1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * caam - Freescale FSL CAAM support for ahash functions of crypto API 4 * 5 * Copyright 2011 Freescale Semiconductor, Inc. 6 * Copyright 2018-2019, 2023 NXP 7 * 8 * Based on caamalg.c crypto API driver. 9 * 10 * relationship of digest job descriptor or first job descriptor after init to 11 * shared descriptors: 12 * 13 * --------------- --------------- 14 * | JobDesc #1 |-------------------->| ShareDesc | 15 * | *(packet 1) | | (hashKey) | 16 * --------------- | (operation) | 17 * --------------- 18 * 19 * relationship of subsequent job descriptors to shared descriptors: 20 * 21 * --------------- --------------- 22 * | JobDesc #2 |-------------------->| ShareDesc | 23 * | *(packet 2) | |------------->| (hashKey) | 24 * --------------- | |-------->| (operation) | 25 * . | | | (load ctx2) | 26 * . | | --------------- 27 * --------------- | | 28 * | JobDesc #3 |------| | 29 * | *(packet 3) | | 30 * --------------- | 31 * . | 32 * . | 33 * --------------- | 34 * | JobDesc #4 |------------ 35 * | *(packet 4) | 36 * --------------- 37 * 38 * The SharedDesc never changes for a connection unless rekeyed, but 39 * each packet will likely be in a different place. So all we need 40 * to know to process the packet is where the input is, where the 41 * output goes, and what context we want to process with. Context is 42 * in the SharedDesc, packet references in the JobDesc. 43 * 44 * So, a job desc looks like: 45 * 46 * --------------------- 47 * | Header | 48 * | ShareDesc Pointer | 49 * | SEQ_OUT_PTR | 50 * | (output buffer) | 51 * | (output length) | 52 * | SEQ_IN_PTR | 53 * | (input buffer) | 54 * | (input length) | 55 * --------------------- 56 */ 57 58 #include "compat.h" 59 60 #include "regs.h" 61 #include "intern.h" 62 #include "desc_constr.h" 63 #include "jr.h" 64 #include "error.h" 65 #include "sg_sw_sec4.h" 66 #include "key_gen.h" 67 #include "caamhash_desc.h" 68 #include <crypto/internal/engine.h> 69 #include <crypto/internal/hash.h> 70 #include <linux/dma-mapping.h> 71 #include <linux/err.h> 72 #include <linux/kernel.h> 73 #include <linux/slab.h> 74 #include <linux/string.h> 75 76 #define CAAM_CRA_PRIORITY 3000 77 78 /* max hash key is max split key size */ 79 #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2) 80 81 #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE 82 #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE 83 84 #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \ 85 CAAM_MAX_HASH_KEY_SIZE) 86 #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ) 87 88 /* caam context sizes for hashes: running digest + 8 */ 89 #define HASH_MSG_LEN 8 90 #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE) 91 92 static struct list_head hash_list; 93 94 /* ahash per-session context */ 95 struct caam_hash_ctx { 96 u32 sh_desc_update[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; 97 u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; 98 u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; 99 u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; 100 u8 key[CAAM_MAX_HASH_KEY_SIZE] ____cacheline_aligned; 101 dma_addr_t sh_desc_update_dma ____cacheline_aligned; 102 dma_addr_t sh_desc_update_first_dma; 103 dma_addr_t sh_desc_fin_dma; 104 dma_addr_t sh_desc_digest_dma; 105 enum dma_data_direction dir; 106 enum dma_data_direction key_dir; 107 struct device *jrdev; 108 int ctx_len; 109 struct alginfo adata; 110 }; 111 112 /* ahash state */ 113 struct caam_hash_state { 114 dma_addr_t buf_dma; 115 dma_addr_t ctx_dma; 116 int ctx_dma_len; 117 u8 buf[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned; 118 int buflen; 119 int next_buflen; 120 u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned; 121 int (*update)(struct ahash_request *req) ____cacheline_aligned; 122 int (*final)(struct ahash_request *req); 123 int (*finup)(struct ahash_request *req); 124 struct ahash_edesc *edesc; 125 void (*ahash_op_done)(struct device *jrdev, u32 *desc, u32 err, 126 void *context); 127 }; 128 129 struct caam_export_state { 130 u8 buf[CAAM_MAX_HASH_BLOCK_SIZE]; 131 u8 caam_ctx[MAX_CTX_LEN]; 132 int buflen; 133 int (*update)(struct ahash_request *req); 134 int (*final)(struct ahash_request *req); 135 int (*finup)(struct ahash_request *req); 136 }; 137 138 static inline bool is_cmac_aes(u32 algtype) 139 { 140 return (algtype & (OP_ALG_ALGSEL_MASK | OP_ALG_AAI_MASK)) == 141 (OP_ALG_ALGSEL_AES | OP_ALG_AAI_CMAC); 142 } 143 /* Common job descriptor seq in/out ptr routines */ 144 145 /* Map state->caam_ctx, and append seq_out_ptr command that points to it */ 146 static inline int map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev, 147 struct caam_hash_state *state, 148 int ctx_len) 149 { 150 state->ctx_dma_len = ctx_len; 151 state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, 152 ctx_len, DMA_FROM_DEVICE); 153 if (dma_mapping_error(jrdev, state->ctx_dma)) { 154 dev_err(jrdev, "unable to map ctx\n"); 155 state->ctx_dma = 0; 156 return -ENOMEM; 157 } 158 159 append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0); 160 161 return 0; 162 } 163 164 /* Map current buffer in state (if length > 0) and put it in link table */ 165 static inline int buf_map_to_sec4_sg(struct device *jrdev, 166 struct sec4_sg_entry *sec4_sg, 167 struct caam_hash_state *state) 168 { 169 int buflen = state->buflen; 170 171 if (!buflen) 172 return 0; 173 174 state->buf_dma = dma_map_single(jrdev, state->buf, buflen, 175 DMA_TO_DEVICE); 176 if (dma_mapping_error(jrdev, state->buf_dma)) { 177 dev_err(jrdev, "unable to map buf\n"); 178 state->buf_dma = 0; 179 return -ENOMEM; 180 } 181 182 dma_to_sec4_sg_one(sec4_sg, state->buf_dma, buflen, 0); 183 184 return 0; 185 } 186 187 /* Map state->caam_ctx, and add it to link table */ 188 static inline int ctx_map_to_sec4_sg(struct device *jrdev, 189 struct caam_hash_state *state, int ctx_len, 190 struct sec4_sg_entry *sec4_sg, u32 flag) 191 { 192 state->ctx_dma_len = ctx_len; 193 state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag); 194 if (dma_mapping_error(jrdev, state->ctx_dma)) { 195 dev_err(jrdev, "unable to map ctx\n"); 196 state->ctx_dma = 0; 197 return -ENOMEM; 198 } 199 200 dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0); 201 202 return 0; 203 } 204 205 static int ahash_set_sh_desc(struct crypto_ahash *ahash) 206 { 207 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 208 int digestsize = crypto_ahash_digestsize(ahash); 209 struct device *jrdev = ctx->jrdev; 210 struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent); 211 u32 *desc; 212 213 ctx->adata.key_virt = ctx->key; 214 215 /* ahash_update shared descriptor */ 216 desc = ctx->sh_desc_update; 217 cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_UPDATE, ctx->ctx_len, 218 ctx->ctx_len, true, ctrlpriv->era); 219 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma, 220 desc_bytes(desc), ctx->dir); 221 222 print_hex_dump_debug("ahash update shdesc@"__stringify(__LINE__)": ", 223 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 224 1); 225 226 /* ahash_update_first shared descriptor */ 227 desc = ctx->sh_desc_update_first; 228 cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len, 229 ctx->ctx_len, false, ctrlpriv->era); 230 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma, 231 desc_bytes(desc), ctx->dir); 232 print_hex_dump_debug("ahash update first shdesc@"__stringify(__LINE__) 233 ": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, 234 desc_bytes(desc), 1); 235 236 /* ahash_final shared descriptor */ 237 desc = ctx->sh_desc_fin; 238 cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, digestsize, 239 ctx->ctx_len, true, ctrlpriv->era); 240 dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma, 241 desc_bytes(desc), ctx->dir); 242 243 print_hex_dump_debug("ahash final shdesc@"__stringify(__LINE__)": ", 244 DUMP_PREFIX_ADDRESS, 16, 4, desc, 245 desc_bytes(desc), 1); 246 247 /* ahash_digest shared descriptor */ 248 desc = ctx->sh_desc_digest; 249 cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, digestsize, 250 ctx->ctx_len, false, ctrlpriv->era); 251 dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma, 252 desc_bytes(desc), ctx->dir); 253 254 print_hex_dump_debug("ahash digest shdesc@"__stringify(__LINE__)": ", 255 DUMP_PREFIX_ADDRESS, 16, 4, desc, 256 desc_bytes(desc), 1); 257 258 return 0; 259 } 260 261 static int axcbc_set_sh_desc(struct crypto_ahash *ahash) 262 { 263 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 264 int digestsize = crypto_ahash_digestsize(ahash); 265 struct device *jrdev = ctx->jrdev; 266 u32 *desc; 267 268 /* shared descriptor for ahash_update */ 269 desc = ctx->sh_desc_update; 270 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_UPDATE, 271 ctx->ctx_len, ctx->ctx_len); 272 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma, 273 desc_bytes(desc), ctx->dir); 274 print_hex_dump_debug("axcbc update shdesc@" __stringify(__LINE__)" : ", 275 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 276 1); 277 278 /* shared descriptor for ahash_{final,finup} */ 279 desc = ctx->sh_desc_fin; 280 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, 281 digestsize, ctx->ctx_len); 282 dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma, 283 desc_bytes(desc), ctx->dir); 284 print_hex_dump_debug("axcbc finup shdesc@" __stringify(__LINE__)" : ", 285 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 286 1); 287 288 /* key is immediate data for INIT and INITFINAL states */ 289 ctx->adata.key_virt = ctx->key; 290 291 /* shared descriptor for first invocation of ahash_update */ 292 desc = ctx->sh_desc_update_first; 293 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len, 294 ctx->ctx_len); 295 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma, 296 desc_bytes(desc), ctx->dir); 297 print_hex_dump_debug("axcbc update first shdesc@" __stringify(__LINE__) 298 " : ", DUMP_PREFIX_ADDRESS, 16, 4, desc, 299 desc_bytes(desc), 1); 300 301 /* shared descriptor for ahash_digest */ 302 desc = ctx->sh_desc_digest; 303 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, 304 digestsize, ctx->ctx_len); 305 dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma, 306 desc_bytes(desc), ctx->dir); 307 print_hex_dump_debug("axcbc digest shdesc@" __stringify(__LINE__)" : ", 308 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 309 1); 310 return 0; 311 } 312 313 static int acmac_set_sh_desc(struct crypto_ahash *ahash) 314 { 315 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 316 int digestsize = crypto_ahash_digestsize(ahash); 317 struct device *jrdev = ctx->jrdev; 318 u32 *desc; 319 320 /* shared descriptor for ahash_update */ 321 desc = ctx->sh_desc_update; 322 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_UPDATE, 323 ctx->ctx_len, ctx->ctx_len); 324 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma, 325 desc_bytes(desc), ctx->dir); 326 print_hex_dump_debug("acmac update shdesc@" __stringify(__LINE__)" : ", 327 DUMP_PREFIX_ADDRESS, 16, 4, desc, 328 desc_bytes(desc), 1); 329 330 /* shared descriptor for ahash_{final,finup} */ 331 desc = ctx->sh_desc_fin; 332 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, 333 digestsize, ctx->ctx_len); 334 dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma, 335 desc_bytes(desc), ctx->dir); 336 print_hex_dump_debug("acmac finup shdesc@" __stringify(__LINE__)" : ", 337 DUMP_PREFIX_ADDRESS, 16, 4, desc, 338 desc_bytes(desc), 1); 339 340 /* shared descriptor for first invocation of ahash_update */ 341 desc = ctx->sh_desc_update_first; 342 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len, 343 ctx->ctx_len); 344 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma, 345 desc_bytes(desc), ctx->dir); 346 print_hex_dump_debug("acmac update first shdesc@" __stringify(__LINE__) 347 " : ", DUMP_PREFIX_ADDRESS, 16, 4, desc, 348 desc_bytes(desc), 1); 349 350 /* shared descriptor for ahash_digest */ 351 desc = ctx->sh_desc_digest; 352 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, 353 digestsize, ctx->ctx_len); 354 dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma, 355 desc_bytes(desc), ctx->dir); 356 print_hex_dump_debug("acmac digest shdesc@" __stringify(__LINE__)" : ", 357 DUMP_PREFIX_ADDRESS, 16, 4, desc, 358 desc_bytes(desc), 1); 359 360 return 0; 361 } 362 363 /* Digest hash size if it is too large */ 364 static int hash_digest_key(struct caam_hash_ctx *ctx, u32 *keylen, u8 *key, 365 u32 digestsize) 366 { 367 struct device *jrdev = ctx->jrdev; 368 u32 *desc; 369 struct split_key_result result; 370 dma_addr_t key_dma; 371 int ret; 372 373 desc = kmalloc(CAAM_CMD_SZ * 8 + CAAM_PTR_SZ * 2, GFP_KERNEL); 374 if (!desc) 375 return -ENOMEM; 376 377 init_job_desc(desc, 0); 378 379 key_dma = dma_map_single(jrdev, key, *keylen, DMA_BIDIRECTIONAL); 380 if (dma_mapping_error(jrdev, key_dma)) { 381 dev_err(jrdev, "unable to map key memory\n"); 382 kfree(desc); 383 return -ENOMEM; 384 } 385 386 /* Job descriptor to perform unkeyed hash on key_in */ 387 append_operation(desc, ctx->adata.algtype | OP_ALG_ENCRYPT | 388 OP_ALG_AS_INITFINAL); 389 append_seq_in_ptr(desc, key_dma, *keylen, 0); 390 append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 | 391 FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG); 392 append_seq_out_ptr(desc, key_dma, digestsize, 0); 393 append_seq_store(desc, digestsize, LDST_CLASS_2_CCB | 394 LDST_SRCDST_BYTE_CONTEXT); 395 396 print_hex_dump_debug("key_in@"__stringify(__LINE__)": ", 397 DUMP_PREFIX_ADDRESS, 16, 4, key, *keylen, 1); 398 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 399 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 400 1); 401 402 result.err = 0; 403 init_completion(&result.completion); 404 405 ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result); 406 if (ret == -EINPROGRESS) { 407 /* in progress */ 408 wait_for_completion(&result.completion); 409 ret = result.err; 410 411 print_hex_dump_debug("digested key@"__stringify(__LINE__)": ", 412 DUMP_PREFIX_ADDRESS, 16, 4, key, 413 digestsize, 1); 414 } 415 dma_unmap_single(jrdev, key_dma, *keylen, DMA_BIDIRECTIONAL); 416 417 *keylen = digestsize; 418 419 kfree(desc); 420 421 return ret; 422 } 423 424 static int ahash_setkey(struct crypto_ahash *ahash, 425 const u8 *key, unsigned int keylen) 426 { 427 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 428 struct device *jrdev = ctx->jrdev; 429 int blocksize = crypto_tfm_alg_blocksize(&ahash->base); 430 int digestsize = crypto_ahash_digestsize(ahash); 431 struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctx->jrdev->parent); 432 int ret; 433 u8 *hashed_key = NULL; 434 435 dev_dbg(jrdev, "keylen %d\n", keylen); 436 437 if (keylen > blocksize) { 438 unsigned int aligned_len = 439 ALIGN(keylen, dma_get_cache_alignment()); 440 441 if (aligned_len < keylen) 442 return -EOVERFLOW; 443 444 hashed_key = kmemdup(key, keylen, GFP_KERNEL); 445 if (!hashed_key) 446 return -ENOMEM; 447 ret = hash_digest_key(ctx, &keylen, hashed_key, digestsize); 448 if (ret) 449 goto bad_free_key; 450 key = hashed_key; 451 } 452 453 /* 454 * If DKP is supported, use it in the shared descriptor to generate 455 * the split key. 456 */ 457 if (ctrlpriv->era >= 6) { 458 ctx->adata.key_inline = true; 459 ctx->adata.keylen = keylen; 460 ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype & 461 OP_ALG_ALGSEL_MASK); 462 463 if (ctx->adata.keylen_pad > CAAM_MAX_HASH_KEY_SIZE) 464 goto bad_free_key; 465 466 memcpy(ctx->key, key, keylen); 467 468 /* 469 * In case |user key| > |derived key|, using DKP<imm,imm> 470 * would result in invalid opcodes (last bytes of user key) in 471 * the resulting descriptor. Use DKP<ptr,imm> instead => both 472 * virtual and dma key addresses are needed. 473 */ 474 if (keylen > ctx->adata.keylen_pad) 475 dma_sync_single_for_device(ctx->jrdev, 476 ctx->adata.key_dma, 477 ctx->adata.keylen_pad, 478 DMA_TO_DEVICE); 479 } else { 480 ret = gen_split_key(ctx->jrdev, ctx->key, &ctx->adata, key, 481 keylen, CAAM_MAX_HASH_KEY_SIZE); 482 if (ret) 483 goto bad_free_key; 484 } 485 486 kfree(hashed_key); 487 return ahash_set_sh_desc(ahash); 488 bad_free_key: 489 kfree(hashed_key); 490 return -EINVAL; 491 } 492 493 static int axcbc_setkey(struct crypto_ahash *ahash, const u8 *key, 494 unsigned int keylen) 495 { 496 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 497 struct device *jrdev = ctx->jrdev; 498 499 if (keylen != AES_KEYSIZE_128) 500 return -EINVAL; 501 502 memcpy(ctx->key, key, keylen); 503 dma_sync_single_for_device(jrdev, ctx->adata.key_dma, keylen, 504 DMA_TO_DEVICE); 505 ctx->adata.keylen = keylen; 506 507 print_hex_dump_debug("axcbc ctx.key@" __stringify(__LINE__)" : ", 508 DUMP_PREFIX_ADDRESS, 16, 4, ctx->key, keylen, 1); 509 510 return axcbc_set_sh_desc(ahash); 511 } 512 513 static int acmac_setkey(struct crypto_ahash *ahash, const u8 *key, 514 unsigned int keylen) 515 { 516 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 517 int err; 518 519 err = aes_check_keylen(keylen); 520 if (err) 521 return err; 522 523 /* key is immediate data for all cmac shared descriptors */ 524 ctx->adata.key_virt = key; 525 ctx->adata.keylen = keylen; 526 527 print_hex_dump_debug("acmac ctx.key@" __stringify(__LINE__)" : ", 528 DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); 529 530 return acmac_set_sh_desc(ahash); 531 } 532 533 /* 534 * ahash_edesc - s/w-extended ahash descriptor 535 * @sec4_sg_dma: physical mapped address of h/w link table 536 * @src_nents: number of segments in input scatterlist 537 * @sec4_sg_bytes: length of dma mapped sec4_sg space 538 * @bklog: stored to determine if the request needs backlog 539 * @hw_desc: the h/w job descriptor followed by any referenced link tables 540 * @sec4_sg: h/w link table 541 */ 542 struct ahash_edesc { 543 dma_addr_t sec4_sg_dma; 544 int src_nents; 545 int sec4_sg_bytes; 546 bool bklog; 547 u32 hw_desc[DESC_JOB_IO_LEN_MAX / sizeof(u32)] ____cacheline_aligned; 548 struct sec4_sg_entry sec4_sg[]; 549 }; 550 551 static inline void ahash_unmap(struct device *dev, 552 struct ahash_edesc *edesc, 553 struct ahash_request *req, int dst_len) 554 { 555 struct caam_hash_state *state = ahash_request_ctx_dma(req); 556 557 if (edesc->src_nents) 558 dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE); 559 560 if (edesc->sec4_sg_bytes) 561 dma_unmap_single(dev, edesc->sec4_sg_dma, 562 edesc->sec4_sg_bytes, DMA_TO_DEVICE); 563 564 if (state->buf_dma) { 565 dma_unmap_single(dev, state->buf_dma, state->buflen, 566 DMA_TO_DEVICE); 567 state->buf_dma = 0; 568 } 569 } 570 571 static inline void ahash_unmap_ctx(struct device *dev, 572 struct ahash_edesc *edesc, 573 struct ahash_request *req, int dst_len, u32 flag) 574 { 575 struct caam_hash_state *state = ahash_request_ctx_dma(req); 576 577 if (state->ctx_dma) { 578 dma_unmap_single(dev, state->ctx_dma, state->ctx_dma_len, flag); 579 state->ctx_dma = 0; 580 } 581 ahash_unmap(dev, edesc, req, dst_len); 582 } 583 584 static inline void ahash_done_cpy(struct device *jrdev, u32 *desc, u32 err, 585 void *context, enum dma_data_direction dir) 586 { 587 struct ahash_request *req = context; 588 struct caam_drv_private_jr *jrp = dev_get_drvdata(jrdev); 589 struct ahash_edesc *edesc; 590 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 591 int digestsize = crypto_ahash_digestsize(ahash); 592 struct caam_hash_state *state = ahash_request_ctx_dma(req); 593 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 594 int ecode = 0; 595 bool has_bklog; 596 597 dev_dbg(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err); 598 599 edesc = state->edesc; 600 has_bklog = edesc->bklog; 601 602 if (err) 603 ecode = caam_jr_strstatus(jrdev, err); 604 605 ahash_unmap_ctx(jrdev, edesc, req, digestsize, dir); 606 memcpy(req->result, state->caam_ctx, digestsize); 607 kfree(edesc); 608 609 print_hex_dump_debug("ctx@"__stringify(__LINE__)": ", 610 DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx, 611 ctx->ctx_len, 1); 612 613 /* 614 * If no backlog flag, the completion of the request is done 615 * by CAAM, not crypto engine. 616 */ 617 if (!has_bklog) 618 ahash_request_complete(req, ecode); 619 else 620 crypto_finalize_hash_request(jrp->engine, req, ecode); 621 } 622 623 static void ahash_done(struct device *jrdev, u32 *desc, u32 err, 624 void *context) 625 { 626 ahash_done_cpy(jrdev, desc, err, context, DMA_FROM_DEVICE); 627 } 628 629 static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err, 630 void *context) 631 { 632 ahash_done_cpy(jrdev, desc, err, context, DMA_BIDIRECTIONAL); 633 } 634 635 static inline void ahash_done_switch(struct device *jrdev, u32 *desc, u32 err, 636 void *context, enum dma_data_direction dir) 637 { 638 struct ahash_request *req = context; 639 struct caam_drv_private_jr *jrp = dev_get_drvdata(jrdev); 640 struct ahash_edesc *edesc; 641 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 642 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 643 struct caam_hash_state *state = ahash_request_ctx_dma(req); 644 int digestsize = crypto_ahash_digestsize(ahash); 645 int ecode = 0; 646 bool has_bklog; 647 648 dev_dbg(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err); 649 650 edesc = state->edesc; 651 has_bklog = edesc->bklog; 652 if (err) 653 ecode = caam_jr_strstatus(jrdev, err); 654 655 ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, dir); 656 kfree(edesc); 657 658 scatterwalk_map_and_copy(state->buf, req->src, 659 req->nbytes - state->next_buflen, 660 state->next_buflen, 0); 661 state->buflen = state->next_buflen; 662 663 print_hex_dump_debug("buf@" __stringify(__LINE__)": ", 664 DUMP_PREFIX_ADDRESS, 16, 4, state->buf, 665 state->buflen, 1); 666 667 print_hex_dump_debug("ctx@"__stringify(__LINE__)": ", 668 DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx, 669 ctx->ctx_len, 1); 670 if (req->result) 671 print_hex_dump_debug("result@"__stringify(__LINE__)": ", 672 DUMP_PREFIX_ADDRESS, 16, 4, req->result, 673 digestsize, 1); 674 675 /* 676 * If no backlog flag, the completion of the request is done 677 * by CAAM, not crypto engine. 678 */ 679 if (!has_bklog) 680 ahash_request_complete(req, ecode); 681 else 682 crypto_finalize_hash_request(jrp->engine, req, ecode); 683 684 } 685 686 static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err, 687 void *context) 688 { 689 ahash_done_switch(jrdev, desc, err, context, DMA_BIDIRECTIONAL); 690 } 691 692 static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err, 693 void *context) 694 { 695 ahash_done_switch(jrdev, desc, err, context, DMA_FROM_DEVICE); 696 } 697 698 /* 699 * Allocate an enhanced descriptor, which contains the hardware descriptor 700 * and space for hardware scatter table containing sg_num entries. 701 */ 702 static struct ahash_edesc *ahash_edesc_alloc(struct ahash_request *req, 703 int sg_num, u32 *sh_desc, 704 dma_addr_t sh_desc_dma) 705 { 706 struct caam_hash_state *state = ahash_request_ctx_dma(req); 707 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? 708 GFP_KERNEL : GFP_ATOMIC; 709 struct ahash_edesc *edesc; 710 711 edesc = kzalloc(struct_size(edesc, sec4_sg, sg_num), flags); 712 if (!edesc) 713 return NULL; 714 715 state->edesc = edesc; 716 717 init_job_desc_shared(edesc->hw_desc, sh_desc_dma, desc_len(sh_desc), 718 HDR_SHARE_DEFER | HDR_REVERSE); 719 720 return edesc; 721 } 722 723 static int ahash_edesc_add_src(struct caam_hash_ctx *ctx, 724 struct ahash_edesc *edesc, 725 struct ahash_request *req, int nents, 726 unsigned int first_sg, 727 unsigned int first_bytes, size_t to_hash) 728 { 729 dma_addr_t src_dma; 730 u32 options; 731 732 if (nents > 1 || first_sg) { 733 struct sec4_sg_entry *sg = edesc->sec4_sg; 734 unsigned int sgsize = sizeof(*sg) * 735 pad_sg_nents(first_sg + nents); 736 737 sg_to_sec4_sg_last(req->src, to_hash, sg + first_sg, 0); 738 739 src_dma = dma_map_single(ctx->jrdev, sg, sgsize, DMA_TO_DEVICE); 740 if (dma_mapping_error(ctx->jrdev, src_dma)) { 741 dev_err(ctx->jrdev, "unable to map S/G table\n"); 742 return -ENOMEM; 743 } 744 745 edesc->sec4_sg_bytes = sgsize; 746 edesc->sec4_sg_dma = src_dma; 747 options = LDST_SGF; 748 } else { 749 src_dma = sg_dma_address(req->src); 750 options = 0; 751 } 752 753 append_seq_in_ptr(edesc->hw_desc, src_dma, first_bytes + to_hash, 754 options); 755 756 return 0; 757 } 758 759 static int ahash_do_one_req(struct crypto_engine *engine, void *areq) 760 { 761 struct ahash_request *req = ahash_request_cast(areq); 762 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(crypto_ahash_reqtfm(req)); 763 struct caam_hash_state *state = ahash_request_ctx_dma(req); 764 struct device *jrdev = ctx->jrdev; 765 u32 *desc = state->edesc->hw_desc; 766 int ret; 767 768 state->edesc->bklog = true; 769 770 ret = caam_jr_enqueue(jrdev, desc, state->ahash_op_done, req); 771 772 if (ret == -ENOSPC && engine->retry_support) 773 return ret; 774 775 if (ret != -EINPROGRESS) { 776 ahash_unmap(jrdev, state->edesc, req, 0); 777 kfree(state->edesc); 778 } else { 779 ret = 0; 780 } 781 782 return ret; 783 } 784 785 static int ahash_enqueue_req(struct device *jrdev, 786 void (*cbk)(struct device *jrdev, u32 *desc, 787 u32 err, void *context), 788 struct ahash_request *req, 789 int dst_len, enum dma_data_direction dir) 790 { 791 struct caam_drv_private_jr *jrpriv = dev_get_drvdata(jrdev); 792 struct caam_hash_state *state = ahash_request_ctx_dma(req); 793 struct ahash_edesc *edesc = state->edesc; 794 u32 *desc = edesc->hw_desc; 795 int ret; 796 797 state->ahash_op_done = cbk; 798 799 /* 800 * Only the backlog request are sent to crypto-engine since the others 801 * can be handled by CAAM, if free, especially since JR has up to 1024 802 * entries (more than the 10 entries from crypto-engine). 803 */ 804 if (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG) 805 ret = crypto_transfer_hash_request_to_engine(jrpriv->engine, 806 req); 807 else 808 ret = caam_jr_enqueue(jrdev, desc, cbk, req); 809 810 if ((ret != -EINPROGRESS) && (ret != -EBUSY)) { 811 ahash_unmap_ctx(jrdev, edesc, req, dst_len, dir); 812 kfree(edesc); 813 } 814 815 return ret; 816 } 817 818 /* submit update job descriptor */ 819 static int ahash_update_ctx(struct ahash_request *req) 820 { 821 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 822 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 823 struct caam_hash_state *state = ahash_request_ctx_dma(req); 824 struct device *jrdev = ctx->jrdev; 825 u8 *buf = state->buf; 826 int *buflen = &state->buflen; 827 int *next_buflen = &state->next_buflen; 828 int blocksize = crypto_ahash_blocksize(ahash); 829 int in_len = *buflen + req->nbytes, to_hash; 830 u32 *desc; 831 int src_nents, mapped_nents, sec4_sg_bytes, sec4_sg_src_index; 832 struct ahash_edesc *edesc; 833 int ret = 0; 834 835 *next_buflen = in_len & (blocksize - 1); 836 to_hash = in_len - *next_buflen; 837 838 /* 839 * For XCBC and CMAC, if to_hash is multiple of block size, 840 * keep last block in internal buffer 841 */ 842 if ((is_xcbc_aes(ctx->adata.algtype) || 843 is_cmac_aes(ctx->adata.algtype)) && to_hash >= blocksize && 844 (*next_buflen == 0)) { 845 *next_buflen = blocksize; 846 to_hash -= blocksize; 847 } 848 849 if (to_hash) { 850 int pad_nents; 851 int src_len = req->nbytes - *next_buflen; 852 853 src_nents = sg_nents_for_len(req->src, src_len); 854 if (src_nents < 0) { 855 dev_err(jrdev, "Invalid number of src SG.\n"); 856 return src_nents; 857 } 858 859 if (src_nents) { 860 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 861 DMA_TO_DEVICE); 862 if (!mapped_nents) { 863 dev_err(jrdev, "unable to DMA map source\n"); 864 return -ENOMEM; 865 } 866 } else { 867 mapped_nents = 0; 868 } 869 870 sec4_sg_src_index = 1 + (*buflen ? 1 : 0); 871 pad_nents = pad_sg_nents(sec4_sg_src_index + mapped_nents); 872 sec4_sg_bytes = pad_nents * sizeof(struct sec4_sg_entry); 873 874 /* 875 * allocate space for base edesc and hw desc commands, 876 * link tables 877 */ 878 edesc = ahash_edesc_alloc(req, pad_nents, ctx->sh_desc_update, 879 ctx->sh_desc_update_dma); 880 if (!edesc) { 881 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 882 return -ENOMEM; 883 } 884 885 edesc->src_nents = src_nents; 886 edesc->sec4_sg_bytes = sec4_sg_bytes; 887 888 ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len, 889 edesc->sec4_sg, DMA_BIDIRECTIONAL); 890 if (ret) 891 goto unmap_ctx; 892 893 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state); 894 if (ret) 895 goto unmap_ctx; 896 897 if (mapped_nents) 898 sg_to_sec4_sg_last(req->src, src_len, 899 edesc->sec4_sg + sec4_sg_src_index, 900 0); 901 else 902 sg_to_sec4_set_last(edesc->sec4_sg + sec4_sg_src_index - 903 1); 904 905 desc = edesc->hw_desc; 906 907 edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, 908 sec4_sg_bytes, 909 DMA_TO_DEVICE); 910 if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) { 911 dev_err(jrdev, "unable to map S/G table\n"); 912 ret = -ENOMEM; 913 goto unmap_ctx; 914 } 915 916 append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + 917 to_hash, LDST_SGF); 918 919 append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0); 920 921 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 922 DUMP_PREFIX_ADDRESS, 16, 4, desc, 923 desc_bytes(desc), 1); 924 925 ret = ahash_enqueue_req(jrdev, ahash_done_bi, req, 926 ctx->ctx_len, DMA_BIDIRECTIONAL); 927 } else if (*next_buflen) { 928 scatterwalk_map_and_copy(buf + *buflen, req->src, 0, 929 req->nbytes, 0); 930 *buflen = *next_buflen; 931 932 print_hex_dump_debug("buf@" __stringify(__LINE__)": ", 933 DUMP_PREFIX_ADDRESS, 16, 4, buf, 934 *buflen, 1); 935 } 936 937 return ret; 938 unmap_ctx: 939 ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL); 940 kfree(edesc); 941 return ret; 942 } 943 944 static int ahash_final_ctx(struct ahash_request *req) 945 { 946 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 947 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 948 struct caam_hash_state *state = ahash_request_ctx_dma(req); 949 struct device *jrdev = ctx->jrdev; 950 int buflen = state->buflen; 951 u32 *desc; 952 int sec4_sg_bytes; 953 int digestsize = crypto_ahash_digestsize(ahash); 954 struct ahash_edesc *edesc; 955 int ret; 956 957 sec4_sg_bytes = pad_sg_nents(1 + (buflen ? 1 : 0)) * 958 sizeof(struct sec4_sg_entry); 959 960 /* allocate space for base edesc and hw desc commands, link tables */ 961 edesc = ahash_edesc_alloc(req, 4, ctx->sh_desc_fin, 962 ctx->sh_desc_fin_dma); 963 if (!edesc) 964 return -ENOMEM; 965 966 desc = edesc->hw_desc; 967 968 edesc->sec4_sg_bytes = sec4_sg_bytes; 969 970 ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len, 971 edesc->sec4_sg, DMA_BIDIRECTIONAL); 972 if (ret) 973 goto unmap_ctx; 974 975 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state); 976 if (ret) 977 goto unmap_ctx; 978 979 sg_to_sec4_set_last(edesc->sec4_sg + (buflen ? 1 : 0)); 980 981 edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, 982 sec4_sg_bytes, DMA_TO_DEVICE); 983 if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) { 984 dev_err(jrdev, "unable to map S/G table\n"); 985 ret = -ENOMEM; 986 goto unmap_ctx; 987 } 988 989 append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen, 990 LDST_SGF); 991 append_seq_out_ptr(desc, state->ctx_dma, digestsize, 0); 992 993 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 994 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 995 1); 996 997 return ahash_enqueue_req(jrdev, ahash_done_ctx_src, req, 998 digestsize, DMA_BIDIRECTIONAL); 999 unmap_ctx: 1000 ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_BIDIRECTIONAL); 1001 kfree(edesc); 1002 return ret; 1003 } 1004 1005 static int ahash_finup_ctx(struct ahash_request *req) 1006 { 1007 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1008 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1009 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1010 struct device *jrdev = ctx->jrdev; 1011 int buflen = state->buflen; 1012 u32 *desc; 1013 int sec4_sg_src_index; 1014 int src_nents, mapped_nents; 1015 int digestsize = crypto_ahash_digestsize(ahash); 1016 struct ahash_edesc *edesc; 1017 int ret; 1018 1019 src_nents = sg_nents_for_len(req->src, req->nbytes); 1020 if (src_nents < 0) { 1021 dev_err(jrdev, "Invalid number of src SG.\n"); 1022 return src_nents; 1023 } 1024 1025 if (src_nents) { 1026 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1027 DMA_TO_DEVICE); 1028 if (!mapped_nents) { 1029 dev_err(jrdev, "unable to DMA map source\n"); 1030 return -ENOMEM; 1031 } 1032 } else { 1033 mapped_nents = 0; 1034 } 1035 1036 sec4_sg_src_index = 1 + (buflen ? 1 : 0); 1037 1038 /* allocate space for base edesc and hw desc commands, link tables */ 1039 edesc = ahash_edesc_alloc(req, sec4_sg_src_index + mapped_nents, 1040 ctx->sh_desc_fin, ctx->sh_desc_fin_dma); 1041 if (!edesc) { 1042 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1043 return -ENOMEM; 1044 } 1045 1046 desc = edesc->hw_desc; 1047 1048 edesc->src_nents = src_nents; 1049 1050 ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len, 1051 edesc->sec4_sg, DMA_BIDIRECTIONAL); 1052 if (ret) 1053 goto unmap_ctx; 1054 1055 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state); 1056 if (ret) 1057 goto unmap_ctx; 1058 1059 ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 1060 sec4_sg_src_index, ctx->ctx_len + buflen, 1061 req->nbytes); 1062 if (ret) 1063 goto unmap_ctx; 1064 1065 append_seq_out_ptr(desc, state->ctx_dma, digestsize, 0); 1066 1067 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1068 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1069 1); 1070 1071 return ahash_enqueue_req(jrdev, ahash_done_ctx_src, req, 1072 digestsize, DMA_BIDIRECTIONAL); 1073 unmap_ctx: 1074 ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_BIDIRECTIONAL); 1075 kfree(edesc); 1076 return ret; 1077 } 1078 1079 static int ahash_digest(struct ahash_request *req) 1080 { 1081 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1082 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1083 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1084 struct device *jrdev = ctx->jrdev; 1085 u32 *desc; 1086 int digestsize = crypto_ahash_digestsize(ahash); 1087 int src_nents, mapped_nents; 1088 struct ahash_edesc *edesc; 1089 int ret; 1090 1091 state->buf_dma = 0; 1092 1093 src_nents = sg_nents_for_len(req->src, req->nbytes); 1094 if (src_nents < 0) { 1095 dev_err(jrdev, "Invalid number of src SG.\n"); 1096 return src_nents; 1097 } 1098 1099 if (src_nents) { 1100 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1101 DMA_TO_DEVICE); 1102 if (!mapped_nents) { 1103 dev_err(jrdev, "unable to map source for DMA\n"); 1104 return -ENOMEM; 1105 } 1106 } else { 1107 mapped_nents = 0; 1108 } 1109 1110 /* allocate space for base edesc and hw desc commands, link tables */ 1111 edesc = ahash_edesc_alloc(req, mapped_nents > 1 ? mapped_nents : 0, 1112 ctx->sh_desc_digest, ctx->sh_desc_digest_dma); 1113 if (!edesc) { 1114 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1115 return -ENOMEM; 1116 } 1117 1118 edesc->src_nents = src_nents; 1119 1120 ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0, 1121 req->nbytes); 1122 if (ret) { 1123 ahash_unmap(jrdev, edesc, req, digestsize); 1124 kfree(edesc); 1125 return ret; 1126 } 1127 1128 desc = edesc->hw_desc; 1129 1130 ret = map_seq_out_ptr_ctx(desc, jrdev, state, digestsize); 1131 if (ret) { 1132 ahash_unmap(jrdev, edesc, req, digestsize); 1133 kfree(edesc); 1134 return -ENOMEM; 1135 } 1136 1137 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1138 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1139 1); 1140 1141 return ahash_enqueue_req(jrdev, ahash_done, req, digestsize, 1142 DMA_FROM_DEVICE); 1143 } 1144 1145 /* submit ahash final if it the first job descriptor */ 1146 static int ahash_final_no_ctx(struct ahash_request *req) 1147 { 1148 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1149 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1150 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1151 struct device *jrdev = ctx->jrdev; 1152 u8 *buf = state->buf; 1153 int buflen = state->buflen; 1154 u32 *desc; 1155 int digestsize = crypto_ahash_digestsize(ahash); 1156 struct ahash_edesc *edesc; 1157 int ret; 1158 1159 /* allocate space for base edesc and hw desc commands, link tables */ 1160 edesc = ahash_edesc_alloc(req, 0, ctx->sh_desc_digest, 1161 ctx->sh_desc_digest_dma); 1162 if (!edesc) 1163 return -ENOMEM; 1164 1165 desc = edesc->hw_desc; 1166 1167 if (buflen) { 1168 state->buf_dma = dma_map_single(jrdev, buf, buflen, 1169 DMA_TO_DEVICE); 1170 if (dma_mapping_error(jrdev, state->buf_dma)) { 1171 dev_err(jrdev, "unable to map src\n"); 1172 goto unmap; 1173 } 1174 1175 append_seq_in_ptr(desc, state->buf_dma, buflen, 0); 1176 } 1177 1178 ret = map_seq_out_ptr_ctx(desc, jrdev, state, digestsize); 1179 if (ret) 1180 goto unmap; 1181 1182 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1183 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1184 1); 1185 1186 return ahash_enqueue_req(jrdev, ahash_done, req, 1187 digestsize, DMA_FROM_DEVICE); 1188 unmap: 1189 ahash_unmap(jrdev, edesc, req, digestsize); 1190 kfree(edesc); 1191 return -ENOMEM; 1192 } 1193 1194 /* submit ahash update if it the first job descriptor after update */ 1195 static int ahash_update_no_ctx(struct ahash_request *req) 1196 { 1197 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1198 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1199 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1200 struct device *jrdev = ctx->jrdev; 1201 u8 *buf = state->buf; 1202 int *buflen = &state->buflen; 1203 int *next_buflen = &state->next_buflen; 1204 int blocksize = crypto_ahash_blocksize(ahash); 1205 int in_len = *buflen + req->nbytes, to_hash; 1206 int sec4_sg_bytes, src_nents, mapped_nents; 1207 struct ahash_edesc *edesc; 1208 u32 *desc; 1209 int ret = 0; 1210 1211 *next_buflen = in_len & (blocksize - 1); 1212 to_hash = in_len - *next_buflen; 1213 1214 /* 1215 * For XCBC and CMAC, if to_hash is multiple of block size, 1216 * keep last block in internal buffer 1217 */ 1218 if ((is_xcbc_aes(ctx->adata.algtype) || 1219 is_cmac_aes(ctx->adata.algtype)) && to_hash >= blocksize && 1220 (*next_buflen == 0)) { 1221 *next_buflen = blocksize; 1222 to_hash -= blocksize; 1223 } 1224 1225 if (to_hash) { 1226 int pad_nents; 1227 int src_len = req->nbytes - *next_buflen; 1228 1229 src_nents = sg_nents_for_len(req->src, src_len); 1230 if (src_nents < 0) { 1231 dev_err(jrdev, "Invalid number of src SG.\n"); 1232 return src_nents; 1233 } 1234 1235 if (src_nents) { 1236 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1237 DMA_TO_DEVICE); 1238 if (!mapped_nents) { 1239 dev_err(jrdev, "unable to DMA map source\n"); 1240 return -ENOMEM; 1241 } 1242 } else { 1243 mapped_nents = 0; 1244 } 1245 1246 pad_nents = pad_sg_nents(1 + mapped_nents); 1247 sec4_sg_bytes = pad_nents * sizeof(struct sec4_sg_entry); 1248 1249 /* 1250 * allocate space for base edesc and hw desc commands, 1251 * link tables 1252 */ 1253 edesc = ahash_edesc_alloc(req, pad_nents, 1254 ctx->sh_desc_update_first, 1255 ctx->sh_desc_update_first_dma); 1256 if (!edesc) { 1257 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1258 return -ENOMEM; 1259 } 1260 1261 edesc->src_nents = src_nents; 1262 edesc->sec4_sg_bytes = sec4_sg_bytes; 1263 1264 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state); 1265 if (ret) 1266 goto unmap_ctx; 1267 1268 sg_to_sec4_sg_last(req->src, src_len, edesc->sec4_sg + 1, 0); 1269 1270 desc = edesc->hw_desc; 1271 1272 edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, 1273 sec4_sg_bytes, 1274 DMA_TO_DEVICE); 1275 if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) { 1276 dev_err(jrdev, "unable to map S/G table\n"); 1277 ret = -ENOMEM; 1278 goto unmap_ctx; 1279 } 1280 1281 append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF); 1282 1283 ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len); 1284 if (ret) 1285 goto unmap_ctx; 1286 1287 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1288 DUMP_PREFIX_ADDRESS, 16, 4, desc, 1289 desc_bytes(desc), 1); 1290 1291 ret = ahash_enqueue_req(jrdev, ahash_done_ctx_dst, req, 1292 ctx->ctx_len, DMA_TO_DEVICE); 1293 if ((ret != -EINPROGRESS) && (ret != -EBUSY)) 1294 return ret; 1295 state->update = ahash_update_ctx; 1296 state->finup = ahash_finup_ctx; 1297 state->final = ahash_final_ctx; 1298 } else if (*next_buflen) { 1299 scatterwalk_map_and_copy(buf + *buflen, req->src, 0, 1300 req->nbytes, 0); 1301 *buflen = *next_buflen; 1302 1303 print_hex_dump_debug("buf@" __stringify(__LINE__)": ", 1304 DUMP_PREFIX_ADDRESS, 16, 4, buf, 1305 *buflen, 1); 1306 } 1307 1308 return ret; 1309 unmap_ctx: 1310 ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE); 1311 kfree(edesc); 1312 return ret; 1313 } 1314 1315 /* submit ahash finup if it the first job descriptor after update */ 1316 static int ahash_finup_no_ctx(struct ahash_request *req) 1317 { 1318 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1319 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1320 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1321 struct device *jrdev = ctx->jrdev; 1322 int buflen = state->buflen; 1323 u32 *desc; 1324 int sec4_sg_bytes, sec4_sg_src_index, src_nents, mapped_nents; 1325 int digestsize = crypto_ahash_digestsize(ahash); 1326 struct ahash_edesc *edesc; 1327 int ret; 1328 1329 src_nents = sg_nents_for_len(req->src, req->nbytes); 1330 if (src_nents < 0) { 1331 dev_err(jrdev, "Invalid number of src SG.\n"); 1332 return src_nents; 1333 } 1334 1335 if (src_nents) { 1336 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1337 DMA_TO_DEVICE); 1338 if (!mapped_nents) { 1339 dev_err(jrdev, "unable to DMA map source\n"); 1340 return -ENOMEM; 1341 } 1342 } else { 1343 mapped_nents = 0; 1344 } 1345 1346 sec4_sg_src_index = 2; 1347 sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) * 1348 sizeof(struct sec4_sg_entry); 1349 1350 /* allocate space for base edesc and hw desc commands, link tables */ 1351 edesc = ahash_edesc_alloc(req, sec4_sg_src_index + mapped_nents, 1352 ctx->sh_desc_digest, ctx->sh_desc_digest_dma); 1353 if (!edesc) { 1354 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1355 return -ENOMEM; 1356 } 1357 1358 desc = edesc->hw_desc; 1359 1360 edesc->src_nents = src_nents; 1361 edesc->sec4_sg_bytes = sec4_sg_bytes; 1362 1363 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state); 1364 if (ret) 1365 goto unmap; 1366 1367 ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 1, buflen, 1368 req->nbytes); 1369 if (ret) { 1370 dev_err(jrdev, "unable to map S/G table\n"); 1371 goto unmap; 1372 } 1373 1374 ret = map_seq_out_ptr_ctx(desc, jrdev, state, digestsize); 1375 if (ret) 1376 goto unmap; 1377 1378 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1379 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1380 1); 1381 1382 return ahash_enqueue_req(jrdev, ahash_done, req, 1383 digestsize, DMA_FROM_DEVICE); 1384 unmap: 1385 ahash_unmap(jrdev, edesc, req, digestsize); 1386 kfree(edesc); 1387 return -ENOMEM; 1388 1389 } 1390 1391 /* submit first update job descriptor after init */ 1392 static int ahash_update_first(struct ahash_request *req) 1393 { 1394 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1395 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1396 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1397 struct device *jrdev = ctx->jrdev; 1398 u8 *buf = state->buf; 1399 int *buflen = &state->buflen; 1400 int *next_buflen = &state->next_buflen; 1401 int to_hash; 1402 int blocksize = crypto_ahash_blocksize(ahash); 1403 u32 *desc; 1404 int src_nents, mapped_nents; 1405 struct ahash_edesc *edesc; 1406 int ret = 0; 1407 1408 *next_buflen = req->nbytes & (blocksize - 1); 1409 to_hash = req->nbytes - *next_buflen; 1410 1411 /* 1412 * For XCBC and CMAC, if to_hash is multiple of block size, 1413 * keep last block in internal buffer 1414 */ 1415 if ((is_xcbc_aes(ctx->adata.algtype) || 1416 is_cmac_aes(ctx->adata.algtype)) && to_hash >= blocksize && 1417 (*next_buflen == 0)) { 1418 *next_buflen = blocksize; 1419 to_hash -= blocksize; 1420 } 1421 1422 if (to_hash) { 1423 src_nents = sg_nents_for_len(req->src, 1424 req->nbytes - *next_buflen); 1425 if (src_nents < 0) { 1426 dev_err(jrdev, "Invalid number of src SG.\n"); 1427 return src_nents; 1428 } 1429 1430 if (src_nents) { 1431 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1432 DMA_TO_DEVICE); 1433 if (!mapped_nents) { 1434 dev_err(jrdev, "unable to map source for DMA\n"); 1435 return -ENOMEM; 1436 } 1437 } else { 1438 mapped_nents = 0; 1439 } 1440 1441 /* 1442 * allocate space for base edesc and hw desc commands, 1443 * link tables 1444 */ 1445 edesc = ahash_edesc_alloc(req, mapped_nents > 1 ? 1446 mapped_nents : 0, 1447 ctx->sh_desc_update_first, 1448 ctx->sh_desc_update_first_dma); 1449 if (!edesc) { 1450 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1451 return -ENOMEM; 1452 } 1453 1454 edesc->src_nents = src_nents; 1455 1456 ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0, 1457 to_hash); 1458 if (ret) 1459 goto unmap_ctx; 1460 1461 desc = edesc->hw_desc; 1462 1463 ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len); 1464 if (ret) 1465 goto unmap_ctx; 1466 1467 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1468 DUMP_PREFIX_ADDRESS, 16, 4, desc, 1469 desc_bytes(desc), 1); 1470 1471 ret = ahash_enqueue_req(jrdev, ahash_done_ctx_dst, req, 1472 ctx->ctx_len, DMA_TO_DEVICE); 1473 if ((ret != -EINPROGRESS) && (ret != -EBUSY)) 1474 return ret; 1475 state->update = ahash_update_ctx; 1476 state->finup = ahash_finup_ctx; 1477 state->final = ahash_final_ctx; 1478 } else if (*next_buflen) { 1479 state->update = ahash_update_no_ctx; 1480 state->finup = ahash_finup_no_ctx; 1481 state->final = ahash_final_no_ctx; 1482 scatterwalk_map_and_copy(buf, req->src, 0, 1483 req->nbytes, 0); 1484 *buflen = *next_buflen; 1485 1486 print_hex_dump_debug("buf@" __stringify(__LINE__)": ", 1487 DUMP_PREFIX_ADDRESS, 16, 4, buf, 1488 *buflen, 1); 1489 } 1490 1491 return ret; 1492 unmap_ctx: 1493 ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE); 1494 kfree(edesc); 1495 return ret; 1496 } 1497 1498 static int ahash_finup_first(struct ahash_request *req) 1499 { 1500 return ahash_digest(req); 1501 } 1502 1503 static int ahash_init(struct ahash_request *req) 1504 { 1505 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1506 1507 state->update = ahash_update_first; 1508 state->finup = ahash_finup_first; 1509 state->final = ahash_final_no_ctx; 1510 1511 state->ctx_dma = 0; 1512 state->ctx_dma_len = 0; 1513 state->buf_dma = 0; 1514 state->buflen = 0; 1515 state->next_buflen = 0; 1516 1517 return 0; 1518 } 1519 1520 static int ahash_update(struct ahash_request *req) 1521 { 1522 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1523 1524 return state->update(req); 1525 } 1526 1527 static int ahash_finup(struct ahash_request *req) 1528 { 1529 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1530 1531 return state->finup(req); 1532 } 1533 1534 static int ahash_final(struct ahash_request *req) 1535 { 1536 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1537 1538 return state->final(req); 1539 } 1540 1541 static int ahash_export(struct ahash_request *req, void *out) 1542 { 1543 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1544 struct caam_export_state *export = out; 1545 u8 *buf = state->buf; 1546 int len = state->buflen; 1547 1548 memcpy(export->buf, buf, len); 1549 memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx)); 1550 export->buflen = len; 1551 export->update = state->update; 1552 export->final = state->final; 1553 export->finup = state->finup; 1554 1555 return 0; 1556 } 1557 1558 static int ahash_import(struct ahash_request *req, const void *in) 1559 { 1560 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1561 const struct caam_export_state *export = in; 1562 1563 memset(state, 0, sizeof(*state)); 1564 memcpy(state->buf, export->buf, export->buflen); 1565 memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx)); 1566 state->buflen = export->buflen; 1567 state->update = export->update; 1568 state->final = export->final; 1569 state->finup = export->finup; 1570 1571 return 0; 1572 } 1573 1574 struct caam_hash_template { 1575 char name[CRYPTO_MAX_ALG_NAME]; 1576 char driver_name[CRYPTO_MAX_ALG_NAME]; 1577 char hmac_name[CRYPTO_MAX_ALG_NAME]; 1578 char hmac_driver_name[CRYPTO_MAX_ALG_NAME]; 1579 unsigned int blocksize; 1580 struct ahash_alg template_ahash; 1581 u32 alg_type; 1582 }; 1583 1584 /* ahash descriptors */ 1585 static struct caam_hash_template driver_hash[] = { 1586 { 1587 .name = "sha1", 1588 .driver_name = "sha1-caam", 1589 .hmac_name = "hmac(sha1)", 1590 .hmac_driver_name = "hmac-sha1-caam", 1591 .blocksize = SHA1_BLOCK_SIZE, 1592 .template_ahash = { 1593 .init = ahash_init, 1594 .update = ahash_update, 1595 .final = ahash_final, 1596 .finup = ahash_finup, 1597 .digest = ahash_digest, 1598 .export = ahash_export, 1599 .import = ahash_import, 1600 .setkey = ahash_setkey, 1601 .halg = { 1602 .digestsize = SHA1_DIGEST_SIZE, 1603 .statesize = sizeof(struct caam_export_state), 1604 }, 1605 }, 1606 .alg_type = OP_ALG_ALGSEL_SHA1, 1607 }, { 1608 .name = "sha224", 1609 .driver_name = "sha224-caam", 1610 .hmac_name = "hmac(sha224)", 1611 .hmac_driver_name = "hmac-sha224-caam", 1612 .blocksize = SHA224_BLOCK_SIZE, 1613 .template_ahash = { 1614 .init = ahash_init, 1615 .update = ahash_update, 1616 .final = ahash_final, 1617 .finup = ahash_finup, 1618 .digest = ahash_digest, 1619 .export = ahash_export, 1620 .import = ahash_import, 1621 .setkey = ahash_setkey, 1622 .halg = { 1623 .digestsize = SHA224_DIGEST_SIZE, 1624 .statesize = sizeof(struct caam_export_state), 1625 }, 1626 }, 1627 .alg_type = OP_ALG_ALGSEL_SHA224, 1628 }, { 1629 .name = "sha256", 1630 .driver_name = "sha256-caam", 1631 .hmac_name = "hmac(sha256)", 1632 .hmac_driver_name = "hmac-sha256-caam", 1633 .blocksize = SHA256_BLOCK_SIZE, 1634 .template_ahash = { 1635 .init = ahash_init, 1636 .update = ahash_update, 1637 .final = ahash_final, 1638 .finup = ahash_finup, 1639 .digest = ahash_digest, 1640 .export = ahash_export, 1641 .import = ahash_import, 1642 .setkey = ahash_setkey, 1643 .halg = { 1644 .digestsize = SHA256_DIGEST_SIZE, 1645 .statesize = sizeof(struct caam_export_state), 1646 }, 1647 }, 1648 .alg_type = OP_ALG_ALGSEL_SHA256, 1649 }, { 1650 .name = "sha384", 1651 .driver_name = "sha384-caam", 1652 .hmac_name = "hmac(sha384)", 1653 .hmac_driver_name = "hmac-sha384-caam", 1654 .blocksize = SHA384_BLOCK_SIZE, 1655 .template_ahash = { 1656 .init = ahash_init, 1657 .update = ahash_update, 1658 .final = ahash_final, 1659 .finup = ahash_finup, 1660 .digest = ahash_digest, 1661 .export = ahash_export, 1662 .import = ahash_import, 1663 .setkey = ahash_setkey, 1664 .halg = { 1665 .digestsize = SHA384_DIGEST_SIZE, 1666 .statesize = sizeof(struct caam_export_state), 1667 }, 1668 }, 1669 .alg_type = OP_ALG_ALGSEL_SHA384, 1670 }, { 1671 .name = "sha512", 1672 .driver_name = "sha512-caam", 1673 .hmac_name = "hmac(sha512)", 1674 .hmac_driver_name = "hmac-sha512-caam", 1675 .blocksize = SHA512_BLOCK_SIZE, 1676 .template_ahash = { 1677 .init = ahash_init, 1678 .update = ahash_update, 1679 .final = ahash_final, 1680 .finup = ahash_finup, 1681 .digest = ahash_digest, 1682 .export = ahash_export, 1683 .import = ahash_import, 1684 .setkey = ahash_setkey, 1685 .halg = { 1686 .digestsize = SHA512_DIGEST_SIZE, 1687 .statesize = sizeof(struct caam_export_state), 1688 }, 1689 }, 1690 .alg_type = OP_ALG_ALGSEL_SHA512, 1691 }, { 1692 .name = "md5", 1693 .driver_name = "md5-caam", 1694 .hmac_name = "hmac(md5)", 1695 .hmac_driver_name = "hmac-md5-caam", 1696 .blocksize = MD5_BLOCK_WORDS * 4, 1697 .template_ahash = { 1698 .init = ahash_init, 1699 .update = ahash_update, 1700 .final = ahash_final, 1701 .finup = ahash_finup, 1702 .digest = ahash_digest, 1703 .export = ahash_export, 1704 .import = ahash_import, 1705 .setkey = ahash_setkey, 1706 .halg = { 1707 .digestsize = MD5_DIGEST_SIZE, 1708 .statesize = sizeof(struct caam_export_state), 1709 }, 1710 }, 1711 .alg_type = OP_ALG_ALGSEL_MD5, 1712 }, { 1713 .hmac_name = "xcbc(aes)", 1714 .hmac_driver_name = "xcbc-aes-caam", 1715 .blocksize = AES_BLOCK_SIZE, 1716 .template_ahash = { 1717 .init = ahash_init, 1718 .update = ahash_update, 1719 .final = ahash_final, 1720 .finup = ahash_finup, 1721 .digest = ahash_digest, 1722 .export = ahash_export, 1723 .import = ahash_import, 1724 .setkey = axcbc_setkey, 1725 .halg = { 1726 .digestsize = AES_BLOCK_SIZE, 1727 .statesize = sizeof(struct caam_export_state), 1728 }, 1729 }, 1730 .alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XCBC_MAC, 1731 }, { 1732 .hmac_name = "cmac(aes)", 1733 .hmac_driver_name = "cmac-aes-caam", 1734 .blocksize = AES_BLOCK_SIZE, 1735 .template_ahash = { 1736 .init = ahash_init, 1737 .update = ahash_update, 1738 .final = ahash_final, 1739 .finup = ahash_finup, 1740 .digest = ahash_digest, 1741 .export = ahash_export, 1742 .import = ahash_import, 1743 .setkey = acmac_setkey, 1744 .halg = { 1745 .digestsize = AES_BLOCK_SIZE, 1746 .statesize = sizeof(struct caam_export_state), 1747 }, 1748 }, 1749 .alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CMAC, 1750 }, 1751 }; 1752 1753 struct caam_hash_alg { 1754 struct list_head entry; 1755 int alg_type; 1756 bool is_hmac; 1757 struct ahash_engine_alg ahash_alg; 1758 }; 1759 1760 static int caam_hash_cra_init(struct crypto_tfm *tfm) 1761 { 1762 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 1763 struct crypto_alg *base = tfm->__crt_alg; 1764 struct hash_alg_common *halg = 1765 container_of(base, struct hash_alg_common, base); 1766 struct ahash_alg *alg = 1767 container_of(halg, struct ahash_alg, halg); 1768 struct caam_hash_alg *caam_hash = 1769 container_of(alg, struct caam_hash_alg, ahash_alg.base); 1770 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1771 /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */ 1772 static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE, 1773 HASH_MSG_LEN + SHA1_DIGEST_SIZE, 1774 HASH_MSG_LEN + 32, 1775 HASH_MSG_LEN + SHA256_DIGEST_SIZE, 1776 HASH_MSG_LEN + 64, 1777 HASH_MSG_LEN + SHA512_DIGEST_SIZE }; 1778 const size_t sh_desc_update_offset = offsetof(struct caam_hash_ctx, 1779 sh_desc_update); 1780 dma_addr_t dma_addr; 1781 struct caam_drv_private *priv; 1782 1783 /* 1784 * Get a Job ring from Job Ring driver to ensure in-order 1785 * crypto request processing per tfm 1786 */ 1787 ctx->jrdev = caam_jr_alloc(); 1788 if (IS_ERR(ctx->jrdev)) { 1789 pr_err("Job Ring Device allocation for transform failed\n"); 1790 return PTR_ERR(ctx->jrdev); 1791 } 1792 1793 priv = dev_get_drvdata(ctx->jrdev->parent); 1794 1795 if (is_xcbc_aes(caam_hash->alg_type)) { 1796 ctx->dir = DMA_TO_DEVICE; 1797 ctx->key_dir = DMA_BIDIRECTIONAL; 1798 ctx->adata.algtype = OP_TYPE_CLASS1_ALG | caam_hash->alg_type; 1799 ctx->ctx_len = 48; 1800 } else if (is_cmac_aes(caam_hash->alg_type)) { 1801 ctx->dir = DMA_TO_DEVICE; 1802 ctx->key_dir = DMA_NONE; 1803 ctx->adata.algtype = OP_TYPE_CLASS1_ALG | caam_hash->alg_type; 1804 ctx->ctx_len = 32; 1805 } else { 1806 if (priv->era >= 6) { 1807 ctx->dir = DMA_BIDIRECTIONAL; 1808 ctx->key_dir = caam_hash->is_hmac ? DMA_TO_DEVICE : DMA_NONE; 1809 } else { 1810 ctx->dir = DMA_TO_DEVICE; 1811 ctx->key_dir = DMA_NONE; 1812 } 1813 ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam_hash->alg_type; 1814 ctx->ctx_len = runninglen[(ctx->adata.algtype & 1815 OP_ALG_ALGSEL_SUBMASK) >> 1816 OP_ALG_ALGSEL_SHIFT]; 1817 } 1818 1819 if (ctx->key_dir != DMA_NONE) { 1820 ctx->adata.key_dma = dma_map_single_attrs(ctx->jrdev, ctx->key, 1821 ARRAY_SIZE(ctx->key), 1822 ctx->key_dir, 1823 DMA_ATTR_SKIP_CPU_SYNC); 1824 if (dma_mapping_error(ctx->jrdev, ctx->adata.key_dma)) { 1825 dev_err(ctx->jrdev, "unable to map key\n"); 1826 caam_jr_free(ctx->jrdev); 1827 return -ENOMEM; 1828 } 1829 } 1830 1831 dma_addr = dma_map_single_attrs(ctx->jrdev, ctx->sh_desc_update, 1832 offsetof(struct caam_hash_ctx, key) - 1833 sh_desc_update_offset, 1834 ctx->dir, DMA_ATTR_SKIP_CPU_SYNC); 1835 if (dma_mapping_error(ctx->jrdev, dma_addr)) { 1836 dev_err(ctx->jrdev, "unable to map shared descriptors\n"); 1837 1838 if (ctx->key_dir != DMA_NONE) 1839 dma_unmap_single_attrs(ctx->jrdev, ctx->adata.key_dma, 1840 ARRAY_SIZE(ctx->key), 1841 ctx->key_dir, 1842 DMA_ATTR_SKIP_CPU_SYNC); 1843 1844 caam_jr_free(ctx->jrdev); 1845 return -ENOMEM; 1846 } 1847 1848 ctx->sh_desc_update_dma = dma_addr; 1849 ctx->sh_desc_update_first_dma = dma_addr + 1850 offsetof(struct caam_hash_ctx, 1851 sh_desc_update_first) - 1852 sh_desc_update_offset; 1853 ctx->sh_desc_fin_dma = dma_addr + offsetof(struct caam_hash_ctx, 1854 sh_desc_fin) - 1855 sh_desc_update_offset; 1856 ctx->sh_desc_digest_dma = dma_addr + offsetof(struct caam_hash_ctx, 1857 sh_desc_digest) - 1858 sh_desc_update_offset; 1859 1860 crypto_ahash_set_reqsize_dma(ahash, sizeof(struct caam_hash_state)); 1861 1862 /* 1863 * For keyed hash algorithms shared descriptors 1864 * will be created later in setkey() callback 1865 */ 1866 return caam_hash->is_hmac ? 0 : ahash_set_sh_desc(ahash); 1867 } 1868 1869 static void caam_hash_cra_exit(struct crypto_tfm *tfm) 1870 { 1871 struct caam_hash_ctx *ctx = crypto_tfm_ctx_dma(tfm); 1872 1873 dma_unmap_single_attrs(ctx->jrdev, ctx->sh_desc_update_dma, 1874 offsetof(struct caam_hash_ctx, key) - 1875 offsetof(struct caam_hash_ctx, sh_desc_update), 1876 ctx->dir, DMA_ATTR_SKIP_CPU_SYNC); 1877 if (ctx->key_dir != DMA_NONE) 1878 dma_unmap_single_attrs(ctx->jrdev, ctx->adata.key_dma, 1879 ARRAY_SIZE(ctx->key), ctx->key_dir, 1880 DMA_ATTR_SKIP_CPU_SYNC); 1881 caam_jr_free(ctx->jrdev); 1882 } 1883 1884 void caam_algapi_hash_exit(void) 1885 { 1886 struct caam_hash_alg *t_alg, *n; 1887 1888 if (!hash_list.next) 1889 return; 1890 1891 list_for_each_entry_safe(t_alg, n, &hash_list, entry) { 1892 crypto_engine_unregister_ahash(&t_alg->ahash_alg); 1893 list_del(&t_alg->entry); 1894 kfree(t_alg); 1895 } 1896 } 1897 1898 static struct caam_hash_alg * 1899 caam_hash_alloc(struct caam_hash_template *template, 1900 bool keyed) 1901 { 1902 struct caam_hash_alg *t_alg; 1903 struct ahash_alg *halg; 1904 struct crypto_alg *alg; 1905 1906 t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL); 1907 if (!t_alg) 1908 return ERR_PTR(-ENOMEM); 1909 1910 t_alg->ahash_alg.base = template->template_ahash; 1911 halg = &t_alg->ahash_alg.base; 1912 alg = &halg->halg.base; 1913 1914 if (keyed) { 1915 snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", 1916 template->hmac_name); 1917 snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", 1918 template->hmac_driver_name); 1919 t_alg->is_hmac = true; 1920 } else { 1921 snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", 1922 template->name); 1923 snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", 1924 template->driver_name); 1925 halg->setkey = NULL; 1926 t_alg->is_hmac = false; 1927 } 1928 alg->cra_module = THIS_MODULE; 1929 alg->cra_init = caam_hash_cra_init; 1930 alg->cra_exit = caam_hash_cra_exit; 1931 alg->cra_ctxsize = sizeof(struct caam_hash_ctx) + crypto_dma_padding(); 1932 alg->cra_priority = CAAM_CRA_PRIORITY; 1933 alg->cra_blocksize = template->blocksize; 1934 alg->cra_alignmask = 0; 1935 alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY; 1936 1937 t_alg->alg_type = template->alg_type; 1938 t_alg->ahash_alg.op.do_one_request = ahash_do_one_req; 1939 1940 return t_alg; 1941 } 1942 1943 int caam_algapi_hash_init(struct device *ctrldev) 1944 { 1945 int i = 0, err = 0; 1946 struct caam_drv_private *priv = dev_get_drvdata(ctrldev); 1947 unsigned int md_limit = SHA512_DIGEST_SIZE; 1948 u32 md_inst, md_vid; 1949 1950 /* 1951 * Register crypto algorithms the device supports. First, identify 1952 * presence and attributes of MD block. 1953 */ 1954 if (priv->era < 10) { 1955 struct caam_perfmon __iomem *perfmon = &priv->jr[0]->perfmon; 1956 1957 md_vid = (rd_reg32(&perfmon->cha_id_ls) & 1958 CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT; 1959 md_inst = (rd_reg32(&perfmon->cha_num_ls) & 1960 CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT; 1961 } else { 1962 u32 mdha = rd_reg32(&priv->jr[0]->vreg.mdha); 1963 1964 md_vid = (mdha & CHA_VER_VID_MASK) >> CHA_VER_VID_SHIFT; 1965 md_inst = mdha & CHA_VER_NUM_MASK; 1966 } 1967 1968 /* 1969 * Skip registration of any hashing algorithms if MD block 1970 * is not present. 1971 */ 1972 if (!md_inst) 1973 return 0; 1974 1975 /* Limit digest size based on LP256 */ 1976 if (md_vid == CHA_VER_VID_MD_LP256) 1977 md_limit = SHA256_DIGEST_SIZE; 1978 1979 INIT_LIST_HEAD(&hash_list); 1980 1981 /* register crypto algorithms the device supports */ 1982 for (i = 0; i < ARRAY_SIZE(driver_hash); i++) { 1983 struct caam_hash_alg *t_alg; 1984 struct caam_hash_template *alg = driver_hash + i; 1985 1986 /* If MD size is not supported by device, skip registration */ 1987 if (is_mdha(alg->alg_type) && 1988 alg->template_ahash.halg.digestsize > md_limit) 1989 continue; 1990 1991 /* register hmac version */ 1992 t_alg = caam_hash_alloc(alg, true); 1993 if (IS_ERR(t_alg)) { 1994 err = PTR_ERR(t_alg); 1995 pr_warn("%s alg allocation failed\n", 1996 alg->hmac_driver_name); 1997 continue; 1998 } 1999 2000 err = crypto_engine_register_ahash(&t_alg->ahash_alg); 2001 if (err) { 2002 pr_warn("%s alg registration failed: %d\n", 2003 t_alg->ahash_alg.base.halg.base.cra_driver_name, 2004 err); 2005 kfree(t_alg); 2006 } else 2007 list_add_tail(&t_alg->entry, &hash_list); 2008 2009 if ((alg->alg_type & OP_ALG_ALGSEL_MASK) == OP_ALG_ALGSEL_AES) 2010 continue; 2011 2012 /* register unkeyed version */ 2013 t_alg = caam_hash_alloc(alg, false); 2014 if (IS_ERR(t_alg)) { 2015 err = PTR_ERR(t_alg); 2016 pr_warn("%s alg allocation failed\n", alg->driver_name); 2017 continue; 2018 } 2019 2020 err = crypto_engine_register_ahash(&t_alg->ahash_alg); 2021 if (err) { 2022 pr_warn("%s alg registration failed: %d\n", 2023 t_alg->ahash_alg.base.halg.base.cra_driver_name, 2024 err); 2025 kfree(t_alg); 2026 } else 2027 list_add_tail(&t_alg->entry, &hash_list); 2028 } 2029 2030 return err; 2031 } 2032