xref: /linux/drivers/crypto/ccp/ccp-crypto-sha.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
3  *
4  * Copyright (C) 2013 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/delay.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <crypto/algapi.h>
19 #include <crypto/hash.h>
20 #include <crypto/internal/hash.h>
21 #include <crypto/sha.h>
22 #include <crypto/scatterwalk.h>
23 
24 #include "ccp-crypto.h"
25 
26 static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
27 {
28 	struct ahash_request *req = ahash_request_cast(async_req);
29 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
30 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
31 	unsigned int digest_size = crypto_ahash_digestsize(tfm);
32 
33 	if (ret)
34 		goto e_free;
35 
36 	if (rctx->hash_rem) {
37 		/* Save remaining data to buffer */
38 		unsigned int offset = rctx->nbytes - rctx->hash_rem;
39 
40 		scatterwalk_map_and_copy(rctx->buf, rctx->src,
41 					 offset, rctx->hash_rem, 0);
42 		rctx->buf_count = rctx->hash_rem;
43 	} else {
44 		rctx->buf_count = 0;
45 	}
46 
47 	/* Update result area if supplied */
48 	if (req->result)
49 		memcpy(req->result, rctx->ctx, digest_size);
50 
51 e_free:
52 	sg_free_table(&rctx->data_sg);
53 
54 	return ret;
55 }
56 
57 static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
58 			     unsigned int final)
59 {
60 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
61 	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
62 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
63 	struct scatterlist *sg;
64 	unsigned int block_size =
65 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
66 	unsigned int sg_count;
67 	gfp_t gfp;
68 	u64 len;
69 	int ret;
70 
71 	len = (u64)rctx->buf_count + (u64)nbytes;
72 
73 	if (!final && (len <= block_size)) {
74 		scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
75 					 0, nbytes, 0);
76 		rctx->buf_count += nbytes;
77 
78 		return 0;
79 	}
80 
81 	rctx->src = req->src;
82 	rctx->nbytes = nbytes;
83 
84 	rctx->final = final;
85 	rctx->hash_rem = final ? 0 : len & (block_size - 1);
86 	rctx->hash_cnt = len - rctx->hash_rem;
87 	if (!final && !rctx->hash_rem) {
88 		/* CCP can't do zero length final, so keep some data around */
89 		rctx->hash_cnt -= block_size;
90 		rctx->hash_rem = block_size;
91 	}
92 
93 	/* Initialize the context scatterlist */
94 	sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
95 
96 	sg = NULL;
97 	if (rctx->buf_count && nbytes) {
98 		/* Build the data scatterlist table - allocate enough entries
99 		 * for both data pieces (buffer and input data)
100 		 */
101 		gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
102 			GFP_KERNEL : GFP_ATOMIC;
103 		sg_count = sg_nents(req->src) + 1;
104 		ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
105 		if (ret)
106 			return ret;
107 
108 		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
109 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
110 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
111 		sg_mark_end(sg);
112 
113 		sg = rctx->data_sg.sgl;
114 	} else if (rctx->buf_count) {
115 		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
116 
117 		sg = &rctx->buf_sg;
118 	} else if (nbytes) {
119 		sg = req->src;
120 	}
121 
122 	rctx->msg_bits += (rctx->hash_cnt << 3);	/* Total in bits */
123 
124 	memset(&rctx->cmd, 0, sizeof(rctx->cmd));
125 	INIT_LIST_HEAD(&rctx->cmd.entry);
126 	rctx->cmd.engine = CCP_ENGINE_SHA;
127 	rctx->cmd.u.sha.type = rctx->type;
128 	rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
129 	rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx);
130 	rctx->cmd.u.sha.src = sg;
131 	rctx->cmd.u.sha.src_len = rctx->hash_cnt;
132 	rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
133 		&ctx->u.sha.opad_sg : NULL;
134 	rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
135 		ctx->u.sha.opad_count : 0;
136 	rctx->cmd.u.sha.first = rctx->first;
137 	rctx->cmd.u.sha.final = rctx->final;
138 	rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
139 
140 	rctx->first = 0;
141 
142 	ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
143 
144 	return ret;
145 }
146 
147 static int ccp_sha_init(struct ahash_request *req)
148 {
149 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
150 	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
151 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
152 	struct ccp_crypto_ahash_alg *alg =
153 		ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
154 	unsigned int block_size =
155 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
156 
157 	memset(rctx, 0, sizeof(*rctx));
158 
159 	rctx->type = alg->type;
160 	rctx->first = 1;
161 
162 	if (ctx->u.sha.key_len) {
163 		/* Buffer the HMAC key for first update */
164 		memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
165 		rctx->buf_count = block_size;
166 	}
167 
168 	return 0;
169 }
170 
171 static int ccp_sha_update(struct ahash_request *req)
172 {
173 	return ccp_do_sha_update(req, req->nbytes, 0);
174 }
175 
176 static int ccp_sha_final(struct ahash_request *req)
177 {
178 	return ccp_do_sha_update(req, 0, 1);
179 }
180 
181 static int ccp_sha_finup(struct ahash_request *req)
182 {
183 	return ccp_do_sha_update(req, req->nbytes, 1);
184 }
185 
186 static int ccp_sha_digest(struct ahash_request *req)
187 {
188 	int ret;
189 
190 	ret = ccp_sha_init(req);
191 	if (ret)
192 		return ret;
193 
194 	return ccp_sha_finup(req);
195 }
196 
197 static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
198 			  unsigned int key_len)
199 {
200 	struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
201 	struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
202 
203 	SHASH_DESC_ON_STACK(sdesc, shash);
204 
205 	unsigned int block_size = crypto_shash_blocksize(shash);
206 	unsigned int digest_size = crypto_shash_digestsize(shash);
207 	int i, ret;
208 
209 	/* Set to zero until complete */
210 	ctx->u.sha.key_len = 0;
211 
212 	/* Clear key area to provide zero padding for keys smaller
213 	 * than the block size
214 	 */
215 	memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
216 
217 	if (key_len > block_size) {
218 		/* Must hash the input key */
219 		sdesc->tfm = shash;
220 		sdesc->flags = crypto_ahash_get_flags(tfm) &
221 			CRYPTO_TFM_REQ_MAY_SLEEP;
222 
223 		ret = crypto_shash_digest(sdesc, key, key_len,
224 					  ctx->u.sha.key);
225 		if (ret) {
226 			crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
227 			return -EINVAL;
228 		}
229 
230 		key_len = digest_size;
231 	} else {
232 		memcpy(ctx->u.sha.key, key, key_len);
233 	}
234 
235 	for (i = 0; i < block_size; i++) {
236 		ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
237 		ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
238 	}
239 
240 	sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
241 	ctx->u.sha.opad_count = block_size;
242 
243 	ctx->u.sha.key_len = key_len;
244 
245 	return 0;
246 }
247 
248 static int ccp_sha_cra_init(struct crypto_tfm *tfm)
249 {
250 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
251 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
252 
253 	ctx->complete = ccp_sha_complete;
254 	ctx->u.sha.key_len = 0;
255 
256 	crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
257 
258 	return 0;
259 }
260 
261 static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
262 {
263 }
264 
265 static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
266 {
267 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
268 	struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
269 	struct crypto_shash *hmac_tfm;
270 
271 	hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
272 	if (IS_ERR(hmac_tfm)) {
273 		pr_warn("could not load driver %s need for HMAC support\n",
274 			alg->child_alg);
275 		return PTR_ERR(hmac_tfm);
276 	}
277 
278 	ctx->u.sha.hmac_tfm = hmac_tfm;
279 
280 	return ccp_sha_cra_init(tfm);
281 }
282 
283 static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
284 {
285 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
286 
287 	if (ctx->u.sha.hmac_tfm)
288 		crypto_free_shash(ctx->u.sha.hmac_tfm);
289 
290 	ccp_sha_cra_exit(tfm);
291 }
292 
293 struct ccp_sha_def {
294 	const char *name;
295 	const char *drv_name;
296 	enum ccp_sha_type type;
297 	u32 digest_size;
298 	u32 block_size;
299 };
300 
301 static struct ccp_sha_def sha_algs[] = {
302 	{
303 		.name		= "sha1",
304 		.drv_name	= "sha1-ccp",
305 		.type		= CCP_SHA_TYPE_1,
306 		.digest_size	= SHA1_DIGEST_SIZE,
307 		.block_size	= SHA1_BLOCK_SIZE,
308 	},
309 	{
310 		.name		= "sha224",
311 		.drv_name	= "sha224-ccp",
312 		.type		= CCP_SHA_TYPE_224,
313 		.digest_size	= SHA224_DIGEST_SIZE,
314 		.block_size	= SHA224_BLOCK_SIZE,
315 	},
316 	{
317 		.name		= "sha256",
318 		.drv_name	= "sha256-ccp",
319 		.type		= CCP_SHA_TYPE_256,
320 		.digest_size	= SHA256_DIGEST_SIZE,
321 		.block_size	= SHA256_BLOCK_SIZE,
322 	},
323 };
324 
325 static int ccp_register_hmac_alg(struct list_head *head,
326 				 const struct ccp_sha_def *def,
327 				 const struct ccp_crypto_ahash_alg *base_alg)
328 {
329 	struct ccp_crypto_ahash_alg *ccp_alg;
330 	struct ahash_alg *alg;
331 	struct hash_alg_common *halg;
332 	struct crypto_alg *base;
333 	int ret;
334 
335 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
336 	if (!ccp_alg)
337 		return -ENOMEM;
338 
339 	/* Copy the base algorithm and only change what's necessary */
340 	*ccp_alg = *base_alg;
341 	INIT_LIST_HEAD(&ccp_alg->entry);
342 
343 	strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
344 
345 	alg = &ccp_alg->alg;
346 	alg->setkey = ccp_sha_setkey;
347 
348 	halg = &alg->halg;
349 
350 	base = &halg->base;
351 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
352 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
353 		 def->drv_name);
354 	base->cra_init = ccp_hmac_sha_cra_init;
355 	base->cra_exit = ccp_hmac_sha_cra_exit;
356 
357 	ret = crypto_register_ahash(alg);
358 	if (ret) {
359 		pr_err("%s ahash algorithm registration error (%d)\n",
360 		       base->cra_name, ret);
361 		kfree(ccp_alg);
362 		return ret;
363 	}
364 
365 	list_add(&ccp_alg->entry, head);
366 
367 	return ret;
368 }
369 
370 static int ccp_register_sha_alg(struct list_head *head,
371 				const struct ccp_sha_def *def)
372 {
373 	struct ccp_crypto_ahash_alg *ccp_alg;
374 	struct ahash_alg *alg;
375 	struct hash_alg_common *halg;
376 	struct crypto_alg *base;
377 	int ret;
378 
379 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
380 	if (!ccp_alg)
381 		return -ENOMEM;
382 
383 	INIT_LIST_HEAD(&ccp_alg->entry);
384 
385 	ccp_alg->type = def->type;
386 
387 	alg = &ccp_alg->alg;
388 	alg->init = ccp_sha_init;
389 	alg->update = ccp_sha_update;
390 	alg->final = ccp_sha_final;
391 	alg->finup = ccp_sha_finup;
392 	alg->digest = ccp_sha_digest;
393 
394 	halg = &alg->halg;
395 	halg->digestsize = def->digest_size;
396 
397 	base = &halg->base;
398 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
399 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
400 		 def->drv_name);
401 	base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
402 			  CRYPTO_ALG_KERN_DRIVER_ONLY |
403 			  CRYPTO_ALG_NEED_FALLBACK;
404 	base->cra_blocksize = def->block_size;
405 	base->cra_ctxsize = sizeof(struct ccp_ctx);
406 	base->cra_priority = CCP_CRA_PRIORITY;
407 	base->cra_type = &crypto_ahash_type;
408 	base->cra_init = ccp_sha_cra_init;
409 	base->cra_exit = ccp_sha_cra_exit;
410 	base->cra_module = THIS_MODULE;
411 
412 	ret = crypto_register_ahash(alg);
413 	if (ret) {
414 		pr_err("%s ahash algorithm registration error (%d)\n",
415 		       base->cra_name, ret);
416 		kfree(ccp_alg);
417 		return ret;
418 	}
419 
420 	list_add(&ccp_alg->entry, head);
421 
422 	ret = ccp_register_hmac_alg(head, def, ccp_alg);
423 
424 	return ret;
425 }
426 
427 int ccp_register_sha_algs(struct list_head *head)
428 {
429 	int i, ret;
430 
431 	for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
432 		ret = ccp_register_sha_alg(head, &sha_algs[i]);
433 		if (ret)
434 			return ret;
435 	}
436 
437 	return 0;
438 }
439