xref: /linux/drivers/crypto/ccp/ccp-crypto-sha.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
3  *
4  * Copyright (C) 2013 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/delay.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <crypto/algapi.h>
19 #include <crypto/hash.h>
20 #include <crypto/internal/hash.h>
21 #include <crypto/sha.h>
22 #include <crypto/scatterwalk.h>
23 
24 #include "ccp-crypto.h"
25 
26 
27 static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
28 {
29 	struct ahash_request *req = ahash_request_cast(async_req);
30 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
31 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
32 	unsigned int digest_size = crypto_ahash_digestsize(tfm);
33 
34 	if (ret)
35 		goto e_free;
36 
37 	if (rctx->hash_rem) {
38 		/* Save remaining data to buffer */
39 		unsigned int offset = rctx->nbytes - rctx->hash_rem;
40 		scatterwalk_map_and_copy(rctx->buf, rctx->src,
41 					 offset, rctx->hash_rem, 0);
42 		rctx->buf_count = rctx->hash_rem;
43 	} else
44 		rctx->buf_count = 0;
45 
46 	/* Update result area if supplied */
47 	if (req->result)
48 		memcpy(req->result, rctx->ctx, digest_size);
49 
50 e_free:
51 	sg_free_table(&rctx->data_sg);
52 
53 	return ret;
54 }
55 
56 static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
57 			     unsigned int final)
58 {
59 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
60 	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
61 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
62 	struct scatterlist *sg;
63 	unsigned int block_size =
64 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
65 	unsigned int sg_count;
66 	gfp_t gfp;
67 	u64 len;
68 	int ret;
69 
70 	len = (u64)rctx->buf_count + (u64)nbytes;
71 
72 	if (!final && (len <= block_size)) {
73 		scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
74 					 0, nbytes, 0);
75 		rctx->buf_count += nbytes;
76 
77 		return 0;
78 	}
79 
80 	rctx->src = req->src;
81 	rctx->nbytes = nbytes;
82 
83 	rctx->final = final;
84 	rctx->hash_rem = final ? 0 : len & (block_size - 1);
85 	rctx->hash_cnt = len - rctx->hash_rem;
86 	if (!final && !rctx->hash_rem) {
87 		/* CCP can't do zero length final, so keep some data around */
88 		rctx->hash_cnt -= block_size;
89 		rctx->hash_rem = block_size;
90 	}
91 
92 	/* Initialize the context scatterlist */
93 	sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
94 
95 	sg = NULL;
96 	if (rctx->buf_count && nbytes) {
97 		/* Build the data scatterlist table - allocate enough entries
98 		 * for both data pieces (buffer and input data)
99 		 */
100 		gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
101 			GFP_KERNEL : GFP_ATOMIC;
102 		sg_count = sg_nents(req->src) + 1;
103 		ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
104 		if (ret)
105 			return ret;
106 
107 		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
108 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
109 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
110 		sg_mark_end(sg);
111 
112 		sg = rctx->data_sg.sgl;
113 	} else if (rctx->buf_count) {
114 		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
115 
116 		sg = &rctx->buf_sg;
117 	} else if (nbytes) {
118 		sg = req->src;
119 	}
120 
121 	rctx->msg_bits += (rctx->hash_cnt << 3);	/* Total in bits */
122 
123 	memset(&rctx->cmd, 0, sizeof(rctx->cmd));
124 	INIT_LIST_HEAD(&rctx->cmd.entry);
125 	rctx->cmd.engine = CCP_ENGINE_SHA;
126 	rctx->cmd.u.sha.type = rctx->type;
127 	rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
128 	rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx);
129 	rctx->cmd.u.sha.src = sg;
130 	rctx->cmd.u.sha.src_len = rctx->hash_cnt;
131 	rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
132 		&ctx->u.sha.opad_sg : NULL;
133 	rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
134 		ctx->u.sha.opad_count : 0;
135 	rctx->cmd.u.sha.first = rctx->first;
136 	rctx->cmd.u.sha.final = rctx->final;
137 	rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
138 
139 	rctx->first = 0;
140 
141 	ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
142 
143 	return ret;
144 }
145 
146 static int ccp_sha_init(struct ahash_request *req)
147 {
148 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
149 	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
150 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
151 	struct ccp_crypto_ahash_alg *alg =
152 		ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
153 	unsigned int block_size =
154 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
155 
156 	memset(rctx, 0, sizeof(*rctx));
157 
158 	rctx->type = alg->type;
159 	rctx->first = 1;
160 
161 	if (ctx->u.sha.key_len) {
162 		/* Buffer the HMAC key for first update */
163 		memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
164 		rctx->buf_count = block_size;
165 	}
166 
167 	return 0;
168 }
169 
170 static int ccp_sha_update(struct ahash_request *req)
171 {
172 	return ccp_do_sha_update(req, req->nbytes, 0);
173 }
174 
175 static int ccp_sha_final(struct ahash_request *req)
176 {
177 	return ccp_do_sha_update(req, 0, 1);
178 }
179 
180 static int ccp_sha_finup(struct ahash_request *req)
181 {
182 	return ccp_do_sha_update(req, req->nbytes, 1);
183 }
184 
185 static int ccp_sha_digest(struct ahash_request *req)
186 {
187 	int ret;
188 
189 	ret = ccp_sha_init(req);
190 	if (ret)
191 		return ret;
192 
193 	return ccp_sha_finup(req);
194 }
195 
196 static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
197 			  unsigned int key_len)
198 {
199 	struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
200 	struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
201 
202 	SHASH_DESC_ON_STACK(sdesc, shash);
203 
204 	unsigned int block_size = crypto_shash_blocksize(shash);
205 	unsigned int digest_size = crypto_shash_digestsize(shash);
206 	int i, ret;
207 
208 	/* Set to zero until complete */
209 	ctx->u.sha.key_len = 0;
210 
211 	/* Clear key area to provide zero padding for keys smaller
212 	 * than the block size
213 	 */
214 	memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
215 
216 	if (key_len > block_size) {
217 		/* Must hash the input key */
218 		sdesc->tfm = shash;
219 		sdesc->flags = crypto_ahash_get_flags(tfm) &
220 			CRYPTO_TFM_REQ_MAY_SLEEP;
221 
222 		ret = crypto_shash_digest(sdesc, key, key_len,
223 					  ctx->u.sha.key);
224 		if (ret) {
225 			crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
226 			return -EINVAL;
227 		}
228 
229 		key_len = digest_size;
230 	} else
231 		memcpy(ctx->u.sha.key, key, key_len);
232 
233 	for (i = 0; i < block_size; i++) {
234 		ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
235 		ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
236 	}
237 
238 	sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
239 	ctx->u.sha.opad_count = block_size;
240 
241 	ctx->u.sha.key_len = key_len;
242 
243 	return 0;
244 }
245 
246 static int ccp_sha_cra_init(struct crypto_tfm *tfm)
247 {
248 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
249 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
250 
251 	ctx->complete = ccp_sha_complete;
252 	ctx->u.sha.key_len = 0;
253 
254 	crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
255 
256 	return 0;
257 }
258 
259 static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
260 {
261 }
262 
263 static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
264 {
265 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
266 	struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
267 	struct crypto_shash *hmac_tfm;
268 
269 	hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
270 	if (IS_ERR(hmac_tfm)) {
271 		pr_warn("could not load driver %s need for HMAC support\n",
272 			alg->child_alg);
273 		return PTR_ERR(hmac_tfm);
274 	}
275 
276 	ctx->u.sha.hmac_tfm = hmac_tfm;
277 
278 	return ccp_sha_cra_init(tfm);
279 }
280 
281 static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
282 {
283 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
284 
285 	if (ctx->u.sha.hmac_tfm)
286 		crypto_free_shash(ctx->u.sha.hmac_tfm);
287 
288 	ccp_sha_cra_exit(tfm);
289 }
290 
291 struct ccp_sha_def {
292 	const char *name;
293 	const char *drv_name;
294 	enum ccp_sha_type type;
295 	u32 digest_size;
296 	u32 block_size;
297 };
298 
299 static struct ccp_sha_def sha_algs[] = {
300 	{
301 		.name		= "sha1",
302 		.drv_name	= "sha1-ccp",
303 		.type		= CCP_SHA_TYPE_1,
304 		.digest_size	= SHA1_DIGEST_SIZE,
305 		.block_size	= SHA1_BLOCK_SIZE,
306 	},
307 	{
308 		.name		= "sha224",
309 		.drv_name	= "sha224-ccp",
310 		.type		= CCP_SHA_TYPE_224,
311 		.digest_size	= SHA224_DIGEST_SIZE,
312 		.block_size	= SHA224_BLOCK_SIZE,
313 	},
314 	{
315 		.name		= "sha256",
316 		.drv_name	= "sha256-ccp",
317 		.type		= CCP_SHA_TYPE_256,
318 		.digest_size	= SHA256_DIGEST_SIZE,
319 		.block_size	= SHA256_BLOCK_SIZE,
320 	},
321 };
322 
323 static int ccp_register_hmac_alg(struct list_head *head,
324 				 const struct ccp_sha_def *def,
325 				 const struct ccp_crypto_ahash_alg *base_alg)
326 {
327 	struct ccp_crypto_ahash_alg *ccp_alg;
328 	struct ahash_alg *alg;
329 	struct hash_alg_common *halg;
330 	struct crypto_alg *base;
331 	int ret;
332 
333 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
334 	if (!ccp_alg)
335 		return -ENOMEM;
336 
337 	/* Copy the base algorithm and only change what's necessary */
338 	*ccp_alg = *base_alg;
339 	INIT_LIST_HEAD(&ccp_alg->entry);
340 
341 	strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
342 
343 	alg = &ccp_alg->alg;
344 	alg->setkey = ccp_sha_setkey;
345 
346 	halg = &alg->halg;
347 
348 	base = &halg->base;
349 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
350 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
351 		 def->drv_name);
352 	base->cra_init = ccp_hmac_sha_cra_init;
353 	base->cra_exit = ccp_hmac_sha_cra_exit;
354 
355 	ret = crypto_register_ahash(alg);
356 	if (ret) {
357 		pr_err("%s ahash algorithm registration error (%d)\n",
358 			base->cra_name, ret);
359 		kfree(ccp_alg);
360 		return ret;
361 	}
362 
363 	list_add(&ccp_alg->entry, head);
364 
365 	return ret;
366 }
367 
368 static int ccp_register_sha_alg(struct list_head *head,
369 				const struct ccp_sha_def *def)
370 {
371 	struct ccp_crypto_ahash_alg *ccp_alg;
372 	struct ahash_alg *alg;
373 	struct hash_alg_common *halg;
374 	struct crypto_alg *base;
375 	int ret;
376 
377 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
378 	if (!ccp_alg)
379 		return -ENOMEM;
380 
381 	INIT_LIST_HEAD(&ccp_alg->entry);
382 
383 	ccp_alg->type = def->type;
384 
385 	alg = &ccp_alg->alg;
386 	alg->init = ccp_sha_init;
387 	alg->update = ccp_sha_update;
388 	alg->final = ccp_sha_final;
389 	alg->finup = ccp_sha_finup;
390 	alg->digest = ccp_sha_digest;
391 
392 	halg = &alg->halg;
393 	halg->digestsize = def->digest_size;
394 
395 	base = &halg->base;
396 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
397 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
398 		 def->drv_name);
399 	base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
400 			  CRYPTO_ALG_KERN_DRIVER_ONLY |
401 			  CRYPTO_ALG_NEED_FALLBACK;
402 	base->cra_blocksize = def->block_size;
403 	base->cra_ctxsize = sizeof(struct ccp_ctx);
404 	base->cra_priority = CCP_CRA_PRIORITY;
405 	base->cra_type = &crypto_ahash_type;
406 	base->cra_init = ccp_sha_cra_init;
407 	base->cra_exit = ccp_sha_cra_exit;
408 	base->cra_module = THIS_MODULE;
409 
410 	ret = crypto_register_ahash(alg);
411 	if (ret) {
412 		pr_err("%s ahash algorithm registration error (%d)\n",
413 			base->cra_name, ret);
414 		kfree(ccp_alg);
415 		return ret;
416 	}
417 
418 	list_add(&ccp_alg->entry, head);
419 
420 	ret = ccp_register_hmac_alg(head, def, ccp_alg);
421 
422 	return ret;
423 }
424 
425 int ccp_register_sha_algs(struct list_head *head)
426 {
427 	int i, ret;
428 
429 	for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
430 		ret = ccp_register_sha_alg(head, &sha_algs[i]);
431 		if (ret)
432 			return ret;
433 	}
434 
435 	return 0;
436 }
437