return -EINVAL;
619 
620 	if (((aes->mode == CCP_AES_MODE_ECB) ||
621 	     (aes->mode == CCP_AES_MODE_CBC) ||
622 	     (aes->mode == CCP_AES_MODE_CFB)) &&
623 	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
624 		return -EINVAL;
625 
626 	if (!aes->key || !aes->src || !aes->dst)
627 		return -EINVAL;
628 
629 	if (aes->mode != CCP_AES_MODE_ECB) {
630 		if (aes->iv_len != AES_BLOCK_SIZE)
631 			return -EINVAL;
632 
633 		if (!aes->iv)
634 			return -EINVAL;
635 	}
636 
637 	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
638 	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
639 
640 	ret = -EIO;
641 	memset(&op, 0, sizeof(op));
642 	op.cmd_q = cmd_q;
643 	op.jobid = ccp_gen_jobid(cmd_q->ccp);
644 	op.sb_key = cmd_q->sb_key;
645 	op.sb_ctx = cmd_q->sb_ctx;
646 	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
647 	op.u.aes.type = aes->type;
648 	op.u.aes.mode = aes->mode;
649 	op.u.aes.action = aes->action;
650 
651 	/* All supported key sizes fit in a single (32-byte) SB entry
652 	 * and must be in little endian format. Use the 256-bit byte
653 	 * swap passthru option to convert from big endian to little
654 	 * endian.
655 	 */
656 	ret = ccp_init_dm_workarea(&key, cmd_q,
657 				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
658 				   DMA_TO_DEVICE);
659 	if (ret)
660 		return ret;
661 
662 	dm_offset = CCP_SB_BYTES - aes->key_len;
663 	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
664 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
665 			     CCP_PASSTHRU_BYTESWAP_256BIT);
666 	if (ret) {
667 		cmd->engine_error = cmd_q->cmd_error;
668 		goto e_key;
669 	}
670 
671 	/* The AES context fits in a single (32-byte) SB entry and
672 	 * must be in little endian format. Use the 256-bit byte swap
673 	 * passthru option to convert from big endian to little endian.
674 	 */
675 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
676 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
677 				   DMA_BIDIRECTIONAL);
678 	if (ret)
679 		goto e_key;
680 
681 	if (aes->mode != CCP_AES_MODE_ECB) {
682 		/* Load the AES context - conver to LE */
683 		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
684 		ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
685 		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
686 				     CCP_PASSTHRU_BYTESWAP_256BIT);
687 		if (ret) {
688 			cmd->engine_error = cmd_q->cmd_error;
689 			goto e_ctx;
690 		}
691 	}
692 
693 	/* Prepare the input and output data workareas. For in-place
694 	 * operations we need to set the dma direction to BIDIRECTIONAL
695 	 * and copy the src workarea to the dst workarea.
696 	 */
697 	if (sg_virt(aes->src) == sg_virt(aes->dst))
698 		in_place = true;
699 
700 	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
701 			    AES_BLOCK_SIZE,
702 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
703 	if (ret)
704 		goto e_ctx;
705 
706 	if (in_place) {
707 		dst = src;
708 	} else {
709 		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
710 				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
711 		if (ret)
712 			goto e_src;
713 	}
714 
715 	/* Send data to the CCP AES engine */
716 	while (src.sg_wa.bytes_left) {
717 		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
718 		if (!src.sg_wa.bytes_left) {
719 			op.eom = 1;
720 
721 			/* Since we don't retrieve the AES context in ECB
722 			 * mode we have to wait for the operation to complete
723 			 * on the last piece of data
724 			 */
725 			if (aes->mode == CCP_AES_MODE_ECB)
726 				op.soc = 1;
727 		}
728 
729 		ret = cmd_q->ccp->vdata->perform->aes(&op);
730 		if (ret) {
731 			cmd->engine_error = cmd_q->cmd_error;
732 			goto e_dst;
733 		}
734 
735 		ccp_process_data(&src, &dst, &op);
736 	}
737 
738 	if (aes->mode != CCP_AES_MODE_ECB) {
739 		/* Retrieve the AES context - convert from LE to BE using
740 		 * 32-byte (256-bit) byteswapping
741 		 */
742 		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
743 				       CCP_PASSTHRU_BYTESWAP_256BIT);
744 		if (ret) {
745 			cmd->engine_error = cmd_q->cmd_error;
746 			goto e_dst;
747 		}
748 
749 		/* ...but we only need AES_BLOCK_SIZE bytes */
750 		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
751 		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
752 	}
753 
754 e_dst:
755 	if (!in_place)
756 		ccp_free_data(&dst, cmd_q);
757 
758 e_src:
759 	ccp_free_data(&src, cmd_q);
760 
761 e_ctx:
762 	ccp_dm_free(&ctx);
763 
764 e_key:
765 	ccp_dm_free(&key);
766 
767 	return ret;
768 }
769 
770 static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
771 			       struct ccp_cmd *cmd)
772 {
773 	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
774 	struct ccp_dm_workarea key, ctx;
775 	struct ccp_data src, dst;
776 	struct ccp_op op;
777 	unsigned int unit_size, dm_offset;
778 	bool in_place = false;
779 	int ret;
780 
781 	switch (xts->unit_size) {
782 	case CCP_XTS_AES_UNIT_SIZE_16:
783 		unit_size = 16;
784 		break;
785 	case CCP_XTS_AES_UNIT_SIZE_512:
786 		unit_size = 512;
787 		break;
788 	case CCP_XTS_AES_UNIT_SIZE_1024:
789 		unit_size = 1024;
790 		break;
791 	case CCP_XTS_AES_UNIT_SIZE_2048:
792 		unit_size = 2048;
793 		break;
794 	case CCP_XTS_AES_UNIT_SIZE_4096:
795 		unit_size = 4096;
796 		break;
797 
798 	default:
799 		return -EINVAL;
800 	}
801 
802 	if (xts->key_len != AES_KEYSIZE_128)
803 		return -EINVAL;
804 
805 	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
806 		return -EINVAL;
807 
808 	if (xts->iv_len != AES_BLOCK_SIZE)
809 		return -EINVAL;
810 
811 	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
812 		return -EINVAL;
813 
814 	BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
815 	BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
816 
817 	ret = -EIO;
818 	memset(&op, 0, sizeof(op));
819 	op.cmd_q = cmd_q;
820 	op.jobid = ccp_gen_jobid(cmd_q->ccp);
821 	op.sb_key = cmd_q->sb_key;
822 	op.sb_ctx = cmd_q->sb_ctx;
823 	op.init = 1;
824 	op.u.xts.action = xts->action;
825 	op.u.xts.unit_size = xts->unit_size;
826 
827 	/* All supported key sizes fit in a single (32-byte) SB entry
828 	 * and must be in little endian format. Use the 256-bit byte
829 	 * swap passthru option to convert from big endian to little
830 	 * endian.
831 	 */
832 	ret = ccp_init_dm_workarea(&key, cmd_q,
833 				   CCP_XTS_AES_KEY_SB_COUNT * CCP_SB_BYTES,
834 				   DMA_TO_DEVICE);
835 	if (ret)
836 		return ret;
837 
838 	dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
839 	ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
840 	ccp_set_dm_area(&key, 0, xts->key, dm_offset, xts->key_len);
841 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
842 			     CCP_PASSTHRU_BYTESWAP_256BIT);
843 	if (ret) {
844 		cmd->engine_error = cmd_q->cmd_error;
845 		goto e_key;
846 	}
847 
848 	/* The AES context fits in a single (32-byte) SB entry and
849 	 * for XTS is already in little endian format so no byte swapping
850 	 * is needed.
851 	 */
852 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
853 				   CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
854 				   DMA_BIDIRECTIONAL);
855 	if (ret)
856 		goto e_key;
857 
858 	ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
859 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
860 			     CCP_PASSTHRU_BYTESWAP_NOOP);
861 	if (ret) {
862 		cmd->engine_error = cmd_q->cmd_error;
863 		goto e_ctx;
864 	}
865 
866 	/* Prepare the input and output data workareas. For in-place
867 	 * operations we need to set the dma direction to BIDIRECTIONAL
868 	 * and copy the src workarea to the dst workarea.
869 	 */
870 	if (sg_virt(xts->src) == sg_virt(xts->dst))
871 		in_place = true;
872 
873 	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
874 			    unit_size,
875 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
876 	if (ret)
877 		goto e_ctx;
878 
879 	if (in_place) {
880 		dst = src;
881 	} else {
882 		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
883 				    unit_size, DMA_FROM_DEVICE);
884 		if (ret)
885 			goto e_src;
886 	}
887 
888 	/* Send data to the CCP AES engine */
889 	while (src.sg_wa.bytes_left) {
890 		ccp_prepare_data(&src, &dst, &op, unit_size, true);
891 		if (!src.sg_wa.bytes_left)
892 			op.eom = 1;
893 
894 		ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
895 		if (ret) {
896 			cmd->engine_error = cmd_q->cmd_error;
897 			goto e_dst;
898 		}
899 
900 		ccp_process_data(&src, &dst, &op);
901 	}
902 
903 	/* Retrieve the AES context - convert from LE to BE using
904 	 * 32-byte (256-bit) byteswapping
905 	 */
906 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
907 			       CCP_PASSTHRU_BYTESWAP_256BIT);
908 	if (ret) {
909 		cmd->engine_error = cmd_q->cmd_error;
910 		goto e_dst;
911 	}
912 
913 	/* ...but we only need AES_BLOCK_SIZE bytes */
914 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
915 	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
916 
917 e_dst:
918 	if (!in_place)
919 		ccp_free_data(&dst, cmd_q);
920 
921 e_src:
922 	ccp_free_data(&src, cmd_q);
923 
924 e_ctx:
925 	ccp_dm_free(&ctx);
926 
927 e_key:
928 	ccp_dm_free(&key);
929 
930 	return ret;
931 }
932 
933 static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
934 {
935 	struct ccp_sha_engine *sha = &cmd->u.sha;
936 	struct ccp_dm_workarea ctx;
937 	struct ccp_data src;
938 	struct ccp_op op;
939 	int ret;
940 
941 	if (sha->ctx_len != CCP_SHA_CTXSIZE)
942 		return -EINVAL;
943 
944 	if (!sha->ctx)
945 		return -EINVAL;
946 
947 	if (!sha->final && (sha->src_len & (CCP_SHA_BLOCKSIZE - 1)))
948 		return -EINVAL;
949 
950 	if (!sha->src_len) {
951 		const u8 *sha_zero;
952 
953 		/* Not final, just return */
954 		if (!sha->final)
955 			return 0;
956 
957 		/* CCP can't do a zero length sha operation so the caller
958 		 * must buffer the data.
959 		 */
960 		if (sha->msg_bits)
961 			return -EINVAL;
962 
963 		/* The CCP cannot perform zero-length sha operations so the
964 		 * caller is required to buffer data for the final operation.
965 		 * However, a sha operation for a message with a total length
966 		 * of zero is valid so known values are required to supply
967 		 * the result.
968 		 */
969 		switch (sha->type) {
970 		case CCP_SHA_TYPE_1:
971 			sha_zero = sha1_zero_message_hash;
972 			break;
973 		case CCP_SHA_TYPE_224:
974 			sha_zero = sha224_zero_message_hash;
975 			break;
976 		case CCP_SHA_TYPE_256:
977 			sha_zero = sha256_zero_message_hash;
978 			break;
979 		default:
980 			return -EINVAL;
981 		}
982 
983 		scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
984 					 sha->ctx_len, 1);
985 
986 		return 0;
987 	}
988 
989 	if (!sha->src)
990 		return -EINVAL;
991 
992 	BUILD_BUG_ON(CCP_SHA_SB_COUNT != 1);
993 
994 	memset(&op, 0, sizeof(op));
995 	op.cmd_q = cmd_q;
996 	op.jobid = ccp_gen_jobid(cmd_q->ccp);
997 	op.sb_ctx = cmd_q->sb_ctx;
998 	op.u.sha.type = sha->type;
999 	op.u.sha.msg_bits = sha->msg_bits;
1000 
1001 	/* The SHA context fits in a single (32-byte) SB entry and
1002 	 * must be in little endian format. Use the 256-bit byte swap
1003 	 * passthru option to convert from big endian to little endian.
1004 	 */
1005 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
1006 				   CCP_SHA_SB_COUNT * CCP_SB_BYTES,
1007 				   DMA_BIDIRECTIONAL);
1008 	if (ret)
1009 		return ret;
1010 
1011 	if (sha->first) {
1012 		const __be32 *init;
1013 
1014 		switch (sha->type) {
1015 		case CCP_SHA_TYPE_1:
1016 			init = ccp_sha1_init;
1017 			break;
1018 		case CCP_SHA_TYPE_224:
1019 			init = ccp_sha224_init;
1020 			break;
1021 		case CCP_SHA_TYPE_256:
1022 			init = ccp_sha256_init;
1023 			break;
1024 		default:
1025 			ret = -EINVAL;
1026 			goto e_ctx;
1027 		}
1028 		memcpy(ctx.address, init, CCP_SHA_CTXSIZE);
1029 	} else {
1030 		ccp_set_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len);
1031 	}
1032 
1033 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1034 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1035 	if (ret) {
1036 		cmd->engine_error = cmd_q->cmd_error;
1037 		goto e_ctx;
1038 	}
1039 
1040 	/* Send data to the CCP SHA engine */
1041 	ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1042 			    CCP_SHA_BLOCKSIZE, DMA_TO_DEVICE);
1043 	if (ret)
1044 		goto e_ctx;
1045 
1046 	while (src.sg_wa.bytes_left) {
1047 		ccp_prepare_data(&src, NULL, &op, CCP_SHA_BLOCKSIZE, false);
1048 		if (sha->final && !src.sg_wa.bytes_left)
1049 			op.eom = 1;
1050 
1051 		ret = cmd_q->ccp->vdata->perform->sha(&op);
1052 		if (ret) {
1053 			cmd->engine_error = cmd_q->cmd_error;
1054 			goto e_data;
1055 		}
1056 
1057 		ccp_process_data(&src, NULL, &op);
1058 	}
1059 
1060 	/* Retrieve the SHA context - convert from LE to BE using
1061 	 * 32-byte (256-bit) byteswapping to BE
1062 	 */
1063 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1064 			       CCP_PASSTHRU_BYTESWAP_256BIT);
1065 	if (ret) {
1066 		cmd->engine_error = cmd_q->cmd_error;
1067 		goto e_data;
1068 	}
1069 
1070 	ccp_get_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len);
1071 
1072 	if (sha->final && sha->opad) {
1073 		/* HMAC operation, recursively perform final SHA */
1074 		struct ccp_cmd hmac_cmd;
1075 		struct scatterlist sg;
1076 		u64 block_size, digest_size;
1077 		u8 *hmac_buf;
1078 
1079 		switch (sha->type) {
1080 		case CCP_SHA_TYPE_1:
1081 			block_size = SHA1_BLOCK_SIZE;
1082 			digest_size = SHA1_DIGEST_SIZE;
1083 			break;
1084 		case CCP_SHA_TYPE_224:
1085 			block_size = SHA224_BLOCK_SIZE;
1086 			digest_size = SHA224_DIGEST_SIZE;
1087 			break;
1088 		case CCP_SHA_TYPE_256:
1089 			block_size = SHA256_BLOCK_SIZE;
1090 			digest_size = SHA256_DIGEST_SIZE;
1091 			break;
1092 		default:
1093 			ret = -EINVAL;
1094 			goto e_data;
1095 		}
1096 
1097 		if (sha->opad_len != block_size) {
1098 			ret = -EINVAL;
1099 			goto e_data;
1100 		}
1101 
1102 		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1103 		if (!hmac_buf) {
1104 			ret = -ENOMEM;
1105 			goto e_data;
1106 		}
1107 		sg_init_one(&sg, hmac_buf, block_size + digest_size);
1108 
1109 		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1110 		memcpy(hmac_buf + block_size, ctx.address, digest_size);
1111 
1112 		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1113 		hmac_cmd.engine = CCP_ENGINE_SHA;
1114 		hmac_cmd.u.sha.type = sha->type;
1115 		hmac_cmd.u.sha.ctx = sha->ctx;
1116 		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1117 		hmac_cmd.u.sha.src = &sg;
1118 		hmac_cmd.u.sha.src_len = block_size + digest_size;
1119 		hmac_cmd.u.sha.opad = NULL;
1120 		hmac_cmd.u.sha.opad_len = 0;
1121 		hmac_cmd.u.sha.first = 1;
1122 		hmac_cmd.u.sha.final = 1;
1123 		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1124 
1125 		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1126 		if (ret)
1127 			cmd->engine_error = hmac_cmd.engine_error;
1128 
1129 		kfree(hmac_buf);
1130 	}
1131 
1132 e_data:
1133 	ccp_free_data(&src, cmd_q);
1134 
1135 e_ctx:
1136 	ccp_dm_free(&ctx);
1137 
1138 	return ret;
1139 }
1140 
1141 static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1142 {
1143 	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1144 	struct ccp_dm_workarea exp, src;
1145 	struct ccp_data dst;
1146 	struct ccp_op op;
1147 	unsigned int sb_count, i_len, o_len;
1148 	int ret;
1149 
1150 	if (rsa->key_size > CCP_RSA_MAX_WIDTH)
1151 		return -EINVAL;
1152 
1153 	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1154 		return -EINVAL;
1155 
1156 	/* The RSA modulus must precede the message being acted upon, so
1157 	 * it must be copied to a DMA area where the message and the
1158 	 * modulus can be concatenated.  Therefore the input buffer
1159 	 * length required is twice the output buffer length (which
1160 	 * must be a multiple of 256-bits).
1161 	 */
1162 	o_len = ((rsa->key_size + 255) / 256) * 32;
1163 	i_len = o_len * 2;
1164 
1165 	sb_count = o_len / CCP_SB_BYTES;
1166 
1167 	memset(&op, 0, sizeof(op));
1168 	op.cmd_q = cmd_q;
1169 	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1170 	op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q, sb_count);
1171 
1172 	if (!op.sb_key)
1173 		return -EIO;
1174 
1175 	/* The RSA exponent may span multiple (32-byte) SB entries and must
1176 	 * be in little endian format. Reverse copy each 32-byte chunk
1177 	 * of the exponent (En chunk to E0 chunk, E(n-1) chunk to E1 chunk)
1178 	 * and each byte within that chunk and do not perform any byte swap
1179 	 * operations on the passthru operation.
1180 	 */
1181 	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1182 	if (ret)
1183 		goto e_sb;
1184 
1185 	ret = ccp_reverse_set_dm_area(&exp, rsa->exp, rsa->exp_len,
1186 				      CCP_SB_BYTES, false);
1187 	if (ret)
1188 		goto e_exp;
1189 	ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1190 			     CCP_PASSTHRU_BYTESWAP_NOOP);
1191 	if (ret) {
1192 		cmd->engine_error = cmd_q->cmd_error;
1193 		goto e_exp;
1194 	}
1195 
1196 	/* Concatenate the modulus and the message. Both the modulus and
1197 	 * the operands must be in little endian format.  Since the input
1198 	 * is in big endian format it must be converted.
1199 	 */
1200 	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1201 	if (ret)
1202 		goto e_exp;
1203 
1204 	ret = ccp_reverse_set_dm_area(&src, rsa->mod, rsa->mod_len,
1205 				      CCP_SB_BYTES, false);
1206 	if (ret)
1207 		goto e_src;
1208 	src.address += o_len;	/* Adjust the address for the copy operation */
1209 	ret = ccp_reverse_set_dm_area(&src, rsa->src, rsa->src_len,
1210 				      CCP_SB_BYTES, false);
1211 	if (ret)
1212 		goto e_src;
1213 	src.address -= o_len;	/* Reset the address to original value */
1214 
1215 	/* Prepare the output area for the operation */
1216 	ret = ccp_init_data(&dst, cmd_q, rsa->dst, rsa->mod_len,
1217 			    o_len, DMA_FROM_DEVICE);
1218 	if (ret)
1219 		goto e_src;
1220 
1221 	op.soc = 1;
1222 	op.src.u.dma.address = src.dma.address;
1223 	op.src.u.dma.offset = 0;
1224 	op.src.u.dma.length = i_len;
1225 	op.dst.u.dma.address = dst.dm_wa.dma.address;
1226 	op.dst.u.dma.offset = 0;
1227 	op.dst.u.dma.length = o_len;
1228 
1229 	op.u.rsa.mod_size = rsa->key_size;
1230 	op.u.rsa.input_len = i_len;
1231 
1232 	ret = cmd_q->ccp->vdata->perform->rsa(&op);
1233 	if (ret) {
1234 		cmd->engine_error = cmd_q->cmd_error;
1235 		goto e_dst;
1236 	}
1237 
1238 	ccp_reverse_get_dm_area(&dst.dm_wa, rsa->dst, rsa->mod_len);
1239 
1240 e_dst:
1241 	ccp_free_data(&dst, cmd_q);
1242 
1243 e_src:
1244 	ccp_dm_free(&src);
1245 
1246 e_exp:
1247 	ccp_dm_free(&exp);
1248 
1249 e_sb:
1250 	cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1251 
1252 	return ret;
1253 }
1254 
1255 static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
1256 				struct ccp_cmd *cmd)
1257 {
1258 	struct ccp_passthru_engine *pt = &cmd->u.passthru;
1259 	struct ccp_dm_workarea mask;
1260 	struct ccp_data src, dst;
1261 	struct ccp_op op;
1262 	bool in_place = false;
1263 	unsigned int i;
1264 	int ret;
1265 
1266 	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1267 		return -EINVAL;
1268 
1269 	if (!pt->src || !pt->dst)
1270 		return -EINVAL;
1271 
1272 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1273 		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1274 			return -EINVAL;
1275 		if (!pt->mask)
1276 			return -EINVAL;
1277 	}
1278 
1279 	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1280 
1281 	memset(&op, 0, sizeof(op));
1282 	op.cmd_q = cmd_q;
1283 	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1284 
1285 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1286 		/* Load the mask */
1287 		op.sb_key = cmd_q->sb_key;
1288 
1289 		ret = ccp_init_dm_workarea(&mask, cmd_q,
1290 					   CCP_PASSTHRU_SB_COUNT *
1291 					   CCP_SB_BYTES,
1292 					   DMA_TO_DEVICE);
1293 		if (ret)
1294 			return ret;
1295 
1296 		ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1297 		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1298 				     CCP_PASSTHRU_BYTESWAP_NOOP);
1299 		if (ret) {
1300 			cmd->engine_error = cmd_q->cmd_error;
1301 			goto e_mask;
1302 		}
1303 	}
1304 
1305 	/* Prepare the input and output data workareas. For in-place
1306 	 * operations we need to set the dma direction to BIDIRECTIONAL
1307 	 * and copy the src workarea to the dst workarea.
1308 	 */
1309 	if (sg_virt(pt->src) == sg_virt(pt->dst))
1310 		in_place = true;
1311 
1312 	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
1313 			    CCP_PASSTHRU_MASKSIZE,
1314 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1315 	if (ret)
1316 		goto e_mask;
1317 
1318 	if (in_place) {
1319 		dst = src;
1320 	} else {
1321 		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
1322 				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
1323 		if (ret)
1324 			goto e_src;
1325 	}
1326 
1327 	/* Send data to the CCP Passthru engine
1328 	 *   Because the CCP engine works on a single source and destination
1329 	 *   dma address at a time, each entry in the source scatterlist
1330 	 *   (after the dma_map_sg call) must be less than or equal to the
1331 	 *   (remaining) length in the destination scatterlist entry and the
1332 	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
1333 	 */
1334 	dst.sg_wa.sg_used = 0;
1335 	for (i = 1; i <= src.sg_wa.dma_count; i++) {
1336 		if (!dst.sg_wa.sg ||
1337 		    (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
1338 			ret = -EINVAL;
1339 			goto e_dst;
1340 		}
1341 
1342 		if (i == src.sg_wa.dma_count) {
1343 			op.eom = 1;
1344 			op.soc = 1;
1345 		}
1346 
1347 		op.src.type = CCP_MEMTYPE_SYSTEM;
1348 		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
1349 		op.src.u.dma.offset = 0;
1350 		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
1351 
1352 		op.dst.type = CCP_MEMTYPE_SYSTEM;
1353 		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
1354 		op.dst.u.dma.offset = dst.sg_wa.sg_used;
1355 		op.dst.u.dma.length = op.src.u.dma.length;
1356 
1357 		ret = cmd_q->ccp->vdata->perform->passthru(&op);
1358 		if (ret) {
1359 			cmd->engine_error = cmd_q->cmd_error;
1360 			goto e_dst;
1361 		}
1362 
1363 		dst.sg_wa.sg_used += src.sg_wa.sg->length;
1364 		if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
1365 			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
1366 			dst.sg_wa.sg_used = 0;
1367 		}
1368 		src.sg_wa.sg = sg_next(src.sg_wa.sg);
1369 	}
1370 
1371 e_dst:
1372 	if (!in_place)
1373 		ccp_free_data(&dst, cmd_q);
1374 
1375 e_src:
1376 	ccp_free_data(&src, cmd_q);
1377 
1378 e_mask:
1379 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
1380 		ccp_dm_free(&mask);
1381 
1382 	return ret;
1383 }
1384 
1385 static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
1386 				      struct ccp_cmd *cmd)
1387 {
1388 	struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
1389 	struct ccp_dm_workarea mask;
1390 	struct ccp_op op;
1391 	int ret;
1392 
1393 	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1394 		return -EINVAL;
1395 
1396 	if (!pt->src_dma || !pt->dst_dma)
1397 		return -EINVAL;
1398 
1399 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1400 		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1401 			return -EINVAL;
1402 		if (!pt->mask)
1403 			return -EINVAL;
1404 	}
1405 
1406 	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1407 
1408 	memset(&op, 0, sizeof(op));
1409 	op.cmd_q = cmd_q;
1410 	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1411 
1412 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1413 		/* Load the mask */
1414 		op.sb_key = cmd_q->sb_key;
1415 
1416 		mask.length = pt->mask_len;
1417 		mask.dma.address = pt->mask;
1418 		mask.dma.length = pt->mask_len;
1419 
1420 		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1421 				     CCP_PASSTHRU_BYTESWAP_NOOP);
1422 		if (ret) {
1423 			cmd->engine_error = cmd_q->cmd_error;
1424 			return ret;
1425 		}
1426 	}
1427 
1428 	/* Send data to the CCP Passthru engine */
1429 	op.eom = 1;
1430 	op.soc = 1;
1431 
1432 	op.src.type = CCP_MEMTYPE_SYSTEM;
1433 	op.src.u.dma.address = pt->src_dma;
1434 	op.src.u.dma.offset = 0;
1435 	op.src.u.dma.length = pt->src_len;
1436 
1437 	op.dst.type = CCP_MEMTYPE_SYSTEM;
1438 	op.dst.u.dma.address = pt->dst_dma;
1439 	op.dst.u.dma.offset = 0;
1440 	op.dst.u.dma.length = pt->src_len;
1441 
1442 	ret = cmd_q->ccp->vdata->perform->passthru(&op);
1443 	if (ret)
1444 		cmd->engine_error = cmd_q->cmd_error;
1445 
1446 	return ret;
1447 }
1448 
1449 static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1450 {
1451 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
1452 	struct ccp_dm_workarea src, dst;
1453 	struct ccp_op op;
1454 	int ret;
1455 	u8 *save;
1456 
1457 	if (!ecc->u.mm.operand_1 ||
1458 	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
1459 		return -EINVAL;
1460 
1461 	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
1462 		if (!ecc->u.mm.operand_2 ||
1463 		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
1464 			return -EINVAL;
1465 
1466 	if (!ecc->u.mm.result ||
1467 	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
1468 		return -EINVAL;
1469 
1470 	memset(&op, 0, sizeof(op));
1471 	op.cmd_q = cmd_q;
1472 	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1473 
1474 	/* Concatenate the modulus and the operands. Both the modulus and
1475 	 * the operands must be in little endian format.  Since the input
1476 	 * is in big endian format it must be converted and placed in a
1477 	 * fixed length buffer.
1478 	 */
1479 	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
1480 				   DMA_TO_DEVICE);
1481 	if (ret)
1482 		return ret;
1483 
1484 	/* Save the workarea address since it is updated in order to perform
1485 	 * the concatenation
1486 	 */
1487 	save = src.address;
1488 
1489 	/* Copy the ECC modulus */
1490 	ret = ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len,
1491 				      CCP_ECC_OPERAND_SIZE, false);
1492 	if (ret)
1493 		goto e_src;
1494 	src.address += CCP_ECC_OPERAND_SIZE;
1495 
1496 	/* Copy the first operand */
1497 	ret = ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_1,
1498 				      ecc->u.mm.operand_1_len,
1499 				      CCP_ECC_OPERAND_SIZE, false);
1500 	if (ret)
1501 		goto e_src;
1502 	src.address += CCP_ECC_OPERAND_SIZE;
1503 
1504 	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
1505 		/* Copy the second operand */
1506 		ret = ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_2,
1507 					      ecc->u.mm.operand_2_len,
1508 					      CCP_ECC_OPERAND_SIZE, false);
1509 		if (ret)
1510 			goto e_src;
1511 		src.address += CCP_ECC_OPERAND_SIZE;
1512 	}
1513 
1514 	/* Restore the workarea address */
1515 	src.address = save;
1516 
1517 	/* Prepare the output area for the operation */
1518 	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
1519 				   DMA_FROM_DEVICE);
1520 	if (ret)
1521 		goto e_src;
1522 
1523 	op.soc = 1;
1524 	op.src.u.dma.address = src.dma.address;
1525 	op.src.u.dma.offset = 0;
1526 	op.src.u.dma.length = src.length;
1527 	op.dst.u.dma.address = dst.dma.address;
1528 	op.dst.u.dma.offset = 0;
1529 	op.dst.u.dma.length = dst.length;
1530 
1531 	op.u.ecc.function = cmd->u.ecc.function;
1532 
1533 	ret = cmd_q->ccp->vdata->perform->ecc(&op);
1534 	if (ret) {
1535 		cmd->engine_error = cmd_q->cmd_error;
1536 		goto e_dst;
1537 	}
1538 
1539 	ecc->ecc_result = le16_to_cpup(
1540 		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
1541 	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
1542 		ret = -EIO;
1543 		goto e_dst;
1544 	}
1545 
1546 	/* Save the ECC result */
1547 	ccp_reverse_get_dm_area(&dst, ecc->u.mm.result, CCP_ECC_MODULUS_BYTES);
1548 
1549 e_dst:
1550 	ccp_dm_free(&dst);
1551 
1552 e_src:
1553 	ccp_dm_free(&src);
1554 
1555 	return ret;
1556 }
1557 
1558 static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1559 {
1560 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
1561 	struct ccp_dm_workarea src, dst;
1562 	struct ccp_op op;
1563 	int ret;
1564 	u8 *save;
1565 
1566 	if (!ecc->u.pm.point_1.x ||
1567 	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
1568 	    !ecc->u.pm.point_1.y ||
1569 	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
1570 		return -EINVAL;
1571 
1572 	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
1573 		if (!ecc->u.pm.point_2.x ||
1574 		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
1575 		    !ecc->u.pm.point_2.y ||
1576 		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
1577 			return -EINVAL;
1578 	} else {
1579 		if (!ecc->u.pm.domain_a ||
1580 		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
1581 			return -EINVAL;
1582 
1583 		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
1584 			if (!ecc->u.pm.scalar ||
1585 			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
1586 				return -EINVAL;
1587 	}
1588 
1589 	if (!ecc->u.pm.result.x ||
1590 	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
1591 	    !ecc->u.pm.result.y ||
1592 	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
1593 		return -EINVAL;
1594 
1595 	memset(&op, 0, sizeof(op));
1596 	op.cmd_q = cmd_q;
1597 	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1598 
1599 	/* Concatenate the modulus and the operands. Both the modulus and
1600 	 * the operands must be in little endian format.  Since the input
1601 	 * is in big endian format it must be converted and placed in a
1602 	 * fixed length buffer.
1603 	 */
1604 	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
1605 				   DMA_TO_DEVICE);
1606 	if (ret)
1607 		return ret;
1608 
1609 	/* Save the workarea address since it is updated in order to perform
1610 	 * the concatenation
1611 	 */
1612 	save = src.address;
1613 
1614 	/* Copy the ECC modulus */
1615 	ret = ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len,
1616 				      CCP_ECC_OPERAND_SIZE, false);
1617 	if (ret)
1618 		goto e_src;
1619 	src.address += CCP_ECC_OPERAND_SIZE;
1620 
1621 	/* Copy the first point X and Y coordinate */
1622 	ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.x,
1623 				      ecc->u.pm.point_1.x_len,
1624 				      CCP_ECC_OPERAND_SIZE, false);
1625 	if (ret)
1626 		goto e_src;
1627 	src.address += CCP_ECC_OPERAND_SIZE;
1628 	ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.y,
1629 				      ecc->u.pm.point_1.y_len,
1630 				      CCP_ECC_OPERAND_SIZE, false);
1631 	if (ret)
1632 		goto e_src;
1633 	src.address += CCP_ECC_OPERAND_SIZE;
1634 
1635 	/* Set the first point Z coordianate to 1 */
1636 	*src.address = 0x01;
1637 	src.address += CCP_ECC_OPERAND_SIZE;
1638 
1639 	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
1640 		/* Copy the second point X and Y coordinate */
1641 		ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.x,
1642 					      ecc->u.pm.point_2.x_len,
1643 					      CCP_ECC_OPERAND_SIZE, false);
1644 		if (ret)
1645 			goto e_src;
1646 		src.address += CCP_ECC_OPERAND_SIZE;
1647 		ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.y,
1648 					      ecc->u.pm.point_2.y_len,
1649 					      CCP_ECC_OPERAND_SIZE, false);
1650 		if (ret)
1651 			goto e_src;
1652 		src.address += CCP_ECC_OPERAND_SIZE;
1653 
1654 		/* Set the second point Z coordianate to 1 */
1655 		*src.address = 0x01;
1656 		src.address += CCP_ECC_OPERAND_SIZE;
1657 	} else {
1658 		/* Copy the Domain "a" parameter */
1659 		ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.domain_a,
1660 					      ecc->u.pm.domain_a_len,
1661 					      CCP_ECC_OPERAND_SIZE, false);
1662 		if (ret)
1663 			goto e_src;
1664 		src.address += CCP_ECC_OPERAND_SIZE;
1665 
1666 		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
1667 			/* Copy the scalar value */
1668 			ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.scalar,
1669 						      ecc->u.pm.scalar_len,
1670 						      CCP_ECC_OPERAND_SIZE,
1671 						      false);
1672 			if (ret)
1673 				goto e_src;
1674 			src.address += CCP_ECC_OPERAND_SIZE;
1675 		}
1676 	}
1677 
1678 	/* Restore the workarea address */
1679 	src.address = save;
1680 
1681 	/* Prepare the output area for the operation */
1682 	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
1683 				   DMA_FROM_DEVICE);
1684 	if (ret)
1685 		goto e_src;
1686 
1687 	op.soc = 1;
1688 	op.src.u.dma.address = src.dma.address;
1689 	op.src.u.dma.offset = 0;
1690 	op.src.u.dma.length = src.length;
1691 	op.dst.u.dma.address = dst.dma.address;
1692 	op.dst.u.dma.offset = 0;
1693 	op.dst.u.dma.length = dst.length;
1694 
1695 	op.u.ecc.function = cmd->u.ecc.function;
1696 
1697 	ret = cmd_q->ccp->vdata->perform->ecc(&op);
1698 	if (ret) {
1699 		cmd->engine_error = cmd_q->cmd_error;
1700 		goto e_dst;
1701 	}
1702 
1703 	ecc->ecc_result = le16_to_cpup(
1704 		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
1705 	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
1706 		ret = -EIO;
1707 		goto e_dst;
1708 	}
1709 
1710 	/* Save the workarea address since it is updated as we walk through
1711 	 * to copy the point math result
1712 	 */
1713 	save = dst.address;
1714 
1715 	/* Save the ECC result X and Y coordinates */
1716 	ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.x,
1717 				CCP_ECC_MODULUS_BYTES);
1718 	dst.address += CCP_ECC_OUTPUT_SIZE;
1719 	ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.y,
1720 				CCP_ECC_MODULUS_BYTES);
1721 	dst.address += CCP_ECC_OUTPUT_SIZE;
1722 
1723 	/* Restore the workarea address */
1724 	dst.address = save;
1725 
1726 e_dst:
1727 	ccp_dm_free(&dst);
1728 
1729 e_src:
1730 	ccp_dm_free(&src);
1731 
1732 	return ret;
1733 }
1734 
1735 static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1736 {
1737 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
1738 
1739 	ecc->ecc_result = 0;
1740 
1741 	if (!ecc->mod ||
1742 	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
1743 		return -EINVAL;
1744 
1745 	switch (ecc->function) {
1746 	case CCP_ECC_FUNCTION_MMUL_384BIT:
1747 	case CCP_ECC_FUNCTION_MADD_384BIT:
1748 	case CCP_ECC_FUNCTION_MINV_384BIT:
1749 		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
1750 
1751 	case CCP_ECC_FUNCTION_PADD_384BIT:
1752 	case CCP_ECC_FUNCTION_PMUL_384BIT:
1753 	case CCP_ECC_FUNCTION_PDBL_384BIT:
1754 		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
1755 
1756 	default:
1757 		return -EINVAL;
1758 	}
1759 }
1760 
1761 int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1762 {
1763 	int ret;
1764 
1765 	cmd->engine_error = 0;
1766 	cmd_q->cmd_error = 0;
1767 	cmd_q->int_rcvd = 0;
1768 	cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
1769 
1770 	switch (cmd->engine) {
1771 	case CCP_ENGINE_AES:
1772 		ret = ccp_run_aes_cmd(cmd_q, cmd);
1773 		break;
1774 	case CCP_ENGINE_XTS_AES_128:
1775 		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
1776 		break;
1777 	case CCP_ENGINE_SHA:
1778 		ret = ccp_run_sha_cmd(cmd_q, cmd);
1779 		break;
1780 	case CCP_ENGINE_RSA:
1781 		ret = ccp_run_rsa_cmd(cmd_q, cmd);
1782 		break;
1783 	case CCP_ENGINE_PASSTHRU:
1784 		if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
1785 			ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
1786 		else
1787 			ret = ccp_run_passthru_cmd(cmd_q, cmd);
1788 		break;
1789 	case CCP_ENGINE_ECC:
1790 		ret = ccp_run_ecc_cmd(cmd_q, cmd);
1791 		break;
1792 	default:
1793 		ret = -EINVAL;
1794 	}
1795 
1796 	return ret;
1797 }
1798