1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* 3 * caam - Freescale FSL CAAM support for Public Key Cryptography 4 * 5 * Copyright 2016 Freescale Semiconductor, Inc. 6 * Copyright 2018-2019, 2023 NXP 7 * 8 * There is no Shared Descriptor for PKC so that the Job Descriptor must carry 9 * all the desired key parameters, input and output pointers. 10 */ 11 #include "compat.h" 12 #include "regs.h" 13 #include "intern.h" 14 #include "jr.h" 15 #include "error.h" 16 #include "desc_constr.h" 17 #include "sg_sw_sec4.h" 18 #include "caampkc.h" 19 #include <crypto/internal/engine.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/err.h> 22 #include <linux/kernel.h> 23 #include <linux/slab.h> 24 #include <linux/string.h> 25 26 #define DESC_RSA_PUB_LEN (2 * CAAM_CMD_SZ + SIZEOF_RSA_PUB_PDB) 27 #define DESC_RSA_PRIV_F1_LEN (2 * CAAM_CMD_SZ + \ 28 SIZEOF_RSA_PRIV_F1_PDB) 29 #define DESC_RSA_PRIV_F2_LEN (2 * CAAM_CMD_SZ + \ 30 SIZEOF_RSA_PRIV_F2_PDB) 31 #define DESC_RSA_PRIV_F3_LEN (2 * CAAM_CMD_SZ + \ 32 SIZEOF_RSA_PRIV_F3_PDB) 33 #define CAAM_RSA_MAX_INPUT_SIZE 512 /* for a 4096-bit modulus */ 34 35 /* buffer filled with zeros, used for padding */ 36 static u8 *zero_buffer; 37 38 /* 39 * variable used to avoid double free of resources in case 40 * algorithm registration was unsuccessful 41 */ 42 static bool init_done; 43 44 struct caam_akcipher_alg { 45 struct akcipher_engine_alg akcipher; 46 bool registered; 47 }; 48 49 static void rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc, 50 struct akcipher_request *req) 51 { 52 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 53 54 dma_unmap_sg(dev, req->dst, edesc->dst_nents, DMA_FROM_DEVICE); 55 dma_unmap_sg(dev, req_ctx->fixup_src, edesc->src_nents, DMA_TO_DEVICE); 56 57 if (edesc->sec4_sg_bytes) 58 dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes, 59 DMA_TO_DEVICE); 60 } 61 62 static void rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc, 63 struct akcipher_request *req) 64 { 65 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 66 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 67 struct caam_rsa_key *key = &ctx->key; 68 struct rsa_pub_pdb *pdb = &edesc->pdb.pub; 69 70 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 71 dma_unmap_single(dev, pdb->e_dma, key->e_sz, DMA_TO_DEVICE); 72 } 73 74 static void rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc, 75 struct akcipher_request *req) 76 { 77 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 78 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 79 struct caam_rsa_key *key = &ctx->key; 80 struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1; 81 82 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 83 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); 84 } 85 86 static void rsa_priv_f2_unmap(struct device *dev, struct rsa_edesc *edesc, 87 struct akcipher_request *req) 88 { 89 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 90 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 91 struct caam_rsa_key *key = &ctx->key; 92 struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2; 93 size_t p_sz = key->p_sz; 94 size_t q_sz = key->q_sz; 95 96 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); 97 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 98 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 99 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 100 dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL); 101 } 102 103 static void rsa_priv_f3_unmap(struct device *dev, struct rsa_edesc *edesc, 104 struct akcipher_request *req) 105 { 106 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 107 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 108 struct caam_rsa_key *key = &ctx->key; 109 struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3; 110 size_t p_sz = key->p_sz; 111 size_t q_sz = key->q_sz; 112 113 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 114 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 115 dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE); 116 dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE); 117 dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE); 118 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 119 dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL); 120 } 121 122 /* RSA Job Completion handler */ 123 static void rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context) 124 { 125 struct akcipher_request *req = context; 126 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 127 struct caam_drv_private_jr *jrp = dev_get_drvdata(dev); 128 struct rsa_edesc *edesc; 129 int ecode = 0; 130 bool has_bklog; 131 132 if (err) 133 ecode = caam_jr_strstatus(dev, err); 134 135 edesc = req_ctx->edesc; 136 has_bklog = edesc->bklog; 137 138 rsa_pub_unmap(dev, edesc, req); 139 rsa_io_unmap(dev, edesc, req); 140 kfree(edesc); 141 142 /* 143 * If no backlog flag, the completion of the request is done 144 * by CAAM, not crypto engine. 145 */ 146 if (!has_bklog) 147 akcipher_request_complete(req, ecode); 148 else 149 crypto_finalize_akcipher_request(jrp->engine, req, ecode); 150 } 151 152 static void rsa_priv_f_done(struct device *dev, u32 *desc, u32 err, 153 void *context) 154 { 155 struct akcipher_request *req = context; 156 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 157 struct caam_drv_private_jr *jrp = dev_get_drvdata(dev); 158 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 159 struct caam_rsa_key *key = &ctx->key; 160 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 161 struct rsa_edesc *edesc; 162 int ecode = 0; 163 bool has_bklog; 164 165 if (err) 166 ecode = caam_jr_strstatus(dev, err); 167 168 edesc = req_ctx->edesc; 169 has_bklog = edesc->bklog; 170 171 switch (key->priv_form) { 172 case FORM1: 173 rsa_priv_f1_unmap(dev, edesc, req); 174 break; 175 case FORM2: 176 rsa_priv_f2_unmap(dev, edesc, req); 177 break; 178 case FORM3: 179 rsa_priv_f3_unmap(dev, edesc, req); 180 } 181 182 rsa_io_unmap(dev, edesc, req); 183 kfree(edesc); 184 185 /* 186 * If no backlog flag, the completion of the request is done 187 * by CAAM, not crypto engine. 188 */ 189 if (!has_bklog) 190 akcipher_request_complete(req, ecode); 191 else 192 crypto_finalize_akcipher_request(jrp->engine, req, ecode); 193 } 194 195 /** 196 * caam_rsa_count_leading_zeros - Count leading zeros, need it to strip, 197 * from a given scatterlist 198 * 199 * @sgl : scatterlist to count zeros from 200 * @nbytes: number of zeros, in bytes, to strip 201 * @flags : operation flags 202 */ 203 static int caam_rsa_count_leading_zeros(struct scatterlist *sgl, 204 unsigned int nbytes, 205 unsigned int flags) 206 { 207 struct sg_mapping_iter miter; 208 int lzeros, ents; 209 unsigned int len; 210 unsigned int tbytes = nbytes; 211 const u8 *buff; 212 213 ents = sg_nents_for_len(sgl, nbytes); 214 if (ents < 0) 215 return ents; 216 217 sg_miter_start(&miter, sgl, ents, SG_MITER_FROM_SG | flags); 218 219 lzeros = 0; 220 len = 0; 221 while (nbytes > 0) { 222 /* do not strip more than given bytes */ 223 while (len && !*buff && lzeros < nbytes) { 224 lzeros++; 225 len--; 226 buff++; 227 } 228 229 if (len && *buff) 230 break; 231 232 if (!sg_miter_next(&miter)) 233 break; 234 235 buff = miter.addr; 236 len = miter.length; 237 238 nbytes -= lzeros; 239 lzeros = 0; 240 } 241 242 miter.consumed = lzeros; 243 sg_miter_stop(&miter); 244 nbytes -= lzeros; 245 246 return tbytes - nbytes; 247 } 248 249 static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req, 250 size_t desclen) 251 { 252 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 253 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 254 struct device *dev = ctx->dev; 255 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 256 struct caam_rsa_key *key = &ctx->key; 257 struct rsa_edesc *edesc; 258 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? 259 GFP_KERNEL : GFP_ATOMIC; 260 int sg_flags = (flags == GFP_ATOMIC) ? SG_MITER_ATOMIC : 0; 261 int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes; 262 int src_nents, dst_nents; 263 int mapped_src_nents, mapped_dst_nents; 264 unsigned int diff_size = 0; 265 int lzeros; 266 267 if (req->src_len > key->n_sz) { 268 /* 269 * strip leading zeros and 270 * return the number of zeros to skip 271 */ 272 lzeros = caam_rsa_count_leading_zeros(req->src, req->src_len - 273 key->n_sz, sg_flags); 274 if (lzeros < 0) 275 return ERR_PTR(lzeros); 276 277 req_ctx->fixup_src = scatterwalk_ffwd(req_ctx->src, req->src, 278 lzeros); 279 req_ctx->fixup_src_len = req->src_len - lzeros; 280 } else { 281 /* 282 * input src is less then n key modulus, 283 * so there will be zero padding 284 */ 285 diff_size = key->n_sz - req->src_len; 286 req_ctx->fixup_src = req->src; 287 req_ctx->fixup_src_len = req->src_len; 288 } 289 290 src_nents = sg_nents_for_len(req_ctx->fixup_src, 291 req_ctx->fixup_src_len); 292 dst_nents = sg_nents_for_len(req->dst, req->dst_len); 293 294 mapped_src_nents = dma_map_sg(dev, req_ctx->fixup_src, src_nents, 295 DMA_TO_DEVICE); 296 if (unlikely(!mapped_src_nents)) { 297 dev_err(dev, "unable to map source\n"); 298 return ERR_PTR(-ENOMEM); 299 } 300 mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents, 301 DMA_FROM_DEVICE); 302 if (unlikely(!mapped_dst_nents)) { 303 dev_err(dev, "unable to map destination\n"); 304 goto src_fail; 305 } 306 307 if (!diff_size && mapped_src_nents == 1) 308 sec4_sg_len = 0; /* no need for an input hw s/g table */ 309 else 310 sec4_sg_len = mapped_src_nents + !!diff_size; 311 sec4_sg_index = sec4_sg_len; 312 313 if (mapped_dst_nents > 1) 314 sec4_sg_len += pad_sg_nents(mapped_dst_nents); 315 else 316 sec4_sg_len = pad_sg_nents(sec4_sg_len); 317 318 sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry); 319 320 /* allocate space for base edesc, hw desc commands and link tables */ 321 edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes, flags); 322 if (!edesc) 323 goto dst_fail; 324 325 edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen; 326 if (diff_size) 327 dma_to_sec4_sg_one(edesc->sec4_sg, ctx->padding_dma, diff_size, 328 0); 329 330 if (sec4_sg_index) 331 sg_to_sec4_sg_last(req_ctx->fixup_src, req_ctx->fixup_src_len, 332 edesc->sec4_sg + !!diff_size, 0); 333 334 if (mapped_dst_nents > 1) 335 sg_to_sec4_sg_last(req->dst, req->dst_len, 336 edesc->sec4_sg + sec4_sg_index, 0); 337 338 /* Save nents for later use in Job Descriptor */ 339 edesc->src_nents = src_nents; 340 edesc->dst_nents = dst_nents; 341 342 req_ctx->edesc = edesc; 343 344 if (!sec4_sg_bytes) 345 return edesc; 346 347 edesc->mapped_src_nents = mapped_src_nents; 348 edesc->mapped_dst_nents = mapped_dst_nents; 349 350 edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg, 351 sec4_sg_bytes, DMA_TO_DEVICE); 352 if (dma_mapping_error(dev, edesc->sec4_sg_dma)) { 353 dev_err(dev, "unable to map S/G table\n"); 354 goto sec4_sg_fail; 355 } 356 357 edesc->sec4_sg_bytes = sec4_sg_bytes; 358 359 print_hex_dump_debug("caampkc sec4_sg@" __stringify(__LINE__) ": ", 360 DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg, 361 edesc->sec4_sg_bytes, 1); 362 363 return edesc; 364 365 sec4_sg_fail: 366 kfree(edesc); 367 dst_fail: 368 dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE); 369 src_fail: 370 dma_unmap_sg(dev, req_ctx->fixup_src, src_nents, DMA_TO_DEVICE); 371 return ERR_PTR(-ENOMEM); 372 } 373 374 static int akcipher_do_one_req(struct crypto_engine *engine, void *areq) 375 { 376 struct akcipher_request *req = container_of(areq, 377 struct akcipher_request, 378 base); 379 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 380 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 381 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 382 struct device *jrdev = ctx->dev; 383 u32 *desc = req_ctx->edesc->hw_desc; 384 int ret; 385 386 req_ctx->edesc->bklog = true; 387 388 ret = caam_jr_enqueue(jrdev, desc, req_ctx->akcipher_op_done, req); 389 390 if (ret == -ENOSPC && engine->retry_support) 391 return ret; 392 393 if (ret != -EINPROGRESS) { 394 rsa_pub_unmap(jrdev, req_ctx->edesc, req); 395 rsa_io_unmap(jrdev, req_ctx->edesc, req); 396 kfree(req_ctx->edesc); 397 } else { 398 ret = 0; 399 } 400 401 return ret; 402 } 403 404 static int set_rsa_pub_pdb(struct akcipher_request *req, 405 struct rsa_edesc *edesc) 406 { 407 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 408 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 409 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 410 struct caam_rsa_key *key = &ctx->key; 411 struct device *dev = ctx->dev; 412 struct rsa_pub_pdb *pdb = &edesc->pdb.pub; 413 int sec4_sg_index = 0; 414 415 pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE); 416 if (dma_mapping_error(dev, pdb->n_dma)) { 417 dev_err(dev, "Unable to map RSA modulus memory\n"); 418 return -ENOMEM; 419 } 420 421 pdb->e_dma = dma_map_single(dev, key->e, key->e_sz, DMA_TO_DEVICE); 422 if (dma_mapping_error(dev, pdb->e_dma)) { 423 dev_err(dev, "Unable to map RSA public exponent memory\n"); 424 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 425 return -ENOMEM; 426 } 427 428 if (edesc->mapped_src_nents > 1) { 429 pdb->sgf |= RSA_PDB_SGF_F; 430 pdb->f_dma = edesc->sec4_sg_dma; 431 sec4_sg_index += edesc->mapped_src_nents; 432 } else { 433 pdb->f_dma = sg_dma_address(req_ctx->fixup_src); 434 } 435 436 if (edesc->mapped_dst_nents > 1) { 437 pdb->sgf |= RSA_PDB_SGF_G; 438 pdb->g_dma = edesc->sec4_sg_dma + 439 sec4_sg_index * sizeof(struct sec4_sg_entry); 440 } else { 441 pdb->g_dma = sg_dma_address(req->dst); 442 } 443 444 pdb->sgf |= (key->e_sz << RSA_PDB_E_SHIFT) | key->n_sz; 445 pdb->f_len = req_ctx->fixup_src_len; 446 447 return 0; 448 } 449 450 static int set_rsa_priv_f1_pdb(struct akcipher_request *req, 451 struct rsa_edesc *edesc) 452 { 453 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 454 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 455 struct caam_rsa_key *key = &ctx->key; 456 struct device *dev = ctx->dev; 457 struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1; 458 int sec4_sg_index = 0; 459 460 pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE); 461 if (dma_mapping_error(dev, pdb->n_dma)) { 462 dev_err(dev, "Unable to map modulus memory\n"); 463 return -ENOMEM; 464 } 465 466 pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE); 467 if (dma_mapping_error(dev, pdb->d_dma)) { 468 dev_err(dev, "Unable to map RSA private exponent memory\n"); 469 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 470 return -ENOMEM; 471 } 472 473 if (edesc->mapped_src_nents > 1) { 474 pdb->sgf |= RSA_PRIV_PDB_SGF_G; 475 pdb->g_dma = edesc->sec4_sg_dma; 476 sec4_sg_index += edesc->mapped_src_nents; 477 478 } else { 479 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 480 481 pdb->g_dma = sg_dma_address(req_ctx->fixup_src); 482 } 483 484 if (edesc->mapped_dst_nents > 1) { 485 pdb->sgf |= RSA_PRIV_PDB_SGF_F; 486 pdb->f_dma = edesc->sec4_sg_dma + 487 sec4_sg_index * sizeof(struct sec4_sg_entry); 488 } else { 489 pdb->f_dma = sg_dma_address(req->dst); 490 } 491 492 pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz; 493 494 return 0; 495 } 496 497 static int set_rsa_priv_f2_pdb(struct akcipher_request *req, 498 struct rsa_edesc *edesc) 499 { 500 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 501 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 502 struct caam_rsa_key *key = &ctx->key; 503 struct device *dev = ctx->dev; 504 struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2; 505 int sec4_sg_index = 0; 506 size_t p_sz = key->p_sz; 507 size_t q_sz = key->q_sz; 508 509 pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE); 510 if (dma_mapping_error(dev, pdb->d_dma)) { 511 dev_err(dev, "Unable to map RSA private exponent memory\n"); 512 return -ENOMEM; 513 } 514 515 pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE); 516 if (dma_mapping_error(dev, pdb->p_dma)) { 517 dev_err(dev, "Unable to map RSA prime factor p memory\n"); 518 goto unmap_d; 519 } 520 521 pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE); 522 if (dma_mapping_error(dev, pdb->q_dma)) { 523 dev_err(dev, "Unable to map RSA prime factor q memory\n"); 524 goto unmap_p; 525 } 526 527 pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL); 528 if (dma_mapping_error(dev, pdb->tmp1_dma)) { 529 dev_err(dev, "Unable to map RSA tmp1 memory\n"); 530 goto unmap_q; 531 } 532 533 pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL); 534 if (dma_mapping_error(dev, pdb->tmp2_dma)) { 535 dev_err(dev, "Unable to map RSA tmp2 memory\n"); 536 goto unmap_tmp1; 537 } 538 539 if (edesc->mapped_src_nents > 1) { 540 pdb->sgf |= RSA_PRIV_PDB_SGF_G; 541 pdb->g_dma = edesc->sec4_sg_dma; 542 sec4_sg_index += edesc->mapped_src_nents; 543 } else { 544 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 545 546 pdb->g_dma = sg_dma_address(req_ctx->fixup_src); 547 } 548 549 if (edesc->mapped_dst_nents > 1) { 550 pdb->sgf |= RSA_PRIV_PDB_SGF_F; 551 pdb->f_dma = edesc->sec4_sg_dma + 552 sec4_sg_index * sizeof(struct sec4_sg_entry); 553 } else { 554 pdb->f_dma = sg_dma_address(req->dst); 555 } 556 557 pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz; 558 pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz; 559 560 return 0; 561 562 unmap_tmp1: 563 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 564 unmap_q: 565 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 566 unmap_p: 567 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 568 unmap_d: 569 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); 570 571 return -ENOMEM; 572 } 573 574 static int set_rsa_priv_f3_pdb(struct akcipher_request *req, 575 struct rsa_edesc *edesc) 576 { 577 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 578 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 579 struct caam_rsa_key *key = &ctx->key; 580 struct device *dev = ctx->dev; 581 struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3; 582 int sec4_sg_index = 0; 583 size_t p_sz = key->p_sz; 584 size_t q_sz = key->q_sz; 585 586 pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE); 587 if (dma_mapping_error(dev, pdb->p_dma)) { 588 dev_err(dev, "Unable to map RSA prime factor p memory\n"); 589 return -ENOMEM; 590 } 591 592 pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE); 593 if (dma_mapping_error(dev, pdb->q_dma)) { 594 dev_err(dev, "Unable to map RSA prime factor q memory\n"); 595 goto unmap_p; 596 } 597 598 pdb->dp_dma = dma_map_single(dev, key->dp, p_sz, DMA_TO_DEVICE); 599 if (dma_mapping_error(dev, pdb->dp_dma)) { 600 dev_err(dev, "Unable to map RSA exponent dp memory\n"); 601 goto unmap_q; 602 } 603 604 pdb->dq_dma = dma_map_single(dev, key->dq, q_sz, DMA_TO_DEVICE); 605 if (dma_mapping_error(dev, pdb->dq_dma)) { 606 dev_err(dev, "Unable to map RSA exponent dq memory\n"); 607 goto unmap_dp; 608 } 609 610 pdb->c_dma = dma_map_single(dev, key->qinv, p_sz, DMA_TO_DEVICE); 611 if (dma_mapping_error(dev, pdb->c_dma)) { 612 dev_err(dev, "Unable to map RSA CRT coefficient qinv memory\n"); 613 goto unmap_dq; 614 } 615 616 pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL); 617 if (dma_mapping_error(dev, pdb->tmp1_dma)) { 618 dev_err(dev, "Unable to map RSA tmp1 memory\n"); 619 goto unmap_qinv; 620 } 621 622 pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL); 623 if (dma_mapping_error(dev, pdb->tmp2_dma)) { 624 dev_err(dev, "Unable to map RSA tmp2 memory\n"); 625 goto unmap_tmp1; 626 } 627 628 if (edesc->mapped_src_nents > 1) { 629 pdb->sgf |= RSA_PRIV_PDB_SGF_G; 630 pdb->g_dma = edesc->sec4_sg_dma; 631 sec4_sg_index += edesc->mapped_src_nents; 632 } else { 633 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 634 635 pdb->g_dma = sg_dma_address(req_ctx->fixup_src); 636 } 637 638 if (edesc->mapped_dst_nents > 1) { 639 pdb->sgf |= RSA_PRIV_PDB_SGF_F; 640 pdb->f_dma = edesc->sec4_sg_dma + 641 sec4_sg_index * sizeof(struct sec4_sg_entry); 642 } else { 643 pdb->f_dma = sg_dma_address(req->dst); 644 } 645 646 pdb->sgf |= key->n_sz; 647 pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz; 648 649 return 0; 650 651 unmap_tmp1: 652 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 653 unmap_qinv: 654 dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE); 655 unmap_dq: 656 dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE); 657 unmap_dp: 658 dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE); 659 unmap_q: 660 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 661 unmap_p: 662 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 663 664 return -ENOMEM; 665 } 666 667 static int akcipher_enqueue_req(struct device *jrdev, 668 void (*cbk)(struct device *jrdev, u32 *desc, 669 u32 err, void *context), 670 struct akcipher_request *req) 671 { 672 struct caam_drv_private_jr *jrpriv = dev_get_drvdata(jrdev); 673 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 674 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 675 struct caam_rsa_key *key = &ctx->key; 676 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 677 struct rsa_edesc *edesc = req_ctx->edesc; 678 u32 *desc = edesc->hw_desc; 679 int ret; 680 681 req_ctx->akcipher_op_done = cbk; 682 /* 683 * Only the backlog request are sent to crypto-engine since the others 684 * can be handled by CAAM, if free, especially since JR has up to 1024 685 * entries (more than the 10 entries from crypto-engine). 686 */ 687 if (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG) 688 ret = crypto_transfer_akcipher_request_to_engine(jrpriv->engine, 689 req); 690 else 691 ret = caam_jr_enqueue(jrdev, desc, cbk, req); 692 693 if ((ret != -EINPROGRESS) && (ret != -EBUSY)) { 694 switch (key->priv_form) { 695 case FORM1: 696 rsa_priv_f1_unmap(jrdev, edesc, req); 697 break; 698 case FORM2: 699 rsa_priv_f2_unmap(jrdev, edesc, req); 700 break; 701 case FORM3: 702 rsa_priv_f3_unmap(jrdev, edesc, req); 703 break; 704 default: 705 rsa_pub_unmap(jrdev, edesc, req); 706 } 707 rsa_io_unmap(jrdev, edesc, req); 708 kfree(edesc); 709 } 710 711 return ret; 712 } 713 714 static int caam_rsa_enc(struct akcipher_request *req) 715 { 716 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 717 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 718 struct caam_rsa_key *key = &ctx->key; 719 struct device *jrdev = ctx->dev; 720 struct rsa_edesc *edesc; 721 int ret; 722 723 if (unlikely(!key->n || !key->e)) 724 return -EINVAL; 725 726 if (req->dst_len < key->n_sz) { 727 req->dst_len = key->n_sz; 728 dev_err(jrdev, "Output buffer length less than parameter n\n"); 729 return -EOVERFLOW; 730 } 731 732 /* Allocate extended descriptor */ 733 edesc = rsa_edesc_alloc(req, DESC_RSA_PUB_LEN); 734 if (IS_ERR(edesc)) 735 return PTR_ERR(edesc); 736 737 /* Set RSA Encrypt Protocol Data Block */ 738 ret = set_rsa_pub_pdb(req, edesc); 739 if (ret) 740 goto init_fail; 741 742 /* Initialize Job Descriptor */ 743 init_rsa_pub_desc(edesc->hw_desc, &edesc->pdb.pub); 744 745 return akcipher_enqueue_req(jrdev, rsa_pub_done, req); 746 747 init_fail: 748 rsa_io_unmap(jrdev, edesc, req); 749 kfree(edesc); 750 return ret; 751 } 752 753 static int caam_rsa_dec_priv_f1(struct akcipher_request *req) 754 { 755 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 756 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 757 struct device *jrdev = ctx->dev; 758 struct rsa_edesc *edesc; 759 int ret; 760 761 /* Allocate extended descriptor */ 762 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F1_LEN); 763 if (IS_ERR(edesc)) 764 return PTR_ERR(edesc); 765 766 /* Set RSA Decrypt Protocol Data Block - Private Key Form #1 */ 767 ret = set_rsa_priv_f1_pdb(req, edesc); 768 if (ret) 769 goto init_fail; 770 771 /* Initialize Job Descriptor */ 772 init_rsa_priv_f1_desc(edesc->hw_desc, &edesc->pdb.priv_f1); 773 774 return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req); 775 776 init_fail: 777 rsa_io_unmap(jrdev, edesc, req); 778 kfree(edesc); 779 return ret; 780 } 781 782 static int caam_rsa_dec_priv_f2(struct akcipher_request *req) 783 { 784 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 785 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 786 struct device *jrdev = ctx->dev; 787 struct rsa_edesc *edesc; 788 int ret; 789 790 /* Allocate extended descriptor */ 791 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F2_LEN); 792 if (IS_ERR(edesc)) 793 return PTR_ERR(edesc); 794 795 /* Set RSA Decrypt Protocol Data Block - Private Key Form #2 */ 796 ret = set_rsa_priv_f2_pdb(req, edesc); 797 if (ret) 798 goto init_fail; 799 800 /* Initialize Job Descriptor */ 801 init_rsa_priv_f2_desc(edesc->hw_desc, &edesc->pdb.priv_f2); 802 803 return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req); 804 805 init_fail: 806 rsa_io_unmap(jrdev, edesc, req); 807 kfree(edesc); 808 return ret; 809 } 810 811 static int caam_rsa_dec_priv_f3(struct akcipher_request *req) 812 { 813 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 814 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 815 struct device *jrdev = ctx->dev; 816 struct rsa_edesc *edesc; 817 int ret; 818 819 /* Allocate extended descriptor */ 820 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F3_LEN); 821 if (IS_ERR(edesc)) 822 return PTR_ERR(edesc); 823 824 /* Set RSA Decrypt Protocol Data Block - Private Key Form #3 */ 825 ret = set_rsa_priv_f3_pdb(req, edesc); 826 if (ret) 827 goto init_fail; 828 829 /* Initialize Job Descriptor */ 830 init_rsa_priv_f3_desc(edesc->hw_desc, &edesc->pdb.priv_f3); 831 832 return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req); 833 834 init_fail: 835 rsa_io_unmap(jrdev, edesc, req); 836 kfree(edesc); 837 return ret; 838 } 839 840 static int caam_rsa_dec(struct akcipher_request *req) 841 { 842 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 843 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 844 struct caam_rsa_key *key = &ctx->key; 845 int ret; 846 847 if (unlikely(!key->n || !key->d)) 848 return -EINVAL; 849 850 if (req->dst_len < key->n_sz) { 851 req->dst_len = key->n_sz; 852 dev_err(ctx->dev, "Output buffer length less than parameter n\n"); 853 return -EOVERFLOW; 854 } 855 856 if (key->priv_form == FORM3) 857 ret = caam_rsa_dec_priv_f3(req); 858 else if (key->priv_form == FORM2) 859 ret = caam_rsa_dec_priv_f2(req); 860 else 861 ret = caam_rsa_dec_priv_f1(req); 862 863 return ret; 864 } 865 866 static void caam_rsa_free_key(struct caam_rsa_key *key) 867 { 868 kfree_sensitive(key->d); 869 kfree_sensitive(key->p); 870 kfree_sensitive(key->q); 871 kfree_sensitive(key->dp); 872 kfree_sensitive(key->dq); 873 kfree_sensitive(key->qinv); 874 kfree_sensitive(key->tmp1); 875 kfree_sensitive(key->tmp2); 876 kfree(key->e); 877 kfree(key->n); 878 memset(key, 0, sizeof(*key)); 879 } 880 881 static void caam_rsa_drop_leading_zeros(const u8 **ptr, size_t *nbytes) 882 { 883 while (!**ptr && *nbytes) { 884 (*ptr)++; 885 (*nbytes)--; 886 } 887 } 888 889 /** 890 * caam_read_rsa_crt - Used for reading dP, dQ, qInv CRT members. 891 * dP, dQ and qInv could decode to less than corresponding p, q length, as the 892 * BER-encoding requires that the minimum number of bytes be used to encode the 893 * integer. dP, dQ, qInv decoded values have to be zero-padded to appropriate 894 * length. 895 * 896 * @ptr : pointer to {dP, dQ, qInv} CRT member 897 * @nbytes: length in bytes of {dP, dQ, qInv} CRT member 898 * @dstlen: length in bytes of corresponding p or q prime factor 899 */ 900 static u8 *caam_read_rsa_crt(const u8 *ptr, size_t nbytes, size_t dstlen) 901 { 902 u8 *dst; 903 904 caam_rsa_drop_leading_zeros(&ptr, &nbytes); 905 if (!nbytes) 906 return NULL; 907 908 dst = kzalloc(dstlen, GFP_KERNEL); 909 if (!dst) 910 return NULL; 911 912 memcpy(dst + (dstlen - nbytes), ptr, nbytes); 913 914 return dst; 915 } 916 917 /** 918 * caam_read_raw_data - Read a raw byte stream as a positive integer. 919 * The function skips buffer's leading zeros, copies the remained data 920 * to a buffer allocated in the GFP_KERNEL zone and returns 921 * the address of the new buffer. 922 * 923 * @buf : The data to read 924 * @nbytes: The amount of data to read 925 */ 926 static inline u8 *caam_read_raw_data(const u8 *buf, size_t *nbytes) 927 { 928 929 caam_rsa_drop_leading_zeros(&buf, nbytes); 930 if (!*nbytes) 931 return NULL; 932 933 return kmemdup(buf, *nbytes, GFP_KERNEL); 934 } 935 936 static int caam_rsa_check_key_length(unsigned int len) 937 { 938 if (len > 4096) 939 return -EINVAL; 940 return 0; 941 } 942 943 static int caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key, 944 unsigned int keylen) 945 { 946 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 947 struct rsa_key raw_key = {NULL}; 948 struct caam_rsa_key *rsa_key = &ctx->key; 949 int ret; 950 951 /* Free the old RSA key if any */ 952 caam_rsa_free_key(rsa_key); 953 954 ret = rsa_parse_pub_key(&raw_key, key, keylen); 955 if (ret) 956 return ret; 957 958 /* Copy key in DMA zone */ 959 rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_KERNEL); 960 if (!rsa_key->e) 961 goto err; 962 963 /* 964 * Skip leading zeros and copy the positive integer to a buffer 965 * allocated in the GFP_KERNEL zone. The decryption descriptor 966 * expects a positive integer for the RSA modulus and uses its length as 967 * decryption output length. 968 */ 969 rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz); 970 if (!rsa_key->n) 971 goto err; 972 973 if (caam_rsa_check_key_length(raw_key.n_sz << 3)) { 974 caam_rsa_free_key(rsa_key); 975 return -EINVAL; 976 } 977 978 rsa_key->e_sz = raw_key.e_sz; 979 rsa_key->n_sz = raw_key.n_sz; 980 981 return 0; 982 err: 983 caam_rsa_free_key(rsa_key); 984 return -ENOMEM; 985 } 986 987 static void caam_rsa_set_priv_key_form(struct caam_rsa_ctx *ctx, 988 struct rsa_key *raw_key) 989 { 990 struct caam_rsa_key *rsa_key = &ctx->key; 991 size_t p_sz = raw_key->p_sz; 992 size_t q_sz = raw_key->q_sz; 993 unsigned aligned_size; 994 995 rsa_key->p = caam_read_raw_data(raw_key->p, &p_sz); 996 if (!rsa_key->p) 997 return; 998 rsa_key->p_sz = p_sz; 999 1000 rsa_key->q = caam_read_raw_data(raw_key->q, &q_sz); 1001 if (!rsa_key->q) 1002 goto free_p; 1003 rsa_key->q_sz = q_sz; 1004 1005 aligned_size = ALIGN(raw_key->p_sz, dma_get_cache_alignment()); 1006 rsa_key->tmp1 = kzalloc(aligned_size, GFP_KERNEL); 1007 if (!rsa_key->tmp1) 1008 goto free_q; 1009 1010 aligned_size = ALIGN(raw_key->q_sz, dma_get_cache_alignment()); 1011 rsa_key->tmp2 = kzalloc(aligned_size, GFP_KERNEL); 1012 if (!rsa_key->tmp2) 1013 goto free_tmp1; 1014 1015 rsa_key->priv_form = FORM2; 1016 1017 rsa_key->dp = caam_read_rsa_crt(raw_key->dp, raw_key->dp_sz, p_sz); 1018 if (!rsa_key->dp) 1019 goto free_tmp2; 1020 1021 rsa_key->dq = caam_read_rsa_crt(raw_key->dq, raw_key->dq_sz, q_sz); 1022 if (!rsa_key->dq) 1023 goto free_dp; 1024 1025 rsa_key->qinv = caam_read_rsa_crt(raw_key->qinv, raw_key->qinv_sz, 1026 q_sz); 1027 if (!rsa_key->qinv) 1028 goto free_dq; 1029 1030 rsa_key->priv_form = FORM3; 1031 1032 return; 1033 1034 free_dq: 1035 kfree_sensitive(rsa_key->dq); 1036 free_dp: 1037 kfree_sensitive(rsa_key->dp); 1038 free_tmp2: 1039 kfree_sensitive(rsa_key->tmp2); 1040 free_tmp1: 1041 kfree_sensitive(rsa_key->tmp1); 1042 free_q: 1043 kfree_sensitive(rsa_key->q); 1044 free_p: 1045 kfree_sensitive(rsa_key->p); 1046 } 1047 1048 static int caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key, 1049 unsigned int keylen) 1050 { 1051 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 1052 struct rsa_key raw_key = {NULL}; 1053 struct caam_rsa_key *rsa_key = &ctx->key; 1054 int ret; 1055 1056 /* Free the old RSA key if any */ 1057 caam_rsa_free_key(rsa_key); 1058 1059 ret = rsa_parse_priv_key(&raw_key, key, keylen); 1060 if (ret) 1061 return ret; 1062 1063 /* Copy key in DMA zone */ 1064 rsa_key->d = kmemdup(raw_key.d, raw_key.d_sz, GFP_KERNEL); 1065 if (!rsa_key->d) 1066 goto err; 1067 1068 rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_KERNEL); 1069 if (!rsa_key->e) 1070 goto err; 1071 1072 /* 1073 * Skip leading zeros and copy the positive integer to a buffer 1074 * allocated in the GFP_KERNEL zone. The decryption descriptor 1075 * expects a positive integer for the RSA modulus and uses its length as 1076 * decryption output length. 1077 */ 1078 rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz); 1079 if (!rsa_key->n) 1080 goto err; 1081 1082 if (caam_rsa_check_key_length(raw_key.n_sz << 3)) { 1083 caam_rsa_free_key(rsa_key); 1084 return -EINVAL; 1085 } 1086 1087 rsa_key->d_sz = raw_key.d_sz; 1088 rsa_key->e_sz = raw_key.e_sz; 1089 rsa_key->n_sz = raw_key.n_sz; 1090 1091 caam_rsa_set_priv_key_form(ctx, &raw_key); 1092 1093 return 0; 1094 1095 err: 1096 caam_rsa_free_key(rsa_key); 1097 return -ENOMEM; 1098 } 1099 1100 static unsigned int caam_rsa_max_size(struct crypto_akcipher *tfm) 1101 { 1102 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 1103 1104 return ctx->key.n_sz; 1105 } 1106 1107 /* Per session pkc's driver context creation function */ 1108 static int caam_rsa_init_tfm(struct crypto_akcipher *tfm) 1109 { 1110 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 1111 1112 akcipher_set_reqsize(tfm, sizeof(struct caam_rsa_req_ctx)); 1113 1114 ctx->dev = caam_jr_alloc(); 1115 1116 if (IS_ERR(ctx->dev)) { 1117 pr_err("Job Ring Device allocation for transform failed\n"); 1118 return PTR_ERR(ctx->dev); 1119 } 1120 1121 ctx->padding_dma = dma_map_single(ctx->dev, zero_buffer, 1122 CAAM_RSA_MAX_INPUT_SIZE - 1, 1123 DMA_TO_DEVICE); 1124 if (dma_mapping_error(ctx->dev, ctx->padding_dma)) { 1125 dev_err(ctx->dev, "unable to map padding\n"); 1126 caam_jr_free(ctx->dev); 1127 return -ENOMEM; 1128 } 1129 1130 return 0; 1131 } 1132 1133 /* Per session pkc's driver context cleanup function */ 1134 static void caam_rsa_exit_tfm(struct crypto_akcipher *tfm) 1135 { 1136 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); 1137 struct caam_rsa_key *key = &ctx->key; 1138 1139 dma_unmap_single(ctx->dev, ctx->padding_dma, CAAM_RSA_MAX_INPUT_SIZE - 1140 1, DMA_TO_DEVICE); 1141 caam_rsa_free_key(key); 1142 caam_jr_free(ctx->dev); 1143 } 1144 1145 static struct caam_akcipher_alg caam_rsa = { 1146 .akcipher.base = { 1147 .encrypt = caam_rsa_enc, 1148 .decrypt = caam_rsa_dec, 1149 .set_pub_key = caam_rsa_set_pub_key, 1150 .set_priv_key = caam_rsa_set_priv_key, 1151 .max_size = caam_rsa_max_size, 1152 .init = caam_rsa_init_tfm, 1153 .exit = caam_rsa_exit_tfm, 1154 .base = { 1155 .cra_name = "rsa", 1156 .cra_driver_name = "rsa-caam", 1157 .cra_priority = 3000, 1158 .cra_module = THIS_MODULE, 1159 .cra_ctxsize = sizeof(struct caam_rsa_ctx) + 1160 CRYPTO_DMA_PADDING, 1161 }, 1162 }, 1163 .akcipher.op = { 1164 .do_one_request = akcipher_do_one_req, 1165 }, 1166 }; 1167 1168 /* Public Key Cryptography module initialization handler */ 1169 int caam_pkc_init(struct device *ctrldev) 1170 { 1171 struct caam_drv_private *priv = dev_get_drvdata(ctrldev); 1172 u32 pk_inst, pkha; 1173 int err; 1174 init_done = false; 1175 1176 /* Determine public key hardware accelerator presence. */ 1177 if (priv->era < 10) { 1178 pk_inst = (rd_reg32(&priv->jr[0]->perfmon.cha_num_ls) & 1179 CHA_ID_LS_PK_MASK) >> CHA_ID_LS_PK_SHIFT; 1180 } else { 1181 pkha = rd_reg32(&priv->jr[0]->vreg.pkha); 1182 pk_inst = pkha & CHA_VER_NUM_MASK; 1183 1184 /* 1185 * Newer CAAMs support partially disabled functionality. If this is the 1186 * case, the number is non-zero, but this bit is set to indicate that 1187 * no encryption or decryption is supported. Only signing and verifying 1188 * is supported. 1189 */ 1190 if (pkha & CHA_VER_MISC_PKHA_NO_CRYPT) 1191 pk_inst = 0; 1192 } 1193 1194 /* Do not register algorithms if PKHA is not present. */ 1195 if (!pk_inst) 1196 return 0; 1197 1198 /* allocate zero buffer, used for padding input */ 1199 zero_buffer = kzalloc(CAAM_RSA_MAX_INPUT_SIZE - 1, GFP_KERNEL); 1200 if (!zero_buffer) 1201 return -ENOMEM; 1202 1203 err = crypto_engine_register_akcipher(&caam_rsa.akcipher); 1204 1205 if (err) { 1206 kfree(zero_buffer); 1207 dev_warn(ctrldev, "%s alg registration failed\n", 1208 caam_rsa.akcipher.base.base.cra_driver_name); 1209 } else { 1210 init_done = true; 1211 caam_rsa.registered = true; 1212 dev_info(ctrldev, "caam pkc algorithms registered in /proc/crypto\n"); 1213 } 1214 1215 return err; 1216 } 1217 1218 void caam_pkc_exit(void) 1219 { 1220 if (!init_done) 1221 return; 1222 1223 if (caam_rsa.registered) 1224 crypto_engine_unregister_akcipher(&caam_rsa.akcipher); 1225 1226 kfree(zero_buffer); 1227 } 1228