xref: /linux/drivers/crypto/ccp/ccp-crypto-main.c (revision d6053666ef2b6631ef8f265f49ff2cc0f4d45c50)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Cryptographic Coprocessor (CCP) crypto API support
4  *
5  * Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/moduleparam.h>
12 #include <linux/kernel.h>
13 #include <linux/list.h>
14 #include <linux/ccp.h>
15 #include <linux/scatterlist.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/akcipher.h>
18 
19 #include "ccp-crypto.h"
20 
21 MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
22 MODULE_LICENSE("GPL");
23 MODULE_VERSION("1.0.0");
24 MODULE_DESCRIPTION("AMD Cryptographic Coprocessor crypto API support");
25 
26 static unsigned int aes_disable;
27 module_param(aes_disable, uint, 0444);
28 MODULE_PARM_DESC(aes_disable, "Disable use of AES - any non-zero value");
29 
30 static unsigned int sha_disable;
31 module_param(sha_disable, uint, 0444);
32 MODULE_PARM_DESC(sha_disable, "Disable use of SHA - any non-zero value");
33 
34 static unsigned int des3_disable;
35 module_param(des3_disable, uint, 0444);
36 MODULE_PARM_DESC(des3_disable, "Disable use of 3DES - any non-zero value");
37 
38 static unsigned int rsa_disable;
39 module_param(rsa_disable, uint, 0444);
40 MODULE_PARM_DESC(rsa_disable, "Disable use of RSA - any non-zero value");
41 
42 /* List heads for the supported algorithms */
43 static LIST_HEAD(hash_algs);
44 static LIST_HEAD(skcipher_algs);
45 static LIST_HEAD(aead_algs);
46 static LIST_HEAD(akcipher_algs);
47 
48 /* For any tfm, requests for that tfm must be returned on the order
49  * received.  With multiple queues available, the CCP can process more
50  * than one cmd at a time.  Therefore we must maintain a cmd list to insure
51  * the proper ordering of requests on a given tfm.
52  */
53 struct ccp_crypto_queue {
54 	struct list_head cmds;
55 	struct list_head *backlog;
56 	unsigned int cmd_count;
57 };
58 
59 #define CCP_CRYPTO_MAX_QLEN	100
60 
61 static struct ccp_crypto_queue req_queue;
62 static DEFINE_SPINLOCK(req_queue_lock);
63 
64 struct ccp_crypto_cmd {
65 	struct list_head entry;
66 
67 	struct ccp_cmd *cmd;
68 
69 	/* Save the crypto_tfm and crypto_async_request addresses
70 	 * separately to avoid any reference to a possibly invalid
71 	 * crypto_async_request structure after invoking the request
72 	 * callback
73 	 */
74 	struct crypto_async_request *req;
75 	struct crypto_tfm *tfm;
76 
77 	/* Used for held command processing to determine state */
78 	int ret;
79 };
80 
81 static inline bool ccp_crypto_success(int err)
82 {
83 	if (err && (err != -EINPROGRESS) && (err != -EBUSY))
84 		return false;
85 
86 	return true;
87 }
88 
89 static struct ccp_crypto_cmd *ccp_crypto_cmd_complete(
90 	struct ccp_crypto_cmd *crypto_cmd, struct ccp_crypto_cmd **backlog)
91 {
92 	struct ccp_crypto_cmd *held = NULL, *tmp;
93 	unsigned long flags;
94 
95 	*backlog = NULL;
96 
97 	spin_lock_irqsave(&req_queue_lock, flags);
98 
99 	/* Held cmds will be after the current cmd in the queue so start
100 	 * searching for a cmd with a matching tfm for submission.
101 	 */
102 	tmp = crypto_cmd;
103 	list_for_each_entry_continue(tmp, &req_queue.cmds, entry) {
104 		if (crypto_cmd->tfm != tmp->tfm)
105 			continue;
106 		held = tmp;
107 		break;
108 	}
109 
110 	/* Process the backlog:
111 	 *   Because cmds can be executed from any point in the cmd list
112 	 *   special precautions have to be taken when handling the backlog.
113 	 */
114 	if (req_queue.backlog != &req_queue.cmds) {
115 		/* Skip over this cmd if it is the next backlog cmd */
116 		if (req_queue.backlog == &crypto_cmd->entry)
117 			req_queue.backlog = crypto_cmd->entry.next;
118 
119 		*backlog = container_of(req_queue.backlog,
120 					struct ccp_crypto_cmd, entry);
121 		req_queue.backlog = req_queue.backlog->next;
122 
123 		/* Skip over this cmd if it is now the next backlog cmd */
124 		if (req_queue.backlog == &crypto_cmd->entry)
125 			req_queue.backlog = crypto_cmd->entry.next;
126 	}
127 
128 	/* Remove the cmd entry from the list of cmds */
129 	req_queue.cmd_count--;
130 	list_del(&crypto_cmd->entry);
131 
132 	spin_unlock_irqrestore(&req_queue_lock, flags);
133 
134 	return held;
135 }
136 
137 static void ccp_crypto_complete(void *data, int err)
138 {
139 	struct ccp_crypto_cmd *crypto_cmd = data;
140 	struct ccp_crypto_cmd *held, *next, *backlog;
141 	struct crypto_async_request *req = crypto_cmd->req;
142 	struct ccp_ctx *ctx = crypto_tfm_ctx_dma(req->tfm);
143 	int ret;
144 
145 	if (err == -EINPROGRESS) {
146 		/* Only propagate the -EINPROGRESS if necessary */
147 		if (crypto_cmd->ret == -EBUSY) {
148 			crypto_cmd->ret = -EINPROGRESS;
149 			crypto_request_complete(req, -EINPROGRESS);
150 		}
151 
152 		return;
153 	}
154 
155 	/* Operation has completed - update the queue before invoking
156 	 * the completion callbacks and retrieve the next cmd (cmd with
157 	 * a matching tfm) that can be submitted to the CCP.
158 	 */
159 	held = ccp_crypto_cmd_complete(crypto_cmd, &backlog);
160 	if (backlog) {
161 		backlog->ret = -EINPROGRESS;
162 		crypto_request_complete(backlog->req, -EINPROGRESS);
163 	}
164 
165 	/* Transition the state from -EBUSY to -EINPROGRESS first */
166 	if (crypto_cmd->ret == -EBUSY)
167 		crypto_request_complete(req, -EINPROGRESS);
168 
169 	/* Completion callbacks */
170 	ret = err;
171 	if (ctx->complete)
172 		ret = ctx->complete(req, ret);
173 	crypto_request_complete(req, ret);
174 
175 	/* Submit the next cmd */
176 	while (held) {
177 		/* Since we have already queued the cmd, we must indicate that
178 		 * we can backlog so as not to "lose" this request.
179 		 */
180 		held->cmd->flags |= CCP_CMD_MAY_BACKLOG;
181 		ret = ccp_enqueue_cmd(held->cmd);
182 		if (ccp_crypto_success(ret))
183 			break;
184 
185 		/* Error occurred, report it and get the next entry */
186 		ctx = crypto_tfm_ctx_dma(held->req->tfm);
187 		if (ctx->complete)
188 			ret = ctx->complete(held->req, ret);
189 		crypto_request_complete(held->req, ret);
190 
191 		next = ccp_crypto_cmd_complete(held, &backlog);
192 		if (backlog) {
193 			backlog->ret = -EINPROGRESS;
194 			crypto_request_complete(backlog->req, -EINPROGRESS);
195 		}
196 
197 		kfree(held);
198 		held = next;
199 	}
200 
201 	kfree(crypto_cmd);
202 }
203 
204 static int ccp_crypto_enqueue_cmd(struct ccp_crypto_cmd *crypto_cmd)
205 {
206 	struct ccp_crypto_cmd *active = NULL, *tmp;
207 	unsigned long flags;
208 	bool free_cmd = true;
209 	int ret;
210 
211 	spin_lock_irqsave(&req_queue_lock, flags);
212 
213 	/* Check if the cmd can/should be queued */
214 	if (req_queue.cmd_count >= CCP_CRYPTO_MAX_QLEN) {
215 		if (!(crypto_cmd->cmd->flags & CCP_CMD_MAY_BACKLOG)) {
216 			ret = -ENOSPC;
217 			goto e_lock;
218 		}
219 	}
220 
221 	/* Look for an entry with the same tfm.  If there is a cmd
222 	 * with the same tfm in the list then the current cmd cannot
223 	 * be submitted to the CCP yet.
224 	 */
225 	list_for_each_entry(tmp, &req_queue.cmds, entry) {
226 		if (crypto_cmd->tfm != tmp->tfm)
227 			continue;
228 		active = tmp;
229 		break;
230 	}
231 
232 	ret = -EINPROGRESS;
233 	if (!active) {
234 		ret = ccp_enqueue_cmd(crypto_cmd->cmd);
235 		if (!ccp_crypto_success(ret))
236 			goto e_lock;	/* Error, don't queue it */
237 	}
238 
239 	if (req_queue.cmd_count >= CCP_CRYPTO_MAX_QLEN) {
240 		ret = -EBUSY;
241 		if (req_queue.backlog == &req_queue.cmds)
242 			req_queue.backlog = &crypto_cmd->entry;
243 	}
244 	crypto_cmd->ret = ret;
245 
246 	req_queue.cmd_count++;
247 	list_add_tail(&crypto_cmd->entry, &req_queue.cmds);
248 
249 	free_cmd = false;
250 
251 e_lock:
252 	spin_unlock_irqrestore(&req_queue_lock, flags);
253 
254 	if (free_cmd)
255 		kfree(crypto_cmd);
256 
257 	return ret;
258 }
259 
260 /**
261  * ccp_crypto_enqueue_request - queue an crypto async request for processing
262  *				by the CCP
263  *
264  * @req: crypto_async_request struct to be processed
265  * @cmd: ccp_cmd struct to be sent to the CCP
266  */
267 int ccp_crypto_enqueue_request(struct crypto_async_request *req,
268 			       struct ccp_cmd *cmd)
269 {
270 	struct ccp_crypto_cmd *crypto_cmd;
271 	gfp_t gfp;
272 
273 	gfp = req->flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
274 
275 	crypto_cmd = kzalloc(sizeof(*crypto_cmd), gfp);
276 	if (!crypto_cmd)
277 		return -ENOMEM;
278 
279 	/* The tfm pointer must be saved and not referenced from the
280 	 * crypto_async_request (req) pointer because it is used after
281 	 * completion callback for the request and the req pointer
282 	 * might not be valid anymore.
283 	 */
284 	crypto_cmd->cmd = cmd;
285 	crypto_cmd->req = req;
286 	crypto_cmd->tfm = req->tfm;
287 
288 	cmd->callback = ccp_crypto_complete;
289 	cmd->data = crypto_cmd;
290 
291 	if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG)
292 		cmd->flags |= CCP_CMD_MAY_BACKLOG;
293 	else
294 		cmd->flags &= ~CCP_CMD_MAY_BACKLOG;
295 
296 	return ccp_crypto_enqueue_cmd(crypto_cmd);
297 }
298 
299 struct scatterlist *ccp_crypto_sg_table_add(struct sg_table *table,
300 					    struct scatterlist *sg_add)
301 {
302 	struct scatterlist *sg, *sg_last = NULL;
303 
304 	for (sg = table->sgl; sg; sg = sg_next(sg))
305 		if (!sg_page(sg))
306 			break;
307 	if (WARN_ON(!sg))
308 		return NULL;
309 
310 	for (; sg && sg_add; sg = sg_next(sg), sg_add = sg_next(sg_add)) {
311 		sg_set_page(sg, sg_page(sg_add), sg_add->length,
312 			    sg_add->offset);
313 		sg_last = sg;
314 	}
315 	if (WARN_ON(sg_add))
316 		return NULL;
317 
318 	return sg_last;
319 }
320 
321 static int ccp_register_algs(void)
322 {
323 	int ret;
324 
325 	if (!aes_disable) {
326 		ret = ccp_register_aes_algs(&skcipher_algs);
327 		if (ret)
328 			return ret;
329 
330 		ret = ccp_register_aes_cmac_algs(&hash_algs);
331 		if (ret)
332 			return ret;
333 
334 		ret = ccp_register_aes_xts_algs(&skcipher_algs);
335 		if (ret)
336 			return ret;
337 
338 		ret = ccp_register_aes_aeads(&aead_algs);
339 		if (ret)
340 			return ret;
341 	}
342 
343 	if (!des3_disable) {
344 		ret = ccp_register_des3_algs(&skcipher_algs);
345 		if (ret)
346 			return ret;
347 	}
348 
349 	if (!sha_disable) {
350 		ret = ccp_register_sha_algs(&hash_algs);
351 		if (ret)
352 			return ret;
353 	}
354 
355 	if (!rsa_disable) {
356 		ret = ccp_register_rsa_algs(&akcipher_algs);
357 		if (ret)
358 			return ret;
359 	}
360 
361 	return 0;
362 }
363 
364 static void ccp_unregister_algs(void)
365 {
366 	struct ccp_crypto_ahash_alg *ahash_alg, *ahash_tmp;
367 	struct ccp_crypto_skcipher_alg *ablk_alg, *ablk_tmp;
368 	struct ccp_crypto_aead *aead_alg, *aead_tmp;
369 	struct ccp_crypto_akcipher_alg *akc_alg, *akc_tmp;
370 
371 	list_for_each_entry_safe(ahash_alg, ahash_tmp, &hash_algs, entry) {
372 		crypto_unregister_ahash(&ahash_alg->alg);
373 		list_del(&ahash_alg->entry);
374 		kfree(ahash_alg);
375 	}
376 
377 	list_for_each_entry_safe(ablk_alg, ablk_tmp, &skcipher_algs, entry) {
378 		crypto_unregister_skcipher(&ablk_alg->alg);
379 		list_del(&ablk_alg->entry);
380 		kfree(ablk_alg);
381 	}
382 
383 	list_for_each_entry_safe(aead_alg, aead_tmp, &aead_algs, entry) {
384 		crypto_unregister_aead(&aead_alg->alg);
385 		list_del(&aead_alg->entry);
386 		kfree(aead_alg);
387 	}
388 
389 	list_for_each_entry_safe(akc_alg, akc_tmp, &akcipher_algs, entry) {
390 		crypto_unregister_akcipher(&akc_alg->alg);
391 		list_del(&akc_alg->entry);
392 		kfree(akc_alg);
393 	}
394 }
395 
396 static int __init ccp_crypto_init(void)
397 {
398 	int ret;
399 
400 	ret = ccp_present();
401 	if (ret) {
402 		pr_err("Cannot load: there are no available CCPs\n");
403 		return ret;
404 	}
405 
406 	INIT_LIST_HEAD(&req_queue.cmds);
407 	req_queue.backlog = &req_queue.cmds;
408 	req_queue.cmd_count = 0;
409 
410 	ret = ccp_register_algs();
411 	if (ret)
412 		ccp_unregister_algs();
413 
414 	return ret;
415 }
416 
417 static void __exit ccp_crypto_exit(void)
418 {
419 	ccp_unregister_algs();
420 }
421 
422 module_init(ccp_crypto_init);
423 module_exit(ccp_crypto_exit);
424