xref: /linux/drivers/crypto/ccp/ccp-ops.c (revision 990672d48515ce09c76fcf1ceccee48b0dd1942b)
1 /*
2  * AMD Cryptographic Coprocessor (CCP) driver
3  *
4  * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  * Author: Gary R Hook <gary.hook@amd.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/interrupt.h>
18 #include <crypto/scatterwalk.h>
19 #include <crypto/des.h>
20 #include <linux/ccp.h>
21 
22 #include "ccp-dev.h"
23 
24 /* SHA initial context values */
25 static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
26 	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
27 	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
28 	cpu_to_be32(SHA1_H4),
29 };
30 
31 static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
32 	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
33 	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
34 	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
35 	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
36 };
37 
38 static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
39 	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
40 	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
41 	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
42 	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
43 };
44 
45 static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
46 	cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
47 	cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
48 	cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
49 	cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
50 };
51 
52 static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
53 	cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
54 	cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
55 	cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
56 	cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
57 };
58 
59 #define	CCP_NEW_JOBID(ccp)	((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
60 					ccp_gen_jobid(ccp) : 0)
61 
62 static u32 ccp_gen_jobid(struct ccp_device *ccp)
63 {
64 	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
65 }
66 
67 static void ccp_sg_free(struct ccp_sg_workarea *wa)
68 {
69 	if (wa->dma_count)
70 		dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
71 
72 	wa->dma_count = 0;
73 }
74 
75 static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
76 				struct scatterlist *sg, u64 len,
77 				enum dma_data_direction dma_dir)
78 {
79 	memset(wa, 0, sizeof(*wa));
80 
81 	wa->sg = sg;
82 	if (!sg)
83 		return 0;
84 
85 	wa->nents = sg_nents_for_len(sg, len);
86 	if (wa->nents < 0)
87 		return wa->nents;
88 
89 	wa->bytes_left = len;
90 	wa->sg_used = 0;
91 
92 	if (len == 0)
93 		return 0;
94 
95 	if (dma_dir == DMA_NONE)
96 		return 0;
97 
98 	wa->dma_sg = sg;
99 	wa->dma_dev = dev;
100 	wa->dma_dir = dma_dir;
101 	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
102 	if (!wa->dma_count)
103 		return -ENOMEM;
104 
105 	return 0;
106 }
107 
108 static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
109 {
110 	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
111 
112 	if (!wa->sg)
113 		return;
114 
115 	wa->sg_used += nbytes;
116 	wa->bytes_left -= nbytes;
117 	if (wa->sg_used == wa->sg->length) {
118 		wa->sg = sg_next(wa->sg);
119 		wa->sg_used = 0;
120 	}
121 }
122 
123 static void ccp_dm_free(struct ccp_dm_workarea *wa)
124 {
125 	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
126 		if (wa->address)
127 			dma_pool_free(wa->dma_pool, wa->address,
128 				      wa->dma.address);
129 	} else {
130 		if (wa->dma.address)
131 			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
132 					 wa->dma.dir);
133 		kfree(wa->address);
134 	}
135 
136 	wa->address = NULL;
137 	wa->dma.address = 0;
138 }
139 
140 static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
141 				struct ccp_cmd_queue *cmd_q,
142 				unsigned int len,
143 				enum dma_data_direction dir)
144 {
145 	memset(wa, 0, sizeof(*wa));
146 
147 	if (!len)
148 		return 0;
149 
150 	wa->dev = cmd_q->ccp->dev;
151 	wa->length = len;
152 
153 	if (len <= CCP_DMAPOOL_MAX_SIZE) {
154 		wa->dma_pool = cmd_q->dma_pool;
155 
156 		wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
157 					     &wa->dma.address);
158 		if (!wa->address)
159 			return -ENOMEM;
160 
161 		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
162 
163 		memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
164 	} else {
165 		wa->address = kzalloc(len, GFP_KERNEL);
166 		if (!wa->address)
167 			return -ENOMEM;
168 
169 		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
170 						 dir);
171 		if (!wa->dma.address)
172 			return -ENOMEM;
173 
174 		wa->dma.length = len;
175 	}
176 	wa->dma.dir = dir;
177 
178 	return 0;
179 }
180 
181 static void ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
182 			    struct scatterlist *sg, unsigned int sg_offset,
183 			    unsigned int len)
184 {
185 	WARN_ON(!wa->address);
186 
187 	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
188 				 0);
189 }
190 
191 static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
192 			    struct scatterlist *sg, unsigned int sg_offset,
193 			    unsigned int len)
194 {
195 	WARN_ON(!wa->address);
196 
197 	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
198 				 1);
199 }
200 
201 static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
202 				   unsigned int wa_offset,
203 				   struct scatterlist *sg,
204 				   unsigned int sg_offset,
205 				   unsigned int len)
206 {
207 	u8 *p, *q;
208 
209 	ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
210 
211 	p = wa->address + wa_offset;
212 	q = p + len - 1;
213 	while (p < q) {
214 		*p = *p ^ *q;
215 		*q = *p ^ *q;
216 		*p = *p ^ *q;
217 		p++;
218 		q--;
219 	}
220 	return 0;
221 }
222 
223 static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
224 				    unsigned int wa_offset,
225 				    struct scatterlist *sg,
226 				    unsigned int sg_offset,
227 				    unsigned int len)
228 {
229 	u8 *p, *q;
230 
231 	p = wa->address + wa_offset;
232 	q = p + len - 1;
233 	while (p < q) {
234 		*p = *p ^ *q;
235 		*q = *p ^ *q;
236 		*p = *p ^ *q;
237 		p++;
238 		q--;
239 	}
240 
241 	ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
242 }
243 
244 static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
245 {
246 	ccp_dm_free(&data->dm_wa);
247 	ccp_sg_free(&data->sg_wa);
248 }
249 
250 static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
251 			 struct scatterlist *sg, u64 sg_len,
252 			 unsigned int dm_len,
253 			 enum dma_data_direction dir)
254 {
255 	int ret;
256 
257 	memset(data, 0, sizeof(*data));
258 
259 	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
260 				   dir);
261 	if (ret)
262 		goto e_err;
263 
264 	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
265 	if (ret)
266 		goto e_err;
267 
268 	return 0;
269 
270 e_err:
271 	ccp_free_data(data, cmd_q);
272 
273 	return ret;
274 }
275 
276 static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
277 {
278 	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
279 	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
280 	unsigned int buf_count, nbytes;
281 
282 	/* Clear the buffer if setting it */
283 	if (!from)
284 		memset(dm_wa->address, 0, dm_wa->length);
285 
286 	if (!sg_wa->sg)
287 		return 0;
288 
289 	/* Perform the copy operation
290 	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
291 	 *   an unsigned int
292 	 */
293 	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
294 	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
295 				 nbytes, from);
296 
297 	/* Update the structures and generate the count */
298 	buf_count = 0;
299 	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
300 		nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
301 			     dm_wa->length - buf_count);
302 		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
303 
304 		buf_count += nbytes;
305 		ccp_update_sg_workarea(sg_wa, nbytes);
306 	}
307 
308 	return buf_count;
309 }
310 
311 static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
312 {
313 	return ccp_queue_buf(data, 0);
314 }
315 
316 static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
317 {
318 	return ccp_queue_buf(data, 1);
319 }
320 
321 static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
322 			     struct ccp_op *op, unsigned int block_size,
323 			     bool blocksize_op)
324 {
325 	unsigned int sg_src_len, sg_dst_len, op_len;
326 
327 	/* The CCP can only DMA from/to one address each per operation. This
328 	 * requires that we find the smallest DMA area between the source
329 	 * and destination. The resulting len values will always be <= UINT_MAX
330 	 * because the dma length is an unsigned int.
331 	 */
332 	sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
333 	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
334 
335 	if (dst) {
336 		sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
337 		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
338 		op_len = min(sg_src_len, sg_dst_len);
339 	} else {
340 		op_len = sg_src_len;
341 	}
342 
343 	/* The data operation length will be at least block_size in length
344 	 * or the smaller of available sg room remaining for the source or
345 	 * the destination
346 	 */
347 	op_len = max(op_len, block_size);
348 
349 	/* Unless we have to buffer data, there's no reason to wait */
350 	op->soc = 0;
351 
352 	if (sg_src_len < block_size) {
353 		/* Not enough data in the sg element, so it
354 		 * needs to be buffered into a blocksize chunk
355 		 */
356 		int cp_len = ccp_fill_queue_buf(src);
357 
358 		op->soc = 1;
359 		op->src.u.dma.address = src->dm_wa.dma.address;
360 		op->src.u.dma.offset = 0;
361 		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
362 	} else {
363 		/* Enough data in the sg element, but we need to
364 		 * adjust for any previously copied data
365 		 */
366 		op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
367 		op->src.u.dma.offset = src->sg_wa.sg_used;
368 		op->src.u.dma.length = op_len & ~(block_size - 1);
369 
370 		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
371 	}
372 
373 	if (dst) {
374 		if (sg_dst_len < block_size) {
375 			/* Not enough room in the sg element or we're on the
376 			 * last piece of data (when using padding), so the
377 			 * output needs to be buffered into a blocksize chunk
378 			 */
379 			op->soc = 1;
380 			op->dst.u.dma.address = dst->dm_wa.dma.address;
381 			op->dst.u.dma.offset = 0;
382 			op->dst.u.dma.length = op->src.u.dma.length;
383 		} else {
384 			/* Enough room in the sg element, but we need to
385 			 * adjust for any previously used area
386 			 */
387 			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
388 			op->dst.u.dma.offset = dst->sg_wa.sg_used;
389 			op->dst.u.dma.length = op->src.u.dma.length;
390 		}
391 	}
392 }
393 
394 static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
395 			     struct ccp_op *op)
396 {
397 	op->init = 0;
398 
399 	if (dst) {
400 		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
401 			ccp_empty_queue_buf(dst);
402 		else
403 			ccp_update_sg_workarea(&dst->sg_wa,
404 					       op->dst.u.dma.length);
405 	}
406 }
407 
408 static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
409 			       struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
410 			       u32 byte_swap, bool from)
411 {
412 	struct ccp_op op;
413 
414 	memset(&op, 0, sizeof(op));
415 
416 	op.cmd_q = cmd_q;
417 	op.jobid = jobid;
418 	op.eom = 1;
419 
420 	if (from) {
421 		op.soc = 1;
422 		op.src.type = CCP_MEMTYPE_SB;
423 		op.src.u.sb = sb;
424 		op.dst.type = CCP_MEMTYPE_SYSTEM;
425 		op.dst.u.dma.address = wa->dma.address;
426 		op.dst.u.dma.length = wa->length;
427 	} else {
428 		op.src.type = CCP_MEMTYPE_SYSTEM;
429 		op.src.u.dma.address = wa->dma.address;
430 		op.src.u.dma.length = wa->length;
431 		op.dst.type = CCP_MEMTYPE_SB;
432 		op.dst.u.sb = sb;
433 	}
434 
435 	op.u.passthru.byte_swap = byte_swap;
436 
437 	return cmd_q->ccp->vdata->perform->passthru(&op);
438 }
439 
440 static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
441 			  struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
442 			  u32 byte_swap)
443 {
444 	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
445 }
446 
447 static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
448 			    struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
449 			    u32 byte_swap)
450 {
451 	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
452 }
453 
454 static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
455 				struct ccp_cmd *cmd)
456 {
457 	struct ccp_aes_engine *aes = &cmd->u.aes;
458 	struct ccp_dm_workarea key, ctx;
459 	struct ccp_data src;
460 	struct ccp_op op;
461 	unsigned int dm_offset;
462 	int ret;
463 
464 	if (!((aes->key_len == AES_KEYSIZE_128) ||
465 	      (aes->key_len == AES_KEYSIZE_192) ||
466 	      (aes->key_len == AES_KEYSIZE_256)))
467 		return -EINVAL;
468 
469 	if (aes->src_len & (AES_BLOCK_SIZE - 1))
470 		return -EINVAL;
471 
472 	if (aes->iv_len != AES_BLOCK_SIZE)
473 		return -EINVAL;
474 
475 	if (!aes->key || !aes->iv || !aes->src)
476 		return -EINVAL;
477 
478 	if (aes->cmac_final) {
479 		if (aes->cmac_key_len != AES_BLOCK_SIZE)
480 			return -EINVAL;
481 
482 		if (!aes->cmac_key)
483 			return -EINVAL;
484 	}
485 
486 	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
487 	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
488 
489 	ret = -EIO;
490 	memset(&op, 0, sizeof(op));
491 	op.cmd_q = cmd_q;
492 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
493 	op.sb_key = cmd_q->sb_key;
494 	op.sb_ctx = cmd_q->sb_ctx;
495 	op.init = 1;
496 	op.u.aes.type = aes->type;
497 	op.u.aes.mode = aes->mode;
498 	op.u.aes.action = aes->action;
499 
500 	/* All supported key sizes fit in a single (32-byte) SB entry
501 	 * and must be in little endian format. Use the 256-bit byte
502 	 * swap passthru option to convert from big endian to little
503 	 * endian.
504 	 */
505 	ret = ccp_init_dm_workarea(&key, cmd_q,
506 				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
507 				   DMA_TO_DEVICE);
508 	if (ret)
509 		return ret;
510 
511 	dm_offset = CCP_SB_BYTES - aes->key_len;
512 	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
513 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
514 			     CCP_PASSTHRU_BYTESWAP_256BIT);
515 	if (ret) {
516 		cmd->engine_error = cmd_q->cmd_error;
517 		goto e_key;
518 	}
519 
520 	/* The AES context fits in a single (32-byte) SB entry and
521 	 * must be in little endian format. Use the 256-bit byte swap
522 	 * passthru option to convert from big endian to little endian.
523 	 */
524 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
525 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
526 				   DMA_BIDIRECTIONAL);
527 	if (ret)
528 		goto e_key;
529 
530 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
531 	ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
532 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
533 			     CCP_PASSTHRU_BYTESWAP_256BIT);
534 	if (ret) {
535 		cmd->engine_error = cmd_q->cmd_error;
536 		goto e_ctx;
537 	}
538 
539 	/* Send data to the CCP AES engine */
540 	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
541 			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
542 	if (ret)
543 		goto e_ctx;
544 
545 	while (src.sg_wa.bytes_left) {
546 		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
547 		if (aes->cmac_final && !src.sg_wa.bytes_left) {
548 			op.eom = 1;
549 
550 			/* Push the K1/K2 key to the CCP now */
551 			ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
552 					       op.sb_ctx,
553 					       CCP_PASSTHRU_BYTESWAP_256BIT);
554 			if (ret) {
555 				cmd->engine_error = cmd_q->cmd_error;
556 				goto e_src;
557 			}
558 
559 			ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
560 					aes->cmac_key_len);
561 			ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
562 					     CCP_PASSTHRU_BYTESWAP_256BIT);
563 			if (ret) {
564 				cmd->engine_error = cmd_q->cmd_error;
565 				goto e_src;
566 			}
567 		}
568 
569 		ret = cmd_q->ccp->vdata->perform->aes(&op);
570 		if (ret) {
571 			cmd->engine_error = cmd_q->cmd_error;
572 			goto e_src;
573 		}
574 
575 		ccp_process_data(&src, NULL, &op);
576 	}
577 
578 	/* Retrieve the AES context - convert from LE to BE using
579 	 * 32-byte (256-bit) byteswapping
580 	 */
581 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
582 			       CCP_PASSTHRU_BYTESWAP_256BIT);
583 	if (ret) {
584 		cmd->engine_error = cmd_q->cmd_error;
585 		goto e_src;
586 	}
587 
588 	/* ...but we only need AES_BLOCK_SIZE bytes */
589 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
590 	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
591 
592 e_src:
593 	ccp_free_data(&src, cmd_q);
594 
595 e_ctx:
596 	ccp_dm_free(&ctx);
597 
598 e_key:
599 	ccp_dm_free(&key);
600 
601 	return ret;
602 }
603 
604 static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
605 {
606 	struct ccp_aes_engine *aes = &cmd->u.aes;
607 	struct ccp_dm_workarea key, ctx;
608 	struct ccp_data src, dst;
609 	struct ccp_op op;
610 	unsigned int dm_offset;
611 	bool in_place = false;
612 	int ret;
613 
614 	if (aes->mode == CCP_AES_MODE_CMAC)
615 		return ccp_run_aes_cmac_cmd(cmd_q, cmd);
616 
617 	if (!((aes->key_len == AES_KEYSIZE_128) ||
618 	      (aes->key_len == AES_KEYSIZE_192) ||
619 	      (aes->key_len == AES_KEYSIZE_256)))
620 		return -EINVAL;
621 
622 	if (((aes->mode == CCP_AES_MODE_ECB) ||
623 	     (aes->mode == CCP_AES_MODE_CBC) ||
624 	     (aes->mode == CCP_AES_MODE_CFB)) &&
625 	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
626 		return -EINVAL;
627 
628 	if (!aes->key || !aes->src || !aes->dst)
629 		return -EINVAL;
630 
631 	if (aes->mode != CCP_AES_MODE_ECB) {
632 		if (aes->iv_len != AES_BLOCK_SIZE)
633 			return -EINVAL;
634 
635 		if (!aes->iv)
636 			return -EINVAL;
637 	}
638 
639 	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
640 	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
641 
642 	ret = -EIO;
643 	memset(&op, 0, sizeof(op));
644 	op.cmd_q = cmd_q;
645 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
646 	op.sb_key = cmd_q->sb_key;
647 	op.sb_ctx = cmd_q->sb_ctx;
648 	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
649 	op.u.aes.type = aes->type;
650 	op.u.aes.mode = aes->mode;
651 	op.u.aes.action = aes->action;
652 
653 	/* All supported key sizes fit in a single (32-byte) SB entry
654 	 * and must be in little endian format. Use the 256-bit byte
655 	 * swap passthru option to convert from big endian to little
656 	 * endian.
657 	 */
658 	ret = ccp_init_dm_workarea(&key, cmd_q,
659 				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
660 				   DMA_TO_DEVICE);
661 	if (ret)
662 		return ret;
663 
664 	dm_offset = CCP_SB_BYTES - aes->key_len;
665 	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
666 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
667 			     CCP_PASSTHRU_BYTESWAP_256BIT);
668 	if (ret) {
669 		cmd->engine_error = cmd_q->cmd_error;
670 		goto e_key;
671 	}
672 
673 	/* The AES context fits in a single (32-byte) SB entry and
674 	 * must be in little endian format. Use the 256-bit byte swap
675 	 * passthru option to convert from big endian to little endian.
676 	 */
677 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
678 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
679 				   DMA_BIDIRECTIONAL);
680 	if (ret)
681 		goto e_key;
682 
683 	if (aes->mode != CCP_AES_MODE_ECB) {
684 		/* Load the AES context - convert to LE */
685 		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
686 		ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
687 		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
688 				     CCP_PASSTHRU_BYTESWAP_256BIT);
689 		if (ret) {
690 			cmd->engine_error = cmd_q->cmd_error;
691 			goto e_ctx;
692 		}
693 	}
694 	switch (aes->mode) {
695 	case CCP_AES_MODE_CFB: /* CFB128 only */
696 	case CCP_AES_MODE_CTR:
697 		op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
698 		break;
699 	default:
700 		op.u.aes.size = 0;
701 	}
702 
703 	/* Prepare the input and output data workareas. For in-place
704 	 * operations we need to set the dma direction to BIDIRECTIONAL
705 	 * and copy the src workarea to the dst workarea.
706 	 */
707 	if (sg_virt(aes->src) == sg_virt(aes->dst))
708 		in_place = true;
709 
710 	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
711 			    AES_BLOCK_SIZE,
712 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
713 	if (ret)
714 		goto e_ctx;
715 
716 	if (in_place) {
717 		dst = src;
718 	} else {
719 		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
720 				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
721 		if (ret)
722 			goto e_src;
723 	}
724 
725 	/* Send data to the CCP AES engine */
726 	while (src.sg_wa.bytes_left) {
727 		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
728 		if (!src.sg_wa.bytes_left) {
729 			op.eom = 1;
730 
731 			/* Since we don't retrieve the AES context in ECB
732 			 * mode we have to wait for the operation to complete
733 			 * on the last piece of data
734 			 */
735 			if (aes->mode == CCP_AES_MODE_ECB)
736 				op.soc = 1;
737 		}
738 
739 		ret = cmd_q->ccp->vdata->perform->aes(&op);
740 		if (ret) {
741 			cmd->engine_error = cmd_q->cmd_error;
742 			goto e_dst;
743 		}
744 
745 		ccp_process_data(&src, &dst, &op);
746 	}
747 
748 	if (aes->mode != CCP_AES_MODE_ECB) {
749 		/* Retrieve the AES context - convert from LE to BE using
750 		 * 32-byte (256-bit) byteswapping
751 		 */
752 		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
753 				       CCP_PASSTHRU_BYTESWAP_256BIT);
754 		if (ret) {
755 			cmd->engine_error = cmd_q->cmd_error;
756 			goto e_dst;
757 		}
758 
759 		/* ...but we only need AES_BLOCK_SIZE bytes */
760 		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
761 		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
762 	}
763 
764 e_dst:
765 	if (!in_place)
766 		ccp_free_data(&dst, cmd_q);
767 
768 e_src:
769 	ccp_free_data(&src, cmd_q);
770 
771 e_ctx:
772 	ccp_dm_free(&ctx);
773 
774 e_key:
775 	ccp_dm_free(&key);
776 
777 	return ret;
778 }
779 
780 static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
781 			       struct ccp_cmd *cmd)
782 {
783 	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
784 	struct ccp_dm_workarea key, ctx;
785 	struct ccp_data src, dst;
786 	struct ccp_op op;
787 	unsigned int unit_size, dm_offset;
788 	bool in_place = false;
789 	int ret;
790 
791 	switch (xts->unit_size) {
792 	case CCP_XTS_AES_UNIT_SIZE_16:
793 		unit_size = 16;
794 		break;
795 	case CCP_XTS_AES_UNIT_SIZE_512:
796 		unit_size = 512;
797 		break;
798 	case CCP_XTS_AES_UNIT_SIZE_1024:
799 		unit_size = 1024;
800 		break;
801 	case CCP_XTS_AES_UNIT_SIZE_2048:
802 		unit_size = 2048;
803 		break;
804 	case CCP_XTS_AES_UNIT_SIZE_4096:
805 		unit_size = 4096;
806 		break;
807 
808 	default:
809 		return -EINVAL;
810 	}
811 
812 	if (xts->key_len != AES_KEYSIZE_128)
813 		return -EINVAL;
814 
815 	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
816 		return -EINVAL;
817 
818 	if (xts->iv_len != AES_BLOCK_SIZE)
819 		return -EINVAL;
820 
821 	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
822 		return -EINVAL;
823 
824 	BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
825 	BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
826 
827 	ret = -EIO;
828 	memset(&op, 0, sizeof(op));
829 	op.cmd_q = cmd_q;
830 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
831 	op.sb_key = cmd_q->sb_key;
832 	op.sb_ctx = cmd_q->sb_ctx;
833 	op.init = 1;
834 	op.u.xts.action = xts->action;
835 	op.u.xts.unit_size = xts->unit_size;
836 
837 	/* All supported key sizes fit in a single (32-byte) SB entry
838 	 * and must be in little endian format. Use the 256-bit byte
839 	 * swap passthru option to convert from big endian to little
840 	 * endian.
841 	 */
842 	ret = ccp_init_dm_workarea(&key, cmd_q,
843 				   CCP_XTS_AES_KEY_SB_COUNT * CCP_SB_BYTES,
844 				   DMA_TO_DEVICE);
845 	if (ret)
846 		return ret;
847 
848 	dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
849 	ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
850 	ccp_set_dm_area(&key, 0, xts->key, dm_offset, xts->key_len);
851 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
852 			     CCP_PASSTHRU_BYTESWAP_256BIT);
853 	if (ret) {
854 		cmd->engine_error = cmd_q->cmd_error;
855 		goto e_key;
856 	}
857 
858 	/* The AES context fits in a single (32-byte) SB entry and
859 	 * for XTS is already in little endian format so no byte swapping
860 	 * is needed.
861 	 */
862 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
863 				   CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
864 				   DMA_BIDIRECTIONAL);
865 	if (ret)
866 		goto e_key;
867 
868 	ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
869 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
870 			     CCP_PASSTHRU_BYTESWAP_NOOP);
871 	if (ret) {
872 		cmd->engine_error = cmd_q->cmd_error;
873 		goto e_ctx;
874 	}
875 
876 	/* Prepare the input and output data workareas. For in-place
877 	 * operations we need to set the dma direction to BIDIRECTIONAL
878 	 * and copy the src workarea to the dst workarea.
879 	 */
880 	if (sg_virt(xts->src) == sg_virt(xts->dst))
881 		in_place = true;
882 
883 	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
884 			    unit_size,
885 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
886 	if (ret)
887 		goto e_ctx;
888 
889 	if (in_place) {
890 		dst = src;
891 	} else {
892 		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
893 				    unit_size, DMA_FROM_DEVICE);
894 		if (ret)
895 			goto e_src;
896 	}
897 
898 	/* Send data to the CCP AES engine */
899 	while (src.sg_wa.bytes_left) {
900 		ccp_prepare_data(&src, &dst, &op, unit_size, true);
901 		if (!src.sg_wa.bytes_left)
902 			op.eom = 1;
903 
904 		ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
905 		if (ret) {
906 			cmd->engine_error = cmd_q->cmd_error;
907 			goto e_dst;
908 		}
909 
910 		ccp_process_data(&src, &dst, &op);
911 	}
912 
913 	/* Retrieve the AES context - convert from LE to BE using
914 	 * 32-byte (256-bit) byteswapping
915 	 */
916 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
917 			       CCP_PASSTHRU_BYTESWAP_256BIT);
918 	if (ret) {
919 		cmd->engine_error = cmd_q->cmd_error;
920 		goto e_dst;
921 	}
922 
923 	/* ...but we only need AES_BLOCK_SIZE bytes */
924 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
925 	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
926 
927 e_dst:
928 	if (!in_place)
929 		ccp_free_data(&dst, cmd_q);
930 
931 e_src:
932 	ccp_free_data(&src, cmd_q);
933 
934 e_ctx:
935 	ccp_dm_free(&ctx);
936 
937 e_key:
938 	ccp_dm_free(&key);
939 
940 	return ret;
941 }
942 
943 static int ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
944 {
945 	struct ccp_des3_engine *des3 = &cmd->u.des3;
946 
947 	struct ccp_dm_workarea key, ctx;
948 	struct ccp_data src, dst;
949 	struct ccp_op op;
950 	unsigned int dm_offset;
951 	unsigned int len_singlekey;
952 	bool in_place = false;
953 	int ret;
954 
955 	/* Error checks */
956 	if (!cmd_q->ccp->vdata->perform->des3)
957 		return -EINVAL;
958 
959 	if (des3->key_len != DES3_EDE_KEY_SIZE)
960 		return -EINVAL;
961 
962 	if (((des3->mode == CCP_DES3_MODE_ECB) ||
963 		(des3->mode == CCP_DES3_MODE_CBC)) &&
964 		(des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
965 		return -EINVAL;
966 
967 	if (!des3->key || !des3->src || !des3->dst)
968 		return -EINVAL;
969 
970 	if (des3->mode != CCP_DES3_MODE_ECB) {
971 		if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
972 			return -EINVAL;
973 
974 		if (!des3->iv)
975 			return -EINVAL;
976 	}
977 
978 	ret = -EIO;
979 	/* Zero out all the fields of the command desc */
980 	memset(&op, 0, sizeof(op));
981 
982 	/* Set up the Function field */
983 	op.cmd_q = cmd_q;
984 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
985 	op.sb_key = cmd_q->sb_key;
986 
987 	op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
988 	op.u.des3.type = des3->type;
989 	op.u.des3.mode = des3->mode;
990 	op.u.des3.action = des3->action;
991 
992 	/*
993 	 * All supported key sizes fit in a single (32-byte) KSB entry and
994 	 * (like AES) must be in little endian format. Use the 256-bit byte
995 	 * swap passthru option to convert from big endian to little endian.
996 	 */
997 	ret = ccp_init_dm_workarea(&key, cmd_q,
998 				   CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
999 				   DMA_TO_DEVICE);
1000 	if (ret)
1001 		return ret;
1002 
1003 	/*
1004 	 * The contents of the key triplet are in the reverse order of what
1005 	 * is required by the engine. Copy the 3 pieces individually to put
1006 	 * them where they belong.
1007 	 */
1008 	dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1009 
1010 	len_singlekey = des3->key_len / 3;
1011 	ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1012 			des3->key, 0, len_singlekey);
1013 	ccp_set_dm_area(&key, dm_offset + len_singlekey,
1014 			des3->key, len_singlekey, len_singlekey);
1015 	ccp_set_dm_area(&key, dm_offset,
1016 			des3->key, 2 * len_singlekey, len_singlekey);
1017 
1018 	/* Copy the key to the SB */
1019 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1020 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1021 	if (ret) {
1022 		cmd->engine_error = cmd_q->cmd_error;
1023 		goto e_key;
1024 	}
1025 
1026 	/*
1027 	 * The DES3 context fits in a single (32-byte) KSB entry and
1028 	 * must be in little endian format. Use the 256-bit byte swap
1029 	 * passthru option to convert from big endian to little endian.
1030 	 */
1031 	if (des3->mode != CCP_DES3_MODE_ECB) {
1032 		u32 load_mode;
1033 
1034 		op.sb_ctx = cmd_q->sb_ctx;
1035 
1036 		ret = ccp_init_dm_workarea(&ctx, cmd_q,
1037 					   CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1038 					   DMA_BIDIRECTIONAL);
1039 		if (ret)
1040 			goto e_key;
1041 
1042 		/* Load the context into the LSB */
1043 		dm_offset = CCP_SB_BYTES - des3->iv_len;
1044 		ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0, des3->iv_len);
1045 
1046 		if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1047 			load_mode = CCP_PASSTHRU_BYTESWAP_NOOP;
1048 		else
1049 			load_mode = CCP_PASSTHRU_BYTESWAP_256BIT;
1050 		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1051 				     load_mode);
1052 		if (ret) {
1053 			cmd->engine_error = cmd_q->cmd_error;
1054 			goto e_ctx;
1055 		}
1056 	}
1057 
1058 	/*
1059 	 * Prepare the input and output data workareas. For in-place
1060 	 * operations we need to set the dma direction to BIDIRECTIONAL
1061 	 * and copy the src workarea to the dst workarea.
1062 	 */
1063 	if (sg_virt(des3->src) == sg_virt(des3->dst))
1064 		in_place = true;
1065 
1066 	ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1067 			DES3_EDE_BLOCK_SIZE,
1068 			in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1069 	if (ret)
1070 		goto e_ctx;
1071 
1072 	if (in_place)
1073 		dst = src;
1074 	else {
1075 		ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1076 				DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1077 		if (ret)
1078 			goto e_src;
1079 	}
1080 
1081 	/* Send data to the CCP DES3 engine */
1082 	while (src.sg_wa.bytes_left) {
1083 		ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1084 		if (!src.sg_wa.bytes_left) {
1085 			op.eom = 1;
1086 
1087 			/* Since we don't retrieve the context in ECB mode
1088 			 * we have to wait for the operation to complete
1089 			 * on the last piece of data
1090 			 */
1091 			op.soc = 0;
1092 		}
1093 
1094 		ret = cmd_q->ccp->vdata->perform->des3(&op);
1095 		if (ret) {
1096 			cmd->engine_error = cmd_q->cmd_error;
1097 			goto e_dst;
1098 		}
1099 
1100 		ccp_process_data(&src, &dst, &op);
1101 	}
1102 
1103 	if (des3->mode != CCP_DES3_MODE_ECB) {
1104 		/* Retrieve the context and make BE */
1105 		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1106 				       CCP_PASSTHRU_BYTESWAP_256BIT);
1107 		if (ret) {
1108 			cmd->engine_error = cmd_q->cmd_error;
1109 			goto e_dst;
1110 		}
1111 
1112 		/* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1113 		if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1114 			dm_offset = CCP_SB_BYTES - des3->iv_len;
1115 		else
1116 			dm_offset = 0;
1117 		ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1118 				DES3_EDE_BLOCK_SIZE);
1119 	}
1120 e_dst:
1121 	if (!in_place)
1122 		ccp_free_data(&dst, cmd_q);
1123 
1124 e_src:
1125 	ccp_free_data(&src, cmd_q);
1126 
1127 e_ctx:
1128 	if (des3->mode != CCP_DES3_MODE_ECB)
1129 		ccp_dm_free(&ctx);
1130 
1131 e_key:
1132 	ccp_dm_free(&key);
1133 
1134 	return ret;
1135 }
1136 
1137 static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1138 {
1139 	struct ccp_sha_engine *sha = &cmd->u.sha;
1140 	struct ccp_dm_workarea ctx;
1141 	struct ccp_data src;
1142 	struct ccp_op op;
1143 	unsigned int ioffset, ooffset;
1144 	unsigned int digest_size;
1145 	int sb_count;
1146 	const void *init;
1147 	u64 block_size;
1148 	int ctx_size;
1149 	int ret;
1150 
1151 	switch (sha->type) {
1152 	case CCP_SHA_TYPE_1:
1153 		if (sha->ctx_len < SHA1_DIGEST_SIZE)
1154 			return -EINVAL;
1155 		block_size = SHA1_BLOCK_SIZE;
1156 		break;
1157 	case CCP_SHA_TYPE_224:
1158 		if (sha->ctx_len < SHA224_DIGEST_SIZE)
1159 			return -EINVAL;
1160 		block_size = SHA224_BLOCK_SIZE;
1161 		break;
1162 	case CCP_SHA_TYPE_256:
1163 		if (sha->ctx_len < SHA256_DIGEST_SIZE)
1164 			return -EINVAL;
1165 		block_size = SHA256_BLOCK_SIZE;
1166 		break;
1167 	case CCP_SHA_TYPE_384:
1168 		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1169 		    || sha->ctx_len < SHA384_DIGEST_SIZE)
1170 			return -EINVAL;
1171 		block_size = SHA384_BLOCK_SIZE;
1172 		break;
1173 	case CCP_SHA_TYPE_512:
1174 		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1175 		    || sha->ctx_len < SHA512_DIGEST_SIZE)
1176 			return -EINVAL;
1177 		block_size = SHA512_BLOCK_SIZE;
1178 		break;
1179 	default:
1180 		return -EINVAL;
1181 	}
1182 
1183 	if (!sha->ctx)
1184 		return -EINVAL;
1185 
1186 	if (!sha->final && (sha->src_len & (block_size - 1)))
1187 		return -EINVAL;
1188 
1189 	/* The version 3 device can't handle zero-length input */
1190 	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1191 
1192 		if (!sha->src_len) {
1193 			unsigned int digest_len;
1194 			const u8 *sha_zero;
1195 
1196 			/* Not final, just return */
1197 			if (!sha->final)
1198 				return 0;
1199 
1200 			/* CCP can't do a zero length sha operation so the
1201 			 * caller must buffer the data.
1202 			 */
1203 			if (sha->msg_bits)
1204 				return -EINVAL;
1205 
1206 			/* The CCP cannot perform zero-length sha operations
1207 			 * so the caller is required to buffer data for the
1208 			 * final operation. However, a sha operation for a
1209 			 * message with a total length of zero is valid so
1210 			 * known values are required to supply the result.
1211 			 */
1212 			switch (sha->type) {
1213 			case CCP_SHA_TYPE_1:
1214 				sha_zero = sha1_zero_message_hash;
1215 				digest_len = SHA1_DIGEST_SIZE;
1216 				break;
1217 			case CCP_SHA_TYPE_224:
1218 				sha_zero = sha224_zero_message_hash;
1219 				digest_len = SHA224_DIGEST_SIZE;
1220 				break;
1221 			case CCP_SHA_TYPE_256:
1222 				sha_zero = sha256_zero_message_hash;
1223 				digest_len = SHA256_DIGEST_SIZE;
1224 				break;
1225 			default:
1226 				return -EINVAL;
1227 			}
1228 
1229 			scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1230 						 digest_len, 1);
1231 
1232 			return 0;
1233 		}
1234 	}
1235 
1236 	/* Set variables used throughout */
1237 	switch (sha->type) {
1238 	case CCP_SHA_TYPE_1:
1239 		digest_size = SHA1_DIGEST_SIZE;
1240 		init = (void *) ccp_sha1_init;
1241 		ctx_size = SHA1_DIGEST_SIZE;
1242 		sb_count = 1;
1243 		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1244 			ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1245 		else
1246 			ooffset = ioffset = 0;
1247 		break;
1248 	case CCP_SHA_TYPE_224:
1249 		digest_size = SHA224_DIGEST_SIZE;
1250 		init = (void *) ccp_sha224_init;
1251 		ctx_size = SHA256_DIGEST_SIZE;
1252 		sb_count = 1;
1253 		ioffset = 0;
1254 		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1255 			ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1256 		else
1257 			ooffset = 0;
1258 		break;
1259 	case CCP_SHA_TYPE_256:
1260 		digest_size = SHA256_DIGEST_SIZE;
1261 		init = (void *) ccp_sha256_init;
1262 		ctx_size = SHA256_DIGEST_SIZE;
1263 		sb_count = 1;
1264 		ooffset = ioffset = 0;
1265 		break;
1266 	case CCP_SHA_TYPE_384:
1267 		digest_size = SHA384_DIGEST_SIZE;
1268 		init = (void *) ccp_sha384_init;
1269 		ctx_size = SHA512_DIGEST_SIZE;
1270 		sb_count = 2;
1271 		ioffset = 0;
1272 		ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1273 		break;
1274 	case CCP_SHA_TYPE_512:
1275 		digest_size = SHA512_DIGEST_SIZE;
1276 		init = (void *) ccp_sha512_init;
1277 		ctx_size = SHA512_DIGEST_SIZE;
1278 		sb_count = 2;
1279 		ooffset = ioffset = 0;
1280 		break;
1281 	default:
1282 		ret = -EINVAL;
1283 		goto e_data;
1284 	}
1285 
1286 	/* For zero-length plaintext the src pointer is ignored;
1287 	 * otherwise both parts must be valid
1288 	 */
1289 	if (sha->src_len && !sha->src)
1290 		return -EINVAL;
1291 
1292 	memset(&op, 0, sizeof(op));
1293 	op.cmd_q = cmd_q;
1294 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1295 	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1296 	op.u.sha.type = sha->type;
1297 	op.u.sha.msg_bits = sha->msg_bits;
1298 
1299 	/* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1300 	 * SHA384/512 require 2 adjacent SB slots, with the right half in the
1301 	 * first slot, and the left half in the second. Each portion must then
1302 	 * be in little endian format: use the 256-bit byte swap option.
1303 	 */
1304 	ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1305 				   DMA_BIDIRECTIONAL);
1306 	if (ret)
1307 		return ret;
1308 	if (sha->first) {
1309 		switch (sha->type) {
1310 		case CCP_SHA_TYPE_1:
1311 		case CCP_SHA_TYPE_224:
1312 		case CCP_SHA_TYPE_256:
1313 			memcpy(ctx.address + ioffset, init, ctx_size);
1314 			break;
1315 		case CCP_SHA_TYPE_384:
1316 		case CCP_SHA_TYPE_512:
1317 			memcpy(ctx.address + ctx_size / 2, init,
1318 			       ctx_size / 2);
1319 			memcpy(ctx.address, init + ctx_size / 2,
1320 			       ctx_size / 2);
1321 			break;
1322 		default:
1323 			ret = -EINVAL;
1324 			goto e_ctx;
1325 		}
1326 	} else {
1327 		/* Restore the context */
1328 		ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1329 				sb_count * CCP_SB_BYTES);
1330 	}
1331 
1332 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1333 			     CCP_PASSTHRU_BYTESWAP_256BIT);
1334 	if (ret) {
1335 		cmd->engine_error = cmd_q->cmd_error;
1336 		goto e_ctx;
1337 	}
1338 
1339 	if (sha->src) {
1340 		/* Send data to the CCP SHA engine; block_size is set above */
1341 		ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1342 				    block_size, DMA_TO_DEVICE);
1343 		if (ret)
1344 			goto e_ctx;
1345 
1346 		while (src.sg_wa.bytes_left) {
1347 			ccp_prepare_data(&src, NULL, &op, block_size, false);
1348 			if (sha->final && !src.sg_wa.bytes_left)
1349 				op.eom = 1;
1350 
1351 			ret = cmd_q->ccp->vdata->perform->sha(&op);
1352 			if (ret) {
1353 				cmd->engine_error = cmd_q->cmd_error;
1354 				goto e_data;
1355 			}
1356 
1357 			ccp_process_data(&src, NULL, &op);
1358 		}
1359 	} else {
1360 		op.eom = 1;
1361 		ret = cmd_q->ccp->vdata->perform->sha(&op);
1362 		if (ret) {
1363 			cmd->engine_error = cmd_q->cmd_error;
1364 			goto e_data;
1365 		}
1366 	}
1367 
1368 	/* Retrieve the SHA context - convert from LE to BE using
1369 	 * 32-byte (256-bit) byteswapping to BE
1370 	 */
1371 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1372 			       CCP_PASSTHRU_BYTESWAP_256BIT);
1373 	if (ret) {
1374 		cmd->engine_error = cmd_q->cmd_error;
1375 		goto e_data;
1376 	}
1377 
1378 	if (sha->final) {
1379 		/* Finishing up, so get the digest */
1380 		switch (sha->type) {
1381 		case CCP_SHA_TYPE_1:
1382 		case CCP_SHA_TYPE_224:
1383 		case CCP_SHA_TYPE_256:
1384 			ccp_get_dm_area(&ctx, ooffset,
1385 					sha->ctx, 0,
1386 					digest_size);
1387 			break;
1388 		case CCP_SHA_TYPE_384:
1389 		case CCP_SHA_TYPE_512:
1390 			ccp_get_dm_area(&ctx, 0,
1391 					sha->ctx, LSB_ITEM_SIZE - ooffset,
1392 					LSB_ITEM_SIZE);
1393 			ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1394 					sha->ctx, 0,
1395 					LSB_ITEM_SIZE - ooffset);
1396 			break;
1397 		default:
1398 			ret = -EINVAL;
1399 			goto e_ctx;
1400 		}
1401 	} else {
1402 		/* Stash the context */
1403 		ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1404 				sb_count * CCP_SB_BYTES);
1405 	}
1406 
1407 	if (sha->final && sha->opad) {
1408 		/* HMAC operation, recursively perform final SHA */
1409 		struct ccp_cmd hmac_cmd;
1410 		struct scatterlist sg;
1411 		u8 *hmac_buf;
1412 
1413 		if (sha->opad_len != block_size) {
1414 			ret = -EINVAL;
1415 			goto e_data;
1416 		}
1417 
1418 		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1419 		if (!hmac_buf) {
1420 			ret = -ENOMEM;
1421 			goto e_data;
1422 		}
1423 		sg_init_one(&sg, hmac_buf, block_size + digest_size);
1424 
1425 		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1426 		switch (sha->type) {
1427 		case CCP_SHA_TYPE_1:
1428 		case CCP_SHA_TYPE_224:
1429 		case CCP_SHA_TYPE_256:
1430 			memcpy(hmac_buf + block_size,
1431 			       ctx.address + ooffset,
1432 			       digest_size);
1433 			break;
1434 		case CCP_SHA_TYPE_384:
1435 		case CCP_SHA_TYPE_512:
1436 			memcpy(hmac_buf + block_size,
1437 			       ctx.address + LSB_ITEM_SIZE + ooffset,
1438 			       LSB_ITEM_SIZE);
1439 			memcpy(hmac_buf + block_size +
1440 			       (LSB_ITEM_SIZE - ooffset),
1441 			       ctx.address,
1442 			       LSB_ITEM_SIZE);
1443 			break;
1444 		default:
1445 			ret = -EINVAL;
1446 			goto e_ctx;
1447 		}
1448 
1449 		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1450 		hmac_cmd.engine = CCP_ENGINE_SHA;
1451 		hmac_cmd.u.sha.type = sha->type;
1452 		hmac_cmd.u.sha.ctx = sha->ctx;
1453 		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1454 		hmac_cmd.u.sha.src = &sg;
1455 		hmac_cmd.u.sha.src_len = block_size + digest_size;
1456 		hmac_cmd.u.sha.opad = NULL;
1457 		hmac_cmd.u.sha.opad_len = 0;
1458 		hmac_cmd.u.sha.first = 1;
1459 		hmac_cmd.u.sha.final = 1;
1460 		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1461 
1462 		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1463 		if (ret)
1464 			cmd->engine_error = hmac_cmd.engine_error;
1465 
1466 		kfree(hmac_buf);
1467 	}
1468 
1469 e_data:
1470 	if (sha->src)
1471 		ccp_free_data(&src, cmd_q);
1472 
1473 e_ctx:
1474 	ccp_dm_free(&ctx);
1475 
1476 	return ret;
1477 }
1478 
1479 static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1480 {
1481 	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1482 	struct ccp_dm_workarea exp, src;
1483 	struct ccp_data dst;
1484 	struct ccp_op op;
1485 	unsigned int sb_count, i_len, o_len;
1486 	int ret;
1487 
1488 	if (rsa->key_size > CCP_RSA_MAX_WIDTH)
1489 		return -EINVAL;
1490 
1491 	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1492 		return -EINVAL;
1493 
1494 	/* The RSA modulus must precede the message being acted upon, so
1495 	 * it must be copied to a DMA area where the message and the
1496 	 * modulus can be concatenated.  Therefore the input buffer
1497 	 * length required is twice the output buffer length (which
1498 	 * must be a multiple of 256-bits).
1499 	 */
1500 	o_len = ((rsa->key_size + 255) / 256) * 32;
1501 	i_len = o_len * 2;
1502 
1503 	sb_count = o_len / CCP_SB_BYTES;
1504 
1505 	memset(&op, 0, sizeof(op));
1506 	op.cmd_q = cmd_q;
1507 	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1508 	op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q, sb_count);
1509 
1510 	if (!op.sb_key)
1511 		return -EIO;
1512 
1513 	/* The RSA exponent may span multiple (32-byte) SB entries and must
1514 	 * be in little endian format. Reverse copy each 32-byte chunk
1515 	 * of the exponent (En chunk to E0 chunk, E(n-1) chunk to E1 chunk)
1516 	 * and each byte within that chunk and do not perform any byte swap
1517 	 * operations on the passthru operation.
1518 	 */
1519 	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1520 	if (ret)
1521 		goto e_sb;
1522 
1523 	ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
1524 	if (ret)
1525 		goto e_exp;
1526 	ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1527 			     CCP_PASSTHRU_BYTESWAP_NOOP);
1528 	if (ret) {
1529 		cmd->engine_error = cmd_q->cmd_error;
1530 		goto e_exp;
1531 	}
1532 
1533 	/* Concatenate the modulus and the message. Both the modulus and
1534 	 * the operands must be in little endian format.  Since the input
1535 	 * is in big endian format it must be converted.
1536 	 */
1537 	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1538 	if (ret)
1539 		goto e_exp;
1540 
1541 	ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
1542 	if (ret)
1543 		goto e_src;
1544 	ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
1545 	if (ret)
1546 		goto e_src;
1547 
1548 	/* Prepare the output area for the operation */
1549 	ret = ccp_init_data(&dst, cmd_q, rsa->dst, rsa->mod_len,
1550 			    o_len, DMA_FROM_DEVICE);
1551 	if (ret)
1552 		goto e_src;
1553 
1554 	op.soc = 1;
1555 	op.src.u.dma.address = src.dma.address;
1556 	op.src.u.dma.offset = 0;
1557 	op.src.u.dma.length = i_len;
1558 	op.dst.u.dma.address = dst.dm_wa.dma.address;
1559 	op.dst.u.dma.offset = 0;
1560 	op.dst.u.dma.length = o_len;
1561 
1562 	op.u.rsa.mod_size = rsa->key_size;
1563 	op.u.rsa.input_len = i_len;
1564 
1565 	ret = cmd_q->ccp->vdata->perform->rsa(&op);
1566 	if (ret) {
1567 		cmd->engine_error = cmd_q->cmd_error;
1568 		goto e_dst;
1569 	}
1570 
1571 	ccp_reverse_get_dm_area(&dst.dm_wa, 0, rsa->dst, 0, rsa->mod_len);
1572 
1573 e_dst:
1574 	ccp_free_data(&dst, cmd_q);
1575 
1576 e_src:
1577 	ccp_dm_free(&src);
1578 
1579 e_exp:
1580 	ccp_dm_free(&exp);
1581 
1582 e_sb:
1583 	cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1584 
1585 	return ret;
1586 }
1587 
1588 static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
1589 				struct ccp_cmd *cmd)
1590 {
1591 	struct ccp_passthru_engine *pt = &cmd->u.passthru;
1592 	struct ccp_dm_workarea mask;
1593 	struct ccp_data src, dst;
1594 	struct ccp_op op;
1595 	bool in_place = false;
1596 	unsigned int i;
1597 	int ret = 0;
1598 
1599 	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1600 		return -EINVAL;
1601 
1602 	if (!pt->src || !pt->dst)
1603 		return -EINVAL;
1604 
1605 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1606 		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1607 			return -EINVAL;
1608 		if (!pt->mask)
1609 			return -EINVAL;
1610 	}
1611 
1612 	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1613 
1614 	memset(&op, 0, sizeof(op));
1615 	op.cmd_q = cmd_q;
1616 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1617 
1618 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1619 		/* Load the mask */
1620 		op.sb_key = cmd_q->sb_key;
1621 
1622 		ret = ccp_init_dm_workarea(&mask, cmd_q,
1623 					   CCP_PASSTHRU_SB_COUNT *
1624 					   CCP_SB_BYTES,
1625 					   DMA_TO_DEVICE);
1626 		if (ret)
1627 			return ret;
1628 
1629 		ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1630 		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1631 				     CCP_PASSTHRU_BYTESWAP_NOOP);
1632 		if (ret) {
1633 			cmd->engine_error = cmd_q->cmd_error;
1634 			goto e_mask;
1635 		}
1636 	}
1637 
1638 	/* Prepare the input and output data workareas. For in-place
1639 	 * operations we need to set the dma direction to BIDIRECTIONAL
1640 	 * and copy the src workarea to the dst workarea.
1641 	 */
1642 	if (sg_virt(pt->src) == sg_virt(pt->dst))
1643 		in_place = true;
1644 
1645 	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
1646 			    CCP_PASSTHRU_MASKSIZE,
1647 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1648 	if (ret)
1649 		goto e_mask;
1650 
1651 	if (in_place) {
1652 		dst = src;
1653 	} else {
1654 		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
1655 				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
1656 		if (ret)
1657 			goto e_src;
1658 	}
1659 
1660 	/* Send data to the CCP Passthru engine
1661 	 *   Because the CCP engine works on a single source and destination
1662 	 *   dma address at a time, each entry in the source scatterlist
1663 	 *   (after the dma_map_sg call) must be less than or equal to the
1664 	 *   (remaining) length in the destination scatterlist entry and the
1665 	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
1666 	 */
1667 	dst.sg_wa.sg_used = 0;
1668 	for (i = 1; i <= src.sg_wa.dma_count; i++) {
1669 		if (!dst.sg_wa.sg ||
1670 		    (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
1671 			ret = -EINVAL;
1672 			goto e_dst;
1673 		}
1674 
1675 		if (i == src.sg_wa.dma_count) {
1676 			op.eom = 1;
1677 			op.soc = 1;
1678 		}
1679 
1680 		op.src.type = CCP_MEMTYPE_SYSTEM;
1681 		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
1682 		op.src.u.dma.offset = 0;
1683 		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
1684 
1685 		op.dst.type = CCP_MEMTYPE_SYSTEM;
1686 		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
1687 		op.dst.u.dma.offset = dst.sg_wa.sg_used;
1688 		op.dst.u.dma.length = op.src.u.dma.length;
1689 
1690 		ret = cmd_q->ccp->vdata->perform->passthru(&op);
1691 		if (ret) {
1692 			cmd->engine_error = cmd_q->cmd_error;
1693 			goto e_dst;
1694 		}
1695 
1696 		dst.sg_wa.sg_used += src.sg_wa.sg->length;
1697 		if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
1698 			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
1699 			dst.sg_wa.sg_used = 0;
1700 		}
1701 		src.sg_wa.sg = sg_next(src.sg_wa.sg);
1702 	}
1703 
1704 e_dst:
1705 	if (!in_place)
1706 		ccp_free_data(&dst, cmd_q);
1707 
1708 e_src:
1709 	ccp_free_data(&src, cmd_q);
1710 
1711 e_mask:
1712 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
1713 		ccp_dm_free(&mask);
1714 
1715 	return ret;
1716 }
1717 
1718 static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
1719 				      struct ccp_cmd *cmd)
1720 {
1721 	struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
1722 	struct ccp_dm_workarea mask;
1723 	struct ccp_op op;
1724 	int ret;
1725 
1726 	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1727 		return -EINVAL;
1728 
1729 	if (!pt->src_dma || !pt->dst_dma)
1730 		return -EINVAL;
1731 
1732 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1733 		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1734 			return -EINVAL;
1735 		if (!pt->mask)
1736 			return -EINVAL;
1737 	}
1738 
1739 	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1740 
1741 	memset(&op, 0, sizeof(op));
1742 	op.cmd_q = cmd_q;
1743 	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1744 
1745 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1746 		/* Load the mask */
1747 		op.sb_key = cmd_q->sb_key;
1748 
1749 		mask.length = pt->mask_len;
1750 		mask.dma.address = pt->mask;
1751 		mask.dma.length = pt->mask_len;
1752 
1753 		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1754 				     CCP_PASSTHRU_BYTESWAP_NOOP);
1755 		if (ret) {
1756 			cmd->engine_error = cmd_q->cmd_error;
1757 			return ret;
1758 		}
1759 	}
1760 
1761 	/* Send data to the CCP Passthru engine */
1762 	op.eom = 1;
1763 	op.soc = 1;
1764 
1765 	op.src.type = CCP_MEMTYPE_SYSTEM;
1766 	op.src.u.dma.address = pt->src_dma;
1767 	op.src.u.dma.offset = 0;
1768 	op.src.u.dma.length = pt->src_len;
1769 
1770 	op.dst.type = CCP_MEMTYPE_SYSTEM;
1771 	op.dst.u.dma.address = pt->dst_dma;
1772 	op.dst.u.dma.offset = 0;
1773 	op.dst.u.dma.length = pt->src_len;
1774 
1775 	ret = cmd_q->ccp->vdata->perform->passthru(&op);
1776 	if (ret)
1777 		cmd->engine_error = cmd_q->cmd_error;
1778 
1779 	return ret;
1780 }
1781 
1782 static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1783 {
1784 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
1785 	struct ccp_dm_workarea src, dst;
1786 	struct ccp_op op;
1787 	int ret;
1788 	u8 *save;
1789 
1790 	if (!ecc->u.mm.operand_1 ||
1791 	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
1792 		return -EINVAL;
1793 
1794 	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
1795 		if (!ecc->u.mm.operand_2 ||
1796 		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
1797 			return -EINVAL;
1798 
1799 	if (!ecc->u.mm.result ||
1800 	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
1801 		return -EINVAL;
1802 
1803 	memset(&op, 0, sizeof(op));
1804 	op.cmd_q = cmd_q;
1805 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1806 
1807 	/* Concatenate the modulus and the operands. Both the modulus and
1808 	 * the operands must be in little endian format.  Since the input
1809 	 * is in big endian format it must be converted and placed in a
1810 	 * fixed length buffer.
1811 	 */
1812 	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
1813 				   DMA_TO_DEVICE);
1814 	if (ret)
1815 		return ret;
1816 
1817 	/* Save the workarea address since it is updated in order to perform
1818 	 * the concatenation
1819 	 */
1820 	save = src.address;
1821 
1822 	/* Copy the ECC modulus */
1823 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
1824 	if (ret)
1825 		goto e_src;
1826 	src.address += CCP_ECC_OPERAND_SIZE;
1827 
1828 	/* Copy the first operand */
1829 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
1830 				      ecc->u.mm.operand_1_len);
1831 	if (ret)
1832 		goto e_src;
1833 	src.address += CCP_ECC_OPERAND_SIZE;
1834 
1835 	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
1836 		/* Copy the second operand */
1837 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
1838 					      ecc->u.mm.operand_2_len);
1839 		if (ret)
1840 			goto e_src;
1841 		src.address += CCP_ECC_OPERAND_SIZE;
1842 	}
1843 
1844 	/* Restore the workarea address */
1845 	src.address = save;
1846 
1847 	/* Prepare the output area for the operation */
1848 	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
1849 				   DMA_FROM_DEVICE);
1850 	if (ret)
1851 		goto e_src;
1852 
1853 	op.soc = 1;
1854 	op.src.u.dma.address = src.dma.address;
1855 	op.src.u.dma.offset = 0;
1856 	op.src.u.dma.length = src.length;
1857 	op.dst.u.dma.address = dst.dma.address;
1858 	op.dst.u.dma.offset = 0;
1859 	op.dst.u.dma.length = dst.length;
1860 
1861 	op.u.ecc.function = cmd->u.ecc.function;
1862 
1863 	ret = cmd_q->ccp->vdata->perform->ecc(&op);
1864 	if (ret) {
1865 		cmd->engine_error = cmd_q->cmd_error;
1866 		goto e_dst;
1867 	}
1868 
1869 	ecc->ecc_result = le16_to_cpup(
1870 		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
1871 	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
1872 		ret = -EIO;
1873 		goto e_dst;
1874 	}
1875 
1876 	/* Save the ECC result */
1877 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
1878 				CCP_ECC_MODULUS_BYTES);
1879 
1880 e_dst:
1881 	ccp_dm_free(&dst);
1882 
1883 e_src:
1884 	ccp_dm_free(&src);
1885 
1886 	return ret;
1887 }
1888 
1889 static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1890 {
1891 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
1892 	struct ccp_dm_workarea src, dst;
1893 	struct ccp_op op;
1894 	int ret;
1895 	u8 *save;
1896 
1897 	if (!ecc->u.pm.point_1.x ||
1898 	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
1899 	    !ecc->u.pm.point_1.y ||
1900 	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
1901 		return -EINVAL;
1902 
1903 	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
1904 		if (!ecc->u.pm.point_2.x ||
1905 		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
1906 		    !ecc->u.pm.point_2.y ||
1907 		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
1908 			return -EINVAL;
1909 	} else {
1910 		if (!ecc->u.pm.domain_a ||
1911 		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
1912 			return -EINVAL;
1913 
1914 		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
1915 			if (!ecc->u.pm.scalar ||
1916 			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
1917 				return -EINVAL;
1918 	}
1919 
1920 	if (!ecc->u.pm.result.x ||
1921 	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
1922 	    !ecc->u.pm.result.y ||
1923 	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
1924 		return -EINVAL;
1925 
1926 	memset(&op, 0, sizeof(op));
1927 	op.cmd_q = cmd_q;
1928 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1929 
1930 	/* Concatenate the modulus and the operands. Both the modulus and
1931 	 * the operands must be in little endian format.  Since the input
1932 	 * is in big endian format it must be converted and placed in a
1933 	 * fixed length buffer.
1934 	 */
1935 	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
1936 				   DMA_TO_DEVICE);
1937 	if (ret)
1938 		return ret;
1939 
1940 	/* Save the workarea address since it is updated in order to perform
1941 	 * the concatenation
1942 	 */
1943 	save = src.address;
1944 
1945 	/* Copy the ECC modulus */
1946 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
1947 	if (ret)
1948 		goto e_src;
1949 	src.address += CCP_ECC_OPERAND_SIZE;
1950 
1951 	/* Copy the first point X and Y coordinate */
1952 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
1953 				      ecc->u.pm.point_1.x_len);
1954 	if (ret)
1955 		goto e_src;
1956 	src.address += CCP_ECC_OPERAND_SIZE;
1957 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
1958 				      ecc->u.pm.point_1.y_len);
1959 	if (ret)
1960 		goto e_src;
1961 	src.address += CCP_ECC_OPERAND_SIZE;
1962 
1963 	/* Set the first point Z coordinate to 1 */
1964 	*src.address = 0x01;
1965 	src.address += CCP_ECC_OPERAND_SIZE;
1966 
1967 	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
1968 		/* Copy the second point X and Y coordinate */
1969 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
1970 					      ecc->u.pm.point_2.x_len);
1971 		if (ret)
1972 			goto e_src;
1973 		src.address += CCP_ECC_OPERAND_SIZE;
1974 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
1975 					      ecc->u.pm.point_2.y_len);
1976 		if (ret)
1977 			goto e_src;
1978 		src.address += CCP_ECC_OPERAND_SIZE;
1979 
1980 		/* Set the second point Z coordinate to 1 */
1981 		*src.address = 0x01;
1982 		src.address += CCP_ECC_OPERAND_SIZE;
1983 	} else {
1984 		/* Copy the Domain "a" parameter */
1985 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
1986 					      ecc->u.pm.domain_a_len);
1987 		if (ret)
1988 			goto e_src;
1989 		src.address += CCP_ECC_OPERAND_SIZE;
1990 
1991 		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
1992 			/* Copy the scalar value */
1993 			ret = ccp_reverse_set_dm_area(&src, 0,
1994 						      ecc->u.pm.scalar, 0,
1995 						      ecc->u.pm.scalar_len);
1996 			if (ret)
1997 				goto e_src;
1998 			src.address += CCP_ECC_OPERAND_SIZE;
1999 		}
2000 	}
2001 
2002 	/* Restore the workarea address */
2003 	src.address = save;
2004 
2005 	/* Prepare the output area for the operation */
2006 	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2007 				   DMA_FROM_DEVICE);
2008 	if (ret)
2009 		goto e_src;
2010 
2011 	op.soc = 1;
2012 	op.src.u.dma.address = src.dma.address;
2013 	op.src.u.dma.offset = 0;
2014 	op.src.u.dma.length = src.length;
2015 	op.dst.u.dma.address = dst.dma.address;
2016 	op.dst.u.dma.offset = 0;
2017 	op.dst.u.dma.length = dst.length;
2018 
2019 	op.u.ecc.function = cmd->u.ecc.function;
2020 
2021 	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2022 	if (ret) {
2023 		cmd->engine_error = cmd_q->cmd_error;
2024 		goto e_dst;
2025 	}
2026 
2027 	ecc->ecc_result = le16_to_cpup(
2028 		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2029 	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2030 		ret = -EIO;
2031 		goto e_dst;
2032 	}
2033 
2034 	/* Save the workarea address since it is updated as we walk through
2035 	 * to copy the point math result
2036 	 */
2037 	save = dst.address;
2038 
2039 	/* Save the ECC result X and Y coordinates */
2040 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2041 				CCP_ECC_MODULUS_BYTES);
2042 	dst.address += CCP_ECC_OUTPUT_SIZE;
2043 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2044 				CCP_ECC_MODULUS_BYTES);
2045 	dst.address += CCP_ECC_OUTPUT_SIZE;
2046 
2047 	/* Restore the workarea address */
2048 	dst.address = save;
2049 
2050 e_dst:
2051 	ccp_dm_free(&dst);
2052 
2053 e_src:
2054 	ccp_dm_free(&src);
2055 
2056 	return ret;
2057 }
2058 
2059 static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2060 {
2061 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2062 
2063 	ecc->ecc_result = 0;
2064 
2065 	if (!ecc->mod ||
2066 	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2067 		return -EINVAL;
2068 
2069 	switch (ecc->function) {
2070 	case CCP_ECC_FUNCTION_MMUL_384BIT:
2071 	case CCP_ECC_FUNCTION_MADD_384BIT:
2072 	case CCP_ECC_FUNCTION_MINV_384BIT:
2073 		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2074 
2075 	case CCP_ECC_FUNCTION_PADD_384BIT:
2076 	case CCP_ECC_FUNCTION_PMUL_384BIT:
2077 	case CCP_ECC_FUNCTION_PDBL_384BIT:
2078 		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2079 
2080 	default:
2081 		return -EINVAL;
2082 	}
2083 }
2084 
2085 int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2086 {
2087 	int ret;
2088 
2089 	cmd->engine_error = 0;
2090 	cmd_q->cmd_error = 0;
2091 	cmd_q->int_rcvd = 0;
2092 	cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2093 
2094 	switch (cmd->engine) {
2095 	case CCP_ENGINE_AES:
2096 		ret = ccp_run_aes_cmd(cmd_q, cmd);
2097 		break;
2098 	case CCP_ENGINE_XTS_AES_128:
2099 		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2100 		break;
2101 	case CCP_ENGINE_DES3:
2102 		ret = ccp_run_des3_cmd(cmd_q, cmd);
2103 		break;
2104 	case CCP_ENGINE_SHA:
2105 		ret = ccp_run_sha_cmd(cmd_q, cmd);
2106 		break;
2107 	case CCP_ENGINE_RSA:
2108 		ret = ccp_run_rsa_cmd(cmd_q, cmd);
2109 		break;
2110 	case CCP_ENGINE_PASSTHRU:
2111 		if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2112 			ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2113 		else
2114 			ret = ccp_run_passthru_cmd(cmd_q, cmd);
2115 		break;
2116 	case CCP_ENGINE_ECC:
2117 		ret = ccp_run_ecc_cmd(cmd_q, cmd);
2118 		break;
2119 	default:
2120 		ret = -EINVAL;
2121 	}
2122 
2123 	return ret;
2124 }
2125