xref: /linux/drivers/crypto/ccp/ccp-crypto-sha.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
3  *
4  * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/delay.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <crypto/algapi.h>
19 #include <crypto/hash.h>
20 #include <crypto/internal/hash.h>
21 #include <crypto/sha.h>
22 #include <crypto/scatterwalk.h>
23 
24 #include "ccp-crypto.h"
25 
26 static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
27 {
28 	struct ahash_request *req = ahash_request_cast(async_req);
29 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
30 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
31 	unsigned int digest_size = crypto_ahash_digestsize(tfm);
32 
33 	if (ret)
34 		goto e_free;
35 
36 	if (rctx->hash_rem) {
37 		/* Save remaining data to buffer */
38 		unsigned int offset = rctx->nbytes - rctx->hash_rem;
39 
40 		scatterwalk_map_and_copy(rctx->buf, rctx->src,
41 					 offset, rctx->hash_rem, 0);
42 		rctx->buf_count = rctx->hash_rem;
43 	} else {
44 		rctx->buf_count = 0;
45 	}
46 
47 	/* Update result area if supplied */
48 	if (req->result)
49 		memcpy(req->result, rctx->ctx, digest_size);
50 
51 e_free:
52 	sg_free_table(&rctx->data_sg);
53 
54 	return ret;
55 }
56 
57 static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
58 			     unsigned int final)
59 {
60 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
61 	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
62 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
63 	struct scatterlist *sg;
64 	unsigned int block_size =
65 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
66 	unsigned int sg_count;
67 	gfp_t gfp;
68 	u64 len;
69 	int ret;
70 
71 	len = (u64)rctx->buf_count + (u64)nbytes;
72 
73 	if (!final && (len <= block_size)) {
74 		scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
75 					 0, nbytes, 0);
76 		rctx->buf_count += nbytes;
77 
78 		return 0;
79 	}
80 
81 	rctx->src = req->src;
82 	rctx->nbytes = nbytes;
83 
84 	rctx->final = final;
85 	rctx->hash_rem = final ? 0 : len & (block_size - 1);
86 	rctx->hash_cnt = len - rctx->hash_rem;
87 	if (!final && !rctx->hash_rem) {
88 		/* CCP can't do zero length final, so keep some data around */
89 		rctx->hash_cnt -= block_size;
90 		rctx->hash_rem = block_size;
91 	}
92 
93 	/* Initialize the context scatterlist */
94 	sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
95 
96 	sg = NULL;
97 	if (rctx->buf_count && nbytes) {
98 		/* Build the data scatterlist table - allocate enough entries
99 		 * for both data pieces (buffer and input data)
100 		 */
101 		gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
102 			GFP_KERNEL : GFP_ATOMIC;
103 		sg_count = sg_nents(req->src) + 1;
104 		ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
105 		if (ret)
106 			return ret;
107 
108 		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
109 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
110 		if (!sg) {
111 			ret = -EINVAL;
112 			goto e_free;
113 		}
114 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
115 		if (!sg) {
116 			ret = -EINVAL;
117 			goto e_free;
118 		}
119 		sg_mark_end(sg);
120 
121 		sg = rctx->data_sg.sgl;
122 	} else if (rctx->buf_count) {
123 		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
124 
125 		sg = &rctx->buf_sg;
126 	} else if (nbytes) {
127 		sg = req->src;
128 	}
129 
130 	rctx->msg_bits += (rctx->hash_cnt << 3);	/* Total in bits */
131 
132 	memset(&rctx->cmd, 0, sizeof(rctx->cmd));
133 	INIT_LIST_HEAD(&rctx->cmd.entry);
134 	rctx->cmd.engine = CCP_ENGINE_SHA;
135 	rctx->cmd.u.sha.type = rctx->type;
136 	rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
137 	rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx);
138 	rctx->cmd.u.sha.src = sg;
139 	rctx->cmd.u.sha.src_len = rctx->hash_cnt;
140 	rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
141 		&ctx->u.sha.opad_sg : NULL;
142 	rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
143 		ctx->u.sha.opad_count : 0;
144 	rctx->cmd.u.sha.first = rctx->first;
145 	rctx->cmd.u.sha.final = rctx->final;
146 	rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
147 
148 	rctx->first = 0;
149 
150 	ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
151 
152 	return ret;
153 
154 e_free:
155 	sg_free_table(&rctx->data_sg);
156 
157 	return ret;
158 }
159 
160 static int ccp_sha_init(struct ahash_request *req)
161 {
162 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
163 	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
164 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
165 	struct ccp_crypto_ahash_alg *alg =
166 		ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
167 	unsigned int block_size =
168 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
169 
170 	memset(rctx, 0, sizeof(*rctx));
171 
172 	rctx->type = alg->type;
173 	rctx->first = 1;
174 
175 	if (ctx->u.sha.key_len) {
176 		/* Buffer the HMAC key for first update */
177 		memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
178 		rctx->buf_count = block_size;
179 	}
180 
181 	return 0;
182 }
183 
184 static int ccp_sha_update(struct ahash_request *req)
185 {
186 	return ccp_do_sha_update(req, req->nbytes, 0);
187 }
188 
189 static int ccp_sha_final(struct ahash_request *req)
190 {
191 	return ccp_do_sha_update(req, 0, 1);
192 }
193 
194 static int ccp_sha_finup(struct ahash_request *req)
195 {
196 	return ccp_do_sha_update(req, req->nbytes, 1);
197 }
198 
199 static int ccp_sha_digest(struct ahash_request *req)
200 {
201 	int ret;
202 
203 	ret = ccp_sha_init(req);
204 	if (ret)
205 		return ret;
206 
207 	return ccp_sha_finup(req);
208 }
209 
210 static int ccp_sha_export(struct ahash_request *req, void *out)
211 {
212 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
213 	struct ccp_sha_exp_ctx state;
214 
215 	state.type = rctx->type;
216 	state.msg_bits = rctx->msg_bits;
217 	state.first = rctx->first;
218 	memcpy(state.ctx, rctx->ctx, sizeof(state.ctx));
219 	state.buf_count = rctx->buf_count;
220 	memcpy(state.buf, rctx->buf, sizeof(state.buf));
221 
222 	/* 'out' may not be aligned so memcpy from local variable */
223 	memcpy(out, &state, sizeof(state));
224 
225 	return 0;
226 }
227 
228 static int ccp_sha_import(struct ahash_request *req, const void *in)
229 {
230 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
231 	struct ccp_sha_exp_ctx state;
232 
233 	/* 'in' may not be aligned so memcpy to local variable */
234 	memcpy(&state, in, sizeof(state));
235 
236 	memset(rctx, 0, sizeof(*rctx));
237 	rctx->type = state.type;
238 	rctx->msg_bits = state.msg_bits;
239 	rctx->first = state.first;
240 	memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx));
241 	rctx->buf_count = state.buf_count;
242 	memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
243 
244 	return 0;
245 }
246 
247 static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
248 			  unsigned int key_len)
249 {
250 	struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
251 	struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
252 
253 	SHASH_DESC_ON_STACK(sdesc, shash);
254 
255 	unsigned int block_size = crypto_shash_blocksize(shash);
256 	unsigned int digest_size = crypto_shash_digestsize(shash);
257 	int i, ret;
258 
259 	/* Set to zero until complete */
260 	ctx->u.sha.key_len = 0;
261 
262 	/* Clear key area to provide zero padding for keys smaller
263 	 * than the block size
264 	 */
265 	memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
266 
267 	if (key_len > block_size) {
268 		/* Must hash the input key */
269 		sdesc->tfm = shash;
270 		sdesc->flags = crypto_ahash_get_flags(tfm) &
271 			CRYPTO_TFM_REQ_MAY_SLEEP;
272 
273 		ret = crypto_shash_digest(sdesc, key, key_len,
274 					  ctx->u.sha.key);
275 		if (ret) {
276 			crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
277 			return -EINVAL;
278 		}
279 
280 		key_len = digest_size;
281 	} else {
282 		memcpy(ctx->u.sha.key, key, key_len);
283 	}
284 
285 	for (i = 0; i < block_size; i++) {
286 		ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
287 		ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
288 	}
289 
290 	sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
291 	ctx->u.sha.opad_count = block_size;
292 
293 	ctx->u.sha.key_len = key_len;
294 
295 	return 0;
296 }
297 
298 static int ccp_sha_cra_init(struct crypto_tfm *tfm)
299 {
300 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
301 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
302 
303 	ctx->complete = ccp_sha_complete;
304 	ctx->u.sha.key_len = 0;
305 
306 	crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
307 
308 	return 0;
309 }
310 
311 static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
312 {
313 }
314 
315 static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
316 {
317 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
318 	struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
319 	struct crypto_shash *hmac_tfm;
320 
321 	hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
322 	if (IS_ERR(hmac_tfm)) {
323 		pr_warn("could not load driver %s need for HMAC support\n",
324 			alg->child_alg);
325 		return PTR_ERR(hmac_tfm);
326 	}
327 
328 	ctx->u.sha.hmac_tfm = hmac_tfm;
329 
330 	return ccp_sha_cra_init(tfm);
331 }
332 
333 static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
334 {
335 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
336 
337 	if (ctx->u.sha.hmac_tfm)
338 		crypto_free_shash(ctx->u.sha.hmac_tfm);
339 
340 	ccp_sha_cra_exit(tfm);
341 }
342 
343 struct ccp_sha_def {
344 	unsigned int version;
345 	const char *name;
346 	const char *drv_name;
347 	enum ccp_sha_type type;
348 	u32 digest_size;
349 	u32 block_size;
350 };
351 
352 static struct ccp_sha_def sha_algs[] = {
353 	{
354 		.version	= CCP_VERSION(3, 0),
355 		.name		= "sha1",
356 		.drv_name	= "sha1-ccp",
357 		.type		= CCP_SHA_TYPE_1,
358 		.digest_size	= SHA1_DIGEST_SIZE,
359 		.block_size	= SHA1_BLOCK_SIZE,
360 	},
361 	{
362 		.version	= CCP_VERSION(3, 0),
363 		.name		= "sha224",
364 		.drv_name	= "sha224-ccp",
365 		.type		= CCP_SHA_TYPE_224,
366 		.digest_size	= SHA224_DIGEST_SIZE,
367 		.block_size	= SHA224_BLOCK_SIZE,
368 	},
369 	{
370 		.version	= CCP_VERSION(3, 0),
371 		.name		= "sha256",
372 		.drv_name	= "sha256-ccp",
373 		.type		= CCP_SHA_TYPE_256,
374 		.digest_size	= SHA256_DIGEST_SIZE,
375 		.block_size	= SHA256_BLOCK_SIZE,
376 	},
377 };
378 
379 static int ccp_register_hmac_alg(struct list_head *head,
380 				 const struct ccp_sha_def *def,
381 				 const struct ccp_crypto_ahash_alg *base_alg)
382 {
383 	struct ccp_crypto_ahash_alg *ccp_alg;
384 	struct ahash_alg *alg;
385 	struct hash_alg_common *halg;
386 	struct crypto_alg *base;
387 	int ret;
388 
389 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
390 	if (!ccp_alg)
391 		return -ENOMEM;
392 
393 	/* Copy the base algorithm and only change what's necessary */
394 	*ccp_alg = *base_alg;
395 	INIT_LIST_HEAD(&ccp_alg->entry);
396 
397 	strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
398 
399 	alg = &ccp_alg->alg;
400 	alg->setkey = ccp_sha_setkey;
401 
402 	halg = &alg->halg;
403 
404 	base = &halg->base;
405 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
406 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
407 		 def->drv_name);
408 	base->cra_init = ccp_hmac_sha_cra_init;
409 	base->cra_exit = ccp_hmac_sha_cra_exit;
410 
411 	ret = crypto_register_ahash(alg);
412 	if (ret) {
413 		pr_err("%s ahash algorithm registration error (%d)\n",
414 		       base->cra_name, ret);
415 		kfree(ccp_alg);
416 		return ret;
417 	}
418 
419 	list_add(&ccp_alg->entry, head);
420 
421 	return ret;
422 }
423 
424 static int ccp_register_sha_alg(struct list_head *head,
425 				const struct ccp_sha_def *def)
426 {
427 	struct ccp_crypto_ahash_alg *ccp_alg;
428 	struct ahash_alg *alg;
429 	struct hash_alg_common *halg;
430 	struct crypto_alg *base;
431 	int ret;
432 
433 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
434 	if (!ccp_alg)
435 		return -ENOMEM;
436 
437 	INIT_LIST_HEAD(&ccp_alg->entry);
438 
439 	ccp_alg->type = def->type;
440 
441 	alg = &ccp_alg->alg;
442 	alg->init = ccp_sha_init;
443 	alg->update = ccp_sha_update;
444 	alg->final = ccp_sha_final;
445 	alg->finup = ccp_sha_finup;
446 	alg->digest = ccp_sha_digest;
447 	alg->export = ccp_sha_export;
448 	alg->import = ccp_sha_import;
449 
450 	halg = &alg->halg;
451 	halg->digestsize = def->digest_size;
452 	halg->statesize = sizeof(struct ccp_sha_exp_ctx);
453 
454 	base = &halg->base;
455 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
456 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
457 		 def->drv_name);
458 	base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
459 			  CRYPTO_ALG_KERN_DRIVER_ONLY |
460 			  CRYPTO_ALG_NEED_FALLBACK;
461 	base->cra_blocksize = def->block_size;
462 	base->cra_ctxsize = sizeof(struct ccp_ctx);
463 	base->cra_priority = CCP_CRA_PRIORITY;
464 	base->cra_type = &crypto_ahash_type;
465 	base->cra_init = ccp_sha_cra_init;
466 	base->cra_exit = ccp_sha_cra_exit;
467 	base->cra_module = THIS_MODULE;
468 
469 	ret = crypto_register_ahash(alg);
470 	if (ret) {
471 		pr_err("%s ahash algorithm registration error (%d)\n",
472 		       base->cra_name, ret);
473 		kfree(ccp_alg);
474 		return ret;
475 	}
476 
477 	list_add(&ccp_alg->entry, head);
478 
479 	ret = ccp_register_hmac_alg(head, def, ccp_alg);
480 
481 	return ret;
482 }
483 
484 int ccp_register_sha_algs(struct list_head *head)
485 {
486 	int i, ret;
487 	unsigned int ccpversion = ccp_version();
488 
489 	for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
490 		if (sha_algs[i].version > ccpversion)
491 			continue;
492 		ret = ccp_register_sha_alg(head, &sha_algs[i]);
493 		if (ret)
494 			return ret;
495 	}
496 
497 	return 0;
498 }
499