xref: /linux/drivers/crypto/caam/qi.c (revision 7bb377107c72a40ab7505341f8626c8eb79a0cb7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CAAM/SEC 4.x QI transport/backend driver
4  * Queue Interface backend functionality
5  *
6  * Copyright 2013-2016 Freescale Semiconductor, Inc.
7  * Copyright 2016-2017, 2019-2020 NXP
8  */
9 
10 #include <linux/cpumask.h>
11 #include <linux/kthread.h>
12 #include <soc/fsl/qman.h>
13 
14 #include "regs.h"
15 #include "qi.h"
16 #include "desc.h"
17 #include "intern.h"
18 #include "desc_constr.h"
19 
20 #define PREHDR_RSLS_SHIFT	31
21 #define PREHDR_ABS		BIT(25)
22 
23 /*
24  * Use a reasonable backlog of frames (per CPU) as congestion threshold,
25  * so that resources used by the in-flight buffers do not become a memory hog.
26  */
27 #define MAX_RSP_FQ_BACKLOG_PER_CPU	256
28 
29 #define CAAM_QI_ENQUEUE_RETRIES	10000
30 
31 #define CAAM_NAPI_WEIGHT	63
32 
33 /*
34  * caam_napi - struct holding CAAM NAPI-related params
35  * @irqtask: IRQ task for QI backend
36  * @p: QMan portal
37  */
38 struct caam_napi {
39 	struct napi_struct irqtask;
40 	struct qman_portal *p;
41 };
42 
43 /*
44  * caam_qi_pcpu_priv - percpu private data structure to main list of pending
45  *                     responses expected on each cpu.
46  * @caam_napi: CAAM NAPI params
47  * @net_dev: netdev used by NAPI
48  * @rsp_fq: response FQ from CAAM
49  */
50 struct caam_qi_pcpu_priv {
51 	struct caam_napi caam_napi;
52 	struct net_device net_dev;
53 	struct qman_fq *rsp_fq;
54 } ____cacheline_aligned;
55 
56 static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
57 static DEFINE_PER_CPU(int, last_cpu);
58 
59 /*
60  * caam_qi_priv - CAAM QI backend private params
61  * @cgr: QMan congestion group
62  */
63 struct caam_qi_priv {
64 	struct qman_cgr cgr;
65 };
66 
67 static struct caam_qi_priv qipriv ____cacheline_aligned;
68 
69 /*
70  * This is written by only one core - the one that initialized the CGR - and
71  * read by multiple cores (all the others).
72  */
73 bool caam_congested __read_mostly;
74 EXPORT_SYMBOL(caam_congested);
75 
76 #ifdef CONFIG_DEBUG_FS
77 /*
78  * This is a counter for the number of times the congestion group (where all
79  * the request and response queueus are) reached congestion. Incremented
80  * each time the congestion callback is called with congested == true.
81  */
82 static u64 times_congested;
83 #endif
84 
85 /*
86  * This is a a cache of buffers, from which the users of CAAM QI driver
87  * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
88  * doing malloc on the hotpath.
89  * NOTE: A more elegant solution would be to have some headroom in the frames
90  *       being processed. This could be added by the dpaa-ethernet driver.
91  *       This would pose a problem for userspace application processing which
92  *       cannot know of this limitation. So for now, this will work.
93  * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
94  */
95 static struct kmem_cache *qi_cache;
96 
97 static void *caam_iova_to_virt(struct iommu_domain *domain,
98 			       dma_addr_t iova_addr)
99 {
100 	phys_addr_t phys_addr;
101 
102 	phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr;
103 
104 	return phys_to_virt(phys_addr);
105 }
106 
107 int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
108 {
109 	struct qm_fd fd;
110 	dma_addr_t addr;
111 	int ret;
112 	int num_retries = 0;
113 
114 	qm_fd_clear_fd(&fd);
115 	qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
116 
117 	addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
118 			      DMA_BIDIRECTIONAL);
119 	if (dma_mapping_error(qidev, addr)) {
120 		dev_err(qidev, "DMA mapping error for QI enqueue request\n");
121 		return -EIO;
122 	}
123 	qm_fd_addr_set64(&fd, addr);
124 
125 	do {
126 		ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
127 		if (likely(!ret)) {
128 			refcount_inc(&req->drv_ctx->refcnt);
129 			return 0;
130 		}
131 
132 		if (ret != -EBUSY)
133 			break;
134 		num_retries++;
135 	} while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
136 
137 	dev_err(qidev, "qman_enqueue failed: %d\n", ret);
138 
139 	return ret;
140 }
141 EXPORT_SYMBOL(caam_qi_enqueue);
142 
143 static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
144 			   const union qm_mr_entry *msg)
145 {
146 	const struct qm_fd *fd;
147 	struct caam_drv_req *drv_req;
148 	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
149 	struct caam_drv_private *priv = dev_get_drvdata(qidev);
150 
151 	fd = &msg->ern.fd;
152 
153 	drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
154 	if (!drv_req) {
155 		dev_err(qidev,
156 			"Can't find original request for CAAM response\n");
157 		return;
158 	}
159 
160 	refcount_dec(&drv_req->drv_ctx->refcnt);
161 
162 	if (qm_fd_get_format(fd) != qm_fd_compound) {
163 		dev_err(qidev, "Non-compound FD from CAAM\n");
164 		return;
165 	}
166 
167 	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
168 			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
169 
170 	if (fd->status)
171 		drv_req->cbk(drv_req, be32_to_cpu(fd->status));
172 	else
173 		drv_req->cbk(drv_req, JRSTA_SSRC_QI);
174 }
175 
176 static struct qman_fq *create_caam_req_fq(struct device *qidev,
177 					  struct qman_fq *rsp_fq,
178 					  dma_addr_t hwdesc,
179 					  int fq_sched_flag)
180 {
181 	int ret;
182 	struct qman_fq *req_fq;
183 	struct qm_mcc_initfq opts;
184 
185 	req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
186 	if (!req_fq)
187 		return ERR_PTR(-ENOMEM);
188 
189 	req_fq->cb.ern = caam_fq_ern_cb;
190 	req_fq->cb.fqs = NULL;
191 
192 	ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
193 				QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
194 	if (ret) {
195 		dev_err(qidev, "Failed to create session req FQ\n");
196 		goto create_req_fq_fail;
197 	}
198 
199 	memset(&opts, 0, sizeof(opts));
200 	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
201 				   QM_INITFQ_WE_CONTEXTB |
202 				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
203 	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
204 	qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
205 	opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
206 	qm_fqd_context_a_set64(&opts.fqd, hwdesc);
207 	opts.fqd.cgid = qipriv.cgr.cgrid;
208 
209 	ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
210 	if (ret) {
211 		dev_err(qidev, "Failed to init session req FQ\n");
212 		goto init_req_fq_fail;
213 	}
214 
215 	dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
216 		smp_processor_id());
217 	return req_fq;
218 
219 init_req_fq_fail:
220 	qman_destroy_fq(req_fq);
221 create_req_fq_fail:
222 	kfree(req_fq);
223 	return ERR_PTR(ret);
224 }
225 
226 static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
227 {
228 	int ret;
229 
230 	ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
231 				    QMAN_VOLATILE_FLAG_FINISH,
232 				    QM_VDQCR_PRECEDENCE_VDQCR |
233 				    QM_VDQCR_NUMFRAMES_TILLEMPTY);
234 	if (ret) {
235 		dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
236 		return ret;
237 	}
238 
239 	do {
240 		struct qman_portal *p;
241 
242 		p = qman_get_affine_portal(smp_processor_id());
243 		qman_p_poll_dqrr(p, 16);
244 	} while (fq->flags & QMAN_FQ_STATE_NE);
245 
246 	return 0;
247 }
248 
249 static int kill_fq(struct device *qidev, struct qman_fq *fq)
250 {
251 	u32 flags;
252 	int ret;
253 
254 	ret = qman_retire_fq(fq, &flags);
255 	if (ret < 0) {
256 		dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
257 		return ret;
258 	}
259 
260 	if (!ret)
261 		goto empty_fq;
262 
263 	/* Async FQ retirement condition */
264 	if (ret == 1) {
265 		/* Retry till FQ gets in retired state */
266 		do {
267 			msleep(20);
268 		} while (fq->state != qman_fq_state_retired);
269 
270 		WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
271 		WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
272 	}
273 
274 empty_fq:
275 	if (fq->flags & QMAN_FQ_STATE_NE) {
276 		ret = empty_retired_fq(qidev, fq);
277 		if (ret) {
278 			dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
279 				fq->fqid);
280 			return ret;
281 		}
282 	}
283 
284 	ret = qman_oos_fq(fq);
285 	if (ret)
286 		dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
287 
288 	qman_destroy_fq(fq);
289 	kfree(fq);
290 
291 	return ret;
292 }
293 
294 static int empty_caam_fq(struct qman_fq *fq, struct caam_drv_ctx *drv_ctx)
295 {
296 	int ret;
297 	int retries = 10;
298 	struct qm_mcr_queryfq_np np;
299 
300 	/* Wait till the older CAAM FQ get empty */
301 	do {
302 		ret = qman_query_fq_np(fq, &np);
303 		if (ret)
304 			return ret;
305 
306 		if (!qm_mcr_np_get(&np, frm_cnt))
307 			break;
308 
309 		msleep(20);
310 	} while (1);
311 
312 	/* Wait until pending jobs from this FQ are processed by CAAM */
313 	do {
314 		if (refcount_read(&drv_ctx->refcnt) == 1)
315 			break;
316 
317 		msleep(20);
318 	} while (--retries);
319 
320 	if (!retries)
321 		dev_warn_once(drv_ctx->qidev, "%d frames from FQID %u still pending in CAAM\n",
322 			      refcount_read(&drv_ctx->refcnt), fq->fqid);
323 
324 	return 0;
325 }
326 
327 int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
328 {
329 	int ret;
330 	u32 num_words;
331 	struct qman_fq *new_fq, *old_fq;
332 	struct device *qidev = drv_ctx->qidev;
333 
334 	num_words = desc_len(sh_desc);
335 	if (num_words > MAX_SDLEN) {
336 		dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
337 		return -EINVAL;
338 	}
339 
340 	/* Note down older req FQ */
341 	old_fq = drv_ctx->req_fq;
342 
343 	/* Create a new req FQ in parked state */
344 	new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
345 				    drv_ctx->context_a, 0);
346 	if (IS_ERR(new_fq)) {
347 		dev_err(qidev, "FQ allocation for shdesc update failed\n");
348 		return PTR_ERR(new_fq);
349 	}
350 
351 	/* Hook up new FQ to context so that new requests keep queuing */
352 	drv_ctx->req_fq = new_fq;
353 
354 	/* Empty and remove the older FQ */
355 	ret = empty_caam_fq(old_fq, drv_ctx);
356 	if (ret) {
357 		dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
358 
359 		/* We can revert to older FQ */
360 		drv_ctx->req_fq = old_fq;
361 
362 		if (kill_fq(qidev, new_fq))
363 			dev_warn(qidev, "New CAAM FQ kill failed\n");
364 
365 		return ret;
366 	}
367 
368 	/*
369 	 * Re-initialise pre-header. Set RSLS and SDLEN.
370 	 * Update the shared descriptor for driver context.
371 	 */
372 	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
373 					   num_words);
374 	drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
375 	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
376 	dma_sync_single_for_device(qidev, drv_ctx->context_a,
377 				   sizeof(drv_ctx->sh_desc) +
378 				   sizeof(drv_ctx->prehdr),
379 				   DMA_BIDIRECTIONAL);
380 
381 	/* Put the new FQ in scheduled state */
382 	ret = qman_schedule_fq(new_fq);
383 	if (ret) {
384 		dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
385 
386 		/*
387 		 * We can kill new FQ and revert to old FQ.
388 		 * Since the desc is already modified, it is success case
389 		 */
390 
391 		drv_ctx->req_fq = old_fq;
392 
393 		if (kill_fq(qidev, new_fq))
394 			dev_warn(qidev, "New CAAM FQ kill failed\n");
395 	} else if (kill_fq(qidev, old_fq)) {
396 		dev_warn(qidev, "Old CAAM FQ kill failed\n");
397 	}
398 
399 	return 0;
400 }
401 EXPORT_SYMBOL(caam_drv_ctx_update);
402 
403 struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
404 				       int *cpu,
405 				       u32 *sh_desc)
406 {
407 	size_t size;
408 	u32 num_words;
409 	dma_addr_t hwdesc;
410 	struct caam_drv_ctx *drv_ctx;
411 	const cpumask_t *cpus = qman_affine_cpus();
412 
413 	num_words = desc_len(sh_desc);
414 	if (num_words > MAX_SDLEN) {
415 		dev_err(qidev, "Invalid descriptor len: %d words\n",
416 			num_words);
417 		return ERR_PTR(-EINVAL);
418 	}
419 
420 	drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
421 	if (!drv_ctx)
422 		return ERR_PTR(-ENOMEM);
423 
424 	/*
425 	 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor
426 	 * and dma-map them.
427 	 */
428 	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
429 					   num_words);
430 	drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
431 	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
432 	size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
433 	hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
434 				DMA_BIDIRECTIONAL);
435 	if (dma_mapping_error(qidev, hwdesc)) {
436 		dev_err(qidev, "DMA map error for preheader + shdesc\n");
437 		kfree(drv_ctx);
438 		return ERR_PTR(-ENOMEM);
439 	}
440 	drv_ctx->context_a = hwdesc;
441 
442 	/* If given CPU does not own the portal, choose another one that does */
443 	if (!cpumask_test_cpu(*cpu, cpus)) {
444 		int *pcpu = &get_cpu_var(last_cpu);
445 
446 		*pcpu = cpumask_next(*pcpu, cpus);
447 		if (*pcpu >= nr_cpu_ids)
448 			*pcpu = cpumask_first(cpus);
449 		*cpu = *pcpu;
450 
451 		put_cpu_var(last_cpu);
452 	}
453 	drv_ctx->cpu = *cpu;
454 
455 	/* Find response FQ hooked with this CPU */
456 	drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
457 
458 	/* Attach request FQ */
459 	drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
460 					     QMAN_INITFQ_FLAG_SCHED);
461 	if (IS_ERR(drv_ctx->req_fq)) {
462 		dev_err(qidev, "create_caam_req_fq failed\n");
463 		dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
464 		kfree(drv_ctx);
465 		return ERR_PTR(-ENOMEM);
466 	}
467 
468 	/* init reference counter used to track references to request FQ */
469 	refcount_set(&drv_ctx->refcnt, 1);
470 
471 	drv_ctx->qidev = qidev;
472 	return drv_ctx;
473 }
474 EXPORT_SYMBOL(caam_drv_ctx_init);
475 
476 void *qi_cache_alloc(gfp_t flags)
477 {
478 	return kmem_cache_alloc(qi_cache, flags);
479 }
480 EXPORT_SYMBOL(qi_cache_alloc);
481 
482 void qi_cache_free(void *obj)
483 {
484 	kmem_cache_free(qi_cache, obj);
485 }
486 EXPORT_SYMBOL(qi_cache_free);
487 
488 static int caam_qi_poll(struct napi_struct *napi, int budget)
489 {
490 	struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
491 
492 	int cleaned = qman_p_poll_dqrr(np->p, budget);
493 
494 	if (cleaned < budget) {
495 		napi_complete(napi);
496 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
497 	}
498 
499 	return cleaned;
500 }
501 
502 void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
503 {
504 	if (IS_ERR_OR_NULL(drv_ctx))
505 		return;
506 
507 	/* Remove request FQ */
508 	if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
509 		dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
510 
511 	dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
512 			 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
513 			 DMA_BIDIRECTIONAL);
514 	kfree(drv_ctx);
515 }
516 EXPORT_SYMBOL(caam_drv_ctx_rel);
517 
518 static void caam_qi_shutdown(void *data)
519 {
520 	int i;
521 	struct device *qidev = data;
522 	struct caam_qi_priv *priv = &qipriv;
523 	const cpumask_t *cpus = qman_affine_cpus();
524 
525 	for_each_cpu(i, cpus) {
526 		struct napi_struct *irqtask;
527 
528 		irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
529 		napi_disable(irqtask);
530 		netif_napi_del(irqtask);
531 
532 		if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
533 			dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
534 	}
535 
536 	qman_delete_cgr_safe(&priv->cgr);
537 	qman_release_cgrid(priv->cgr.cgrid);
538 
539 	kmem_cache_destroy(qi_cache);
540 }
541 
542 static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
543 {
544 	caam_congested = congested;
545 
546 	if (congested) {
547 #ifdef CONFIG_DEBUG_FS
548 		times_congested++;
549 #endif
550 		pr_debug_ratelimited("CAAM entered congestion\n");
551 
552 	} else {
553 		pr_debug_ratelimited("CAAM exited congestion\n");
554 	}
555 }
556 
557 static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np)
558 {
559 	/*
560 	 * In case of threaded ISR, for RT kernels in_irq() does not return
561 	 * appropriate value, so use in_serving_softirq to distinguish between
562 	 * softirq and irq contexts.
563 	 */
564 	if (unlikely(in_irq() || !in_serving_softirq())) {
565 		/* Disable QMan IRQ source and invoke NAPI */
566 		qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
567 		np->p = p;
568 		napi_schedule(&np->irqtask);
569 		return 1;
570 	}
571 	return 0;
572 }
573 
574 static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
575 						    struct qman_fq *rsp_fq,
576 						    const struct qm_dqrr_entry *dqrr)
577 {
578 	struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
579 	struct caam_drv_req *drv_req;
580 	const struct qm_fd *fd;
581 	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
582 	struct caam_drv_private *priv = dev_get_drvdata(qidev);
583 	u32 status;
584 
585 	if (caam_qi_napi_schedule(p, caam_napi))
586 		return qman_cb_dqrr_stop;
587 
588 	fd = &dqrr->fd;
589 
590 	drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
591 	if (unlikely(!drv_req)) {
592 		dev_err(qidev,
593 			"Can't find original request for caam response\n");
594 		return qman_cb_dqrr_consume;
595 	}
596 
597 	refcount_dec(&drv_req->drv_ctx->refcnt);
598 
599 	status = be32_to_cpu(fd->status);
600 	if (unlikely(status)) {
601 		u32 ssrc = status & JRSTA_SSRC_MASK;
602 		u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
603 
604 		if (ssrc != JRSTA_SSRC_CCB_ERROR ||
605 		    err_id != JRSTA_CCBERR_ERRID_ICVCHK)
606 			dev_err_ratelimited(qidev,
607 					    "Error: %#x in CAAM response FD\n",
608 					    status);
609 	}
610 
611 	if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
612 		dev_err(qidev, "Non-compound FD from CAAM\n");
613 		return qman_cb_dqrr_consume;
614 	}
615 
616 	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
617 			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
618 
619 	drv_req->cbk(drv_req, status);
620 	return qman_cb_dqrr_consume;
621 }
622 
623 static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
624 {
625 	struct qm_mcc_initfq opts;
626 	struct qman_fq *fq;
627 	int ret;
628 
629 	fq = kzalloc(sizeof(*fq), GFP_KERNEL | GFP_DMA);
630 	if (!fq)
631 		return -ENOMEM;
632 
633 	fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
634 
635 	ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
636 			     QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
637 	if (ret) {
638 		dev_err(qidev, "Rsp FQ create failed\n");
639 		kfree(fq);
640 		return -ENODEV;
641 	}
642 
643 	memset(&opts, 0, sizeof(opts));
644 	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
645 				   QM_INITFQ_WE_CONTEXTB |
646 				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
647 	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
648 				       QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
649 	qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
650 	opts.fqd.cgid = qipriv.cgr.cgrid;
651 	opts.fqd.context_a.stashing.exclusive =	QM_STASHING_EXCL_CTX |
652 						QM_STASHING_EXCL_DATA;
653 	qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
654 
655 	ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
656 	if (ret) {
657 		dev_err(qidev, "Rsp FQ init failed\n");
658 		kfree(fq);
659 		return -ENODEV;
660 	}
661 
662 	per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
663 
664 	dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
665 	return 0;
666 }
667 
668 static int init_cgr(struct device *qidev)
669 {
670 	int ret;
671 	struct qm_mcc_initcgr opts;
672 	const u64 val = (u64)cpumask_weight(qman_affine_cpus()) *
673 			MAX_RSP_FQ_BACKLOG_PER_CPU;
674 
675 	ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
676 	if (ret) {
677 		dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
678 		return ret;
679 	}
680 
681 	qipriv.cgr.cb = cgr_cb;
682 	memset(&opts, 0, sizeof(opts));
683 	opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
684 				   QM_CGR_WE_MODE);
685 	opts.cgr.cscn_en = QM_CGR_EN;
686 	opts.cgr.mode = QMAN_CGR_MODE_FRAME;
687 	qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
688 
689 	ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
690 	if (ret) {
691 		dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
692 			qipriv.cgr.cgrid);
693 		return ret;
694 	}
695 
696 	dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
697 	return 0;
698 }
699 
700 static int alloc_rsp_fqs(struct device *qidev)
701 {
702 	int ret, i;
703 	const cpumask_t *cpus = qman_affine_cpus();
704 
705 	/*Now create response FQs*/
706 	for_each_cpu(i, cpus) {
707 		ret = alloc_rsp_fq_cpu(qidev, i);
708 		if (ret) {
709 			dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
710 			return ret;
711 		}
712 	}
713 
714 	return 0;
715 }
716 
717 static void free_rsp_fqs(void)
718 {
719 	int i;
720 	const cpumask_t *cpus = qman_affine_cpus();
721 
722 	for_each_cpu(i, cpus)
723 		kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
724 }
725 
726 int caam_qi_init(struct platform_device *caam_pdev)
727 {
728 	int err, i;
729 	struct device *ctrldev = &caam_pdev->dev, *qidev;
730 	struct caam_drv_private *ctrlpriv;
731 	const cpumask_t *cpus = qman_affine_cpus();
732 
733 	ctrlpriv = dev_get_drvdata(ctrldev);
734 	qidev = ctrldev;
735 
736 	/* Initialize the congestion detection */
737 	err = init_cgr(qidev);
738 	if (err) {
739 		dev_err(qidev, "CGR initialization failed: %d\n", err);
740 		return err;
741 	}
742 
743 	/* Initialise response FQs */
744 	err = alloc_rsp_fqs(qidev);
745 	if (err) {
746 		dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
747 		free_rsp_fqs();
748 		return err;
749 	}
750 
751 	/*
752 	 * Enable the NAPI contexts on each of the core which has an affine
753 	 * portal.
754 	 */
755 	for_each_cpu(i, cpus) {
756 		struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
757 		struct caam_napi *caam_napi = &priv->caam_napi;
758 		struct napi_struct *irqtask = &caam_napi->irqtask;
759 		struct net_device *net_dev = &priv->net_dev;
760 
761 		net_dev->dev = *qidev;
762 		INIT_LIST_HEAD(&net_dev->napi_list);
763 
764 		netif_napi_add(net_dev, irqtask, caam_qi_poll,
765 			       CAAM_NAPI_WEIGHT);
766 
767 		napi_enable(irqtask);
768 	}
769 
770 	qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 0,
771 				     SLAB_CACHE_DMA, NULL);
772 	if (!qi_cache) {
773 		dev_err(qidev, "Can't allocate CAAM cache\n");
774 		free_rsp_fqs();
775 		return -ENOMEM;
776 	}
777 
778 #ifdef CONFIG_DEBUG_FS
779 	debugfs_create_file("qi_congested", 0444, ctrlpriv->ctl,
780 			    &times_congested, &caam_fops_u64_ro);
781 #endif
782 
783 	err = devm_add_action_or_reset(qidev, caam_qi_shutdown, ctrlpriv);
784 	if (err)
785 		return err;
786 
787 	dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
788 	return 0;
789 }
790