xref: /linux/drivers/crypto/caam/qi.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CAAM/SEC 4.x QI transport/backend driver
4  * Queue Interface backend functionality
5  *
6  * Copyright 2013-2016 Freescale Semiconductor, Inc.
7  * Copyright 2016-2017, 2019 NXP
8  */
9 
10 #include <linux/cpumask.h>
11 #include <linux/kthread.h>
12 #include <soc/fsl/qman.h>
13 
14 #include "regs.h"
15 #include "qi.h"
16 #include "desc.h"
17 #include "intern.h"
18 #include "desc_constr.h"
19 
20 #define PREHDR_RSLS_SHIFT	31
21 #define PREHDR_ABS		BIT(25)
22 
23 /*
24  * Use a reasonable backlog of frames (per CPU) as congestion threshold,
25  * so that resources used by the in-flight buffers do not become a memory hog.
26  */
27 #define MAX_RSP_FQ_BACKLOG_PER_CPU	256
28 
29 #define CAAM_QI_ENQUEUE_RETRIES	10000
30 
31 #define CAAM_NAPI_WEIGHT	63
32 
33 /*
34  * caam_napi - struct holding CAAM NAPI-related params
35  * @irqtask: IRQ task for QI backend
36  * @p: QMan portal
37  */
38 struct caam_napi {
39 	struct napi_struct irqtask;
40 	struct qman_portal *p;
41 };
42 
43 /*
44  * caam_qi_pcpu_priv - percpu private data structure to main list of pending
45  *                     responses expected on each cpu.
46  * @caam_napi: CAAM NAPI params
47  * @net_dev: netdev used by NAPI
48  * @rsp_fq: response FQ from CAAM
49  */
50 struct caam_qi_pcpu_priv {
51 	struct caam_napi caam_napi;
52 	struct net_device net_dev;
53 	struct qman_fq *rsp_fq;
54 } ____cacheline_aligned;
55 
56 static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
57 static DEFINE_PER_CPU(int, last_cpu);
58 
59 /*
60  * caam_qi_priv - CAAM QI backend private params
61  * @cgr: QMan congestion group
62  */
63 struct caam_qi_priv {
64 	struct qman_cgr cgr;
65 };
66 
67 static struct caam_qi_priv qipriv ____cacheline_aligned;
68 
69 /*
70  * This is written by only one core - the one that initialized the CGR - and
71  * read by multiple cores (all the others).
72  */
73 bool caam_congested __read_mostly;
74 EXPORT_SYMBOL(caam_congested);
75 
76 #ifdef CONFIG_DEBUG_FS
77 /*
78  * This is a counter for the number of times the congestion group (where all
79  * the request and response queueus are) reached congestion. Incremented
80  * each time the congestion callback is called with congested == true.
81  */
82 static u64 times_congested;
83 #endif
84 
85 /*
86  * This is a a cache of buffers, from which the users of CAAM QI driver
87  * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
88  * doing malloc on the hotpath.
89  * NOTE: A more elegant solution would be to have some headroom in the frames
90  *       being processed. This could be added by the dpaa-ethernet driver.
91  *       This would pose a problem for userspace application processing which
92  *       cannot know of this limitation. So for now, this will work.
93  * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
94  */
95 static struct kmem_cache *qi_cache;
96 
97 static void *caam_iova_to_virt(struct iommu_domain *domain,
98 			       dma_addr_t iova_addr)
99 {
100 	phys_addr_t phys_addr;
101 
102 	phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr;
103 
104 	return phys_to_virt(phys_addr);
105 }
106 
107 int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
108 {
109 	struct qm_fd fd;
110 	dma_addr_t addr;
111 	int ret;
112 	int num_retries = 0;
113 
114 	qm_fd_clear_fd(&fd);
115 	qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
116 
117 	addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
118 			      DMA_BIDIRECTIONAL);
119 	if (dma_mapping_error(qidev, addr)) {
120 		dev_err(qidev, "DMA mapping error for QI enqueue request\n");
121 		return -EIO;
122 	}
123 	qm_fd_addr_set64(&fd, addr);
124 
125 	do {
126 		ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
127 		if (likely(!ret))
128 			return 0;
129 
130 		if (ret != -EBUSY)
131 			break;
132 		num_retries++;
133 	} while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
134 
135 	dev_err(qidev, "qman_enqueue failed: %d\n", ret);
136 
137 	return ret;
138 }
139 EXPORT_SYMBOL(caam_qi_enqueue);
140 
141 static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
142 			   const union qm_mr_entry *msg)
143 {
144 	const struct qm_fd *fd;
145 	struct caam_drv_req *drv_req;
146 	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
147 	struct caam_drv_private *priv = dev_get_drvdata(qidev);
148 
149 	fd = &msg->ern.fd;
150 
151 	if (qm_fd_get_format(fd) != qm_fd_compound) {
152 		dev_err(qidev, "Non-compound FD from CAAM\n");
153 		return;
154 	}
155 
156 	drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
157 	if (!drv_req) {
158 		dev_err(qidev,
159 			"Can't find original request for CAAM response\n");
160 		return;
161 	}
162 
163 	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
164 			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
165 
166 	if (fd->status)
167 		drv_req->cbk(drv_req, be32_to_cpu(fd->status));
168 	else
169 		drv_req->cbk(drv_req, JRSTA_SSRC_QI);
170 }
171 
172 static struct qman_fq *create_caam_req_fq(struct device *qidev,
173 					  struct qman_fq *rsp_fq,
174 					  dma_addr_t hwdesc,
175 					  int fq_sched_flag)
176 {
177 	int ret;
178 	struct qman_fq *req_fq;
179 	struct qm_mcc_initfq opts;
180 
181 	req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
182 	if (!req_fq)
183 		return ERR_PTR(-ENOMEM);
184 
185 	req_fq->cb.ern = caam_fq_ern_cb;
186 	req_fq->cb.fqs = NULL;
187 
188 	ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
189 				QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
190 	if (ret) {
191 		dev_err(qidev, "Failed to create session req FQ\n");
192 		goto create_req_fq_fail;
193 	}
194 
195 	memset(&opts, 0, sizeof(opts));
196 	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
197 				   QM_INITFQ_WE_CONTEXTB |
198 				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
199 	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
200 	qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
201 	opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
202 	qm_fqd_context_a_set64(&opts.fqd, hwdesc);
203 	opts.fqd.cgid = qipriv.cgr.cgrid;
204 
205 	ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
206 	if (ret) {
207 		dev_err(qidev, "Failed to init session req FQ\n");
208 		goto init_req_fq_fail;
209 	}
210 
211 	dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
212 		smp_processor_id());
213 	return req_fq;
214 
215 init_req_fq_fail:
216 	qman_destroy_fq(req_fq);
217 create_req_fq_fail:
218 	kfree(req_fq);
219 	return ERR_PTR(ret);
220 }
221 
222 static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
223 {
224 	int ret;
225 
226 	ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
227 				    QMAN_VOLATILE_FLAG_FINISH,
228 				    QM_VDQCR_PRECEDENCE_VDQCR |
229 				    QM_VDQCR_NUMFRAMES_TILLEMPTY);
230 	if (ret) {
231 		dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
232 		return ret;
233 	}
234 
235 	do {
236 		struct qman_portal *p;
237 
238 		p = qman_get_affine_portal(smp_processor_id());
239 		qman_p_poll_dqrr(p, 16);
240 	} while (fq->flags & QMAN_FQ_STATE_NE);
241 
242 	return 0;
243 }
244 
245 static int kill_fq(struct device *qidev, struct qman_fq *fq)
246 {
247 	u32 flags;
248 	int ret;
249 
250 	ret = qman_retire_fq(fq, &flags);
251 	if (ret < 0) {
252 		dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
253 		return ret;
254 	}
255 
256 	if (!ret)
257 		goto empty_fq;
258 
259 	/* Async FQ retirement condition */
260 	if (ret == 1) {
261 		/* Retry till FQ gets in retired state */
262 		do {
263 			msleep(20);
264 		} while (fq->state != qman_fq_state_retired);
265 
266 		WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
267 		WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
268 	}
269 
270 empty_fq:
271 	if (fq->flags & QMAN_FQ_STATE_NE) {
272 		ret = empty_retired_fq(qidev, fq);
273 		if (ret) {
274 			dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
275 				fq->fqid);
276 			return ret;
277 		}
278 	}
279 
280 	ret = qman_oos_fq(fq);
281 	if (ret)
282 		dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
283 
284 	qman_destroy_fq(fq);
285 	kfree(fq);
286 
287 	return ret;
288 }
289 
290 static int empty_caam_fq(struct qman_fq *fq)
291 {
292 	int ret;
293 	struct qm_mcr_queryfq_np np;
294 
295 	/* Wait till the older CAAM FQ get empty */
296 	do {
297 		ret = qman_query_fq_np(fq, &np);
298 		if (ret)
299 			return ret;
300 
301 		if (!qm_mcr_np_get(&np, frm_cnt))
302 			break;
303 
304 		msleep(20);
305 	} while (1);
306 
307 	/*
308 	 * Give extra time for pending jobs from this FQ in holding tanks
309 	 * to get processed
310 	 */
311 	msleep(20);
312 	return 0;
313 }
314 
315 int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
316 {
317 	int ret;
318 	u32 num_words;
319 	struct qman_fq *new_fq, *old_fq;
320 	struct device *qidev = drv_ctx->qidev;
321 
322 	num_words = desc_len(sh_desc);
323 	if (num_words > MAX_SDLEN) {
324 		dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
325 		return -EINVAL;
326 	}
327 
328 	/* Note down older req FQ */
329 	old_fq = drv_ctx->req_fq;
330 
331 	/* Create a new req FQ in parked state */
332 	new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
333 				    drv_ctx->context_a, 0);
334 	if (IS_ERR(new_fq)) {
335 		dev_err(qidev, "FQ allocation for shdesc update failed\n");
336 		return PTR_ERR(new_fq);
337 	}
338 
339 	/* Hook up new FQ to context so that new requests keep queuing */
340 	drv_ctx->req_fq = new_fq;
341 
342 	/* Empty and remove the older FQ */
343 	ret = empty_caam_fq(old_fq);
344 	if (ret) {
345 		dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
346 
347 		/* We can revert to older FQ */
348 		drv_ctx->req_fq = old_fq;
349 
350 		if (kill_fq(qidev, new_fq))
351 			dev_warn(qidev, "New CAAM FQ kill failed\n");
352 
353 		return ret;
354 	}
355 
356 	/*
357 	 * Re-initialise pre-header. Set RSLS and SDLEN.
358 	 * Update the shared descriptor for driver context.
359 	 */
360 	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
361 					   num_words);
362 	drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
363 	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
364 	dma_sync_single_for_device(qidev, drv_ctx->context_a,
365 				   sizeof(drv_ctx->sh_desc) +
366 				   sizeof(drv_ctx->prehdr),
367 				   DMA_BIDIRECTIONAL);
368 
369 	/* Put the new FQ in scheduled state */
370 	ret = qman_schedule_fq(new_fq);
371 	if (ret) {
372 		dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
373 
374 		/*
375 		 * We can kill new FQ and revert to old FQ.
376 		 * Since the desc is already modified, it is success case
377 		 */
378 
379 		drv_ctx->req_fq = old_fq;
380 
381 		if (kill_fq(qidev, new_fq))
382 			dev_warn(qidev, "New CAAM FQ kill failed\n");
383 	} else if (kill_fq(qidev, old_fq)) {
384 		dev_warn(qidev, "Old CAAM FQ kill failed\n");
385 	}
386 
387 	return 0;
388 }
389 EXPORT_SYMBOL(caam_drv_ctx_update);
390 
391 struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
392 				       int *cpu,
393 				       u32 *sh_desc)
394 {
395 	size_t size;
396 	u32 num_words;
397 	dma_addr_t hwdesc;
398 	struct caam_drv_ctx *drv_ctx;
399 	const cpumask_t *cpus = qman_affine_cpus();
400 
401 	num_words = desc_len(sh_desc);
402 	if (num_words > MAX_SDLEN) {
403 		dev_err(qidev, "Invalid descriptor len: %d words\n",
404 			num_words);
405 		return ERR_PTR(-EINVAL);
406 	}
407 
408 	drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
409 	if (!drv_ctx)
410 		return ERR_PTR(-ENOMEM);
411 
412 	/*
413 	 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor
414 	 * and dma-map them.
415 	 */
416 	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
417 					   num_words);
418 	drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
419 	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
420 	size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
421 	hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
422 				DMA_BIDIRECTIONAL);
423 	if (dma_mapping_error(qidev, hwdesc)) {
424 		dev_err(qidev, "DMA map error for preheader + shdesc\n");
425 		kfree(drv_ctx);
426 		return ERR_PTR(-ENOMEM);
427 	}
428 	drv_ctx->context_a = hwdesc;
429 
430 	/* If given CPU does not own the portal, choose another one that does */
431 	if (!cpumask_test_cpu(*cpu, cpus)) {
432 		int *pcpu = &get_cpu_var(last_cpu);
433 
434 		*pcpu = cpumask_next(*pcpu, cpus);
435 		if (*pcpu >= nr_cpu_ids)
436 			*pcpu = cpumask_first(cpus);
437 		*cpu = *pcpu;
438 
439 		put_cpu_var(last_cpu);
440 	}
441 	drv_ctx->cpu = *cpu;
442 
443 	/* Find response FQ hooked with this CPU */
444 	drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
445 
446 	/* Attach request FQ */
447 	drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
448 					     QMAN_INITFQ_FLAG_SCHED);
449 	if (IS_ERR(drv_ctx->req_fq)) {
450 		dev_err(qidev, "create_caam_req_fq failed\n");
451 		dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
452 		kfree(drv_ctx);
453 		return ERR_PTR(-ENOMEM);
454 	}
455 
456 	drv_ctx->qidev = qidev;
457 	return drv_ctx;
458 }
459 EXPORT_SYMBOL(caam_drv_ctx_init);
460 
461 void *qi_cache_alloc(gfp_t flags)
462 {
463 	return kmem_cache_alloc(qi_cache, flags);
464 }
465 EXPORT_SYMBOL(qi_cache_alloc);
466 
467 void qi_cache_free(void *obj)
468 {
469 	kmem_cache_free(qi_cache, obj);
470 }
471 EXPORT_SYMBOL(qi_cache_free);
472 
473 static int caam_qi_poll(struct napi_struct *napi, int budget)
474 {
475 	struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
476 
477 	int cleaned = qman_p_poll_dqrr(np->p, budget);
478 
479 	if (cleaned < budget) {
480 		napi_complete(napi);
481 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
482 	}
483 
484 	return cleaned;
485 }
486 
487 void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
488 {
489 	if (IS_ERR_OR_NULL(drv_ctx))
490 		return;
491 
492 	/* Remove request FQ */
493 	if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
494 		dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
495 
496 	dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
497 			 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
498 			 DMA_BIDIRECTIONAL);
499 	kfree(drv_ctx);
500 }
501 EXPORT_SYMBOL(caam_drv_ctx_rel);
502 
503 void caam_qi_shutdown(struct device *qidev)
504 {
505 	int i;
506 	struct caam_qi_priv *priv = &qipriv;
507 	const cpumask_t *cpus = qman_affine_cpus();
508 
509 	for_each_cpu(i, cpus) {
510 		struct napi_struct *irqtask;
511 
512 		irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
513 		napi_disable(irqtask);
514 		netif_napi_del(irqtask);
515 
516 		if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
517 			dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
518 	}
519 
520 	qman_delete_cgr_safe(&priv->cgr);
521 	qman_release_cgrid(priv->cgr.cgrid);
522 
523 	kmem_cache_destroy(qi_cache);
524 }
525 
526 static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
527 {
528 	caam_congested = congested;
529 
530 	if (congested) {
531 #ifdef CONFIG_DEBUG_FS
532 		times_congested++;
533 #endif
534 		pr_debug_ratelimited("CAAM entered congestion\n");
535 
536 	} else {
537 		pr_debug_ratelimited("CAAM exited congestion\n");
538 	}
539 }
540 
541 static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np)
542 {
543 	/*
544 	 * In case of threaded ISR, for RT kernels in_irq() does not return
545 	 * appropriate value, so use in_serving_softirq to distinguish between
546 	 * softirq and irq contexts.
547 	 */
548 	if (unlikely(in_irq() || !in_serving_softirq())) {
549 		/* Disable QMan IRQ source and invoke NAPI */
550 		qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
551 		np->p = p;
552 		napi_schedule(&np->irqtask);
553 		return 1;
554 	}
555 	return 0;
556 }
557 
558 static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
559 						    struct qman_fq *rsp_fq,
560 						    const struct qm_dqrr_entry *dqrr)
561 {
562 	struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
563 	struct caam_drv_req *drv_req;
564 	const struct qm_fd *fd;
565 	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
566 	struct caam_drv_private *priv = dev_get_drvdata(qidev);
567 	u32 status;
568 
569 	if (caam_qi_napi_schedule(p, caam_napi))
570 		return qman_cb_dqrr_stop;
571 
572 	fd = &dqrr->fd;
573 	status = be32_to_cpu(fd->status);
574 	if (unlikely(status)) {
575 		u32 ssrc = status & JRSTA_SSRC_MASK;
576 		u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
577 
578 		if (ssrc != JRSTA_SSRC_CCB_ERROR ||
579 		    err_id != JRSTA_CCBERR_ERRID_ICVCHK)
580 			dev_err_ratelimited(qidev,
581 					    "Error: %#x in CAAM response FD\n",
582 					    status);
583 	}
584 
585 	if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
586 		dev_err(qidev, "Non-compound FD from CAAM\n");
587 		return qman_cb_dqrr_consume;
588 	}
589 
590 	drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
591 	if (unlikely(!drv_req)) {
592 		dev_err(qidev,
593 			"Can't find original request for caam response\n");
594 		return qman_cb_dqrr_consume;
595 	}
596 
597 	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
598 			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
599 
600 	drv_req->cbk(drv_req, status);
601 	return qman_cb_dqrr_consume;
602 }
603 
604 static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
605 {
606 	struct qm_mcc_initfq opts;
607 	struct qman_fq *fq;
608 	int ret;
609 
610 	fq = kzalloc(sizeof(*fq), GFP_KERNEL | GFP_DMA);
611 	if (!fq)
612 		return -ENOMEM;
613 
614 	fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
615 
616 	ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
617 			     QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
618 	if (ret) {
619 		dev_err(qidev, "Rsp FQ create failed\n");
620 		kfree(fq);
621 		return -ENODEV;
622 	}
623 
624 	memset(&opts, 0, sizeof(opts));
625 	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
626 				   QM_INITFQ_WE_CONTEXTB |
627 				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
628 	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
629 				       QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
630 	qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
631 	opts.fqd.cgid = qipriv.cgr.cgrid;
632 	opts.fqd.context_a.stashing.exclusive =	QM_STASHING_EXCL_CTX |
633 						QM_STASHING_EXCL_DATA;
634 	qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
635 
636 	ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
637 	if (ret) {
638 		dev_err(qidev, "Rsp FQ init failed\n");
639 		kfree(fq);
640 		return -ENODEV;
641 	}
642 
643 	per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
644 
645 	dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
646 	return 0;
647 }
648 
649 static int init_cgr(struct device *qidev)
650 {
651 	int ret;
652 	struct qm_mcc_initcgr opts;
653 	const u64 val = (u64)cpumask_weight(qman_affine_cpus()) *
654 			MAX_RSP_FQ_BACKLOG_PER_CPU;
655 
656 	ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
657 	if (ret) {
658 		dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
659 		return ret;
660 	}
661 
662 	qipriv.cgr.cb = cgr_cb;
663 	memset(&opts, 0, sizeof(opts));
664 	opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
665 				   QM_CGR_WE_MODE);
666 	opts.cgr.cscn_en = QM_CGR_EN;
667 	opts.cgr.mode = QMAN_CGR_MODE_FRAME;
668 	qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
669 
670 	ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
671 	if (ret) {
672 		dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
673 			qipriv.cgr.cgrid);
674 		return ret;
675 	}
676 
677 	dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
678 	return 0;
679 }
680 
681 static int alloc_rsp_fqs(struct device *qidev)
682 {
683 	int ret, i;
684 	const cpumask_t *cpus = qman_affine_cpus();
685 
686 	/*Now create response FQs*/
687 	for_each_cpu(i, cpus) {
688 		ret = alloc_rsp_fq_cpu(qidev, i);
689 		if (ret) {
690 			dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
691 			return ret;
692 		}
693 	}
694 
695 	return 0;
696 }
697 
698 static void free_rsp_fqs(void)
699 {
700 	int i;
701 	const cpumask_t *cpus = qman_affine_cpus();
702 
703 	for_each_cpu(i, cpus)
704 		kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
705 }
706 
707 int caam_qi_init(struct platform_device *caam_pdev)
708 {
709 	int err, i;
710 	struct device *ctrldev = &caam_pdev->dev, *qidev;
711 	struct caam_drv_private *ctrlpriv;
712 	const cpumask_t *cpus = qman_affine_cpus();
713 
714 	ctrlpriv = dev_get_drvdata(ctrldev);
715 	qidev = ctrldev;
716 
717 	/* Initialize the congestion detection */
718 	err = init_cgr(qidev);
719 	if (err) {
720 		dev_err(qidev, "CGR initialization failed: %d\n", err);
721 		return err;
722 	}
723 
724 	/* Initialise response FQs */
725 	err = alloc_rsp_fqs(qidev);
726 	if (err) {
727 		dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
728 		free_rsp_fqs();
729 		return err;
730 	}
731 
732 	/*
733 	 * Enable the NAPI contexts on each of the core which has an affine
734 	 * portal.
735 	 */
736 	for_each_cpu(i, cpus) {
737 		struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
738 		struct caam_napi *caam_napi = &priv->caam_napi;
739 		struct napi_struct *irqtask = &caam_napi->irqtask;
740 		struct net_device *net_dev = &priv->net_dev;
741 
742 		net_dev->dev = *qidev;
743 		INIT_LIST_HEAD(&net_dev->napi_list);
744 
745 		netif_napi_add(net_dev, irqtask, caam_qi_poll,
746 			       CAAM_NAPI_WEIGHT);
747 
748 		napi_enable(irqtask);
749 	}
750 
751 	qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 0,
752 				     SLAB_CACHE_DMA, NULL);
753 	if (!qi_cache) {
754 		dev_err(qidev, "Can't allocate CAAM cache\n");
755 		free_rsp_fqs();
756 		return -ENOMEM;
757 	}
758 
759 #ifdef CONFIG_DEBUG_FS
760 	debugfs_create_file("qi_congested", 0444, ctrlpriv->ctl,
761 			    &times_congested, &caam_fops_u64_ro);
762 #endif
763 
764 	ctrlpriv->qi_init = 1;
765 	dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
766 	return 0;
767 }
768