xref: /linux/drivers/crypto/ccp/ccp-dev-v3.c (revision cf40a76e7d5874bb25f4404eecc58a2e033af885)
1 /*
2  * AMD Cryptographic Coprocessor (CCP) driver
3  *
4  * Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  * Author: Gary R Hook <gary.hook@amd.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/kthread.h>
18 #include <linux/interrupt.h>
19 #include <linux/ccp.h>
20 
21 #include "ccp-dev.h"
22 
23 static u32 ccp_alloc_ksb(struct ccp_cmd_queue *cmd_q, unsigned int count)
24 {
25 	int start;
26 	struct ccp_device *ccp = cmd_q->ccp;
27 
28 	for (;;) {
29 		mutex_lock(&ccp->sb_mutex);
30 
31 		start = (u32)bitmap_find_next_zero_area(ccp->sb,
32 							ccp->sb_count,
33 							ccp->sb_start,
34 							count, 0);
35 		if (start <= ccp->sb_count) {
36 			bitmap_set(ccp->sb, start, count);
37 
38 			mutex_unlock(&ccp->sb_mutex);
39 			break;
40 		}
41 
42 		ccp->sb_avail = 0;
43 
44 		mutex_unlock(&ccp->sb_mutex);
45 
46 		/* Wait for KSB entries to become available */
47 		if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
48 			return 0;
49 	}
50 
51 	return KSB_START + start;
52 }
53 
54 static void ccp_free_ksb(struct ccp_cmd_queue *cmd_q, unsigned int start,
55 			 unsigned int count)
56 {
57 	struct ccp_device *ccp = cmd_q->ccp;
58 
59 	if (!start)
60 		return;
61 
62 	mutex_lock(&ccp->sb_mutex);
63 
64 	bitmap_clear(ccp->sb, start - KSB_START, count);
65 
66 	ccp->sb_avail = 1;
67 
68 	mutex_unlock(&ccp->sb_mutex);
69 
70 	wake_up_interruptible_all(&ccp->sb_queue);
71 }
72 
73 static unsigned int ccp_get_free_slots(struct ccp_cmd_queue *cmd_q)
74 {
75 	return CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
76 }
77 
78 static int ccp_do_cmd(struct ccp_op *op, u32 *cr, unsigned int cr_count)
79 {
80 	struct ccp_cmd_queue *cmd_q = op->cmd_q;
81 	struct ccp_device *ccp = cmd_q->ccp;
82 	void __iomem *cr_addr;
83 	u32 cr0, cmd;
84 	unsigned int i;
85 	int ret = 0;
86 
87 	/* We could read a status register to see how many free slots
88 	 * are actually available, but reading that register resets it
89 	 * and you could lose some error information.
90 	 */
91 	cmd_q->free_slots--;
92 
93 	cr0 = (cmd_q->id << REQ0_CMD_Q_SHIFT)
94 	      | (op->jobid << REQ0_JOBID_SHIFT)
95 	      | REQ0_WAIT_FOR_WRITE;
96 
97 	if (op->soc)
98 		cr0 |= REQ0_STOP_ON_COMPLETE
99 		       | REQ0_INT_ON_COMPLETE;
100 
101 	if (op->ioc || !cmd_q->free_slots)
102 		cr0 |= REQ0_INT_ON_COMPLETE;
103 
104 	/* Start at CMD_REQ1 */
105 	cr_addr = ccp->io_regs + CMD_REQ0 + CMD_REQ_INCR;
106 
107 	mutex_lock(&ccp->req_mutex);
108 
109 	/* Write CMD_REQ1 through CMD_REQx first */
110 	for (i = 0; i < cr_count; i++, cr_addr += CMD_REQ_INCR)
111 		iowrite32(*(cr + i), cr_addr);
112 
113 	/* Tell the CCP to start */
114 	wmb();
115 	iowrite32(cr0, ccp->io_regs + CMD_REQ0);
116 
117 	mutex_unlock(&ccp->req_mutex);
118 
119 	if (cr0 & REQ0_INT_ON_COMPLETE) {
120 		/* Wait for the job to complete */
121 		ret = wait_event_interruptible(cmd_q->int_queue,
122 					       cmd_q->int_rcvd);
123 		if (ret || cmd_q->cmd_error) {
124 			/* On error delete all related jobs from the queue */
125 			cmd = (cmd_q->id << DEL_Q_ID_SHIFT)
126 			      | op->jobid;
127 			if (cmd_q->cmd_error)
128 				ccp_log_error(cmd_q->ccp,
129 					      cmd_q->cmd_error);
130 
131 			iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
132 
133 			if (!ret)
134 				ret = -EIO;
135 		} else if (op->soc) {
136 			/* Delete just head job from the queue on SoC */
137 			cmd = DEL_Q_ACTIVE
138 			      | (cmd_q->id << DEL_Q_ID_SHIFT)
139 			      | op->jobid;
140 
141 			iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
142 		}
143 
144 		cmd_q->free_slots = CMD_Q_DEPTH(cmd_q->q_status);
145 
146 		cmd_q->int_rcvd = 0;
147 	}
148 
149 	return ret;
150 }
151 
152 static int ccp_perform_aes(struct ccp_op *op)
153 {
154 	u32 cr[6];
155 
156 	/* Fill out the register contents for REQ1 through REQ6 */
157 	cr[0] = (CCP_ENGINE_AES << REQ1_ENGINE_SHIFT)
158 		| (op->u.aes.type << REQ1_AES_TYPE_SHIFT)
159 		| (op->u.aes.mode << REQ1_AES_MODE_SHIFT)
160 		| (op->u.aes.action << REQ1_AES_ACTION_SHIFT)
161 		| (op->sb_key << REQ1_KEY_KSB_SHIFT);
162 	cr[1] = op->src.u.dma.length - 1;
163 	cr[2] = ccp_addr_lo(&op->src.u.dma);
164 	cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
165 		| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
166 		| ccp_addr_hi(&op->src.u.dma);
167 	cr[4] = ccp_addr_lo(&op->dst.u.dma);
168 	cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
169 		| ccp_addr_hi(&op->dst.u.dma);
170 
171 	if (op->u.aes.mode == CCP_AES_MODE_CFB)
172 		cr[0] |= ((0x7f) << REQ1_AES_CFB_SIZE_SHIFT);
173 
174 	if (op->eom)
175 		cr[0] |= REQ1_EOM;
176 
177 	if (op->init)
178 		cr[0] |= REQ1_INIT;
179 
180 	return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
181 }
182 
183 static int ccp_perform_xts_aes(struct ccp_op *op)
184 {
185 	u32 cr[6];
186 
187 	/* Fill out the register contents for REQ1 through REQ6 */
188 	cr[0] = (CCP_ENGINE_XTS_AES_128 << REQ1_ENGINE_SHIFT)
189 		| (op->u.xts.action << REQ1_AES_ACTION_SHIFT)
190 		| (op->u.xts.unit_size << REQ1_XTS_AES_SIZE_SHIFT)
191 		| (op->sb_key << REQ1_KEY_KSB_SHIFT);
192 	cr[1] = op->src.u.dma.length - 1;
193 	cr[2] = ccp_addr_lo(&op->src.u.dma);
194 	cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
195 		| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
196 		| ccp_addr_hi(&op->src.u.dma);
197 	cr[4] = ccp_addr_lo(&op->dst.u.dma);
198 	cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
199 		| ccp_addr_hi(&op->dst.u.dma);
200 
201 	if (op->eom)
202 		cr[0] |= REQ1_EOM;
203 
204 	if (op->init)
205 		cr[0] |= REQ1_INIT;
206 
207 	return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
208 }
209 
210 static int ccp_perform_sha(struct ccp_op *op)
211 {
212 	u32 cr[6];
213 
214 	/* Fill out the register contents for REQ1 through REQ6 */
215 	cr[0] = (CCP_ENGINE_SHA << REQ1_ENGINE_SHIFT)
216 		| (op->u.sha.type << REQ1_SHA_TYPE_SHIFT)
217 		| REQ1_INIT;
218 	cr[1] = op->src.u.dma.length - 1;
219 	cr[2] = ccp_addr_lo(&op->src.u.dma);
220 	cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
221 		| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
222 		| ccp_addr_hi(&op->src.u.dma);
223 
224 	if (op->eom) {
225 		cr[0] |= REQ1_EOM;
226 		cr[4] = lower_32_bits(op->u.sha.msg_bits);
227 		cr[5] = upper_32_bits(op->u.sha.msg_bits);
228 	} else {
229 		cr[4] = 0;
230 		cr[5] = 0;
231 	}
232 
233 	return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
234 }
235 
236 static int ccp_perform_rsa(struct ccp_op *op)
237 {
238 	u32 cr[6];
239 
240 	/* Fill out the register contents for REQ1 through REQ6 */
241 	cr[0] = (CCP_ENGINE_RSA << REQ1_ENGINE_SHIFT)
242 		| (op->u.rsa.mod_size << REQ1_RSA_MOD_SIZE_SHIFT)
243 		| (op->sb_key << REQ1_KEY_KSB_SHIFT)
244 		| REQ1_EOM;
245 	cr[1] = op->u.rsa.input_len - 1;
246 	cr[2] = ccp_addr_lo(&op->src.u.dma);
247 	cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
248 		| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
249 		| ccp_addr_hi(&op->src.u.dma);
250 	cr[4] = ccp_addr_lo(&op->dst.u.dma);
251 	cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
252 		| ccp_addr_hi(&op->dst.u.dma);
253 
254 	return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
255 }
256 
257 static int ccp_perform_passthru(struct ccp_op *op)
258 {
259 	u32 cr[6];
260 
261 	/* Fill out the register contents for REQ1 through REQ6 */
262 	cr[0] = (CCP_ENGINE_PASSTHRU << REQ1_ENGINE_SHIFT)
263 		| (op->u.passthru.bit_mod << REQ1_PT_BW_SHIFT)
264 		| (op->u.passthru.byte_swap << REQ1_PT_BS_SHIFT);
265 
266 	if (op->src.type == CCP_MEMTYPE_SYSTEM)
267 		cr[1] = op->src.u.dma.length - 1;
268 	else
269 		cr[1] = op->dst.u.dma.length - 1;
270 
271 	if (op->src.type == CCP_MEMTYPE_SYSTEM) {
272 		cr[2] = ccp_addr_lo(&op->src.u.dma);
273 		cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
274 			| ccp_addr_hi(&op->src.u.dma);
275 
276 		if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
277 			cr[3] |= (op->sb_key << REQ4_KSB_SHIFT);
278 	} else {
279 		cr[2] = op->src.u.sb * CCP_SB_BYTES;
280 		cr[3] = (CCP_MEMTYPE_SB << REQ4_MEMTYPE_SHIFT);
281 	}
282 
283 	if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
284 		cr[4] = ccp_addr_lo(&op->dst.u.dma);
285 		cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
286 			| ccp_addr_hi(&op->dst.u.dma);
287 	} else {
288 		cr[4] = op->dst.u.sb * CCP_SB_BYTES;
289 		cr[5] = (CCP_MEMTYPE_SB << REQ6_MEMTYPE_SHIFT);
290 	}
291 
292 	if (op->eom)
293 		cr[0] |= REQ1_EOM;
294 
295 	return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
296 }
297 
298 static int ccp_perform_ecc(struct ccp_op *op)
299 {
300 	u32 cr[6];
301 
302 	/* Fill out the register contents for REQ1 through REQ6 */
303 	cr[0] = REQ1_ECC_AFFINE_CONVERT
304 		| (CCP_ENGINE_ECC << REQ1_ENGINE_SHIFT)
305 		| (op->u.ecc.function << REQ1_ECC_FUNCTION_SHIFT)
306 		| REQ1_EOM;
307 	cr[1] = op->src.u.dma.length - 1;
308 	cr[2] = ccp_addr_lo(&op->src.u.dma);
309 	cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
310 		| ccp_addr_hi(&op->src.u.dma);
311 	cr[4] = ccp_addr_lo(&op->dst.u.dma);
312 	cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
313 		| ccp_addr_hi(&op->dst.u.dma);
314 
315 	return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
316 }
317 
318 static void ccp_disable_queue_interrupts(struct ccp_device *ccp)
319 {
320 	iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
321 }
322 
323 static void ccp_enable_queue_interrupts(struct ccp_device *ccp)
324 {
325 	iowrite32(ccp->qim, ccp->io_regs + IRQ_MASK_REG);
326 }
327 
328 static void ccp_irq_bh(unsigned long data)
329 {
330 	struct ccp_device *ccp = (struct ccp_device *)data;
331 	struct ccp_cmd_queue *cmd_q;
332 	u32 q_int, status;
333 	unsigned int i;
334 
335 	status = ioread32(ccp->io_regs + IRQ_STATUS_REG);
336 
337 	for (i = 0; i < ccp->cmd_q_count; i++) {
338 		cmd_q = &ccp->cmd_q[i];
339 
340 		q_int = status & (cmd_q->int_ok | cmd_q->int_err);
341 		if (q_int) {
342 			cmd_q->int_status = status;
343 			cmd_q->q_status = ioread32(cmd_q->reg_status);
344 			cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
345 
346 			/* On error, only save the first error value */
347 			if ((q_int & cmd_q->int_err) && !cmd_q->cmd_error)
348 				cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
349 
350 			cmd_q->int_rcvd = 1;
351 
352 			/* Acknowledge the interrupt and wake the kthread */
353 			iowrite32(q_int, ccp->io_regs + IRQ_STATUS_REG);
354 			wake_up_interruptible(&cmd_q->int_queue);
355 		}
356 	}
357 	ccp_enable_queue_interrupts(ccp);
358 }
359 
360 static irqreturn_t ccp_irq_handler(int irq, void *data)
361 {
362 	struct ccp_device *ccp = (struct ccp_device *)data;
363 
364 	ccp_disable_queue_interrupts(ccp);
365 	if (ccp->use_tasklet)
366 		tasklet_schedule(&ccp->irq_tasklet);
367 	else
368 		ccp_irq_bh((unsigned long)ccp);
369 
370 	return IRQ_HANDLED;
371 }
372 
373 static int ccp_init(struct ccp_device *ccp)
374 {
375 	struct device *dev = ccp->dev;
376 	struct ccp_cmd_queue *cmd_q;
377 	struct dma_pool *dma_pool;
378 	char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
379 	unsigned int qmr, i;
380 	int ret;
381 
382 	/* Find available queues */
383 	ccp->qim = 0;
384 	qmr = ioread32(ccp->io_regs + Q_MASK_REG);
385 	for (i = 0; i < MAX_HW_QUEUES; i++) {
386 		if (!(qmr & (1 << i)))
387 			continue;
388 
389 		/* Allocate a dma pool for this queue */
390 		snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
391 			 ccp->name, i);
392 		dma_pool = dma_pool_create(dma_pool_name, dev,
393 					   CCP_DMAPOOL_MAX_SIZE,
394 					   CCP_DMAPOOL_ALIGN, 0);
395 		if (!dma_pool) {
396 			dev_err(dev, "unable to allocate dma pool\n");
397 			ret = -ENOMEM;
398 			goto e_pool;
399 		}
400 
401 		cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
402 		ccp->cmd_q_count++;
403 
404 		cmd_q->ccp = ccp;
405 		cmd_q->id = i;
406 		cmd_q->dma_pool = dma_pool;
407 
408 		/* Reserve 2 KSB regions for the queue */
409 		cmd_q->sb_key = KSB_START + ccp->sb_start++;
410 		cmd_q->sb_ctx = KSB_START + ccp->sb_start++;
411 		ccp->sb_count -= 2;
412 
413 		/* Preset some register values and masks that are queue
414 		 * number dependent
415 		 */
416 		cmd_q->reg_status = ccp->io_regs + CMD_Q_STATUS_BASE +
417 				    (CMD_Q_STATUS_INCR * i);
418 		cmd_q->reg_int_status = ccp->io_regs + CMD_Q_INT_STATUS_BASE +
419 					(CMD_Q_STATUS_INCR * i);
420 		cmd_q->int_ok = 1 << (i * 2);
421 		cmd_q->int_err = 1 << ((i * 2) + 1);
422 
423 		cmd_q->free_slots = ccp_get_free_slots(cmd_q);
424 
425 		init_waitqueue_head(&cmd_q->int_queue);
426 
427 		/* Build queue interrupt mask (two interrupts per queue) */
428 		ccp->qim |= cmd_q->int_ok | cmd_q->int_err;
429 
430 #ifdef CONFIG_ARM64
431 		/* For arm64 set the recommended queue cache settings */
432 		iowrite32(ccp->axcache, ccp->io_regs + CMD_Q_CACHE_BASE +
433 			  (CMD_Q_CACHE_INC * i));
434 #endif
435 
436 		dev_dbg(dev, "queue #%u available\n", i);
437 	}
438 	if (ccp->cmd_q_count == 0) {
439 		dev_notice(dev, "no command queues available\n");
440 		ret = -EIO;
441 		goto e_pool;
442 	}
443 	dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count);
444 
445 	/* Disable and clear interrupts until ready */
446 	ccp_disable_queue_interrupts(ccp);
447 	for (i = 0; i < ccp->cmd_q_count; i++) {
448 		cmd_q = &ccp->cmd_q[i];
449 
450 		ioread32(cmd_q->reg_int_status);
451 		ioread32(cmd_q->reg_status);
452 	}
453 	iowrite32(ccp->qim, ccp->io_regs + IRQ_STATUS_REG);
454 
455 	/* Request an irq */
456 	ret = sp_request_ccp_irq(ccp->sp, ccp_irq_handler, ccp->name, ccp);
457 	if (ret) {
458 		dev_err(dev, "unable to allocate an IRQ\n");
459 		goto e_pool;
460 	}
461 
462 	/* Initialize the ISR tasklet? */
463 	if (ccp->use_tasklet)
464 		tasklet_init(&ccp->irq_tasklet, ccp_irq_bh,
465 			     (unsigned long)ccp);
466 
467 	dev_dbg(dev, "Starting threads...\n");
468 	/* Create a kthread for each queue */
469 	for (i = 0; i < ccp->cmd_q_count; i++) {
470 		struct task_struct *kthread;
471 
472 		cmd_q = &ccp->cmd_q[i];
473 
474 		kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
475 					 "%s-q%u", ccp->name, cmd_q->id);
476 		if (IS_ERR(kthread)) {
477 			dev_err(dev, "error creating queue thread (%ld)\n",
478 				PTR_ERR(kthread));
479 			ret = PTR_ERR(kthread);
480 			goto e_kthread;
481 		}
482 
483 		cmd_q->kthread = kthread;
484 		wake_up_process(kthread);
485 	}
486 
487 	dev_dbg(dev, "Enabling interrupts...\n");
488 	/* Enable interrupts */
489 	ccp_enable_queue_interrupts(ccp);
490 
491 	dev_dbg(dev, "Registering device...\n");
492 	ccp_add_device(ccp);
493 
494 	ret = ccp_register_rng(ccp);
495 	if (ret)
496 		goto e_kthread;
497 
498 	/* Register the DMA engine support */
499 	ret = ccp_dmaengine_register(ccp);
500 	if (ret)
501 		goto e_hwrng;
502 
503 	return 0;
504 
505 e_hwrng:
506 	ccp_unregister_rng(ccp);
507 
508 e_kthread:
509 	for (i = 0; i < ccp->cmd_q_count; i++)
510 		if (ccp->cmd_q[i].kthread)
511 			kthread_stop(ccp->cmd_q[i].kthread);
512 
513 	sp_free_ccp_irq(ccp->sp, ccp);
514 
515 e_pool:
516 	for (i = 0; i < ccp->cmd_q_count; i++)
517 		dma_pool_destroy(ccp->cmd_q[i].dma_pool);
518 
519 	return ret;
520 }
521 
522 static void ccp_destroy(struct ccp_device *ccp)
523 {
524 	struct ccp_cmd_queue *cmd_q;
525 	struct ccp_cmd *cmd;
526 	unsigned int i;
527 
528 	/* Unregister the DMA engine */
529 	ccp_dmaengine_unregister(ccp);
530 
531 	/* Unregister the RNG */
532 	ccp_unregister_rng(ccp);
533 
534 	/* Remove this device from the list of available units */
535 	ccp_del_device(ccp);
536 
537 	/* Disable and clear interrupts */
538 	ccp_disable_queue_interrupts(ccp);
539 	for (i = 0; i < ccp->cmd_q_count; i++) {
540 		cmd_q = &ccp->cmd_q[i];
541 
542 		ioread32(cmd_q->reg_int_status);
543 		ioread32(cmd_q->reg_status);
544 	}
545 	iowrite32(ccp->qim, ccp->io_regs + IRQ_STATUS_REG);
546 
547 	/* Stop the queue kthreads */
548 	for (i = 0; i < ccp->cmd_q_count; i++)
549 		if (ccp->cmd_q[i].kthread)
550 			kthread_stop(ccp->cmd_q[i].kthread);
551 
552 	sp_free_ccp_irq(ccp->sp, ccp);
553 
554 	for (i = 0; i < ccp->cmd_q_count; i++)
555 		dma_pool_destroy(ccp->cmd_q[i].dma_pool);
556 
557 	/* Flush the cmd and backlog queue */
558 	while (!list_empty(&ccp->cmd)) {
559 		/* Invoke the callback directly with an error code */
560 		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
561 		list_del(&cmd->entry);
562 		cmd->callback(cmd->data, -ENODEV);
563 	}
564 	while (!list_empty(&ccp->backlog)) {
565 		/* Invoke the callback directly with an error code */
566 		cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
567 		list_del(&cmd->entry);
568 		cmd->callback(cmd->data, -ENODEV);
569 	}
570 }
571 
572 static const struct ccp_actions ccp3_actions = {
573 	.aes = ccp_perform_aes,
574 	.xts_aes = ccp_perform_xts_aes,
575 	.des3 = NULL,
576 	.sha = ccp_perform_sha,
577 	.rsa = ccp_perform_rsa,
578 	.passthru = ccp_perform_passthru,
579 	.ecc = ccp_perform_ecc,
580 	.sballoc = ccp_alloc_ksb,
581 	.sbfree = ccp_free_ksb,
582 	.init = ccp_init,
583 	.destroy = ccp_destroy,
584 	.get_free_slots = ccp_get_free_slots,
585 	.irqhandler = ccp_irq_handler,
586 };
587 
588 const struct ccp_vdata ccpv3_platform = {
589 	.version = CCP_VERSION(3, 0),
590 	.setup = NULL,
591 	.perform = &ccp3_actions,
592 	.offset = 0,
593 };
594 
595 const struct ccp_vdata ccpv3 = {
596 	.version = CCP_VERSION(3, 0),
597 	.setup = NULL,
598 	.perform = &ccp3_actions,
599 	.offset = 0x20000,
600 	.rsamax = CCP_RSA_MAX_WIDTH,
601 };
602