xref: /linux/drivers/crypto/ccp/ccp-crypto-sha.c (revision c5d3cdad688ed75fb311a3a671eb30ba7106d7d3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
4  *
5  * Copyright (C) 2013,2018 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  * Author: Gary R Hook <gary.hook@amd.com>
9  */
10 
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/delay.h>
14 #include <linux/scatterlist.h>
15 #include <linux/crypto.h>
16 #include <crypto/algapi.h>
17 #include <crypto/hash.h>
18 #include <crypto/hmac.h>
19 #include <crypto/internal/hash.h>
20 #include <crypto/sha.h>
21 #include <crypto/scatterwalk.h>
22 
23 #include "ccp-crypto.h"
24 
25 static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
26 {
27 	struct ahash_request *req = ahash_request_cast(async_req);
28 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
29 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
30 	unsigned int digest_size = crypto_ahash_digestsize(tfm);
31 
32 	if (ret)
33 		goto e_free;
34 
35 	if (rctx->hash_rem) {
36 		/* Save remaining data to buffer */
37 		unsigned int offset = rctx->nbytes - rctx->hash_rem;
38 
39 		scatterwalk_map_and_copy(rctx->buf, rctx->src,
40 					 offset, rctx->hash_rem, 0);
41 		rctx->buf_count = rctx->hash_rem;
42 	} else {
43 		rctx->buf_count = 0;
44 	}
45 
46 	/* Update result area if supplied */
47 	if (req->result && rctx->final)
48 		memcpy(req->result, rctx->ctx, digest_size);
49 
50 e_free:
51 	sg_free_table(&rctx->data_sg);
52 
53 	return ret;
54 }
55 
56 static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
57 			     unsigned int final)
58 {
59 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
60 	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
61 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
62 	struct scatterlist *sg;
63 	unsigned int block_size =
64 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
65 	unsigned int sg_count;
66 	gfp_t gfp;
67 	u64 len;
68 	int ret;
69 
70 	len = (u64)rctx->buf_count + (u64)nbytes;
71 
72 	if (!final && (len <= block_size)) {
73 		scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
74 					 0, nbytes, 0);
75 		rctx->buf_count += nbytes;
76 
77 		return 0;
78 	}
79 
80 	rctx->src = req->src;
81 	rctx->nbytes = nbytes;
82 
83 	rctx->final = final;
84 	rctx->hash_rem = final ? 0 : len & (block_size - 1);
85 	rctx->hash_cnt = len - rctx->hash_rem;
86 	if (!final && !rctx->hash_rem) {
87 		/* CCP can't do zero length final, so keep some data around */
88 		rctx->hash_cnt -= block_size;
89 		rctx->hash_rem = block_size;
90 	}
91 
92 	/* Initialize the context scatterlist */
93 	sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
94 
95 	sg = NULL;
96 	if (rctx->buf_count && nbytes) {
97 		/* Build the data scatterlist table - allocate enough entries
98 		 * for both data pieces (buffer and input data)
99 		 */
100 		gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
101 			GFP_KERNEL : GFP_ATOMIC;
102 		sg_count = sg_nents(req->src) + 1;
103 		ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
104 		if (ret)
105 			return ret;
106 
107 		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
108 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
109 		if (!sg) {
110 			ret = -EINVAL;
111 			goto e_free;
112 		}
113 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
114 		if (!sg) {
115 			ret = -EINVAL;
116 			goto e_free;
117 		}
118 		sg_mark_end(sg);
119 
120 		sg = rctx->data_sg.sgl;
121 	} else if (rctx->buf_count) {
122 		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
123 
124 		sg = &rctx->buf_sg;
125 	} else if (nbytes) {
126 		sg = req->src;
127 	}
128 
129 	rctx->msg_bits += (rctx->hash_cnt << 3);	/* Total in bits */
130 
131 	memset(&rctx->cmd, 0, sizeof(rctx->cmd));
132 	INIT_LIST_HEAD(&rctx->cmd.entry);
133 	rctx->cmd.engine = CCP_ENGINE_SHA;
134 	rctx->cmd.u.sha.type = rctx->type;
135 	rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
136 
137 	switch (rctx->type) {
138 	case CCP_SHA_TYPE_1:
139 		rctx->cmd.u.sha.ctx_len = SHA1_DIGEST_SIZE;
140 		break;
141 	case CCP_SHA_TYPE_224:
142 		rctx->cmd.u.sha.ctx_len = SHA224_DIGEST_SIZE;
143 		break;
144 	case CCP_SHA_TYPE_256:
145 		rctx->cmd.u.sha.ctx_len = SHA256_DIGEST_SIZE;
146 		break;
147 	case CCP_SHA_TYPE_384:
148 		rctx->cmd.u.sha.ctx_len = SHA384_DIGEST_SIZE;
149 		break;
150 	case CCP_SHA_TYPE_512:
151 		rctx->cmd.u.sha.ctx_len = SHA512_DIGEST_SIZE;
152 		break;
153 	default:
154 		/* Should never get here */
155 		break;
156 	}
157 
158 	rctx->cmd.u.sha.src = sg;
159 	rctx->cmd.u.sha.src_len = rctx->hash_cnt;
160 	rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
161 		&ctx->u.sha.opad_sg : NULL;
162 	rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
163 		ctx->u.sha.opad_count : 0;
164 	rctx->cmd.u.sha.first = rctx->first;
165 	rctx->cmd.u.sha.final = rctx->final;
166 	rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
167 
168 	rctx->first = 0;
169 
170 	ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
171 
172 	return ret;
173 
174 e_free:
175 	sg_free_table(&rctx->data_sg);
176 
177 	return ret;
178 }
179 
180 static int ccp_sha_init(struct ahash_request *req)
181 {
182 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
183 	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
184 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
185 	struct ccp_crypto_ahash_alg *alg =
186 		ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
187 	unsigned int block_size =
188 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
189 
190 	memset(rctx, 0, sizeof(*rctx));
191 
192 	rctx->type = alg->type;
193 	rctx->first = 1;
194 
195 	if (ctx->u.sha.key_len) {
196 		/* Buffer the HMAC key for first update */
197 		memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
198 		rctx->buf_count = block_size;
199 	}
200 
201 	return 0;
202 }
203 
204 static int ccp_sha_update(struct ahash_request *req)
205 {
206 	return ccp_do_sha_update(req, req->nbytes, 0);
207 }
208 
209 static int ccp_sha_final(struct ahash_request *req)
210 {
211 	return ccp_do_sha_update(req, 0, 1);
212 }
213 
214 static int ccp_sha_finup(struct ahash_request *req)
215 {
216 	return ccp_do_sha_update(req, req->nbytes, 1);
217 }
218 
219 static int ccp_sha_digest(struct ahash_request *req)
220 {
221 	int ret;
222 
223 	ret = ccp_sha_init(req);
224 	if (ret)
225 		return ret;
226 
227 	return ccp_sha_finup(req);
228 }
229 
230 static int ccp_sha_export(struct ahash_request *req, void *out)
231 {
232 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
233 	struct ccp_sha_exp_ctx state;
234 
235 	/* Don't let anything leak to 'out' */
236 	memset(&state, 0, sizeof(state));
237 
238 	state.type = rctx->type;
239 	state.msg_bits = rctx->msg_bits;
240 	state.first = rctx->first;
241 	memcpy(state.ctx, rctx->ctx, sizeof(state.ctx));
242 	state.buf_count = rctx->buf_count;
243 	memcpy(state.buf, rctx->buf, sizeof(state.buf));
244 
245 	/* 'out' may not be aligned so memcpy from local variable */
246 	memcpy(out, &state, sizeof(state));
247 
248 	return 0;
249 }
250 
251 static int ccp_sha_import(struct ahash_request *req, const void *in)
252 {
253 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
254 	struct ccp_sha_exp_ctx state;
255 
256 	/* 'in' may not be aligned so memcpy to local variable */
257 	memcpy(&state, in, sizeof(state));
258 
259 	memset(rctx, 0, sizeof(*rctx));
260 	rctx->type = state.type;
261 	rctx->msg_bits = state.msg_bits;
262 	rctx->first = state.first;
263 	memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx));
264 	rctx->buf_count = state.buf_count;
265 	memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
266 
267 	return 0;
268 }
269 
270 static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
271 			  unsigned int key_len)
272 {
273 	struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
274 	struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
275 
276 	SHASH_DESC_ON_STACK(sdesc, shash);
277 
278 	unsigned int block_size = crypto_shash_blocksize(shash);
279 	unsigned int digest_size = crypto_shash_digestsize(shash);
280 	int i, ret;
281 
282 	/* Set to zero until complete */
283 	ctx->u.sha.key_len = 0;
284 
285 	/* Clear key area to provide zero padding for keys smaller
286 	 * than the block size
287 	 */
288 	memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
289 
290 	if (key_len > block_size) {
291 		/* Must hash the input key */
292 		sdesc->tfm = shash;
293 
294 		ret = crypto_shash_digest(sdesc, key, key_len,
295 					  ctx->u.sha.key);
296 		if (ret)
297 			return -EINVAL;
298 
299 		key_len = digest_size;
300 	} else {
301 		memcpy(ctx->u.sha.key, key, key_len);
302 	}
303 
304 	for (i = 0; i < block_size; i++) {
305 		ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ HMAC_IPAD_VALUE;
306 		ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ HMAC_OPAD_VALUE;
307 	}
308 
309 	sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
310 	ctx->u.sha.opad_count = block_size;
311 
312 	ctx->u.sha.key_len = key_len;
313 
314 	return 0;
315 }
316 
317 static int ccp_sha_cra_init(struct crypto_tfm *tfm)
318 {
319 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
320 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
321 
322 	ctx->complete = ccp_sha_complete;
323 	ctx->u.sha.key_len = 0;
324 
325 	crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
326 
327 	return 0;
328 }
329 
330 static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
331 {
332 }
333 
334 static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
335 {
336 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
337 	struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
338 	struct crypto_shash *hmac_tfm;
339 
340 	hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
341 	if (IS_ERR(hmac_tfm)) {
342 		pr_warn("could not load driver %s need for HMAC support\n",
343 			alg->child_alg);
344 		return PTR_ERR(hmac_tfm);
345 	}
346 
347 	ctx->u.sha.hmac_tfm = hmac_tfm;
348 
349 	return ccp_sha_cra_init(tfm);
350 }
351 
352 static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
353 {
354 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
355 
356 	if (ctx->u.sha.hmac_tfm)
357 		crypto_free_shash(ctx->u.sha.hmac_tfm);
358 
359 	ccp_sha_cra_exit(tfm);
360 }
361 
362 struct ccp_sha_def {
363 	unsigned int version;
364 	const char *name;
365 	const char *drv_name;
366 	enum ccp_sha_type type;
367 	u32 digest_size;
368 	u32 block_size;
369 };
370 
371 static struct ccp_sha_def sha_algs[] = {
372 	{
373 		.version	= CCP_VERSION(3, 0),
374 		.name		= "sha1",
375 		.drv_name	= "sha1-ccp",
376 		.type		= CCP_SHA_TYPE_1,
377 		.digest_size	= SHA1_DIGEST_SIZE,
378 		.block_size	= SHA1_BLOCK_SIZE,
379 	},
380 	{
381 		.version	= CCP_VERSION(3, 0),
382 		.name		= "sha224",
383 		.drv_name	= "sha224-ccp",
384 		.type		= CCP_SHA_TYPE_224,
385 		.digest_size	= SHA224_DIGEST_SIZE,
386 		.block_size	= SHA224_BLOCK_SIZE,
387 	},
388 	{
389 		.version	= CCP_VERSION(3, 0),
390 		.name		= "sha256",
391 		.drv_name	= "sha256-ccp",
392 		.type		= CCP_SHA_TYPE_256,
393 		.digest_size	= SHA256_DIGEST_SIZE,
394 		.block_size	= SHA256_BLOCK_SIZE,
395 	},
396 	{
397 		.version	= CCP_VERSION(5, 0),
398 		.name		= "sha384",
399 		.drv_name	= "sha384-ccp",
400 		.type		= CCP_SHA_TYPE_384,
401 		.digest_size	= SHA384_DIGEST_SIZE,
402 		.block_size	= SHA384_BLOCK_SIZE,
403 	},
404 	{
405 		.version	= CCP_VERSION(5, 0),
406 		.name		= "sha512",
407 		.drv_name	= "sha512-ccp",
408 		.type		= CCP_SHA_TYPE_512,
409 		.digest_size	= SHA512_DIGEST_SIZE,
410 		.block_size	= SHA512_BLOCK_SIZE,
411 	},
412 };
413 
414 static int ccp_register_hmac_alg(struct list_head *head,
415 				 const struct ccp_sha_def *def,
416 				 const struct ccp_crypto_ahash_alg *base_alg)
417 {
418 	struct ccp_crypto_ahash_alg *ccp_alg;
419 	struct ahash_alg *alg;
420 	struct hash_alg_common *halg;
421 	struct crypto_alg *base;
422 	int ret;
423 
424 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
425 	if (!ccp_alg)
426 		return -ENOMEM;
427 
428 	/* Copy the base algorithm and only change what's necessary */
429 	*ccp_alg = *base_alg;
430 	INIT_LIST_HEAD(&ccp_alg->entry);
431 
432 	strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
433 
434 	alg = &ccp_alg->alg;
435 	alg->setkey = ccp_sha_setkey;
436 
437 	halg = &alg->halg;
438 
439 	base = &halg->base;
440 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
441 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
442 		 def->drv_name);
443 	base->cra_init = ccp_hmac_sha_cra_init;
444 	base->cra_exit = ccp_hmac_sha_cra_exit;
445 
446 	ret = crypto_register_ahash(alg);
447 	if (ret) {
448 		pr_err("%s ahash algorithm registration error (%d)\n",
449 		       base->cra_name, ret);
450 		kfree(ccp_alg);
451 		return ret;
452 	}
453 
454 	list_add(&ccp_alg->entry, head);
455 
456 	return ret;
457 }
458 
459 static int ccp_register_sha_alg(struct list_head *head,
460 				const struct ccp_sha_def *def)
461 {
462 	struct ccp_crypto_ahash_alg *ccp_alg;
463 	struct ahash_alg *alg;
464 	struct hash_alg_common *halg;
465 	struct crypto_alg *base;
466 	int ret;
467 
468 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
469 	if (!ccp_alg)
470 		return -ENOMEM;
471 
472 	INIT_LIST_HEAD(&ccp_alg->entry);
473 
474 	ccp_alg->type = def->type;
475 
476 	alg = &ccp_alg->alg;
477 	alg->init = ccp_sha_init;
478 	alg->update = ccp_sha_update;
479 	alg->final = ccp_sha_final;
480 	alg->finup = ccp_sha_finup;
481 	alg->digest = ccp_sha_digest;
482 	alg->export = ccp_sha_export;
483 	alg->import = ccp_sha_import;
484 
485 	halg = &alg->halg;
486 	halg->digestsize = def->digest_size;
487 	halg->statesize = sizeof(struct ccp_sha_exp_ctx);
488 
489 	base = &halg->base;
490 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
491 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
492 		 def->drv_name);
493 	base->cra_flags = CRYPTO_ALG_ASYNC |
494 			  CRYPTO_ALG_KERN_DRIVER_ONLY |
495 			  CRYPTO_ALG_NEED_FALLBACK;
496 	base->cra_blocksize = def->block_size;
497 	base->cra_ctxsize = sizeof(struct ccp_ctx);
498 	base->cra_priority = CCP_CRA_PRIORITY;
499 	base->cra_init = ccp_sha_cra_init;
500 	base->cra_exit = ccp_sha_cra_exit;
501 	base->cra_module = THIS_MODULE;
502 
503 	ret = crypto_register_ahash(alg);
504 	if (ret) {
505 		pr_err("%s ahash algorithm registration error (%d)\n",
506 		       base->cra_name, ret);
507 		kfree(ccp_alg);
508 		return ret;
509 	}
510 
511 	list_add(&ccp_alg->entry, head);
512 
513 	ret = ccp_register_hmac_alg(head, def, ccp_alg);
514 
515 	return ret;
516 }
517 
518 int ccp_register_sha_algs(struct list_head *head)
519 {
520 	int i, ret;
521 	unsigned int ccpversion = ccp_version();
522 
523 	for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
524 		if (sha_algs[i].version > ccpversion)
525 			continue;
526 		ret = ccp_register_sha_alg(head, &sha_algs[i]);
527 		if (ret)
528 			return ret;
529 	}
530 
531 	return 0;
532 }
533