1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/delay.h> 3 4 #include "nitrox_dev.h" 5 #include "nitrox_csr.h" 6 #include "nitrox_hal.h" 7 8 #define PLL_REF_CLK 50 9 #define MAX_CSR_RETRIES 10 10 11 /** 12 * emu_enable_cores - Enable EMU cluster cores. 13 * @ndev: NITROX device 14 */ 15 static void emu_enable_cores(struct nitrox_device *ndev) 16 { 17 union emu_se_enable emu_se; 18 union emu_ae_enable emu_ae; 19 int i; 20 21 /* AE cores 20 per cluster */ 22 emu_ae.value = 0; 23 emu_ae.s.enable = 0xfffff; 24 25 /* SE cores 16 per cluster */ 26 emu_se.value = 0; 27 emu_se.s.enable = 0xffff; 28 29 /* enable per cluster cores */ 30 for (i = 0; i < NR_CLUSTERS; i++) { 31 nitrox_write_csr(ndev, EMU_AE_ENABLEX(i), emu_ae.value); 32 nitrox_write_csr(ndev, EMU_SE_ENABLEX(i), emu_se.value); 33 } 34 } 35 36 /** 37 * nitrox_config_emu_unit - configure EMU unit. 38 * @ndev: NITROX device 39 */ 40 void nitrox_config_emu_unit(struct nitrox_device *ndev) 41 { 42 union emu_wd_int_ena_w1s emu_wd_int; 43 union emu_ge_int_ena_w1s emu_ge_int; 44 u64 offset; 45 int i; 46 47 /* enable cores */ 48 emu_enable_cores(ndev); 49 50 /* enable general error and watch dog interrupts */ 51 emu_ge_int.value = 0; 52 emu_ge_int.s.se_ge = 0xffff; 53 emu_ge_int.s.ae_ge = 0xfffff; 54 emu_wd_int.value = 0; 55 emu_wd_int.s.se_wd = 1; 56 57 for (i = 0; i < NR_CLUSTERS; i++) { 58 offset = EMU_WD_INT_ENA_W1SX(i); 59 nitrox_write_csr(ndev, offset, emu_wd_int.value); 60 offset = EMU_GE_INT_ENA_W1SX(i); 61 nitrox_write_csr(ndev, offset, emu_ge_int.value); 62 } 63 } 64 65 static void reset_pkt_input_ring(struct nitrox_device *ndev, int ring) 66 { 67 union nps_pkt_in_instr_ctl pkt_in_ctl; 68 union nps_pkt_in_done_cnts pkt_in_cnts; 69 int max_retries = MAX_CSR_RETRIES; 70 u64 offset; 71 72 /* step 1: disable the ring, clear enable bit */ 73 offset = NPS_PKT_IN_INSTR_CTLX(ring); 74 pkt_in_ctl.value = nitrox_read_csr(ndev, offset); 75 pkt_in_ctl.s.enb = 0; 76 nitrox_write_csr(ndev, offset, pkt_in_ctl.value); 77 78 /* step 2: wait to clear [ENB] */ 79 usleep_range(100, 150); 80 do { 81 pkt_in_ctl.value = nitrox_read_csr(ndev, offset); 82 if (!pkt_in_ctl.s.enb) 83 break; 84 udelay(50); 85 } while (max_retries--); 86 87 /* step 3: clear done counts */ 88 offset = NPS_PKT_IN_DONE_CNTSX(ring); 89 pkt_in_cnts.value = nitrox_read_csr(ndev, offset); 90 nitrox_write_csr(ndev, offset, pkt_in_cnts.value); 91 usleep_range(50, 100); 92 } 93 94 void enable_pkt_input_ring(struct nitrox_device *ndev, int ring) 95 { 96 union nps_pkt_in_instr_ctl pkt_in_ctl; 97 int max_retries = MAX_CSR_RETRIES; 98 u64 offset; 99 100 /* 64-byte instruction size */ 101 offset = NPS_PKT_IN_INSTR_CTLX(ring); 102 pkt_in_ctl.value = nitrox_read_csr(ndev, offset); 103 pkt_in_ctl.s.is64b = 1; 104 pkt_in_ctl.s.enb = 1; 105 nitrox_write_csr(ndev, offset, pkt_in_ctl.value); 106 107 /* wait for set [ENB] */ 108 do { 109 pkt_in_ctl.value = nitrox_read_csr(ndev, offset); 110 if (pkt_in_ctl.s.enb) 111 break; 112 udelay(50); 113 } while (max_retries--); 114 } 115 116 /** 117 * nitrox_config_pkt_input_rings - configure Packet Input Rings 118 * @ndev: NITROX device 119 */ 120 void nitrox_config_pkt_input_rings(struct nitrox_device *ndev) 121 { 122 int i; 123 124 for (i = 0; i < ndev->nr_queues; i++) { 125 struct nitrox_cmdq *cmdq = &ndev->pkt_inq[i]; 126 union nps_pkt_in_instr_rsize pkt_in_rsize; 127 union nps_pkt_in_instr_baoff_dbell pkt_in_dbell; 128 u64 offset; 129 130 reset_pkt_input_ring(ndev, i); 131 132 /** 133 * step 4: 134 * configure ring base address 16-byte aligned, 135 * size and interrupt threshold. 136 */ 137 offset = NPS_PKT_IN_INSTR_BADDRX(i); 138 nitrox_write_csr(ndev, offset, cmdq->dma); 139 140 /* configure ring size */ 141 offset = NPS_PKT_IN_INSTR_RSIZEX(i); 142 pkt_in_rsize.value = 0; 143 pkt_in_rsize.s.rsize = ndev->qlen; 144 nitrox_write_csr(ndev, offset, pkt_in_rsize.value); 145 146 /* set high threshold for pkt input ring interrupts */ 147 offset = NPS_PKT_IN_INT_LEVELSX(i); 148 nitrox_write_csr(ndev, offset, 0xffffffff); 149 150 /* step 5: clear off door bell counts */ 151 offset = NPS_PKT_IN_INSTR_BAOFF_DBELLX(i); 152 pkt_in_dbell.value = 0; 153 pkt_in_dbell.s.dbell = 0xffffffff; 154 nitrox_write_csr(ndev, offset, pkt_in_dbell.value); 155 156 /* enable the ring */ 157 enable_pkt_input_ring(ndev, i); 158 } 159 } 160 161 static void reset_pkt_solicit_port(struct nitrox_device *ndev, int port) 162 { 163 union nps_pkt_slc_ctl pkt_slc_ctl; 164 union nps_pkt_slc_cnts pkt_slc_cnts; 165 int max_retries = MAX_CSR_RETRIES; 166 u64 offset; 167 168 /* step 1: disable slc port */ 169 offset = NPS_PKT_SLC_CTLX(port); 170 pkt_slc_ctl.value = nitrox_read_csr(ndev, offset); 171 pkt_slc_ctl.s.enb = 0; 172 nitrox_write_csr(ndev, offset, pkt_slc_ctl.value); 173 174 /* step 2 */ 175 usleep_range(100, 150); 176 /* wait to clear [ENB] */ 177 do { 178 pkt_slc_ctl.value = nitrox_read_csr(ndev, offset); 179 if (!pkt_slc_ctl.s.enb) 180 break; 181 udelay(50); 182 } while (max_retries--); 183 184 /* step 3: clear slc counters */ 185 offset = NPS_PKT_SLC_CNTSX(port); 186 pkt_slc_cnts.value = nitrox_read_csr(ndev, offset); 187 nitrox_write_csr(ndev, offset, pkt_slc_cnts.value); 188 usleep_range(50, 100); 189 } 190 191 void enable_pkt_solicit_port(struct nitrox_device *ndev, int port) 192 { 193 union nps_pkt_slc_ctl pkt_slc_ctl; 194 int max_retries = MAX_CSR_RETRIES; 195 u64 offset; 196 197 offset = NPS_PKT_SLC_CTLX(port); 198 pkt_slc_ctl.value = 0; 199 pkt_slc_ctl.s.enb = 1; 200 /* 201 * 8 trailing 0x00 bytes will be added 202 * to the end of the outgoing packet. 203 */ 204 pkt_slc_ctl.s.z = 1; 205 /* enable response header */ 206 pkt_slc_ctl.s.rh = 1; 207 nitrox_write_csr(ndev, offset, pkt_slc_ctl.value); 208 209 /* wait to set [ENB] */ 210 do { 211 pkt_slc_ctl.value = nitrox_read_csr(ndev, offset); 212 if (pkt_slc_ctl.s.enb) 213 break; 214 udelay(50); 215 } while (max_retries--); 216 } 217 218 static void config_pkt_solicit_port(struct nitrox_device *ndev, int port) 219 { 220 union nps_pkt_slc_int_levels pkt_slc_int; 221 u64 offset; 222 223 reset_pkt_solicit_port(ndev, port); 224 225 /* step 4: configure interrupt levels */ 226 offset = NPS_PKT_SLC_INT_LEVELSX(port); 227 pkt_slc_int.value = 0; 228 /* time interrupt threshold */ 229 pkt_slc_int.s.timet = 0x3fffff; 230 nitrox_write_csr(ndev, offset, pkt_slc_int.value); 231 232 /* enable the solicit port */ 233 enable_pkt_solicit_port(ndev, port); 234 } 235 236 void nitrox_config_pkt_solicit_ports(struct nitrox_device *ndev) 237 { 238 int i; 239 240 for (i = 0; i < ndev->nr_queues; i++) 241 config_pkt_solicit_port(ndev, i); 242 } 243 244 /** 245 * enable_nps_core_interrupts - enable NPS core interrutps 246 * @ndev: NITROX device. 247 * 248 * This includes NPS core interrupts. 249 */ 250 static void enable_nps_core_interrupts(struct nitrox_device *ndev) 251 { 252 union nps_core_int_ena_w1s core_int; 253 254 /* NPS core interrutps */ 255 core_int.value = 0; 256 core_int.s.host_wr_err = 1; 257 core_int.s.host_wr_timeout = 1; 258 core_int.s.exec_wr_timeout = 1; 259 core_int.s.npco_dma_malform = 1; 260 core_int.s.host_nps_wr_err = 1; 261 nitrox_write_csr(ndev, NPS_CORE_INT_ENA_W1S, core_int.value); 262 } 263 264 void nitrox_config_nps_core_unit(struct nitrox_device *ndev) 265 { 266 union nps_core_gbl_vfcfg core_gbl_vfcfg; 267 268 /* endian control information */ 269 nitrox_write_csr(ndev, NPS_CORE_CONTROL, 1ULL); 270 271 /* disable ILK interface */ 272 core_gbl_vfcfg.value = 0; 273 core_gbl_vfcfg.s.ilk_disable = 1; 274 core_gbl_vfcfg.s.cfg = __NDEV_MODE_PF; 275 nitrox_write_csr(ndev, NPS_CORE_GBL_VFCFG, core_gbl_vfcfg.value); 276 277 /* enable nps core interrupts */ 278 enable_nps_core_interrupts(ndev); 279 } 280 281 /** 282 * enable_nps_pkt_interrupts - enable NPS packet interrutps 283 * @ndev: NITROX device. 284 * 285 * This includes NPS packet in and slc interrupts. 286 */ 287 static void enable_nps_pkt_interrupts(struct nitrox_device *ndev) 288 { 289 /* NPS packet in ring interrupts */ 290 nitrox_write_csr(ndev, NPS_PKT_IN_RERR_LO_ENA_W1S, (~0ULL)); 291 nitrox_write_csr(ndev, NPS_PKT_IN_RERR_HI_ENA_W1S, (~0ULL)); 292 nitrox_write_csr(ndev, NPS_PKT_IN_ERR_TYPE_ENA_W1S, (~0ULL)); 293 /* NPS packet slc port interrupts */ 294 nitrox_write_csr(ndev, NPS_PKT_SLC_RERR_HI_ENA_W1S, (~0ULL)); 295 nitrox_write_csr(ndev, NPS_PKT_SLC_RERR_LO_ENA_W1S, (~0ULL)); 296 nitrox_write_csr(ndev, NPS_PKT_SLC_ERR_TYPE_ENA_W1S, (~0uLL)); 297 } 298 299 void nitrox_config_nps_pkt_unit(struct nitrox_device *ndev) 300 { 301 /* config input and solicit ports */ 302 nitrox_config_pkt_input_rings(ndev); 303 nitrox_config_pkt_solicit_ports(ndev); 304 305 /* enable nps packet interrupts */ 306 enable_nps_pkt_interrupts(ndev); 307 } 308 309 static void reset_aqm_ring(struct nitrox_device *ndev, int ring) 310 { 311 union aqmq_en aqmq_en_reg; 312 union aqmq_activity_stat activity_stat; 313 union aqmq_cmp_cnt cmp_cnt; 314 int max_retries = MAX_CSR_RETRIES; 315 u64 offset; 316 317 /* step 1: disable the queue */ 318 offset = AQMQ_ENX(ring); 319 aqmq_en_reg.value = 0; 320 aqmq_en_reg.queue_enable = 0; 321 nitrox_write_csr(ndev, offset, aqmq_en_reg.value); 322 323 /* step 2: wait for AQMQ_ACTIVITY_STATX[QUEUE_ACTIVE] to clear */ 324 usleep_range(100, 150); 325 offset = AQMQ_ACTIVITY_STATX(ring); 326 do { 327 activity_stat.value = nitrox_read_csr(ndev, offset); 328 if (!activity_stat.queue_active) 329 break; 330 udelay(50); 331 } while (max_retries--); 332 333 /* step 3: clear commands completed count */ 334 offset = AQMQ_CMP_CNTX(ring); 335 cmp_cnt.value = nitrox_read_csr(ndev, offset); 336 nitrox_write_csr(ndev, offset, cmp_cnt.value); 337 usleep_range(50, 100); 338 } 339 340 void enable_aqm_ring(struct nitrox_device *ndev, int ring) 341 { 342 union aqmq_en aqmq_en_reg; 343 u64 offset; 344 345 offset = AQMQ_ENX(ring); 346 aqmq_en_reg.value = 0; 347 aqmq_en_reg.queue_enable = 1; 348 nitrox_write_csr(ndev, offset, aqmq_en_reg.value); 349 usleep_range(50, 100); 350 } 351 352 void nitrox_config_aqm_rings(struct nitrox_device *ndev) 353 { 354 int ring; 355 356 for (ring = 0; ring < ndev->nr_queues; ring++) { 357 struct nitrox_cmdq *cmdq = ndev->aqmq[ring]; 358 union aqmq_drbl drbl; 359 union aqmq_qsz qsize; 360 union aqmq_cmp_thr cmp_thr; 361 u64 offset; 362 363 /* steps 1 - 3 */ 364 reset_aqm_ring(ndev, ring); 365 366 /* step 4: clear doorbell count of ring */ 367 offset = AQMQ_DRBLX(ring); 368 drbl.value = 0; 369 drbl.dbell_count = 0xFFFFFFFF; 370 nitrox_write_csr(ndev, offset, drbl.value); 371 372 /* step 5: configure host ring details */ 373 374 /* set host address for next command of ring */ 375 offset = AQMQ_NXT_CMDX(ring); 376 nitrox_write_csr(ndev, offset, 0ULL); 377 378 /* set host address of ring base */ 379 offset = AQMQ_BADRX(ring); 380 nitrox_write_csr(ndev, offset, cmdq->dma); 381 382 /* set ring size */ 383 offset = AQMQ_QSZX(ring); 384 qsize.value = 0; 385 qsize.host_queue_size = ndev->qlen; 386 nitrox_write_csr(ndev, offset, qsize.value); 387 388 /* set command completion threshold */ 389 offset = AQMQ_CMP_THRX(ring); 390 cmp_thr.value = 0; 391 cmp_thr.commands_completed_threshold = 1; 392 nitrox_write_csr(ndev, offset, cmp_thr.value); 393 394 /* step 6: enable the queue */ 395 enable_aqm_ring(ndev, ring); 396 } 397 } 398 399 static void enable_aqm_interrupts(struct nitrox_device *ndev) 400 { 401 /* clear interrupt enable bits */ 402 nitrox_write_csr(ndev, AQM_DBELL_OVF_LO_ENA_W1S, (~0ULL)); 403 nitrox_write_csr(ndev, AQM_DBELL_OVF_HI_ENA_W1S, (~0ULL)); 404 nitrox_write_csr(ndev, AQM_DMA_RD_ERR_LO_ENA_W1S, (~0ULL)); 405 nitrox_write_csr(ndev, AQM_DMA_RD_ERR_HI_ENA_W1S, (~0ULL)); 406 nitrox_write_csr(ndev, AQM_EXEC_NA_LO_ENA_W1S, (~0ULL)); 407 nitrox_write_csr(ndev, AQM_EXEC_NA_HI_ENA_W1S, (~0ULL)); 408 nitrox_write_csr(ndev, AQM_EXEC_ERR_LO_ENA_W1S, (~0ULL)); 409 nitrox_write_csr(ndev, AQM_EXEC_ERR_HI_ENA_W1S, (~0ULL)); 410 } 411 412 void nitrox_config_aqm_unit(struct nitrox_device *ndev) 413 { 414 /* config aqm command queues */ 415 nitrox_config_aqm_rings(ndev); 416 417 /* enable aqm interrupts */ 418 enable_aqm_interrupts(ndev); 419 } 420 421 void nitrox_config_pom_unit(struct nitrox_device *ndev) 422 { 423 union pom_int_ena_w1s pom_int; 424 int i; 425 426 /* enable pom interrupts */ 427 pom_int.value = 0; 428 pom_int.s.illegal_dport = 1; 429 nitrox_write_csr(ndev, POM_INT_ENA_W1S, pom_int.value); 430 431 /* enable perf counters */ 432 for (i = 0; i < ndev->hw.se_cores; i++) 433 nitrox_write_csr(ndev, POM_PERF_CTL, BIT_ULL(i)); 434 } 435 436 /** 437 * nitrox_config_rand_unit - enable NITROX random number unit 438 * @ndev: NITROX device 439 */ 440 void nitrox_config_rand_unit(struct nitrox_device *ndev) 441 { 442 union efl_rnm_ctl_status efl_rnm_ctl; 443 u64 offset; 444 445 offset = EFL_RNM_CTL_STATUS; 446 efl_rnm_ctl.value = nitrox_read_csr(ndev, offset); 447 efl_rnm_ctl.s.ent_en = 1; 448 efl_rnm_ctl.s.rng_en = 1; 449 nitrox_write_csr(ndev, offset, efl_rnm_ctl.value); 450 } 451 452 void nitrox_config_efl_unit(struct nitrox_device *ndev) 453 { 454 int i; 455 456 for (i = 0; i < NR_CLUSTERS; i++) { 457 union efl_core_int_ena_w1s efl_core_int; 458 u64 offset; 459 460 /* EFL core interrupts */ 461 offset = EFL_CORE_INT_ENA_W1SX(i); 462 efl_core_int.value = 0; 463 efl_core_int.s.len_ovr = 1; 464 efl_core_int.s.d_left = 1; 465 efl_core_int.s.epci_decode_err = 1; 466 nitrox_write_csr(ndev, offset, efl_core_int.value); 467 468 offset = EFL_CORE_VF_ERR_INT0_ENA_W1SX(i); 469 nitrox_write_csr(ndev, offset, (~0ULL)); 470 offset = EFL_CORE_VF_ERR_INT1_ENA_W1SX(i); 471 nitrox_write_csr(ndev, offset, (~0ULL)); 472 } 473 } 474 475 void nitrox_config_bmi_unit(struct nitrox_device *ndev) 476 { 477 union bmi_ctl bmi_ctl; 478 union bmi_int_ena_w1s bmi_int_ena; 479 u64 offset; 480 481 /* no threshold limits for PCIe */ 482 offset = BMI_CTL; 483 bmi_ctl.value = nitrox_read_csr(ndev, offset); 484 bmi_ctl.s.max_pkt_len = 0xff; 485 bmi_ctl.s.nps_free_thrsh = 0xff; 486 bmi_ctl.s.nps_hdrq_thrsh = 0x7a; 487 nitrox_write_csr(ndev, offset, bmi_ctl.value); 488 489 /* enable interrupts */ 490 offset = BMI_INT_ENA_W1S; 491 bmi_int_ena.value = 0; 492 bmi_int_ena.s.max_len_err_nps = 1; 493 bmi_int_ena.s.pkt_rcv_err_nps = 1; 494 bmi_int_ena.s.fpf_undrrn = 1; 495 nitrox_write_csr(ndev, offset, bmi_int_ena.value); 496 } 497 498 void nitrox_config_bmo_unit(struct nitrox_device *ndev) 499 { 500 union bmo_ctl2 bmo_ctl2; 501 u64 offset; 502 503 /* no threshold limits for PCIe */ 504 offset = BMO_CTL2; 505 bmo_ctl2.value = nitrox_read_csr(ndev, offset); 506 bmo_ctl2.s.nps_slc_buf_thrsh = 0xff; 507 nitrox_write_csr(ndev, offset, bmo_ctl2.value); 508 } 509 510 void invalidate_lbc(struct nitrox_device *ndev) 511 { 512 union lbc_inval_ctl lbc_ctl; 513 union lbc_inval_status lbc_stat; 514 int max_retries = MAX_CSR_RETRIES; 515 u64 offset; 516 517 /* invalidate LBC */ 518 offset = LBC_INVAL_CTL; 519 lbc_ctl.value = nitrox_read_csr(ndev, offset); 520 lbc_ctl.s.cam_inval_start = 1; 521 nitrox_write_csr(ndev, offset, lbc_ctl.value); 522 523 offset = LBC_INVAL_STATUS; 524 do { 525 lbc_stat.value = nitrox_read_csr(ndev, offset); 526 if (lbc_stat.s.done) 527 break; 528 udelay(50); 529 } while (max_retries--); 530 } 531 532 void nitrox_config_lbc_unit(struct nitrox_device *ndev) 533 { 534 union lbc_int_ena_w1s lbc_int_ena; 535 u64 offset; 536 537 invalidate_lbc(ndev); 538 539 /* enable interrupts */ 540 offset = LBC_INT_ENA_W1S; 541 lbc_int_ena.value = 0; 542 lbc_int_ena.s.dma_rd_err = 1; 543 lbc_int_ena.s.over_fetch_err = 1; 544 lbc_int_ena.s.cam_inval_abort = 1; 545 lbc_int_ena.s.cam_hard_err = 1; 546 nitrox_write_csr(ndev, offset, lbc_int_ena.value); 547 548 offset = LBC_PLM_VF1_64_INT_ENA_W1S; 549 nitrox_write_csr(ndev, offset, (~0ULL)); 550 offset = LBC_PLM_VF65_128_INT_ENA_W1S; 551 nitrox_write_csr(ndev, offset, (~0ULL)); 552 553 offset = LBC_ELM_VF1_64_INT_ENA_W1S; 554 nitrox_write_csr(ndev, offset, (~0ULL)); 555 offset = LBC_ELM_VF65_128_INT_ENA_W1S; 556 nitrox_write_csr(ndev, offset, (~0ULL)); 557 } 558 559 void config_nps_core_vfcfg_mode(struct nitrox_device *ndev, enum vf_mode mode) 560 { 561 union nps_core_gbl_vfcfg vfcfg; 562 563 vfcfg.value = nitrox_read_csr(ndev, NPS_CORE_GBL_VFCFG); 564 vfcfg.s.cfg = mode & 0x7; 565 566 nitrox_write_csr(ndev, NPS_CORE_GBL_VFCFG, vfcfg.value); 567 } 568 569 static const char *get_core_option(u8 se_cores, u8 ae_cores) 570 { 571 const char *option = ""; 572 573 if (ae_cores == AE_MAX_CORES) { 574 switch (se_cores) { 575 case SE_MAX_CORES: 576 option = "60"; 577 break; 578 case 40: 579 option = "60s"; 580 break; 581 } 582 } else if (ae_cores == (AE_MAX_CORES / 2)) { 583 option = "30"; 584 } else { 585 option = "60i"; 586 } 587 588 return option; 589 } 590 591 static const char *get_feature_option(u8 zip_cores, int core_freq) 592 { 593 if (zip_cores == 0) 594 return ""; 595 else if (zip_cores < ZIP_MAX_CORES) 596 return "-C15"; 597 598 if (core_freq >= 850) 599 return "-C45"; 600 else if (core_freq >= 750) 601 return "-C35"; 602 else if (core_freq >= 550) 603 return "-C25"; 604 605 return ""; 606 } 607 608 void nitrox_get_hwinfo(struct nitrox_device *ndev) 609 { 610 union emu_fuse_map emu_fuse; 611 union rst_boot rst_boot; 612 union fus_dat1 fus_dat1; 613 unsigned char name[IFNAMSIZ * 2] = {}; 614 int i, dead_cores; 615 u64 offset; 616 617 /* get core frequency */ 618 offset = RST_BOOT; 619 rst_boot.value = nitrox_read_csr(ndev, offset); 620 ndev->hw.freq = (rst_boot.pnr_mul + 3) * PLL_REF_CLK; 621 622 for (i = 0; i < NR_CLUSTERS; i++) { 623 offset = EMU_FUSE_MAPX(i); 624 emu_fuse.value = nitrox_read_csr(ndev, offset); 625 if (emu_fuse.s.valid) { 626 dead_cores = hweight32(emu_fuse.s.ae_fuse); 627 ndev->hw.ae_cores += AE_CORES_PER_CLUSTER - dead_cores; 628 dead_cores = hweight16(emu_fuse.s.se_fuse); 629 ndev->hw.se_cores += SE_CORES_PER_CLUSTER - dead_cores; 630 } 631 } 632 /* find zip hardware availability */ 633 offset = FUS_DAT1; 634 fus_dat1.value = nitrox_read_csr(ndev, offset); 635 if (!fus_dat1.nozip) { 636 dead_cores = hweight8(fus_dat1.zip_info); 637 ndev->hw.zip_cores = ZIP_MAX_CORES - dead_cores; 638 } 639 640 /* determine the partname 641 * CNN55<core option>-<freq><pincount>-<feature option>-<rev> 642 */ 643 snprintf(name, sizeof(name), "CNN55%s-%3dBG676%s-1.%u", 644 get_core_option(ndev->hw.se_cores, ndev->hw.ae_cores), 645 ndev->hw.freq, 646 get_feature_option(ndev->hw.zip_cores, ndev->hw.freq), 647 ndev->hw.revision_id); 648 649 /* copy partname */ 650 strscpy(ndev->hw.partname, name, sizeof(ndev->hw.partname)); 651 } 652 653 void enable_pf2vf_mbox_interrupts(struct nitrox_device *ndev) 654 { 655 u64 value = ~0ULL; 656 u64 reg_addr; 657 658 /* Mailbox interrupt low enable set register */ 659 reg_addr = NPS_PKT_MBOX_INT_LO_ENA_W1S; 660 nitrox_write_csr(ndev, reg_addr, value); 661 662 /* Mailbox interrupt high enable set register */ 663 reg_addr = NPS_PKT_MBOX_INT_HI_ENA_W1S; 664 nitrox_write_csr(ndev, reg_addr, value); 665 } 666 667 void disable_pf2vf_mbox_interrupts(struct nitrox_device *ndev) 668 { 669 u64 value = ~0ULL; 670 u64 reg_addr; 671 672 /* Mailbox interrupt low enable clear register */ 673 reg_addr = NPS_PKT_MBOX_INT_LO_ENA_W1C; 674 nitrox_write_csr(ndev, reg_addr, value); 675 676 /* Mailbox interrupt high enable clear register */ 677 reg_addr = NPS_PKT_MBOX_INT_HI_ENA_W1C; 678 nitrox_write_csr(ndev, reg_addr, value); 679 } 680