xref: /linux/drivers/crypto/cavium/nitrox/nitrox_hal.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/delay.h>
3 
4 #include "nitrox_dev.h"
5 #include "nitrox_csr.h"
6 
7 #define PLL_REF_CLK 50
8 #define MAX_CSR_RETRIES 10
9 
10 /**
11  * emu_enable_cores - Enable EMU cluster cores.
12  * @ndev: NITROX device
13  */
14 static void emu_enable_cores(struct nitrox_device *ndev)
15 {
16 	union emu_se_enable emu_se;
17 	union emu_ae_enable emu_ae;
18 	int i;
19 
20 	/* AE cores 20 per cluster */
21 	emu_ae.value = 0;
22 	emu_ae.s.enable = 0xfffff;
23 
24 	/* SE cores 16 per cluster */
25 	emu_se.value = 0;
26 	emu_se.s.enable = 0xffff;
27 
28 	/* enable per cluster cores */
29 	for (i = 0; i < NR_CLUSTERS; i++) {
30 		nitrox_write_csr(ndev, EMU_AE_ENABLEX(i), emu_ae.value);
31 		nitrox_write_csr(ndev, EMU_SE_ENABLEX(i), emu_se.value);
32 	}
33 }
34 
35 /**
36  * nitrox_config_emu_unit - configure EMU unit.
37  * @ndev: NITROX device
38  */
39 void nitrox_config_emu_unit(struct nitrox_device *ndev)
40 {
41 	union emu_wd_int_ena_w1s emu_wd_int;
42 	union emu_ge_int_ena_w1s emu_ge_int;
43 	u64 offset;
44 	int i;
45 
46 	/* enable cores */
47 	emu_enable_cores(ndev);
48 
49 	/* enable general error and watch dog interrupts */
50 	emu_ge_int.value = 0;
51 	emu_ge_int.s.se_ge = 0xffff;
52 	emu_ge_int.s.ae_ge = 0xfffff;
53 	emu_wd_int.value = 0;
54 	emu_wd_int.s.se_wd = 1;
55 
56 	for (i = 0; i < NR_CLUSTERS; i++) {
57 		offset = EMU_WD_INT_ENA_W1SX(i);
58 		nitrox_write_csr(ndev, offset, emu_wd_int.value);
59 		offset = EMU_GE_INT_ENA_W1SX(i);
60 		nitrox_write_csr(ndev, offset, emu_ge_int.value);
61 	}
62 }
63 
64 static void reset_pkt_input_ring(struct nitrox_device *ndev, int ring)
65 {
66 	union nps_pkt_in_instr_ctl pkt_in_ctl;
67 	union nps_pkt_in_done_cnts pkt_in_cnts;
68 	int max_retries = MAX_CSR_RETRIES;
69 	u64 offset;
70 
71 	/* step 1: disable the ring, clear enable bit */
72 	offset = NPS_PKT_IN_INSTR_CTLX(ring);
73 	pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
74 	pkt_in_ctl.s.enb = 0;
75 	nitrox_write_csr(ndev, offset, pkt_in_ctl.value);
76 
77 	/* step 2: wait to clear [ENB] */
78 	usleep_range(100, 150);
79 	do {
80 		pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
81 		if (!pkt_in_ctl.s.enb)
82 			break;
83 		udelay(50);
84 	} while (max_retries--);
85 
86 	/* step 3: clear done counts */
87 	offset = NPS_PKT_IN_DONE_CNTSX(ring);
88 	pkt_in_cnts.value = nitrox_read_csr(ndev, offset);
89 	nitrox_write_csr(ndev, offset, pkt_in_cnts.value);
90 	usleep_range(50, 100);
91 }
92 
93 void enable_pkt_input_ring(struct nitrox_device *ndev, int ring)
94 {
95 	union nps_pkt_in_instr_ctl pkt_in_ctl;
96 	int max_retries = MAX_CSR_RETRIES;
97 	u64 offset;
98 
99 	/* 64-byte instruction size */
100 	offset = NPS_PKT_IN_INSTR_CTLX(ring);
101 	pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
102 	pkt_in_ctl.s.is64b = 1;
103 	pkt_in_ctl.s.enb = 1;
104 	nitrox_write_csr(ndev, offset, pkt_in_ctl.value);
105 
106 	/* wait for set [ENB] */
107 	do {
108 		pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
109 		if (pkt_in_ctl.s.enb)
110 			break;
111 		udelay(50);
112 	} while (max_retries--);
113 }
114 
115 /**
116  * nitrox_config_pkt_input_rings - configure Packet Input Rings
117  * @ndev: NITROX device
118  */
119 void nitrox_config_pkt_input_rings(struct nitrox_device *ndev)
120 {
121 	int i;
122 
123 	for (i = 0; i < ndev->nr_queues; i++) {
124 		struct nitrox_cmdq *cmdq = &ndev->pkt_inq[i];
125 		union nps_pkt_in_instr_rsize pkt_in_rsize;
126 		union nps_pkt_in_instr_baoff_dbell pkt_in_dbell;
127 		u64 offset;
128 
129 		reset_pkt_input_ring(ndev, i);
130 
131 		/**
132 		 * step 4:
133 		 * configure ring base address 16-byte aligned,
134 		 * size and interrupt threshold.
135 		 */
136 		offset = NPS_PKT_IN_INSTR_BADDRX(i);
137 		nitrox_write_csr(ndev, offset, cmdq->dma);
138 
139 		/* configure ring size */
140 		offset = NPS_PKT_IN_INSTR_RSIZEX(i);
141 		pkt_in_rsize.value = 0;
142 		pkt_in_rsize.s.rsize = ndev->qlen;
143 		nitrox_write_csr(ndev, offset, pkt_in_rsize.value);
144 
145 		/* set high threshold for pkt input ring interrupts */
146 		offset = NPS_PKT_IN_INT_LEVELSX(i);
147 		nitrox_write_csr(ndev, offset, 0xffffffff);
148 
149 		/* step 5: clear off door bell counts */
150 		offset = NPS_PKT_IN_INSTR_BAOFF_DBELLX(i);
151 		pkt_in_dbell.value = 0;
152 		pkt_in_dbell.s.dbell = 0xffffffff;
153 		nitrox_write_csr(ndev, offset, pkt_in_dbell.value);
154 
155 		/* enable the ring */
156 		enable_pkt_input_ring(ndev, i);
157 	}
158 }
159 
160 static void reset_pkt_solicit_port(struct nitrox_device *ndev, int port)
161 {
162 	union nps_pkt_slc_ctl pkt_slc_ctl;
163 	union nps_pkt_slc_cnts pkt_slc_cnts;
164 	int max_retries = MAX_CSR_RETRIES;
165 	u64 offset;
166 
167 	/* step 1: disable slc port */
168 	offset = NPS_PKT_SLC_CTLX(port);
169 	pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
170 	pkt_slc_ctl.s.enb = 0;
171 	nitrox_write_csr(ndev, offset, pkt_slc_ctl.value);
172 
173 	/* step 2 */
174 	usleep_range(100, 150);
175 	/* wait to clear [ENB] */
176 	do {
177 		pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
178 		if (!pkt_slc_ctl.s.enb)
179 			break;
180 		udelay(50);
181 	} while (max_retries--);
182 
183 	/* step 3: clear slc counters */
184 	offset = NPS_PKT_SLC_CNTSX(port);
185 	pkt_slc_cnts.value = nitrox_read_csr(ndev, offset);
186 	nitrox_write_csr(ndev, offset, pkt_slc_cnts.value);
187 	usleep_range(50, 100);
188 }
189 
190 void enable_pkt_solicit_port(struct nitrox_device *ndev, int port)
191 {
192 	union nps_pkt_slc_ctl pkt_slc_ctl;
193 	int max_retries = MAX_CSR_RETRIES;
194 	u64 offset;
195 
196 	offset = NPS_PKT_SLC_CTLX(port);
197 	pkt_slc_ctl.value = 0;
198 	pkt_slc_ctl.s.enb = 1;
199 	/*
200 	 * 8 trailing 0x00 bytes will be added
201 	 * to the end of the outgoing packet.
202 	 */
203 	pkt_slc_ctl.s.z = 1;
204 	/* enable response header */
205 	pkt_slc_ctl.s.rh = 1;
206 	nitrox_write_csr(ndev, offset, pkt_slc_ctl.value);
207 
208 	/* wait to set [ENB] */
209 	do {
210 		pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
211 		if (pkt_slc_ctl.s.enb)
212 			break;
213 		udelay(50);
214 	} while (max_retries--);
215 }
216 
217 static void config_pkt_solicit_port(struct nitrox_device *ndev, int port)
218 {
219 	union nps_pkt_slc_int_levels pkt_slc_int;
220 	u64 offset;
221 
222 	reset_pkt_solicit_port(ndev, port);
223 
224 	/* step 4: configure interrupt levels */
225 	offset = NPS_PKT_SLC_INT_LEVELSX(port);
226 	pkt_slc_int.value = 0;
227 	/* time interrupt threshold */
228 	pkt_slc_int.s.timet = 0x3fffff;
229 	nitrox_write_csr(ndev, offset, pkt_slc_int.value);
230 
231 	/* enable the solicit port */
232 	enable_pkt_solicit_port(ndev, port);
233 }
234 
235 void nitrox_config_pkt_solicit_ports(struct nitrox_device *ndev)
236 {
237 	int i;
238 
239 	for (i = 0; i < ndev->nr_queues; i++)
240 		config_pkt_solicit_port(ndev, i);
241 }
242 
243 /**
244  * enable_nps_core_interrupts - enable NPS core interrutps
245  * @ndev: NITROX device.
246  *
247  * This includes NPS core interrupts.
248  */
249 static void enable_nps_core_interrupts(struct nitrox_device *ndev)
250 {
251 	union nps_core_int_ena_w1s core_int;
252 
253 	/* NPS core interrutps */
254 	core_int.value = 0;
255 	core_int.s.host_wr_err = 1;
256 	core_int.s.host_wr_timeout = 1;
257 	core_int.s.exec_wr_timeout = 1;
258 	core_int.s.npco_dma_malform = 1;
259 	core_int.s.host_nps_wr_err = 1;
260 	nitrox_write_csr(ndev, NPS_CORE_INT_ENA_W1S, core_int.value);
261 }
262 
263 void nitrox_config_nps_core_unit(struct nitrox_device *ndev)
264 {
265 	union nps_core_gbl_vfcfg core_gbl_vfcfg;
266 
267 	/* endian control information */
268 	nitrox_write_csr(ndev, NPS_CORE_CONTROL, 1ULL);
269 
270 	/* disable ILK interface */
271 	core_gbl_vfcfg.value = 0;
272 	core_gbl_vfcfg.s.ilk_disable = 1;
273 	core_gbl_vfcfg.s.cfg = __NDEV_MODE_PF;
274 	nitrox_write_csr(ndev, NPS_CORE_GBL_VFCFG, core_gbl_vfcfg.value);
275 
276 	/* enable nps core interrupts */
277 	enable_nps_core_interrupts(ndev);
278 }
279 
280 /**
281  * enable_nps_pkt_interrupts - enable NPS packet interrutps
282  * @ndev: NITROX device.
283  *
284  * This includes NPS packet in and slc interrupts.
285  */
286 static void enable_nps_pkt_interrupts(struct nitrox_device *ndev)
287 {
288 	/* NPS packet in ring interrupts */
289 	nitrox_write_csr(ndev, NPS_PKT_IN_RERR_LO_ENA_W1S, (~0ULL));
290 	nitrox_write_csr(ndev, NPS_PKT_IN_RERR_HI_ENA_W1S, (~0ULL));
291 	nitrox_write_csr(ndev, NPS_PKT_IN_ERR_TYPE_ENA_W1S, (~0ULL));
292 	/* NPS packet slc port interrupts */
293 	nitrox_write_csr(ndev, NPS_PKT_SLC_RERR_HI_ENA_W1S, (~0ULL));
294 	nitrox_write_csr(ndev, NPS_PKT_SLC_RERR_LO_ENA_W1S, (~0ULL));
295 	nitrox_write_csr(ndev, NPS_PKT_SLC_ERR_TYPE_ENA_W1S, (~0uLL));
296 }
297 
298 void nitrox_config_nps_pkt_unit(struct nitrox_device *ndev)
299 {
300 	/* config input and solicit ports */
301 	nitrox_config_pkt_input_rings(ndev);
302 	nitrox_config_pkt_solicit_ports(ndev);
303 
304 	/* enable nps packet interrupts */
305 	enable_nps_pkt_interrupts(ndev);
306 }
307 
308 static void reset_aqm_ring(struct nitrox_device *ndev, int ring)
309 {
310 	union aqmq_en aqmq_en_reg;
311 	union aqmq_activity_stat activity_stat;
312 	union aqmq_cmp_cnt cmp_cnt;
313 	int max_retries = MAX_CSR_RETRIES;
314 	u64 offset;
315 
316 	/* step 1: disable the queue */
317 	offset = AQMQ_ENX(ring);
318 	aqmq_en_reg.value = 0;
319 	aqmq_en_reg.queue_enable = 0;
320 	nitrox_write_csr(ndev, offset, aqmq_en_reg.value);
321 
322 	/* step 2: wait for AQMQ_ACTIVITY_STATX[QUEUE_ACTIVE] to clear */
323 	usleep_range(100, 150);
324 	offset = AQMQ_ACTIVITY_STATX(ring);
325 	do {
326 		activity_stat.value = nitrox_read_csr(ndev, offset);
327 		if (!activity_stat.queue_active)
328 			break;
329 		udelay(50);
330 	} while (max_retries--);
331 
332 	/* step 3: clear commands completed count */
333 	offset = AQMQ_CMP_CNTX(ring);
334 	cmp_cnt.value = nitrox_read_csr(ndev, offset);
335 	nitrox_write_csr(ndev, offset, cmp_cnt.value);
336 	usleep_range(50, 100);
337 }
338 
339 void enable_aqm_ring(struct nitrox_device *ndev, int ring)
340 {
341 	union aqmq_en aqmq_en_reg;
342 	u64 offset;
343 
344 	offset = AQMQ_ENX(ring);
345 	aqmq_en_reg.value = 0;
346 	aqmq_en_reg.queue_enable = 1;
347 	nitrox_write_csr(ndev, offset, aqmq_en_reg.value);
348 	usleep_range(50, 100);
349 }
350 
351 void nitrox_config_aqm_rings(struct nitrox_device *ndev)
352 {
353 	int ring;
354 
355 	for (ring = 0; ring < ndev->nr_queues; ring++) {
356 		struct nitrox_cmdq *cmdq = ndev->aqmq[ring];
357 		union aqmq_drbl drbl;
358 		union aqmq_qsz qsize;
359 		union aqmq_cmp_thr cmp_thr;
360 		u64 offset;
361 
362 		/* steps 1 - 3 */
363 		reset_aqm_ring(ndev, ring);
364 
365 		/* step 4: clear doorbell count of ring */
366 		offset = AQMQ_DRBLX(ring);
367 		drbl.value = 0;
368 		drbl.dbell_count = 0xFFFFFFFF;
369 		nitrox_write_csr(ndev, offset, drbl.value);
370 
371 		/* step 5: configure host ring details */
372 
373 		/* set host address for next command of ring */
374 		offset = AQMQ_NXT_CMDX(ring);
375 		nitrox_write_csr(ndev, offset, 0ULL);
376 
377 		/* set host address of ring base */
378 		offset = AQMQ_BADRX(ring);
379 		nitrox_write_csr(ndev, offset, cmdq->dma);
380 
381 		/* set ring size */
382 		offset = AQMQ_QSZX(ring);
383 		qsize.value = 0;
384 		qsize.host_queue_size = ndev->qlen;
385 		nitrox_write_csr(ndev, offset, qsize.value);
386 
387 		/* set command completion threshold */
388 		offset = AQMQ_CMP_THRX(ring);
389 		cmp_thr.value = 0;
390 		cmp_thr.commands_completed_threshold = 1;
391 		nitrox_write_csr(ndev, offset, cmp_thr.value);
392 
393 		/* step 6: enable the queue */
394 		enable_aqm_ring(ndev, ring);
395 	}
396 }
397 
398 static void enable_aqm_interrupts(struct nitrox_device *ndev)
399 {
400 	/* clear interrupt enable bits */
401 	nitrox_write_csr(ndev, AQM_DBELL_OVF_LO_ENA_W1S, (~0ULL));
402 	nitrox_write_csr(ndev, AQM_DBELL_OVF_HI_ENA_W1S, (~0ULL));
403 	nitrox_write_csr(ndev, AQM_DMA_RD_ERR_LO_ENA_W1S, (~0ULL));
404 	nitrox_write_csr(ndev, AQM_DMA_RD_ERR_HI_ENA_W1S, (~0ULL));
405 	nitrox_write_csr(ndev, AQM_EXEC_NA_LO_ENA_W1S, (~0ULL));
406 	nitrox_write_csr(ndev, AQM_EXEC_NA_HI_ENA_W1S, (~0ULL));
407 	nitrox_write_csr(ndev, AQM_EXEC_ERR_LO_ENA_W1S, (~0ULL));
408 	nitrox_write_csr(ndev, AQM_EXEC_ERR_HI_ENA_W1S, (~0ULL));
409 }
410 
411 void nitrox_config_aqm_unit(struct nitrox_device *ndev)
412 {
413 	/* config aqm command queues */
414 	nitrox_config_aqm_rings(ndev);
415 
416 	/* enable aqm interrupts */
417 	enable_aqm_interrupts(ndev);
418 }
419 
420 void nitrox_config_pom_unit(struct nitrox_device *ndev)
421 {
422 	union pom_int_ena_w1s pom_int;
423 	int i;
424 
425 	/* enable pom interrupts */
426 	pom_int.value = 0;
427 	pom_int.s.illegal_dport = 1;
428 	nitrox_write_csr(ndev, POM_INT_ENA_W1S, pom_int.value);
429 
430 	/* enable perf counters */
431 	for (i = 0; i < ndev->hw.se_cores; i++)
432 		nitrox_write_csr(ndev, POM_PERF_CTL, BIT_ULL(i));
433 }
434 
435 /**
436  * nitrox_config_rand_unit - enable NITROX random number unit
437  * @ndev: NITROX device
438  */
439 void nitrox_config_rand_unit(struct nitrox_device *ndev)
440 {
441 	union efl_rnm_ctl_status efl_rnm_ctl;
442 	u64 offset;
443 
444 	offset = EFL_RNM_CTL_STATUS;
445 	efl_rnm_ctl.value = nitrox_read_csr(ndev, offset);
446 	efl_rnm_ctl.s.ent_en = 1;
447 	efl_rnm_ctl.s.rng_en = 1;
448 	nitrox_write_csr(ndev, offset, efl_rnm_ctl.value);
449 }
450 
451 void nitrox_config_efl_unit(struct nitrox_device *ndev)
452 {
453 	int i;
454 
455 	for (i = 0; i < NR_CLUSTERS; i++) {
456 		union efl_core_int_ena_w1s efl_core_int;
457 		u64 offset;
458 
459 		/* EFL core interrupts */
460 		offset = EFL_CORE_INT_ENA_W1SX(i);
461 		efl_core_int.value = 0;
462 		efl_core_int.s.len_ovr = 1;
463 		efl_core_int.s.d_left = 1;
464 		efl_core_int.s.epci_decode_err = 1;
465 		nitrox_write_csr(ndev, offset, efl_core_int.value);
466 
467 		offset = EFL_CORE_VF_ERR_INT0_ENA_W1SX(i);
468 		nitrox_write_csr(ndev, offset, (~0ULL));
469 		offset = EFL_CORE_VF_ERR_INT1_ENA_W1SX(i);
470 		nitrox_write_csr(ndev, offset, (~0ULL));
471 	}
472 }
473 
474 void nitrox_config_bmi_unit(struct nitrox_device *ndev)
475 {
476 	union bmi_ctl bmi_ctl;
477 	union bmi_int_ena_w1s bmi_int_ena;
478 	u64 offset;
479 
480 	/* no threshold limits for PCIe */
481 	offset = BMI_CTL;
482 	bmi_ctl.value = nitrox_read_csr(ndev, offset);
483 	bmi_ctl.s.max_pkt_len = 0xff;
484 	bmi_ctl.s.nps_free_thrsh = 0xff;
485 	bmi_ctl.s.nps_hdrq_thrsh = 0x7a;
486 	nitrox_write_csr(ndev, offset, bmi_ctl.value);
487 
488 	/* enable interrupts */
489 	offset = BMI_INT_ENA_W1S;
490 	bmi_int_ena.value = 0;
491 	bmi_int_ena.s.max_len_err_nps = 1;
492 	bmi_int_ena.s.pkt_rcv_err_nps = 1;
493 	bmi_int_ena.s.fpf_undrrn = 1;
494 	nitrox_write_csr(ndev, offset, bmi_int_ena.value);
495 }
496 
497 void nitrox_config_bmo_unit(struct nitrox_device *ndev)
498 {
499 	union bmo_ctl2 bmo_ctl2;
500 	u64 offset;
501 
502 	/* no threshold limits for PCIe */
503 	offset = BMO_CTL2;
504 	bmo_ctl2.value = nitrox_read_csr(ndev, offset);
505 	bmo_ctl2.s.nps_slc_buf_thrsh = 0xff;
506 	nitrox_write_csr(ndev, offset, bmo_ctl2.value);
507 }
508 
509 void invalidate_lbc(struct nitrox_device *ndev)
510 {
511 	union lbc_inval_ctl lbc_ctl;
512 	union lbc_inval_status lbc_stat;
513 	int max_retries = MAX_CSR_RETRIES;
514 	u64 offset;
515 
516 	/* invalidate LBC */
517 	offset = LBC_INVAL_CTL;
518 	lbc_ctl.value = nitrox_read_csr(ndev, offset);
519 	lbc_ctl.s.cam_inval_start = 1;
520 	nitrox_write_csr(ndev, offset, lbc_ctl.value);
521 
522 	offset = LBC_INVAL_STATUS;
523 	do {
524 		lbc_stat.value = nitrox_read_csr(ndev, offset);
525 		if (lbc_stat.s.done)
526 			break;
527 		udelay(50);
528 	} while (max_retries--);
529 }
530 
531 void nitrox_config_lbc_unit(struct nitrox_device *ndev)
532 {
533 	union lbc_int_ena_w1s lbc_int_ena;
534 	u64 offset;
535 
536 	invalidate_lbc(ndev);
537 
538 	/* enable interrupts */
539 	offset = LBC_INT_ENA_W1S;
540 	lbc_int_ena.value = 0;
541 	lbc_int_ena.s.dma_rd_err = 1;
542 	lbc_int_ena.s.over_fetch_err = 1;
543 	lbc_int_ena.s.cam_inval_abort = 1;
544 	lbc_int_ena.s.cam_hard_err = 1;
545 	nitrox_write_csr(ndev, offset, lbc_int_ena.value);
546 
547 	offset = LBC_PLM_VF1_64_INT_ENA_W1S;
548 	nitrox_write_csr(ndev, offset, (~0ULL));
549 	offset = LBC_PLM_VF65_128_INT_ENA_W1S;
550 	nitrox_write_csr(ndev, offset, (~0ULL));
551 
552 	offset = LBC_ELM_VF1_64_INT_ENA_W1S;
553 	nitrox_write_csr(ndev, offset, (~0ULL));
554 	offset = LBC_ELM_VF65_128_INT_ENA_W1S;
555 	nitrox_write_csr(ndev, offset, (~0ULL));
556 }
557 
558 void config_nps_core_vfcfg_mode(struct nitrox_device *ndev, enum vf_mode mode)
559 {
560 	union nps_core_gbl_vfcfg vfcfg;
561 
562 	vfcfg.value = nitrox_read_csr(ndev, NPS_CORE_GBL_VFCFG);
563 	vfcfg.s.cfg = mode & 0x7;
564 
565 	nitrox_write_csr(ndev, NPS_CORE_GBL_VFCFG, vfcfg.value);
566 }
567 
568 static const char *get_core_option(u8 se_cores, u8 ae_cores)
569 {
570 	const char *option = "";
571 
572 	if (ae_cores == AE_MAX_CORES) {
573 		switch (se_cores) {
574 		case SE_MAX_CORES:
575 			option = "60";
576 			break;
577 		case 40:
578 			option = "60s";
579 			break;
580 		}
581 	} else if (ae_cores == (AE_MAX_CORES / 2)) {
582 		option = "30";
583 	} else {
584 		option = "60i";
585 	}
586 
587 	return option;
588 }
589 
590 static const char *get_feature_option(u8 zip_cores, int core_freq)
591 {
592 	if (zip_cores == 0)
593 		return "";
594 	else if (zip_cores < ZIP_MAX_CORES)
595 		return "-C15";
596 
597 	if (core_freq >= 850)
598 		return "-C45";
599 	else if (core_freq >= 750)
600 		return "-C35";
601 	else if (core_freq >= 550)
602 		return "-C25";
603 
604 	return "";
605 }
606 
607 void nitrox_get_hwinfo(struct nitrox_device *ndev)
608 {
609 	union emu_fuse_map emu_fuse;
610 	union rst_boot rst_boot;
611 	union fus_dat1 fus_dat1;
612 	unsigned char name[IFNAMSIZ * 2] = {};
613 	int i, dead_cores;
614 	u64 offset;
615 
616 	/* get core frequency */
617 	offset = RST_BOOT;
618 	rst_boot.value = nitrox_read_csr(ndev, offset);
619 	ndev->hw.freq = (rst_boot.pnr_mul + 3) * PLL_REF_CLK;
620 
621 	for (i = 0; i < NR_CLUSTERS; i++) {
622 		offset = EMU_FUSE_MAPX(i);
623 		emu_fuse.value = nitrox_read_csr(ndev, offset);
624 		if (emu_fuse.s.valid) {
625 			dead_cores = hweight32(emu_fuse.s.ae_fuse);
626 			ndev->hw.ae_cores += AE_CORES_PER_CLUSTER - dead_cores;
627 			dead_cores = hweight16(emu_fuse.s.se_fuse);
628 			ndev->hw.se_cores += SE_CORES_PER_CLUSTER - dead_cores;
629 		}
630 	}
631 	/* find zip hardware availability */
632 	offset = FUS_DAT1;
633 	fus_dat1.value = nitrox_read_csr(ndev, offset);
634 	if (!fus_dat1.nozip) {
635 		dead_cores = hweight8(fus_dat1.zip_info);
636 		ndev->hw.zip_cores = ZIP_MAX_CORES - dead_cores;
637 	}
638 
639 	/* determine the partname
640 	 * CNN55<core option>-<freq><pincount>-<feature option>-<rev>
641 	 */
642 	snprintf(name, sizeof(name), "CNN55%s-%3dBG676%s-1.%u",
643 		 get_core_option(ndev->hw.se_cores, ndev->hw.ae_cores),
644 		 ndev->hw.freq,
645 		 get_feature_option(ndev->hw.zip_cores, ndev->hw.freq),
646 		 ndev->hw.revision_id);
647 
648 	/* copy partname */
649 	strncpy(ndev->hw.partname, name, sizeof(ndev->hw.partname));
650 }
651 
652 void enable_pf2vf_mbox_interrupts(struct nitrox_device *ndev)
653 {
654 	u64 value = ~0ULL;
655 	u64 reg_addr;
656 
657 	/* Mailbox interrupt low enable set register */
658 	reg_addr = NPS_PKT_MBOX_INT_LO_ENA_W1S;
659 	nitrox_write_csr(ndev, reg_addr, value);
660 
661 	/* Mailbox interrupt high enable set register */
662 	reg_addr = NPS_PKT_MBOX_INT_HI_ENA_W1S;
663 	nitrox_write_csr(ndev, reg_addr, value);
664 }
665 
666 void disable_pf2vf_mbox_interrupts(struct nitrox_device *ndev)
667 {
668 	u64 value = ~0ULL;
669 	u64 reg_addr;
670 
671 	/* Mailbox interrupt low enable clear register */
672 	reg_addr = NPS_PKT_MBOX_INT_LO_ENA_W1C;
673 	nitrox_write_csr(ndev, reg_addr, value);
674 
675 	/* Mailbox interrupt high enable clear register */
676 	reg_addr = NPS_PKT_MBOX_INT_HI_ENA_W1C;
677 	nitrox_write_csr(ndev, reg_addr, value);
678 }
679