1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * caam - Freescale FSL CAAM support for ahash functions of crypto API 4 * 5 * Copyright 2011 Freescale Semiconductor, Inc. 6 * Copyright 2018-2019, 2023 NXP 7 * 8 * Based on caamalg.c crypto API driver. 9 * 10 * relationship of digest job descriptor or first job descriptor after init to 11 * shared descriptors: 12 * 13 * --------------- --------------- 14 * | JobDesc #1 |-------------------->| ShareDesc | 15 * | *(packet 1) | | (hashKey) | 16 * --------------- | (operation) | 17 * --------------- 18 * 19 * relationship of subsequent job descriptors to shared descriptors: 20 * 21 * --------------- --------------- 22 * | JobDesc #2 |-------------------->| ShareDesc | 23 * | *(packet 2) | |------------->| (hashKey) | 24 * --------------- | |-------->| (operation) | 25 * . | | | (load ctx2) | 26 * . | | --------------- 27 * --------------- | | 28 * | JobDesc #3 |------| | 29 * | *(packet 3) | | 30 * --------------- | 31 * . | 32 * . | 33 * --------------- | 34 * | JobDesc #4 |------------ 35 * | *(packet 4) | 36 * --------------- 37 * 38 * The SharedDesc never changes for a connection unless rekeyed, but 39 * each packet will likely be in a different place. So all we need 40 * to know to process the packet is where the input is, where the 41 * output goes, and what context we want to process with. Context is 42 * in the SharedDesc, packet references in the JobDesc. 43 * 44 * So, a job desc looks like: 45 * 46 * --------------------- 47 * | Header | 48 * | ShareDesc Pointer | 49 * | SEQ_OUT_PTR | 50 * | (output buffer) | 51 * | (output length) | 52 * | SEQ_IN_PTR | 53 * | (input buffer) | 54 * | (input length) | 55 * --------------------- 56 */ 57 58 #include "compat.h" 59 60 #include "regs.h" 61 #include "intern.h" 62 #include "desc_constr.h" 63 #include "jr.h" 64 #include "error.h" 65 #include "sg_sw_sec4.h" 66 #include "key_gen.h" 67 #include "caamhash_desc.h" 68 #include <crypto/internal/engine.h> 69 #include <crypto/internal/hash.h> 70 #include <linux/dma-mapping.h> 71 #include <linux/err.h> 72 #include <linux/kernel.h> 73 #include <linux/slab.h> 74 #include <linux/string.h> 75 76 #define CAAM_CRA_PRIORITY 3000 77 78 /* max hash key is max split key size */ 79 #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2) 80 81 #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE 82 #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE 83 84 #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \ 85 CAAM_MAX_HASH_KEY_SIZE) 86 #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ) 87 88 /* caam context sizes for hashes: running digest + 8 */ 89 #define HASH_MSG_LEN 8 90 #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE) 91 92 static struct list_head hash_list; 93 94 /* ahash per-session context */ 95 struct caam_hash_ctx { 96 u32 sh_desc_update[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; 97 u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; 98 u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; 99 u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; 100 u8 key[CAAM_MAX_HASH_KEY_SIZE] ____cacheline_aligned; 101 dma_addr_t sh_desc_update_dma ____cacheline_aligned; 102 dma_addr_t sh_desc_update_first_dma; 103 dma_addr_t sh_desc_fin_dma; 104 dma_addr_t sh_desc_digest_dma; 105 enum dma_data_direction dir; 106 enum dma_data_direction key_dir; 107 struct device *jrdev; 108 int ctx_len; 109 struct alginfo adata; 110 }; 111 112 /* ahash state */ 113 struct caam_hash_state { 114 dma_addr_t buf_dma; 115 dma_addr_t ctx_dma; 116 int ctx_dma_len; 117 u8 buf[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned; 118 int buflen; 119 int next_buflen; 120 u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned; 121 int (*update)(struct ahash_request *req) ____cacheline_aligned; 122 int (*final)(struct ahash_request *req); 123 int (*finup)(struct ahash_request *req); 124 struct ahash_edesc *edesc; 125 void (*ahash_op_done)(struct device *jrdev, u32 *desc, u32 err, 126 void *context); 127 }; 128 129 struct caam_export_state { 130 u8 buf[CAAM_MAX_HASH_BLOCK_SIZE]; 131 u8 caam_ctx[MAX_CTX_LEN]; 132 int buflen; 133 int (*update)(struct ahash_request *req); 134 int (*final)(struct ahash_request *req); 135 int (*finup)(struct ahash_request *req); 136 }; 137 138 static inline bool is_cmac_aes(u32 algtype) 139 { 140 return (algtype & (OP_ALG_ALGSEL_MASK | OP_ALG_AAI_MASK)) == 141 (OP_ALG_ALGSEL_AES | OP_ALG_AAI_CMAC); 142 } 143 /* Common job descriptor seq in/out ptr routines */ 144 145 /* Map state->caam_ctx, and append seq_out_ptr command that points to it */ 146 static inline int map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev, 147 struct caam_hash_state *state, 148 int ctx_len) 149 { 150 state->ctx_dma_len = ctx_len; 151 state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, 152 ctx_len, DMA_FROM_DEVICE); 153 if (dma_mapping_error(jrdev, state->ctx_dma)) { 154 dev_err(jrdev, "unable to map ctx\n"); 155 state->ctx_dma = 0; 156 return -ENOMEM; 157 } 158 159 append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0); 160 161 return 0; 162 } 163 164 /* Map current buffer in state (if length > 0) and put it in link table */ 165 static inline int buf_map_to_sec4_sg(struct device *jrdev, 166 struct sec4_sg_entry *sec4_sg, 167 struct caam_hash_state *state) 168 { 169 int buflen = state->buflen; 170 171 if (!buflen) 172 return 0; 173 174 state->buf_dma = dma_map_single(jrdev, state->buf, buflen, 175 DMA_TO_DEVICE); 176 if (dma_mapping_error(jrdev, state->buf_dma)) { 177 dev_err(jrdev, "unable to map buf\n"); 178 state->buf_dma = 0; 179 return -ENOMEM; 180 } 181 182 dma_to_sec4_sg_one(sec4_sg, state->buf_dma, buflen, 0); 183 184 return 0; 185 } 186 187 /* Map state->caam_ctx, and add it to link table */ 188 static inline int ctx_map_to_sec4_sg(struct device *jrdev, 189 struct caam_hash_state *state, int ctx_len, 190 struct sec4_sg_entry *sec4_sg, u32 flag) 191 { 192 state->ctx_dma_len = ctx_len; 193 state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag); 194 if (dma_mapping_error(jrdev, state->ctx_dma)) { 195 dev_err(jrdev, "unable to map ctx\n"); 196 state->ctx_dma = 0; 197 return -ENOMEM; 198 } 199 200 dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0); 201 202 return 0; 203 } 204 205 static int ahash_set_sh_desc(struct crypto_ahash *ahash) 206 { 207 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 208 int digestsize = crypto_ahash_digestsize(ahash); 209 struct device *jrdev = ctx->jrdev; 210 struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent); 211 u32 *desc; 212 213 ctx->adata.key_virt = ctx->key; 214 215 /* ahash_update shared descriptor */ 216 desc = ctx->sh_desc_update; 217 cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_UPDATE, ctx->ctx_len, 218 ctx->ctx_len, true, ctrlpriv->era); 219 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma, 220 desc_bytes(desc), ctx->dir); 221 222 print_hex_dump_debug("ahash update shdesc@"__stringify(__LINE__)": ", 223 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 224 1); 225 226 /* ahash_update_first shared descriptor */ 227 desc = ctx->sh_desc_update_first; 228 cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len, 229 ctx->ctx_len, false, ctrlpriv->era); 230 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma, 231 desc_bytes(desc), ctx->dir); 232 print_hex_dump_debug("ahash update first shdesc@"__stringify(__LINE__) 233 ": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, 234 desc_bytes(desc), 1); 235 236 /* ahash_final shared descriptor */ 237 desc = ctx->sh_desc_fin; 238 cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, digestsize, 239 ctx->ctx_len, true, ctrlpriv->era); 240 dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma, 241 desc_bytes(desc), ctx->dir); 242 243 print_hex_dump_debug("ahash final shdesc@"__stringify(__LINE__)": ", 244 DUMP_PREFIX_ADDRESS, 16, 4, desc, 245 desc_bytes(desc), 1); 246 247 /* ahash_digest shared descriptor */ 248 desc = ctx->sh_desc_digest; 249 cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, digestsize, 250 ctx->ctx_len, false, ctrlpriv->era); 251 dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma, 252 desc_bytes(desc), ctx->dir); 253 254 print_hex_dump_debug("ahash digest shdesc@"__stringify(__LINE__)": ", 255 DUMP_PREFIX_ADDRESS, 16, 4, desc, 256 desc_bytes(desc), 1); 257 258 return 0; 259 } 260 261 static int axcbc_set_sh_desc(struct crypto_ahash *ahash) 262 { 263 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 264 int digestsize = crypto_ahash_digestsize(ahash); 265 struct device *jrdev = ctx->jrdev; 266 u32 *desc; 267 268 /* shared descriptor for ahash_update */ 269 desc = ctx->sh_desc_update; 270 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_UPDATE, 271 ctx->ctx_len, ctx->ctx_len); 272 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma, 273 desc_bytes(desc), ctx->dir); 274 print_hex_dump_debug("axcbc update shdesc@" __stringify(__LINE__)" : ", 275 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 276 1); 277 278 /* shared descriptor for ahash_{final,finup} */ 279 desc = ctx->sh_desc_fin; 280 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, 281 digestsize, ctx->ctx_len); 282 dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma, 283 desc_bytes(desc), ctx->dir); 284 print_hex_dump_debug("axcbc finup shdesc@" __stringify(__LINE__)" : ", 285 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 286 1); 287 288 /* key is immediate data for INIT and INITFINAL states */ 289 ctx->adata.key_virt = ctx->key; 290 291 /* shared descriptor for first invocation of ahash_update */ 292 desc = ctx->sh_desc_update_first; 293 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len, 294 ctx->ctx_len); 295 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma, 296 desc_bytes(desc), ctx->dir); 297 print_hex_dump_debug("axcbc update first shdesc@" __stringify(__LINE__) 298 " : ", DUMP_PREFIX_ADDRESS, 16, 4, desc, 299 desc_bytes(desc), 1); 300 301 /* shared descriptor for ahash_digest */ 302 desc = ctx->sh_desc_digest; 303 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, 304 digestsize, ctx->ctx_len); 305 dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma, 306 desc_bytes(desc), ctx->dir); 307 print_hex_dump_debug("axcbc digest shdesc@" __stringify(__LINE__)" : ", 308 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 309 1); 310 return 0; 311 } 312 313 static int acmac_set_sh_desc(struct crypto_ahash *ahash) 314 { 315 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 316 int digestsize = crypto_ahash_digestsize(ahash); 317 struct device *jrdev = ctx->jrdev; 318 u32 *desc; 319 320 /* shared descriptor for ahash_update */ 321 desc = ctx->sh_desc_update; 322 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_UPDATE, 323 ctx->ctx_len, ctx->ctx_len); 324 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma, 325 desc_bytes(desc), ctx->dir); 326 print_hex_dump_debug("acmac update shdesc@" __stringify(__LINE__)" : ", 327 DUMP_PREFIX_ADDRESS, 16, 4, desc, 328 desc_bytes(desc), 1); 329 330 /* shared descriptor for ahash_{final,finup} */ 331 desc = ctx->sh_desc_fin; 332 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, 333 digestsize, ctx->ctx_len); 334 dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma, 335 desc_bytes(desc), ctx->dir); 336 print_hex_dump_debug("acmac finup shdesc@" __stringify(__LINE__)" : ", 337 DUMP_PREFIX_ADDRESS, 16, 4, desc, 338 desc_bytes(desc), 1); 339 340 /* shared descriptor for first invocation of ahash_update */ 341 desc = ctx->sh_desc_update_first; 342 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len, 343 ctx->ctx_len); 344 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma, 345 desc_bytes(desc), ctx->dir); 346 print_hex_dump_debug("acmac update first shdesc@" __stringify(__LINE__) 347 " : ", DUMP_PREFIX_ADDRESS, 16, 4, desc, 348 desc_bytes(desc), 1); 349 350 /* shared descriptor for ahash_digest */ 351 desc = ctx->sh_desc_digest; 352 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, 353 digestsize, ctx->ctx_len); 354 dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma, 355 desc_bytes(desc), ctx->dir); 356 print_hex_dump_debug("acmac digest shdesc@" __stringify(__LINE__)" : ", 357 DUMP_PREFIX_ADDRESS, 16, 4, desc, 358 desc_bytes(desc), 1); 359 360 return 0; 361 } 362 363 /* Digest hash size if it is too large */ 364 static int hash_digest_key(struct caam_hash_ctx *ctx, u32 *keylen, u8 *key, 365 u32 digestsize) 366 { 367 struct device *jrdev = ctx->jrdev; 368 u32 *desc; 369 struct split_key_result result; 370 dma_addr_t key_dma; 371 int ret; 372 373 desc = kmalloc(CAAM_CMD_SZ * 8 + CAAM_PTR_SZ * 2, GFP_KERNEL); 374 if (!desc) 375 return -ENOMEM; 376 377 init_job_desc(desc, 0); 378 379 key_dma = dma_map_single(jrdev, key, *keylen, DMA_BIDIRECTIONAL); 380 if (dma_mapping_error(jrdev, key_dma)) { 381 dev_err(jrdev, "unable to map key memory\n"); 382 kfree(desc); 383 return -ENOMEM; 384 } 385 386 /* Job descriptor to perform unkeyed hash on key_in */ 387 append_operation(desc, ctx->adata.algtype | OP_ALG_ENCRYPT | 388 OP_ALG_AS_INITFINAL); 389 append_seq_in_ptr(desc, key_dma, *keylen, 0); 390 append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 | 391 FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG); 392 append_seq_out_ptr(desc, key_dma, digestsize, 0); 393 append_seq_store(desc, digestsize, LDST_CLASS_2_CCB | 394 LDST_SRCDST_BYTE_CONTEXT); 395 396 print_hex_dump_debug("key_in@"__stringify(__LINE__)": ", 397 DUMP_PREFIX_ADDRESS, 16, 4, key, *keylen, 1); 398 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 399 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 400 1); 401 402 result.err = 0; 403 init_completion(&result.completion); 404 405 ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result); 406 if (ret == -EINPROGRESS) { 407 /* in progress */ 408 wait_for_completion(&result.completion); 409 ret = result.err; 410 411 print_hex_dump_debug("digested key@"__stringify(__LINE__)": ", 412 DUMP_PREFIX_ADDRESS, 16, 4, key, 413 digestsize, 1); 414 } 415 dma_unmap_single(jrdev, key_dma, *keylen, DMA_BIDIRECTIONAL); 416 417 *keylen = digestsize; 418 419 kfree(desc); 420 421 return ret; 422 } 423 424 static int ahash_setkey(struct crypto_ahash *ahash, 425 const u8 *key, unsigned int keylen) 426 { 427 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 428 struct device *jrdev = ctx->jrdev; 429 int blocksize = crypto_tfm_alg_blocksize(&ahash->base); 430 int digestsize = crypto_ahash_digestsize(ahash); 431 struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctx->jrdev->parent); 432 int ret; 433 u8 *hashed_key = NULL; 434 435 dev_dbg(jrdev, "keylen %d\n", keylen); 436 437 if (keylen > blocksize) { 438 unsigned int aligned_len = 439 ALIGN(keylen, dma_get_cache_alignment()); 440 441 if (aligned_len < keylen) 442 return -EOVERFLOW; 443 444 hashed_key = kmemdup(key, keylen, GFP_KERNEL); 445 if (!hashed_key) 446 return -ENOMEM; 447 ret = hash_digest_key(ctx, &keylen, hashed_key, digestsize); 448 if (ret) 449 goto bad_free_key; 450 key = hashed_key; 451 } 452 453 /* 454 * If DKP is supported, use it in the shared descriptor to generate 455 * the split key. 456 */ 457 if (ctrlpriv->era >= 6) { 458 ctx->adata.key_inline = true; 459 ctx->adata.keylen = keylen; 460 ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype & 461 OP_ALG_ALGSEL_MASK); 462 463 if (ctx->adata.keylen_pad > CAAM_MAX_HASH_KEY_SIZE) 464 goto bad_free_key; 465 466 memcpy(ctx->key, key, keylen); 467 468 /* 469 * In case |user key| > |derived key|, using DKP<imm,imm> 470 * would result in invalid opcodes (last bytes of user key) in 471 * the resulting descriptor. Use DKP<ptr,imm> instead => both 472 * virtual and dma key addresses are needed. 473 */ 474 if (keylen > ctx->adata.keylen_pad) 475 dma_sync_single_for_device(ctx->jrdev, 476 ctx->adata.key_dma, 477 ctx->adata.keylen_pad, 478 DMA_TO_DEVICE); 479 } else { 480 ret = gen_split_key(ctx->jrdev, ctx->key, &ctx->adata, key, 481 keylen, CAAM_MAX_HASH_KEY_SIZE); 482 if (ret) 483 goto bad_free_key; 484 } 485 486 kfree(hashed_key); 487 return ahash_set_sh_desc(ahash); 488 bad_free_key: 489 kfree(hashed_key); 490 return -EINVAL; 491 } 492 493 static int axcbc_setkey(struct crypto_ahash *ahash, const u8 *key, 494 unsigned int keylen) 495 { 496 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 497 struct device *jrdev = ctx->jrdev; 498 499 if (keylen != AES_KEYSIZE_128) 500 return -EINVAL; 501 502 memcpy(ctx->key, key, keylen); 503 dma_sync_single_for_device(jrdev, ctx->adata.key_dma, keylen, 504 DMA_TO_DEVICE); 505 ctx->adata.keylen = keylen; 506 507 print_hex_dump_debug("axcbc ctx.key@" __stringify(__LINE__)" : ", 508 DUMP_PREFIX_ADDRESS, 16, 4, ctx->key, keylen, 1); 509 510 return axcbc_set_sh_desc(ahash); 511 } 512 513 static int acmac_setkey(struct crypto_ahash *ahash, const u8 *key, 514 unsigned int keylen) 515 { 516 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 517 int err; 518 519 err = aes_check_keylen(keylen); 520 if (err) 521 return err; 522 523 /* key is immediate data for all cmac shared descriptors */ 524 ctx->adata.key_virt = key; 525 ctx->adata.keylen = keylen; 526 527 print_hex_dump_debug("acmac ctx.key@" __stringify(__LINE__)" : ", 528 DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); 529 530 return acmac_set_sh_desc(ahash); 531 } 532 533 /* 534 * ahash_edesc - s/w-extended ahash descriptor 535 * @sec4_sg_dma: physical mapped address of h/w link table 536 * @src_nents: number of segments in input scatterlist 537 * @sec4_sg_bytes: length of dma mapped sec4_sg space 538 * @bklog: stored to determine if the request needs backlog 539 * @hw_desc: the h/w job descriptor followed by any referenced link tables 540 * @sec4_sg: h/w link table 541 */ 542 struct ahash_edesc { 543 dma_addr_t sec4_sg_dma; 544 int src_nents; 545 int sec4_sg_bytes; 546 bool bklog; 547 u32 hw_desc[DESC_JOB_IO_LEN_MAX / sizeof(u32)] ____cacheline_aligned; 548 struct sec4_sg_entry sec4_sg[]; 549 }; 550 551 static inline void ahash_unmap(struct device *dev, 552 struct ahash_edesc *edesc, 553 struct ahash_request *req, int dst_len) 554 { 555 struct caam_hash_state *state = ahash_request_ctx_dma(req); 556 557 if (edesc->src_nents) 558 dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE); 559 560 if (edesc->sec4_sg_bytes) 561 dma_unmap_single(dev, edesc->sec4_sg_dma, 562 edesc->sec4_sg_bytes, DMA_TO_DEVICE); 563 564 if (state->buf_dma) { 565 dma_unmap_single(dev, state->buf_dma, state->buflen, 566 DMA_TO_DEVICE); 567 state->buf_dma = 0; 568 } 569 } 570 571 static inline void ahash_unmap_ctx(struct device *dev, 572 struct ahash_edesc *edesc, 573 struct ahash_request *req, int dst_len, u32 flag) 574 { 575 struct caam_hash_state *state = ahash_request_ctx_dma(req); 576 577 if (state->ctx_dma) { 578 dma_unmap_single(dev, state->ctx_dma, state->ctx_dma_len, flag); 579 state->ctx_dma = 0; 580 } 581 ahash_unmap(dev, edesc, req, dst_len); 582 } 583 584 static inline void ahash_done_cpy(struct device *jrdev, u32 *desc, u32 err, 585 void *context, enum dma_data_direction dir) 586 { 587 struct ahash_request *req = context; 588 struct caam_drv_private_jr *jrp = dev_get_drvdata(jrdev); 589 struct ahash_edesc *edesc; 590 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 591 int digestsize = crypto_ahash_digestsize(ahash); 592 struct caam_hash_state *state = ahash_request_ctx_dma(req); 593 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 594 int ecode = 0; 595 bool has_bklog; 596 597 dev_dbg(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err); 598 599 edesc = state->edesc; 600 has_bklog = edesc->bklog; 601 602 if (err) 603 ecode = caam_jr_strstatus(jrdev, err); 604 605 ahash_unmap_ctx(jrdev, edesc, req, digestsize, dir); 606 memcpy(req->result, state->caam_ctx, digestsize); 607 kfree(edesc); 608 609 print_hex_dump_debug("ctx@"__stringify(__LINE__)": ", 610 DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx, 611 ctx->ctx_len, 1); 612 613 /* 614 * If no backlog flag, the completion of the request is done 615 * by CAAM, not crypto engine. 616 */ 617 if (!has_bklog) 618 ahash_request_complete(req, ecode); 619 else 620 crypto_finalize_hash_request(jrp->engine, req, ecode); 621 } 622 623 static void ahash_done(struct device *jrdev, u32 *desc, u32 err, 624 void *context) 625 { 626 ahash_done_cpy(jrdev, desc, err, context, DMA_FROM_DEVICE); 627 } 628 629 static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err, 630 void *context) 631 { 632 ahash_done_cpy(jrdev, desc, err, context, DMA_BIDIRECTIONAL); 633 } 634 635 static inline void ahash_done_switch(struct device *jrdev, u32 *desc, u32 err, 636 void *context, enum dma_data_direction dir) 637 { 638 struct ahash_request *req = context; 639 struct caam_drv_private_jr *jrp = dev_get_drvdata(jrdev); 640 struct ahash_edesc *edesc; 641 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 642 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 643 struct caam_hash_state *state = ahash_request_ctx_dma(req); 644 int digestsize = crypto_ahash_digestsize(ahash); 645 int ecode = 0; 646 bool has_bklog; 647 648 dev_dbg(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err); 649 650 edesc = state->edesc; 651 has_bklog = edesc->bklog; 652 if (err) 653 ecode = caam_jr_strstatus(jrdev, err); 654 655 ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, dir); 656 kfree(edesc); 657 658 scatterwalk_map_and_copy(state->buf, req->src, 659 req->nbytes - state->next_buflen, 660 state->next_buflen, 0); 661 state->buflen = state->next_buflen; 662 663 print_hex_dump_debug("buf@" __stringify(__LINE__)": ", 664 DUMP_PREFIX_ADDRESS, 16, 4, state->buf, 665 state->buflen, 1); 666 667 print_hex_dump_debug("ctx@"__stringify(__LINE__)": ", 668 DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx, 669 ctx->ctx_len, 1); 670 if (req->result) 671 print_hex_dump_debug("result@"__stringify(__LINE__)": ", 672 DUMP_PREFIX_ADDRESS, 16, 4, req->result, 673 digestsize, 1); 674 675 /* 676 * If no backlog flag, the completion of the request is done 677 * by CAAM, not crypto engine. 678 */ 679 if (!has_bklog) 680 ahash_request_complete(req, ecode); 681 else 682 crypto_finalize_hash_request(jrp->engine, req, ecode); 683 684 } 685 686 static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err, 687 void *context) 688 { 689 ahash_done_switch(jrdev, desc, err, context, DMA_BIDIRECTIONAL); 690 } 691 692 static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err, 693 void *context) 694 { 695 ahash_done_switch(jrdev, desc, err, context, DMA_FROM_DEVICE); 696 } 697 698 /* 699 * Allocate an enhanced descriptor, which contains the hardware descriptor 700 * and space for hardware scatter table containing sg_num entries. 701 */ 702 static struct ahash_edesc *ahash_edesc_alloc(struct ahash_request *req, 703 int sg_num, u32 *sh_desc, 704 dma_addr_t sh_desc_dma) 705 { 706 struct caam_hash_state *state = ahash_request_ctx_dma(req); 707 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? 708 GFP_KERNEL : GFP_ATOMIC; 709 struct ahash_edesc *edesc; 710 711 sg_num = pad_sg_nents(sg_num); 712 edesc = kzalloc(struct_size(edesc, sec4_sg, sg_num), flags); 713 if (!edesc) 714 return NULL; 715 716 state->edesc = edesc; 717 718 init_job_desc_shared(edesc->hw_desc, sh_desc_dma, desc_len(sh_desc), 719 HDR_SHARE_DEFER | HDR_REVERSE); 720 721 return edesc; 722 } 723 724 static int ahash_edesc_add_src(struct caam_hash_ctx *ctx, 725 struct ahash_edesc *edesc, 726 struct ahash_request *req, int nents, 727 unsigned int first_sg, 728 unsigned int first_bytes, size_t to_hash) 729 { 730 dma_addr_t src_dma; 731 u32 options; 732 733 if (nents > 1 || first_sg) { 734 struct sec4_sg_entry *sg = edesc->sec4_sg; 735 unsigned int sgsize = sizeof(*sg) * 736 pad_sg_nents(first_sg + nents); 737 738 sg_to_sec4_sg_last(req->src, to_hash, sg + first_sg, 0); 739 740 src_dma = dma_map_single(ctx->jrdev, sg, sgsize, DMA_TO_DEVICE); 741 if (dma_mapping_error(ctx->jrdev, src_dma)) { 742 dev_err(ctx->jrdev, "unable to map S/G table\n"); 743 return -ENOMEM; 744 } 745 746 edesc->sec4_sg_bytes = sgsize; 747 edesc->sec4_sg_dma = src_dma; 748 options = LDST_SGF; 749 } else { 750 src_dma = sg_dma_address(req->src); 751 options = 0; 752 } 753 754 append_seq_in_ptr(edesc->hw_desc, src_dma, first_bytes + to_hash, 755 options); 756 757 return 0; 758 } 759 760 static int ahash_do_one_req(struct crypto_engine *engine, void *areq) 761 { 762 struct ahash_request *req = ahash_request_cast(areq); 763 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(crypto_ahash_reqtfm(req)); 764 struct caam_hash_state *state = ahash_request_ctx_dma(req); 765 struct device *jrdev = ctx->jrdev; 766 u32 *desc = state->edesc->hw_desc; 767 int ret; 768 769 state->edesc->bklog = true; 770 771 ret = caam_jr_enqueue(jrdev, desc, state->ahash_op_done, req); 772 773 if (ret == -ENOSPC && engine->retry_support) 774 return ret; 775 776 if (ret != -EINPROGRESS) { 777 ahash_unmap(jrdev, state->edesc, req, 0); 778 kfree(state->edesc); 779 } else { 780 ret = 0; 781 } 782 783 return ret; 784 } 785 786 static int ahash_enqueue_req(struct device *jrdev, 787 void (*cbk)(struct device *jrdev, u32 *desc, 788 u32 err, void *context), 789 struct ahash_request *req, 790 int dst_len, enum dma_data_direction dir) 791 { 792 struct caam_drv_private_jr *jrpriv = dev_get_drvdata(jrdev); 793 struct caam_hash_state *state = ahash_request_ctx_dma(req); 794 struct ahash_edesc *edesc = state->edesc; 795 u32 *desc = edesc->hw_desc; 796 int ret; 797 798 state->ahash_op_done = cbk; 799 800 /* 801 * Only the backlog request are sent to crypto-engine since the others 802 * can be handled by CAAM, if free, especially since JR has up to 1024 803 * entries (more than the 10 entries from crypto-engine). 804 */ 805 if (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG) 806 ret = crypto_transfer_hash_request_to_engine(jrpriv->engine, 807 req); 808 else 809 ret = caam_jr_enqueue(jrdev, desc, cbk, req); 810 811 if ((ret != -EINPROGRESS) && (ret != -EBUSY)) { 812 ahash_unmap_ctx(jrdev, edesc, req, dst_len, dir); 813 kfree(edesc); 814 } 815 816 return ret; 817 } 818 819 /* submit update job descriptor */ 820 static int ahash_update_ctx(struct ahash_request *req) 821 { 822 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 823 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 824 struct caam_hash_state *state = ahash_request_ctx_dma(req); 825 struct device *jrdev = ctx->jrdev; 826 u8 *buf = state->buf; 827 int *buflen = &state->buflen; 828 int *next_buflen = &state->next_buflen; 829 int blocksize = crypto_ahash_blocksize(ahash); 830 int in_len = *buflen + req->nbytes, to_hash; 831 u32 *desc; 832 int src_nents, mapped_nents, sec4_sg_bytes, sec4_sg_src_index; 833 struct ahash_edesc *edesc; 834 int ret = 0; 835 836 *next_buflen = in_len & (blocksize - 1); 837 to_hash = in_len - *next_buflen; 838 839 /* 840 * For XCBC and CMAC, if to_hash is multiple of block size, 841 * keep last block in internal buffer 842 */ 843 if ((is_xcbc_aes(ctx->adata.algtype) || 844 is_cmac_aes(ctx->adata.algtype)) && to_hash >= blocksize && 845 (*next_buflen == 0)) { 846 *next_buflen = blocksize; 847 to_hash -= blocksize; 848 } 849 850 if (to_hash) { 851 int pad_nents; 852 int src_len = req->nbytes - *next_buflen; 853 854 src_nents = sg_nents_for_len(req->src, src_len); 855 if (src_nents < 0) { 856 dev_err(jrdev, "Invalid number of src SG.\n"); 857 return src_nents; 858 } 859 860 if (src_nents) { 861 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 862 DMA_TO_DEVICE); 863 if (!mapped_nents) { 864 dev_err(jrdev, "unable to DMA map source\n"); 865 return -ENOMEM; 866 } 867 } else { 868 mapped_nents = 0; 869 } 870 871 sec4_sg_src_index = 1 + (*buflen ? 1 : 0); 872 pad_nents = pad_sg_nents(sec4_sg_src_index + mapped_nents); 873 sec4_sg_bytes = pad_nents * sizeof(struct sec4_sg_entry); 874 875 /* 876 * allocate space for base edesc and hw desc commands, 877 * link tables 878 */ 879 edesc = ahash_edesc_alloc(req, pad_nents, ctx->sh_desc_update, 880 ctx->sh_desc_update_dma); 881 if (!edesc) { 882 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 883 return -ENOMEM; 884 } 885 886 edesc->src_nents = src_nents; 887 edesc->sec4_sg_bytes = sec4_sg_bytes; 888 889 ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len, 890 edesc->sec4_sg, DMA_BIDIRECTIONAL); 891 if (ret) 892 goto unmap_ctx; 893 894 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state); 895 if (ret) 896 goto unmap_ctx; 897 898 if (mapped_nents) 899 sg_to_sec4_sg_last(req->src, src_len, 900 edesc->sec4_sg + sec4_sg_src_index, 901 0); 902 else 903 sg_to_sec4_set_last(edesc->sec4_sg + sec4_sg_src_index - 904 1); 905 906 desc = edesc->hw_desc; 907 908 edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, 909 sec4_sg_bytes, 910 DMA_TO_DEVICE); 911 if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) { 912 dev_err(jrdev, "unable to map S/G table\n"); 913 ret = -ENOMEM; 914 goto unmap_ctx; 915 } 916 917 append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + 918 to_hash, LDST_SGF); 919 920 append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0); 921 922 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 923 DUMP_PREFIX_ADDRESS, 16, 4, desc, 924 desc_bytes(desc), 1); 925 926 ret = ahash_enqueue_req(jrdev, ahash_done_bi, req, 927 ctx->ctx_len, DMA_BIDIRECTIONAL); 928 } else if (*next_buflen) { 929 scatterwalk_map_and_copy(buf + *buflen, req->src, 0, 930 req->nbytes, 0); 931 *buflen = *next_buflen; 932 933 print_hex_dump_debug("buf@" __stringify(__LINE__)": ", 934 DUMP_PREFIX_ADDRESS, 16, 4, buf, 935 *buflen, 1); 936 } 937 938 return ret; 939 unmap_ctx: 940 ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL); 941 kfree(edesc); 942 return ret; 943 } 944 945 static int ahash_final_ctx(struct ahash_request *req) 946 { 947 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 948 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 949 struct caam_hash_state *state = ahash_request_ctx_dma(req); 950 struct device *jrdev = ctx->jrdev; 951 int buflen = state->buflen; 952 u32 *desc; 953 int sec4_sg_bytes; 954 int digestsize = crypto_ahash_digestsize(ahash); 955 struct ahash_edesc *edesc; 956 int ret; 957 958 sec4_sg_bytes = pad_sg_nents(1 + (buflen ? 1 : 0)) * 959 sizeof(struct sec4_sg_entry); 960 961 /* allocate space for base edesc and hw desc commands, link tables */ 962 edesc = ahash_edesc_alloc(req, 4, ctx->sh_desc_fin, 963 ctx->sh_desc_fin_dma); 964 if (!edesc) 965 return -ENOMEM; 966 967 desc = edesc->hw_desc; 968 969 edesc->sec4_sg_bytes = sec4_sg_bytes; 970 971 ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len, 972 edesc->sec4_sg, DMA_BIDIRECTIONAL); 973 if (ret) 974 goto unmap_ctx; 975 976 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state); 977 if (ret) 978 goto unmap_ctx; 979 980 sg_to_sec4_set_last(edesc->sec4_sg + (buflen ? 1 : 0)); 981 982 edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, 983 sec4_sg_bytes, DMA_TO_DEVICE); 984 if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) { 985 dev_err(jrdev, "unable to map S/G table\n"); 986 ret = -ENOMEM; 987 goto unmap_ctx; 988 } 989 990 append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen, 991 LDST_SGF); 992 append_seq_out_ptr(desc, state->ctx_dma, digestsize, 0); 993 994 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 995 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 996 1); 997 998 return ahash_enqueue_req(jrdev, ahash_done_ctx_src, req, 999 digestsize, DMA_BIDIRECTIONAL); 1000 unmap_ctx: 1001 ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_BIDIRECTIONAL); 1002 kfree(edesc); 1003 return ret; 1004 } 1005 1006 static int ahash_finup_ctx(struct ahash_request *req) 1007 { 1008 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1009 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1010 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1011 struct device *jrdev = ctx->jrdev; 1012 int buflen = state->buflen; 1013 u32 *desc; 1014 int sec4_sg_src_index; 1015 int src_nents, mapped_nents; 1016 int digestsize = crypto_ahash_digestsize(ahash); 1017 struct ahash_edesc *edesc; 1018 int ret; 1019 1020 src_nents = sg_nents_for_len(req->src, req->nbytes); 1021 if (src_nents < 0) { 1022 dev_err(jrdev, "Invalid number of src SG.\n"); 1023 return src_nents; 1024 } 1025 1026 if (src_nents) { 1027 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1028 DMA_TO_DEVICE); 1029 if (!mapped_nents) { 1030 dev_err(jrdev, "unable to DMA map source\n"); 1031 return -ENOMEM; 1032 } 1033 } else { 1034 mapped_nents = 0; 1035 } 1036 1037 sec4_sg_src_index = 1 + (buflen ? 1 : 0); 1038 1039 /* allocate space for base edesc and hw desc commands, link tables */ 1040 edesc = ahash_edesc_alloc(req, sec4_sg_src_index + mapped_nents, 1041 ctx->sh_desc_fin, ctx->sh_desc_fin_dma); 1042 if (!edesc) { 1043 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1044 return -ENOMEM; 1045 } 1046 1047 desc = edesc->hw_desc; 1048 1049 edesc->src_nents = src_nents; 1050 1051 ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len, 1052 edesc->sec4_sg, DMA_BIDIRECTIONAL); 1053 if (ret) 1054 goto unmap_ctx; 1055 1056 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state); 1057 if (ret) 1058 goto unmap_ctx; 1059 1060 ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 1061 sec4_sg_src_index, ctx->ctx_len + buflen, 1062 req->nbytes); 1063 if (ret) 1064 goto unmap_ctx; 1065 1066 append_seq_out_ptr(desc, state->ctx_dma, digestsize, 0); 1067 1068 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1069 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1070 1); 1071 1072 return ahash_enqueue_req(jrdev, ahash_done_ctx_src, req, 1073 digestsize, DMA_BIDIRECTIONAL); 1074 unmap_ctx: 1075 ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_BIDIRECTIONAL); 1076 kfree(edesc); 1077 return ret; 1078 } 1079 1080 static int ahash_digest(struct ahash_request *req) 1081 { 1082 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1083 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1084 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1085 struct device *jrdev = ctx->jrdev; 1086 u32 *desc; 1087 int digestsize = crypto_ahash_digestsize(ahash); 1088 int src_nents, mapped_nents; 1089 struct ahash_edesc *edesc; 1090 int ret; 1091 1092 state->buf_dma = 0; 1093 1094 src_nents = sg_nents_for_len(req->src, req->nbytes); 1095 if (src_nents < 0) { 1096 dev_err(jrdev, "Invalid number of src SG.\n"); 1097 return src_nents; 1098 } 1099 1100 if (src_nents) { 1101 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1102 DMA_TO_DEVICE); 1103 if (!mapped_nents) { 1104 dev_err(jrdev, "unable to map source for DMA\n"); 1105 return -ENOMEM; 1106 } 1107 } else { 1108 mapped_nents = 0; 1109 } 1110 1111 /* allocate space for base edesc and hw desc commands, link tables */ 1112 edesc = ahash_edesc_alloc(req, mapped_nents > 1 ? mapped_nents : 0, 1113 ctx->sh_desc_digest, ctx->sh_desc_digest_dma); 1114 if (!edesc) { 1115 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1116 return -ENOMEM; 1117 } 1118 1119 edesc->src_nents = src_nents; 1120 1121 ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0, 1122 req->nbytes); 1123 if (ret) { 1124 ahash_unmap(jrdev, edesc, req, digestsize); 1125 kfree(edesc); 1126 return ret; 1127 } 1128 1129 desc = edesc->hw_desc; 1130 1131 ret = map_seq_out_ptr_ctx(desc, jrdev, state, digestsize); 1132 if (ret) { 1133 ahash_unmap(jrdev, edesc, req, digestsize); 1134 kfree(edesc); 1135 return -ENOMEM; 1136 } 1137 1138 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1139 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1140 1); 1141 1142 return ahash_enqueue_req(jrdev, ahash_done, req, digestsize, 1143 DMA_FROM_DEVICE); 1144 } 1145 1146 /* submit ahash final if it the first job descriptor */ 1147 static int ahash_final_no_ctx(struct ahash_request *req) 1148 { 1149 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1150 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1151 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1152 struct device *jrdev = ctx->jrdev; 1153 u8 *buf = state->buf; 1154 int buflen = state->buflen; 1155 u32 *desc; 1156 int digestsize = crypto_ahash_digestsize(ahash); 1157 struct ahash_edesc *edesc; 1158 int ret; 1159 1160 /* allocate space for base edesc and hw desc commands, link tables */ 1161 edesc = ahash_edesc_alloc(req, 0, ctx->sh_desc_digest, 1162 ctx->sh_desc_digest_dma); 1163 if (!edesc) 1164 return -ENOMEM; 1165 1166 desc = edesc->hw_desc; 1167 1168 if (buflen) { 1169 state->buf_dma = dma_map_single(jrdev, buf, buflen, 1170 DMA_TO_DEVICE); 1171 if (dma_mapping_error(jrdev, state->buf_dma)) { 1172 dev_err(jrdev, "unable to map src\n"); 1173 goto unmap; 1174 } 1175 1176 append_seq_in_ptr(desc, state->buf_dma, buflen, 0); 1177 } 1178 1179 ret = map_seq_out_ptr_ctx(desc, jrdev, state, digestsize); 1180 if (ret) 1181 goto unmap; 1182 1183 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1184 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1185 1); 1186 1187 return ahash_enqueue_req(jrdev, ahash_done, req, 1188 digestsize, DMA_FROM_DEVICE); 1189 unmap: 1190 ahash_unmap(jrdev, edesc, req, digestsize); 1191 kfree(edesc); 1192 return -ENOMEM; 1193 } 1194 1195 /* submit ahash update if it the first job descriptor after update */ 1196 static int ahash_update_no_ctx(struct ahash_request *req) 1197 { 1198 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1199 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1200 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1201 struct device *jrdev = ctx->jrdev; 1202 u8 *buf = state->buf; 1203 int *buflen = &state->buflen; 1204 int *next_buflen = &state->next_buflen; 1205 int blocksize = crypto_ahash_blocksize(ahash); 1206 int in_len = *buflen + req->nbytes, to_hash; 1207 int sec4_sg_bytes, src_nents, mapped_nents; 1208 struct ahash_edesc *edesc; 1209 u32 *desc; 1210 int ret = 0; 1211 1212 *next_buflen = in_len & (blocksize - 1); 1213 to_hash = in_len - *next_buflen; 1214 1215 /* 1216 * For XCBC and CMAC, if to_hash is multiple of block size, 1217 * keep last block in internal buffer 1218 */ 1219 if ((is_xcbc_aes(ctx->adata.algtype) || 1220 is_cmac_aes(ctx->adata.algtype)) && to_hash >= blocksize && 1221 (*next_buflen == 0)) { 1222 *next_buflen = blocksize; 1223 to_hash -= blocksize; 1224 } 1225 1226 if (to_hash) { 1227 int pad_nents; 1228 int src_len = req->nbytes - *next_buflen; 1229 1230 src_nents = sg_nents_for_len(req->src, src_len); 1231 if (src_nents < 0) { 1232 dev_err(jrdev, "Invalid number of src SG.\n"); 1233 return src_nents; 1234 } 1235 1236 if (src_nents) { 1237 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1238 DMA_TO_DEVICE); 1239 if (!mapped_nents) { 1240 dev_err(jrdev, "unable to DMA map source\n"); 1241 return -ENOMEM; 1242 } 1243 } else { 1244 mapped_nents = 0; 1245 } 1246 1247 pad_nents = pad_sg_nents(1 + mapped_nents); 1248 sec4_sg_bytes = pad_nents * sizeof(struct sec4_sg_entry); 1249 1250 /* 1251 * allocate space for base edesc and hw desc commands, 1252 * link tables 1253 */ 1254 edesc = ahash_edesc_alloc(req, pad_nents, 1255 ctx->sh_desc_update_first, 1256 ctx->sh_desc_update_first_dma); 1257 if (!edesc) { 1258 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1259 return -ENOMEM; 1260 } 1261 1262 edesc->src_nents = src_nents; 1263 edesc->sec4_sg_bytes = sec4_sg_bytes; 1264 1265 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state); 1266 if (ret) 1267 goto unmap_ctx; 1268 1269 sg_to_sec4_sg_last(req->src, src_len, edesc->sec4_sg + 1, 0); 1270 1271 desc = edesc->hw_desc; 1272 1273 edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, 1274 sec4_sg_bytes, 1275 DMA_TO_DEVICE); 1276 if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) { 1277 dev_err(jrdev, "unable to map S/G table\n"); 1278 ret = -ENOMEM; 1279 goto unmap_ctx; 1280 } 1281 1282 append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF); 1283 1284 ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len); 1285 if (ret) 1286 goto unmap_ctx; 1287 1288 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1289 DUMP_PREFIX_ADDRESS, 16, 4, desc, 1290 desc_bytes(desc), 1); 1291 1292 ret = ahash_enqueue_req(jrdev, ahash_done_ctx_dst, req, 1293 ctx->ctx_len, DMA_TO_DEVICE); 1294 if ((ret != -EINPROGRESS) && (ret != -EBUSY)) 1295 return ret; 1296 state->update = ahash_update_ctx; 1297 state->finup = ahash_finup_ctx; 1298 state->final = ahash_final_ctx; 1299 } else if (*next_buflen) { 1300 scatterwalk_map_and_copy(buf + *buflen, req->src, 0, 1301 req->nbytes, 0); 1302 *buflen = *next_buflen; 1303 1304 print_hex_dump_debug("buf@" __stringify(__LINE__)": ", 1305 DUMP_PREFIX_ADDRESS, 16, 4, buf, 1306 *buflen, 1); 1307 } 1308 1309 return ret; 1310 unmap_ctx: 1311 ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE); 1312 kfree(edesc); 1313 return ret; 1314 } 1315 1316 /* submit ahash finup if it the first job descriptor after update */ 1317 static int ahash_finup_no_ctx(struct ahash_request *req) 1318 { 1319 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1320 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1321 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1322 struct device *jrdev = ctx->jrdev; 1323 int buflen = state->buflen; 1324 u32 *desc; 1325 int sec4_sg_bytes, sec4_sg_src_index, src_nents, mapped_nents; 1326 int digestsize = crypto_ahash_digestsize(ahash); 1327 struct ahash_edesc *edesc; 1328 int ret; 1329 1330 src_nents = sg_nents_for_len(req->src, req->nbytes); 1331 if (src_nents < 0) { 1332 dev_err(jrdev, "Invalid number of src SG.\n"); 1333 return src_nents; 1334 } 1335 1336 if (src_nents) { 1337 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1338 DMA_TO_DEVICE); 1339 if (!mapped_nents) { 1340 dev_err(jrdev, "unable to DMA map source\n"); 1341 return -ENOMEM; 1342 } 1343 } else { 1344 mapped_nents = 0; 1345 } 1346 1347 sec4_sg_src_index = 2; 1348 sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) * 1349 sizeof(struct sec4_sg_entry); 1350 1351 /* allocate space for base edesc and hw desc commands, link tables */ 1352 edesc = ahash_edesc_alloc(req, sec4_sg_src_index + mapped_nents, 1353 ctx->sh_desc_digest, ctx->sh_desc_digest_dma); 1354 if (!edesc) { 1355 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1356 return -ENOMEM; 1357 } 1358 1359 desc = edesc->hw_desc; 1360 1361 edesc->src_nents = src_nents; 1362 edesc->sec4_sg_bytes = sec4_sg_bytes; 1363 1364 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state); 1365 if (ret) 1366 goto unmap; 1367 1368 ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 1, buflen, 1369 req->nbytes); 1370 if (ret) { 1371 dev_err(jrdev, "unable to map S/G table\n"); 1372 goto unmap; 1373 } 1374 1375 ret = map_seq_out_ptr_ctx(desc, jrdev, state, digestsize); 1376 if (ret) 1377 goto unmap; 1378 1379 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1380 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1381 1); 1382 1383 return ahash_enqueue_req(jrdev, ahash_done, req, 1384 digestsize, DMA_FROM_DEVICE); 1385 unmap: 1386 ahash_unmap(jrdev, edesc, req, digestsize); 1387 kfree(edesc); 1388 return -ENOMEM; 1389 1390 } 1391 1392 /* submit first update job descriptor after init */ 1393 static int ahash_update_first(struct ahash_request *req) 1394 { 1395 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1396 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1397 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1398 struct device *jrdev = ctx->jrdev; 1399 u8 *buf = state->buf; 1400 int *buflen = &state->buflen; 1401 int *next_buflen = &state->next_buflen; 1402 int to_hash; 1403 int blocksize = crypto_ahash_blocksize(ahash); 1404 u32 *desc; 1405 int src_nents, mapped_nents; 1406 struct ahash_edesc *edesc; 1407 int ret = 0; 1408 1409 *next_buflen = req->nbytes & (blocksize - 1); 1410 to_hash = req->nbytes - *next_buflen; 1411 1412 /* 1413 * For XCBC and CMAC, if to_hash is multiple of block size, 1414 * keep last block in internal buffer 1415 */ 1416 if ((is_xcbc_aes(ctx->adata.algtype) || 1417 is_cmac_aes(ctx->adata.algtype)) && to_hash >= blocksize && 1418 (*next_buflen == 0)) { 1419 *next_buflen = blocksize; 1420 to_hash -= blocksize; 1421 } 1422 1423 if (to_hash) { 1424 src_nents = sg_nents_for_len(req->src, 1425 req->nbytes - *next_buflen); 1426 if (src_nents < 0) { 1427 dev_err(jrdev, "Invalid number of src SG.\n"); 1428 return src_nents; 1429 } 1430 1431 if (src_nents) { 1432 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1433 DMA_TO_DEVICE); 1434 if (!mapped_nents) { 1435 dev_err(jrdev, "unable to map source for DMA\n"); 1436 return -ENOMEM; 1437 } 1438 } else { 1439 mapped_nents = 0; 1440 } 1441 1442 /* 1443 * allocate space for base edesc and hw desc commands, 1444 * link tables 1445 */ 1446 edesc = ahash_edesc_alloc(req, mapped_nents > 1 ? 1447 mapped_nents : 0, 1448 ctx->sh_desc_update_first, 1449 ctx->sh_desc_update_first_dma); 1450 if (!edesc) { 1451 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1452 return -ENOMEM; 1453 } 1454 1455 edesc->src_nents = src_nents; 1456 1457 ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0, 1458 to_hash); 1459 if (ret) 1460 goto unmap_ctx; 1461 1462 desc = edesc->hw_desc; 1463 1464 ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len); 1465 if (ret) 1466 goto unmap_ctx; 1467 1468 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1469 DUMP_PREFIX_ADDRESS, 16, 4, desc, 1470 desc_bytes(desc), 1); 1471 1472 ret = ahash_enqueue_req(jrdev, ahash_done_ctx_dst, req, 1473 ctx->ctx_len, DMA_TO_DEVICE); 1474 if ((ret != -EINPROGRESS) && (ret != -EBUSY)) 1475 return ret; 1476 state->update = ahash_update_ctx; 1477 state->finup = ahash_finup_ctx; 1478 state->final = ahash_final_ctx; 1479 } else if (*next_buflen) { 1480 state->update = ahash_update_no_ctx; 1481 state->finup = ahash_finup_no_ctx; 1482 state->final = ahash_final_no_ctx; 1483 scatterwalk_map_and_copy(buf, req->src, 0, 1484 req->nbytes, 0); 1485 *buflen = *next_buflen; 1486 1487 print_hex_dump_debug("buf@" __stringify(__LINE__)": ", 1488 DUMP_PREFIX_ADDRESS, 16, 4, buf, 1489 *buflen, 1); 1490 } 1491 1492 return ret; 1493 unmap_ctx: 1494 ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE); 1495 kfree(edesc); 1496 return ret; 1497 } 1498 1499 static int ahash_finup_first(struct ahash_request *req) 1500 { 1501 return ahash_digest(req); 1502 } 1503 1504 static int ahash_init(struct ahash_request *req) 1505 { 1506 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1507 1508 state->update = ahash_update_first; 1509 state->finup = ahash_finup_first; 1510 state->final = ahash_final_no_ctx; 1511 1512 state->ctx_dma = 0; 1513 state->ctx_dma_len = 0; 1514 state->buf_dma = 0; 1515 state->buflen = 0; 1516 state->next_buflen = 0; 1517 1518 return 0; 1519 } 1520 1521 static int ahash_update(struct ahash_request *req) 1522 { 1523 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1524 1525 return state->update(req); 1526 } 1527 1528 static int ahash_finup(struct ahash_request *req) 1529 { 1530 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1531 1532 return state->finup(req); 1533 } 1534 1535 static int ahash_final(struct ahash_request *req) 1536 { 1537 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1538 1539 return state->final(req); 1540 } 1541 1542 static int ahash_export(struct ahash_request *req, void *out) 1543 { 1544 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1545 struct caam_export_state *export = out; 1546 u8 *buf = state->buf; 1547 int len = state->buflen; 1548 1549 memcpy(export->buf, buf, len); 1550 memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx)); 1551 export->buflen = len; 1552 export->update = state->update; 1553 export->final = state->final; 1554 export->finup = state->finup; 1555 1556 return 0; 1557 } 1558 1559 static int ahash_import(struct ahash_request *req, const void *in) 1560 { 1561 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1562 const struct caam_export_state *export = in; 1563 1564 memset(state, 0, sizeof(*state)); 1565 memcpy(state->buf, export->buf, export->buflen); 1566 memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx)); 1567 state->buflen = export->buflen; 1568 state->update = export->update; 1569 state->final = export->final; 1570 state->finup = export->finup; 1571 1572 return 0; 1573 } 1574 1575 struct caam_hash_template { 1576 char name[CRYPTO_MAX_ALG_NAME]; 1577 char driver_name[CRYPTO_MAX_ALG_NAME]; 1578 char hmac_name[CRYPTO_MAX_ALG_NAME]; 1579 char hmac_driver_name[CRYPTO_MAX_ALG_NAME]; 1580 unsigned int blocksize; 1581 struct ahash_alg template_ahash; 1582 u32 alg_type; 1583 }; 1584 1585 /* ahash descriptors */ 1586 static struct caam_hash_template driver_hash[] = { 1587 { 1588 .name = "sha1", 1589 .driver_name = "sha1-caam", 1590 .hmac_name = "hmac(sha1)", 1591 .hmac_driver_name = "hmac-sha1-caam", 1592 .blocksize = SHA1_BLOCK_SIZE, 1593 .template_ahash = { 1594 .init = ahash_init, 1595 .update = ahash_update, 1596 .final = ahash_final, 1597 .finup = ahash_finup, 1598 .digest = ahash_digest, 1599 .export = ahash_export, 1600 .import = ahash_import, 1601 .setkey = ahash_setkey, 1602 .halg = { 1603 .digestsize = SHA1_DIGEST_SIZE, 1604 .statesize = sizeof(struct caam_export_state), 1605 }, 1606 }, 1607 .alg_type = OP_ALG_ALGSEL_SHA1, 1608 }, { 1609 .name = "sha224", 1610 .driver_name = "sha224-caam", 1611 .hmac_name = "hmac(sha224)", 1612 .hmac_driver_name = "hmac-sha224-caam", 1613 .blocksize = SHA224_BLOCK_SIZE, 1614 .template_ahash = { 1615 .init = ahash_init, 1616 .update = ahash_update, 1617 .final = ahash_final, 1618 .finup = ahash_finup, 1619 .digest = ahash_digest, 1620 .export = ahash_export, 1621 .import = ahash_import, 1622 .setkey = ahash_setkey, 1623 .halg = { 1624 .digestsize = SHA224_DIGEST_SIZE, 1625 .statesize = sizeof(struct caam_export_state), 1626 }, 1627 }, 1628 .alg_type = OP_ALG_ALGSEL_SHA224, 1629 }, { 1630 .name = "sha256", 1631 .driver_name = "sha256-caam", 1632 .hmac_name = "hmac(sha256)", 1633 .hmac_driver_name = "hmac-sha256-caam", 1634 .blocksize = SHA256_BLOCK_SIZE, 1635 .template_ahash = { 1636 .init = ahash_init, 1637 .update = ahash_update, 1638 .final = ahash_final, 1639 .finup = ahash_finup, 1640 .digest = ahash_digest, 1641 .export = ahash_export, 1642 .import = ahash_import, 1643 .setkey = ahash_setkey, 1644 .halg = { 1645 .digestsize = SHA256_DIGEST_SIZE, 1646 .statesize = sizeof(struct caam_export_state), 1647 }, 1648 }, 1649 .alg_type = OP_ALG_ALGSEL_SHA256, 1650 }, { 1651 .name = "sha384", 1652 .driver_name = "sha384-caam", 1653 .hmac_name = "hmac(sha384)", 1654 .hmac_driver_name = "hmac-sha384-caam", 1655 .blocksize = SHA384_BLOCK_SIZE, 1656 .template_ahash = { 1657 .init = ahash_init, 1658 .update = ahash_update, 1659 .final = ahash_final, 1660 .finup = ahash_finup, 1661 .digest = ahash_digest, 1662 .export = ahash_export, 1663 .import = ahash_import, 1664 .setkey = ahash_setkey, 1665 .halg = { 1666 .digestsize = SHA384_DIGEST_SIZE, 1667 .statesize = sizeof(struct caam_export_state), 1668 }, 1669 }, 1670 .alg_type = OP_ALG_ALGSEL_SHA384, 1671 }, { 1672 .name = "sha512", 1673 .driver_name = "sha512-caam", 1674 .hmac_name = "hmac(sha512)", 1675 .hmac_driver_name = "hmac-sha512-caam", 1676 .blocksize = SHA512_BLOCK_SIZE, 1677 .template_ahash = { 1678 .init = ahash_init, 1679 .update = ahash_update, 1680 .final = ahash_final, 1681 .finup = ahash_finup, 1682 .digest = ahash_digest, 1683 .export = ahash_export, 1684 .import = ahash_import, 1685 .setkey = ahash_setkey, 1686 .halg = { 1687 .digestsize = SHA512_DIGEST_SIZE, 1688 .statesize = sizeof(struct caam_export_state), 1689 }, 1690 }, 1691 .alg_type = OP_ALG_ALGSEL_SHA512, 1692 }, { 1693 .name = "md5", 1694 .driver_name = "md5-caam", 1695 .hmac_name = "hmac(md5)", 1696 .hmac_driver_name = "hmac-md5-caam", 1697 .blocksize = MD5_BLOCK_WORDS * 4, 1698 .template_ahash = { 1699 .init = ahash_init, 1700 .update = ahash_update, 1701 .final = ahash_final, 1702 .finup = ahash_finup, 1703 .digest = ahash_digest, 1704 .export = ahash_export, 1705 .import = ahash_import, 1706 .setkey = ahash_setkey, 1707 .halg = { 1708 .digestsize = MD5_DIGEST_SIZE, 1709 .statesize = sizeof(struct caam_export_state), 1710 }, 1711 }, 1712 .alg_type = OP_ALG_ALGSEL_MD5, 1713 }, { 1714 .hmac_name = "xcbc(aes)", 1715 .hmac_driver_name = "xcbc-aes-caam", 1716 .blocksize = AES_BLOCK_SIZE, 1717 .template_ahash = { 1718 .init = ahash_init, 1719 .update = ahash_update, 1720 .final = ahash_final, 1721 .finup = ahash_finup, 1722 .digest = ahash_digest, 1723 .export = ahash_export, 1724 .import = ahash_import, 1725 .setkey = axcbc_setkey, 1726 .halg = { 1727 .digestsize = AES_BLOCK_SIZE, 1728 .statesize = sizeof(struct caam_export_state), 1729 }, 1730 }, 1731 .alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XCBC_MAC, 1732 }, { 1733 .hmac_name = "cmac(aes)", 1734 .hmac_driver_name = "cmac-aes-caam", 1735 .blocksize = AES_BLOCK_SIZE, 1736 .template_ahash = { 1737 .init = ahash_init, 1738 .update = ahash_update, 1739 .final = ahash_final, 1740 .finup = ahash_finup, 1741 .digest = ahash_digest, 1742 .export = ahash_export, 1743 .import = ahash_import, 1744 .setkey = acmac_setkey, 1745 .halg = { 1746 .digestsize = AES_BLOCK_SIZE, 1747 .statesize = sizeof(struct caam_export_state), 1748 }, 1749 }, 1750 .alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CMAC, 1751 }, 1752 }; 1753 1754 struct caam_hash_alg { 1755 struct list_head entry; 1756 int alg_type; 1757 bool is_hmac; 1758 struct ahash_engine_alg ahash_alg; 1759 }; 1760 1761 static int caam_hash_cra_init(struct crypto_tfm *tfm) 1762 { 1763 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 1764 struct crypto_alg *base = tfm->__crt_alg; 1765 struct hash_alg_common *halg = 1766 container_of(base, struct hash_alg_common, base); 1767 struct ahash_alg *alg = 1768 container_of(halg, struct ahash_alg, halg); 1769 struct caam_hash_alg *caam_hash = 1770 container_of(alg, struct caam_hash_alg, ahash_alg.base); 1771 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1772 /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */ 1773 static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE, 1774 HASH_MSG_LEN + SHA1_DIGEST_SIZE, 1775 HASH_MSG_LEN + 32, 1776 HASH_MSG_LEN + SHA256_DIGEST_SIZE, 1777 HASH_MSG_LEN + 64, 1778 HASH_MSG_LEN + SHA512_DIGEST_SIZE }; 1779 const size_t sh_desc_update_offset = offsetof(struct caam_hash_ctx, 1780 sh_desc_update); 1781 dma_addr_t dma_addr; 1782 struct caam_drv_private *priv; 1783 1784 /* 1785 * Get a Job ring from Job Ring driver to ensure in-order 1786 * crypto request processing per tfm 1787 */ 1788 ctx->jrdev = caam_jr_alloc(); 1789 if (IS_ERR(ctx->jrdev)) { 1790 pr_err("Job Ring Device allocation for transform failed\n"); 1791 return PTR_ERR(ctx->jrdev); 1792 } 1793 1794 priv = dev_get_drvdata(ctx->jrdev->parent); 1795 1796 if (is_xcbc_aes(caam_hash->alg_type)) { 1797 ctx->dir = DMA_TO_DEVICE; 1798 ctx->key_dir = DMA_BIDIRECTIONAL; 1799 ctx->adata.algtype = OP_TYPE_CLASS1_ALG | caam_hash->alg_type; 1800 ctx->ctx_len = 48; 1801 } else if (is_cmac_aes(caam_hash->alg_type)) { 1802 ctx->dir = DMA_TO_DEVICE; 1803 ctx->key_dir = DMA_NONE; 1804 ctx->adata.algtype = OP_TYPE_CLASS1_ALG | caam_hash->alg_type; 1805 ctx->ctx_len = 32; 1806 } else { 1807 if (priv->era >= 6) { 1808 ctx->dir = DMA_BIDIRECTIONAL; 1809 ctx->key_dir = caam_hash->is_hmac ? DMA_TO_DEVICE : DMA_NONE; 1810 } else { 1811 ctx->dir = DMA_TO_DEVICE; 1812 ctx->key_dir = DMA_NONE; 1813 } 1814 ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam_hash->alg_type; 1815 ctx->ctx_len = runninglen[(ctx->adata.algtype & 1816 OP_ALG_ALGSEL_SUBMASK) >> 1817 OP_ALG_ALGSEL_SHIFT]; 1818 } 1819 1820 if (ctx->key_dir != DMA_NONE) { 1821 ctx->adata.key_dma = dma_map_single_attrs(ctx->jrdev, ctx->key, 1822 ARRAY_SIZE(ctx->key), 1823 ctx->key_dir, 1824 DMA_ATTR_SKIP_CPU_SYNC); 1825 if (dma_mapping_error(ctx->jrdev, ctx->adata.key_dma)) { 1826 dev_err(ctx->jrdev, "unable to map key\n"); 1827 caam_jr_free(ctx->jrdev); 1828 return -ENOMEM; 1829 } 1830 } 1831 1832 dma_addr = dma_map_single_attrs(ctx->jrdev, ctx->sh_desc_update, 1833 offsetof(struct caam_hash_ctx, key) - 1834 sh_desc_update_offset, 1835 ctx->dir, DMA_ATTR_SKIP_CPU_SYNC); 1836 if (dma_mapping_error(ctx->jrdev, dma_addr)) { 1837 dev_err(ctx->jrdev, "unable to map shared descriptors\n"); 1838 1839 if (ctx->key_dir != DMA_NONE) 1840 dma_unmap_single_attrs(ctx->jrdev, ctx->adata.key_dma, 1841 ARRAY_SIZE(ctx->key), 1842 ctx->key_dir, 1843 DMA_ATTR_SKIP_CPU_SYNC); 1844 1845 caam_jr_free(ctx->jrdev); 1846 return -ENOMEM; 1847 } 1848 1849 ctx->sh_desc_update_dma = dma_addr; 1850 ctx->sh_desc_update_first_dma = dma_addr + 1851 offsetof(struct caam_hash_ctx, 1852 sh_desc_update_first) - 1853 sh_desc_update_offset; 1854 ctx->sh_desc_fin_dma = dma_addr + offsetof(struct caam_hash_ctx, 1855 sh_desc_fin) - 1856 sh_desc_update_offset; 1857 ctx->sh_desc_digest_dma = dma_addr + offsetof(struct caam_hash_ctx, 1858 sh_desc_digest) - 1859 sh_desc_update_offset; 1860 1861 crypto_ahash_set_reqsize_dma(ahash, sizeof(struct caam_hash_state)); 1862 1863 /* 1864 * For keyed hash algorithms shared descriptors 1865 * will be created later in setkey() callback 1866 */ 1867 return caam_hash->is_hmac ? 0 : ahash_set_sh_desc(ahash); 1868 } 1869 1870 static void caam_hash_cra_exit(struct crypto_tfm *tfm) 1871 { 1872 struct caam_hash_ctx *ctx = crypto_tfm_ctx_dma(tfm); 1873 1874 dma_unmap_single_attrs(ctx->jrdev, ctx->sh_desc_update_dma, 1875 offsetof(struct caam_hash_ctx, key) - 1876 offsetof(struct caam_hash_ctx, sh_desc_update), 1877 ctx->dir, DMA_ATTR_SKIP_CPU_SYNC); 1878 if (ctx->key_dir != DMA_NONE) 1879 dma_unmap_single_attrs(ctx->jrdev, ctx->adata.key_dma, 1880 ARRAY_SIZE(ctx->key), ctx->key_dir, 1881 DMA_ATTR_SKIP_CPU_SYNC); 1882 caam_jr_free(ctx->jrdev); 1883 } 1884 1885 void caam_algapi_hash_exit(void) 1886 { 1887 struct caam_hash_alg *t_alg, *n; 1888 1889 if (!hash_list.next) 1890 return; 1891 1892 list_for_each_entry_safe(t_alg, n, &hash_list, entry) { 1893 crypto_engine_unregister_ahash(&t_alg->ahash_alg); 1894 list_del(&t_alg->entry); 1895 kfree(t_alg); 1896 } 1897 } 1898 1899 static struct caam_hash_alg * 1900 caam_hash_alloc(struct caam_hash_template *template, 1901 bool keyed) 1902 { 1903 struct caam_hash_alg *t_alg; 1904 struct ahash_alg *halg; 1905 struct crypto_alg *alg; 1906 1907 t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL); 1908 if (!t_alg) 1909 return ERR_PTR(-ENOMEM); 1910 1911 t_alg->ahash_alg.base = template->template_ahash; 1912 halg = &t_alg->ahash_alg.base; 1913 alg = &halg->halg.base; 1914 1915 if (keyed) { 1916 snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", 1917 template->hmac_name); 1918 snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", 1919 template->hmac_driver_name); 1920 t_alg->is_hmac = true; 1921 } else { 1922 snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", 1923 template->name); 1924 snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", 1925 template->driver_name); 1926 halg->setkey = NULL; 1927 t_alg->is_hmac = false; 1928 } 1929 alg->cra_module = THIS_MODULE; 1930 alg->cra_init = caam_hash_cra_init; 1931 alg->cra_exit = caam_hash_cra_exit; 1932 alg->cra_ctxsize = sizeof(struct caam_hash_ctx) + crypto_dma_padding(); 1933 alg->cra_priority = CAAM_CRA_PRIORITY; 1934 alg->cra_blocksize = template->blocksize; 1935 alg->cra_alignmask = 0; 1936 alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY; 1937 1938 t_alg->alg_type = template->alg_type; 1939 t_alg->ahash_alg.op.do_one_request = ahash_do_one_req; 1940 1941 return t_alg; 1942 } 1943 1944 int caam_algapi_hash_init(struct device *ctrldev) 1945 { 1946 int i = 0, err = 0; 1947 struct caam_drv_private *priv = dev_get_drvdata(ctrldev); 1948 unsigned int md_limit = SHA512_DIGEST_SIZE; 1949 u32 md_inst, md_vid; 1950 1951 /* 1952 * Register crypto algorithms the device supports. First, identify 1953 * presence and attributes of MD block. 1954 */ 1955 if (priv->era < 10) { 1956 struct caam_perfmon __iomem *perfmon = &priv->jr[0]->perfmon; 1957 1958 md_vid = (rd_reg32(&perfmon->cha_id_ls) & 1959 CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT; 1960 md_inst = (rd_reg32(&perfmon->cha_num_ls) & 1961 CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT; 1962 } else { 1963 u32 mdha = rd_reg32(&priv->jr[0]->vreg.mdha); 1964 1965 md_vid = (mdha & CHA_VER_VID_MASK) >> CHA_VER_VID_SHIFT; 1966 md_inst = mdha & CHA_VER_NUM_MASK; 1967 } 1968 1969 /* 1970 * Skip registration of any hashing algorithms if MD block 1971 * is not present. 1972 */ 1973 if (!md_inst) 1974 return 0; 1975 1976 /* Limit digest size based on LP256 */ 1977 if (md_vid == CHA_VER_VID_MD_LP256) 1978 md_limit = SHA256_DIGEST_SIZE; 1979 1980 INIT_LIST_HEAD(&hash_list); 1981 1982 /* register crypto algorithms the device supports */ 1983 for (i = 0; i < ARRAY_SIZE(driver_hash); i++) { 1984 struct caam_hash_alg *t_alg; 1985 struct caam_hash_template *alg = driver_hash + i; 1986 1987 /* If MD size is not supported by device, skip registration */ 1988 if (is_mdha(alg->alg_type) && 1989 alg->template_ahash.halg.digestsize > md_limit) 1990 continue; 1991 1992 /* register hmac version */ 1993 t_alg = caam_hash_alloc(alg, true); 1994 if (IS_ERR(t_alg)) { 1995 err = PTR_ERR(t_alg); 1996 pr_warn("%s alg allocation failed\n", 1997 alg->hmac_driver_name); 1998 continue; 1999 } 2000 2001 err = crypto_engine_register_ahash(&t_alg->ahash_alg); 2002 if (err) { 2003 pr_warn("%s alg registration failed: %d\n", 2004 t_alg->ahash_alg.base.halg.base.cra_driver_name, 2005 err); 2006 kfree(t_alg); 2007 } else 2008 list_add_tail(&t_alg->entry, &hash_list); 2009 2010 if ((alg->alg_type & OP_ALG_ALGSEL_MASK) == OP_ALG_ALGSEL_AES) 2011 continue; 2012 2013 /* register unkeyed version */ 2014 t_alg = caam_hash_alloc(alg, false); 2015 if (IS_ERR(t_alg)) { 2016 err = PTR_ERR(t_alg); 2017 pr_warn("%s alg allocation failed\n", alg->driver_name); 2018 continue; 2019 } 2020 2021 err = crypto_engine_register_ahash(&t_alg->ahash_alg); 2022 if (err) { 2023 pr_warn("%s alg registration failed: %d\n", 2024 t_alg->ahash_alg.base.halg.base.cra_driver_name, 2025 err); 2026 kfree(t_alg); 2027 } else 2028 list_add_tail(&t_alg->entry, &hash_list); 2029 } 2030 2031 return err; 2032 } 2033