1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2016 Broadcom 4 */ 5 6 /* 7 * This file works with the SPU2 version of the SPU. SPU2 has different message 8 * formats than the previous version of the SPU. All SPU message format 9 * differences should be hidden in the spux.c,h files. 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/string.h> 14 15 #include "util.h" 16 #include "spu.h" 17 #include "spu2.h" 18 19 #define SPU2_TX_STATUS_LEN 0 /* SPU2 has no STATUS in input packet */ 20 21 /* 22 * Controlled by pkt_stat_cnt field in CRYPTO_SS_SPU0_CORE_SPU2_CONTROL0 23 * register. Defaults to 2. 24 */ 25 #define SPU2_RX_STATUS_LEN 2 26 27 enum spu2_proto_sel { 28 SPU2_PROTO_RESV = 0, 29 SPU2_MACSEC_SECTAG8_ECB = 1, 30 SPU2_MACSEC_SECTAG8_SCB = 2, 31 SPU2_MACSEC_SECTAG16 = 3, 32 SPU2_MACSEC_SECTAG16_8_XPN = 4, 33 SPU2_IPSEC = 5, 34 SPU2_IPSEC_ESN = 6, 35 SPU2_TLS_CIPHER = 7, 36 SPU2_TLS_AEAD = 8, 37 SPU2_DTLS_CIPHER = 9, 38 SPU2_DTLS_AEAD = 10 39 }; 40 41 static char *spu2_cipher_type_names[] = { "None", "AES128", "AES192", "AES256", 42 "DES", "3DES" 43 }; 44 45 static char *spu2_cipher_mode_names[] = { "ECB", "CBC", "CTR", "CFB", "OFB", 46 "XTS", "CCM", "GCM" 47 }; 48 49 static char *spu2_hash_type_names[] = { "None", "AES128", "AES192", "AES256", 50 "Reserved", "Reserved", "MD5", "SHA1", "SHA224", "SHA256", "SHA384", 51 "SHA512", "SHA512/224", "SHA512/256", "SHA3-224", "SHA3-256", 52 "SHA3-384", "SHA3-512" 53 }; 54 55 static char *spu2_hash_mode_names[] = { "CMAC", "CBC-MAC", "XCBC-MAC", "HMAC", 56 "Rabin", "CCM", "GCM", "Reserved" 57 }; 58 59 static char *spu2_ciph_type_name(enum spu2_cipher_type cipher_type) 60 { 61 if (cipher_type >= SPU2_CIPHER_TYPE_LAST) 62 return "Reserved"; 63 return spu2_cipher_type_names[cipher_type]; 64 } 65 66 static char *spu2_ciph_mode_name(enum spu2_cipher_mode cipher_mode) 67 { 68 if (cipher_mode >= SPU2_CIPHER_MODE_LAST) 69 return "Reserved"; 70 return spu2_cipher_mode_names[cipher_mode]; 71 } 72 73 static char *spu2_hash_type_name(enum spu2_hash_type hash_type) 74 { 75 if (hash_type >= SPU2_HASH_TYPE_LAST) 76 return "Reserved"; 77 return spu2_hash_type_names[hash_type]; 78 } 79 80 static char *spu2_hash_mode_name(enum spu2_hash_mode hash_mode) 81 { 82 if (hash_mode >= SPU2_HASH_MODE_LAST) 83 return "Reserved"; 84 return spu2_hash_mode_names[hash_mode]; 85 } 86 87 /* 88 * Convert from a software cipher mode value to the corresponding value 89 * for SPU2. 90 */ 91 static int spu2_cipher_mode_xlate(enum spu_cipher_mode cipher_mode, 92 enum spu2_cipher_mode *spu2_mode) 93 { 94 switch (cipher_mode) { 95 case CIPHER_MODE_ECB: 96 *spu2_mode = SPU2_CIPHER_MODE_ECB; 97 break; 98 case CIPHER_MODE_CBC: 99 *spu2_mode = SPU2_CIPHER_MODE_CBC; 100 break; 101 case CIPHER_MODE_OFB: 102 *spu2_mode = SPU2_CIPHER_MODE_OFB; 103 break; 104 case CIPHER_MODE_CFB: 105 *spu2_mode = SPU2_CIPHER_MODE_CFB; 106 break; 107 case CIPHER_MODE_CTR: 108 *spu2_mode = SPU2_CIPHER_MODE_CTR; 109 break; 110 case CIPHER_MODE_CCM: 111 *spu2_mode = SPU2_CIPHER_MODE_CCM; 112 break; 113 case CIPHER_MODE_GCM: 114 *spu2_mode = SPU2_CIPHER_MODE_GCM; 115 break; 116 case CIPHER_MODE_XTS: 117 *spu2_mode = SPU2_CIPHER_MODE_XTS; 118 break; 119 default: 120 return -EINVAL; 121 } 122 return 0; 123 } 124 125 /** 126 * spu2_cipher_xlate() - Convert a cipher {alg/mode/type} triple to a SPU2 127 * cipher type and mode. 128 * @cipher_alg: [in] cipher algorithm value from software enumeration 129 * @cipher_mode: [in] cipher mode value from software enumeration 130 * @cipher_type: [in] cipher type value from software enumeration 131 * @spu2_type: [out] cipher type value used by spu2 hardware 132 * @spu2_mode: [out] cipher mode value used by spu2 hardware 133 * 134 * Return: 0 if successful 135 */ 136 static int spu2_cipher_xlate(enum spu_cipher_alg cipher_alg, 137 enum spu_cipher_mode cipher_mode, 138 enum spu_cipher_type cipher_type, 139 enum spu2_cipher_type *spu2_type, 140 enum spu2_cipher_mode *spu2_mode) 141 { 142 int err; 143 144 err = spu2_cipher_mode_xlate(cipher_mode, spu2_mode); 145 if (err) { 146 flow_log("Invalid cipher mode %d\n", cipher_mode); 147 return err; 148 } 149 150 switch (cipher_alg) { 151 case CIPHER_ALG_NONE: 152 *spu2_type = SPU2_CIPHER_TYPE_NONE; 153 break; 154 case CIPHER_ALG_RC4: 155 /* SPU2 does not support RC4 */ 156 err = -EINVAL; 157 *spu2_type = SPU2_CIPHER_TYPE_NONE; 158 break; 159 case CIPHER_ALG_DES: 160 *spu2_type = SPU2_CIPHER_TYPE_DES; 161 break; 162 case CIPHER_ALG_3DES: 163 *spu2_type = SPU2_CIPHER_TYPE_3DES; 164 break; 165 case CIPHER_ALG_AES: 166 switch (cipher_type) { 167 case CIPHER_TYPE_AES128: 168 *spu2_type = SPU2_CIPHER_TYPE_AES128; 169 break; 170 case CIPHER_TYPE_AES192: 171 *spu2_type = SPU2_CIPHER_TYPE_AES192; 172 break; 173 case CIPHER_TYPE_AES256: 174 *spu2_type = SPU2_CIPHER_TYPE_AES256; 175 break; 176 default: 177 err = -EINVAL; 178 } 179 break; 180 case CIPHER_ALG_LAST: 181 default: 182 err = -EINVAL; 183 break; 184 } 185 186 if (err) 187 flow_log("Invalid cipher alg %d or type %d\n", 188 cipher_alg, cipher_type); 189 return err; 190 } 191 192 /* 193 * Convert from a software hash mode value to the corresponding value 194 * for SPU2. Note that HASH_MODE_NONE and HASH_MODE_XCBC have the same value. 195 */ 196 static int spu2_hash_mode_xlate(enum hash_mode hash_mode, 197 enum spu2_hash_mode *spu2_mode) 198 { 199 switch (hash_mode) { 200 case HASH_MODE_XCBC: 201 *spu2_mode = SPU2_HASH_MODE_XCBC_MAC; 202 break; 203 case HASH_MODE_CMAC: 204 *spu2_mode = SPU2_HASH_MODE_CMAC; 205 break; 206 case HASH_MODE_HMAC: 207 *spu2_mode = SPU2_HASH_MODE_HMAC; 208 break; 209 case HASH_MODE_CCM: 210 *spu2_mode = SPU2_HASH_MODE_CCM; 211 break; 212 case HASH_MODE_GCM: 213 *spu2_mode = SPU2_HASH_MODE_GCM; 214 break; 215 default: 216 return -EINVAL; 217 } 218 return 0; 219 } 220 221 /** 222 * spu2_hash_xlate() - Convert a hash {alg/mode/type} triple to a SPU2 hash type 223 * and mode. 224 * @hash_alg: [in] hash algorithm value from software enumeration 225 * @hash_mode: [in] hash mode value from software enumeration 226 * @hash_type: [in] hash type value from software enumeration 227 * @ciph_type: [in] cipher type value from software enumeration 228 * @spu2_type: [out] hash type value used by SPU2 hardware 229 * @spu2_mode: [out] hash mode value used by SPU2 hardware 230 * 231 * Return: 0 if successful 232 */ 233 static int 234 spu2_hash_xlate(enum hash_alg hash_alg, enum hash_mode hash_mode, 235 enum hash_type hash_type, enum spu_cipher_type ciph_type, 236 enum spu2_hash_type *spu2_type, enum spu2_hash_mode *spu2_mode) 237 { 238 int err; 239 240 err = spu2_hash_mode_xlate(hash_mode, spu2_mode); 241 if (err) { 242 flow_log("Invalid hash mode %d\n", hash_mode); 243 return err; 244 } 245 246 switch (hash_alg) { 247 case HASH_ALG_NONE: 248 *spu2_type = SPU2_HASH_TYPE_NONE; 249 break; 250 case HASH_ALG_MD5: 251 *spu2_type = SPU2_HASH_TYPE_MD5; 252 break; 253 case HASH_ALG_SHA1: 254 *spu2_type = SPU2_HASH_TYPE_SHA1; 255 break; 256 case HASH_ALG_SHA224: 257 *spu2_type = SPU2_HASH_TYPE_SHA224; 258 break; 259 case HASH_ALG_SHA256: 260 *spu2_type = SPU2_HASH_TYPE_SHA256; 261 break; 262 case HASH_ALG_SHA384: 263 *spu2_type = SPU2_HASH_TYPE_SHA384; 264 break; 265 case HASH_ALG_SHA512: 266 *spu2_type = SPU2_HASH_TYPE_SHA512; 267 break; 268 case HASH_ALG_AES: 269 switch (ciph_type) { 270 case CIPHER_TYPE_AES128: 271 *spu2_type = SPU2_HASH_TYPE_AES128; 272 break; 273 case CIPHER_TYPE_AES192: 274 *spu2_type = SPU2_HASH_TYPE_AES192; 275 break; 276 case CIPHER_TYPE_AES256: 277 *spu2_type = SPU2_HASH_TYPE_AES256; 278 break; 279 default: 280 err = -EINVAL; 281 } 282 break; 283 case HASH_ALG_SHA3_224: 284 *spu2_type = SPU2_HASH_TYPE_SHA3_224; 285 break; 286 case HASH_ALG_SHA3_256: 287 *spu2_type = SPU2_HASH_TYPE_SHA3_256; 288 break; 289 case HASH_ALG_SHA3_384: 290 *spu2_type = SPU2_HASH_TYPE_SHA3_384; 291 break; 292 case HASH_ALG_SHA3_512: 293 *spu2_type = SPU2_HASH_TYPE_SHA3_512; 294 break; 295 case HASH_ALG_LAST: 296 default: 297 err = -EINVAL; 298 break; 299 } 300 301 if (err) 302 flow_log("Invalid hash alg %d or type %d\n", 303 hash_alg, hash_type); 304 return err; 305 } 306 307 /* Dump FMD ctrl0. The ctrl0 input is in host byte order */ 308 static void spu2_dump_fmd_ctrl0(u64 ctrl0) 309 { 310 enum spu2_cipher_type ciph_type; 311 enum spu2_cipher_mode ciph_mode; 312 enum spu2_hash_type hash_type; 313 enum spu2_hash_mode hash_mode; 314 char *ciph_name; 315 char *ciph_mode_name; 316 char *hash_name; 317 char *hash_mode_name; 318 u8 cfb; 319 u8 proto; 320 321 packet_log(" FMD CTRL0 %#16llx\n", ctrl0); 322 if (ctrl0 & SPU2_CIPH_ENCRYPT_EN) 323 packet_log(" encrypt\n"); 324 else 325 packet_log(" decrypt\n"); 326 327 ciph_type = (ctrl0 & SPU2_CIPH_TYPE) >> SPU2_CIPH_TYPE_SHIFT; 328 ciph_name = spu2_ciph_type_name(ciph_type); 329 packet_log(" Cipher type: %s\n", ciph_name); 330 331 if (ciph_type != SPU2_CIPHER_TYPE_NONE) { 332 ciph_mode = (ctrl0 & SPU2_CIPH_MODE) >> SPU2_CIPH_MODE_SHIFT; 333 ciph_mode_name = spu2_ciph_mode_name(ciph_mode); 334 packet_log(" Cipher mode: %s\n", ciph_mode_name); 335 } 336 337 cfb = (ctrl0 & SPU2_CFB_MASK) >> SPU2_CFB_MASK_SHIFT; 338 packet_log(" CFB %#x\n", cfb); 339 340 proto = (ctrl0 & SPU2_PROTO_SEL) >> SPU2_PROTO_SEL_SHIFT; 341 packet_log(" protocol %#x\n", proto); 342 343 if (ctrl0 & SPU2_HASH_FIRST) 344 packet_log(" hash first\n"); 345 else 346 packet_log(" cipher first\n"); 347 348 if (ctrl0 & SPU2_CHK_TAG) 349 packet_log(" check tag\n"); 350 351 hash_type = (ctrl0 & SPU2_HASH_TYPE) >> SPU2_HASH_TYPE_SHIFT; 352 hash_name = spu2_hash_type_name(hash_type); 353 packet_log(" Hash type: %s\n", hash_name); 354 355 if (hash_type != SPU2_HASH_TYPE_NONE) { 356 hash_mode = (ctrl0 & SPU2_HASH_MODE) >> SPU2_HASH_MODE_SHIFT; 357 hash_mode_name = spu2_hash_mode_name(hash_mode); 358 packet_log(" Hash mode: %s\n", hash_mode_name); 359 } 360 361 if (ctrl0 & SPU2_CIPH_PAD_EN) { 362 packet_log(" Cipher pad: %#2llx\n", 363 (ctrl0 & SPU2_CIPH_PAD) >> SPU2_CIPH_PAD_SHIFT); 364 } 365 } 366 367 /* Dump FMD ctrl1. The ctrl1 input is in host byte order */ 368 static void spu2_dump_fmd_ctrl1(u64 ctrl1) 369 { 370 u8 hash_key_len; 371 u8 ciph_key_len; 372 u8 ret_iv_len; 373 u8 iv_offset; 374 u8 iv_len; 375 u8 hash_tag_len; 376 u8 ret_md; 377 378 packet_log(" FMD CTRL1 %#16llx\n", ctrl1); 379 if (ctrl1 & SPU2_TAG_LOC) 380 packet_log(" Tag after payload\n"); 381 382 packet_log(" Msg includes "); 383 if (ctrl1 & SPU2_HAS_FR_DATA) 384 packet_log("FD "); 385 if (ctrl1 & SPU2_HAS_AAD1) 386 packet_log("AAD1 "); 387 if (ctrl1 & SPU2_HAS_NAAD) 388 packet_log("NAAD "); 389 if (ctrl1 & SPU2_HAS_AAD2) 390 packet_log("AAD2 "); 391 if (ctrl1 & SPU2_HAS_ESN) 392 packet_log("ESN "); 393 packet_log("\n"); 394 395 hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT; 396 packet_log(" Hash key len %u\n", hash_key_len); 397 398 ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT; 399 packet_log(" Cipher key len %u\n", ciph_key_len); 400 401 if (ctrl1 & SPU2_GENIV) 402 packet_log(" Generate IV\n"); 403 404 if (ctrl1 & SPU2_HASH_IV) 405 packet_log(" IV included in hash\n"); 406 407 if (ctrl1 & SPU2_RET_IV) 408 packet_log(" Return IV in output before payload\n"); 409 410 ret_iv_len = (ctrl1 & SPU2_RET_IV_LEN) >> SPU2_RET_IV_LEN_SHIFT; 411 packet_log(" Length of returned IV %u bytes\n", 412 ret_iv_len ? ret_iv_len : 16); 413 414 iv_offset = (ctrl1 & SPU2_IV_OFFSET) >> SPU2_IV_OFFSET_SHIFT; 415 packet_log(" IV offset %u\n", iv_offset); 416 417 iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT; 418 packet_log(" Input IV len %u bytes\n", iv_len); 419 420 hash_tag_len = (ctrl1 & SPU2_HASH_TAG_LEN) >> SPU2_HASH_TAG_LEN_SHIFT; 421 packet_log(" Hash tag length %u bytes\n", hash_tag_len); 422 423 packet_log(" Return "); 424 ret_md = (ctrl1 & SPU2_RETURN_MD) >> SPU2_RETURN_MD_SHIFT; 425 if (ret_md) 426 packet_log("FMD "); 427 if (ret_md == SPU2_RET_FMD_OMD) 428 packet_log("OMD "); 429 else if (ret_md == SPU2_RET_FMD_OMD_IV) 430 packet_log("OMD IV "); 431 if (ctrl1 & SPU2_RETURN_FD) 432 packet_log("FD "); 433 if (ctrl1 & SPU2_RETURN_AAD1) 434 packet_log("AAD1 "); 435 if (ctrl1 & SPU2_RETURN_NAAD) 436 packet_log("NAAD "); 437 if (ctrl1 & SPU2_RETURN_AAD2) 438 packet_log("AAD2 "); 439 if (ctrl1 & SPU2_RETURN_PAY) 440 packet_log("Payload"); 441 packet_log("\n"); 442 } 443 444 /* Dump FMD ctrl2. The ctrl2 input is in host byte order */ 445 static void spu2_dump_fmd_ctrl2(u64 ctrl2) 446 { 447 packet_log(" FMD CTRL2 %#16llx\n", ctrl2); 448 449 packet_log(" AAD1 offset %llu length %llu bytes\n", 450 ctrl2 & SPU2_AAD1_OFFSET, 451 (ctrl2 & SPU2_AAD1_LEN) >> SPU2_AAD1_LEN_SHIFT); 452 packet_log(" AAD2 offset %llu\n", 453 (ctrl2 & SPU2_AAD2_OFFSET) >> SPU2_AAD2_OFFSET_SHIFT); 454 packet_log(" Payload offset %llu\n", 455 (ctrl2 & SPU2_PL_OFFSET) >> SPU2_PL_OFFSET_SHIFT); 456 } 457 458 /* Dump FMD ctrl3. The ctrl3 input is in host byte order */ 459 static void spu2_dump_fmd_ctrl3(u64 ctrl3) 460 { 461 packet_log(" FMD CTRL3 %#16llx\n", ctrl3); 462 463 packet_log(" Payload length %llu bytes\n", ctrl3 & SPU2_PL_LEN); 464 packet_log(" TLS length %llu bytes\n", 465 (ctrl3 & SPU2_TLS_LEN) >> SPU2_TLS_LEN_SHIFT); 466 } 467 468 static void spu2_dump_fmd(struct SPU2_FMD *fmd) 469 { 470 spu2_dump_fmd_ctrl0(le64_to_cpu(fmd->ctrl0)); 471 spu2_dump_fmd_ctrl1(le64_to_cpu(fmd->ctrl1)); 472 spu2_dump_fmd_ctrl2(le64_to_cpu(fmd->ctrl2)); 473 spu2_dump_fmd_ctrl3(le64_to_cpu(fmd->ctrl3)); 474 } 475 476 static void spu2_dump_omd(u8 *omd, u16 hash_key_len, u16 ciph_key_len, 477 u16 hash_iv_len, u16 ciph_iv_len) 478 { 479 u8 *ptr = omd; 480 481 packet_log(" OMD:\n"); 482 483 if (hash_key_len) { 484 packet_log(" Hash Key Length %u bytes\n", hash_key_len); 485 packet_dump(" KEY: ", ptr, hash_key_len); 486 ptr += hash_key_len; 487 } 488 489 if (ciph_key_len) { 490 packet_log(" Cipher Key Length %u bytes\n", ciph_key_len); 491 packet_dump(" KEY: ", ptr, ciph_key_len); 492 ptr += ciph_key_len; 493 } 494 495 if (hash_iv_len) { 496 packet_log(" Hash IV Length %u bytes\n", hash_iv_len); 497 packet_dump(" hash IV: ", ptr, hash_iv_len); 498 ptr += hash_iv_len; 499 } 500 501 if (ciph_iv_len) { 502 packet_log(" Cipher IV Length %u bytes\n", ciph_iv_len); 503 packet_dump(" cipher IV: ", ptr, ciph_iv_len); 504 } 505 } 506 507 /* Dump a SPU2 header for debug */ 508 void spu2_dump_msg_hdr(u8 *buf, unsigned int buf_len) 509 { 510 struct SPU2_FMD *fmd = (struct SPU2_FMD *)buf; 511 u8 *omd; 512 u64 ctrl1; 513 u16 hash_key_len; 514 u16 ciph_key_len; 515 u16 hash_iv_len; 516 u16 ciph_iv_len; 517 u16 omd_len; 518 519 packet_log("\n"); 520 packet_log("SPU2 message header %p len: %u\n", buf, buf_len); 521 522 spu2_dump_fmd(fmd); 523 omd = (u8 *)(fmd + 1); 524 525 ctrl1 = le64_to_cpu(fmd->ctrl1); 526 hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT; 527 ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT; 528 hash_iv_len = 0; 529 ciph_iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT; 530 spu2_dump_omd(omd, hash_key_len, ciph_key_len, hash_iv_len, 531 ciph_iv_len); 532 533 /* Double check sanity */ 534 omd_len = hash_key_len + ciph_key_len + hash_iv_len + ciph_iv_len; 535 if (FMD_SIZE + omd_len != buf_len) { 536 packet_log 537 (" Packet parsed incorrectly. buf_len %u, sum of MD %zu\n", 538 buf_len, FMD_SIZE + omd_len); 539 } 540 packet_log("\n"); 541 } 542 543 /** 544 * spu2_fmd_init() - At setkey time, initialize the fixed meta data for 545 * subsequent skcipher requests for this context. 546 * @fmd: Start of FMD field to be written 547 * @spu2_type: Cipher algorithm 548 * @spu2_mode: Cipher mode 549 * @cipher_key_len: Length of cipher key, in bytes 550 * @cipher_iv_len: Length of cipher initialization vector, in bytes 551 * 552 * Return: 0 (success) 553 */ 554 static int spu2_fmd_init(struct SPU2_FMD *fmd, 555 enum spu2_cipher_type spu2_type, 556 enum spu2_cipher_mode spu2_mode, 557 u32 cipher_key_len, u32 cipher_iv_len) 558 { 559 u64 ctrl0; 560 u64 ctrl1; 561 u64 ctrl2; 562 u64 ctrl3; 563 u32 aad1_offset; 564 u32 aad2_offset; 565 u16 aad1_len = 0; 566 u64 payload_offset; 567 568 ctrl0 = (spu2_type << SPU2_CIPH_TYPE_SHIFT) | 569 (spu2_mode << SPU2_CIPH_MODE_SHIFT); 570 571 ctrl1 = (cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) | 572 ((u64)cipher_iv_len << SPU2_IV_LEN_SHIFT) | 573 ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT) | SPU2_RETURN_PAY; 574 575 /* 576 * AAD1 offset is from start of FD. FD length is always 0 for this 577 * driver. So AAD1_offset is always 0. 578 */ 579 aad1_offset = 0; 580 aad2_offset = aad1_offset; 581 payload_offset = 0; 582 ctrl2 = aad1_offset | 583 (aad1_len << SPU2_AAD1_LEN_SHIFT) | 584 (aad2_offset << SPU2_AAD2_OFFSET_SHIFT) | 585 (payload_offset << SPU2_PL_OFFSET_SHIFT); 586 587 ctrl3 = 0; 588 589 fmd->ctrl0 = cpu_to_le64(ctrl0); 590 fmd->ctrl1 = cpu_to_le64(ctrl1); 591 fmd->ctrl2 = cpu_to_le64(ctrl2); 592 fmd->ctrl3 = cpu_to_le64(ctrl3); 593 594 return 0; 595 } 596 597 /** 598 * spu2_fmd_ctrl0_write() - Write ctrl0 field in fixed metadata (FMD) field of 599 * SPU request packet. 600 * @fmd: Start of FMD field to be written 601 * @is_inbound: true if decrypting. false if encrypting. 602 * @auth_first: true if alg authenticates before encrypting 603 * @protocol: protocol selector 604 * @cipher_type: cipher algorithm 605 * @cipher_mode: cipher mode 606 * @auth_type: authentication type 607 * @auth_mode: authentication mode 608 */ 609 static void spu2_fmd_ctrl0_write(struct SPU2_FMD *fmd, 610 bool is_inbound, bool auth_first, 611 enum spu2_proto_sel protocol, 612 enum spu2_cipher_type cipher_type, 613 enum spu2_cipher_mode cipher_mode, 614 enum spu2_hash_type auth_type, 615 enum spu2_hash_mode auth_mode) 616 { 617 u64 ctrl0 = 0; 618 619 if ((cipher_type != SPU2_CIPHER_TYPE_NONE) && !is_inbound) 620 ctrl0 |= SPU2_CIPH_ENCRYPT_EN; 621 622 ctrl0 |= ((u64)cipher_type << SPU2_CIPH_TYPE_SHIFT) | 623 ((u64)cipher_mode << SPU2_CIPH_MODE_SHIFT); 624 625 if (protocol) 626 ctrl0 |= (u64)protocol << SPU2_PROTO_SEL_SHIFT; 627 628 if (auth_first) 629 ctrl0 |= SPU2_HASH_FIRST; 630 631 if (is_inbound && (auth_type != SPU2_HASH_TYPE_NONE)) 632 ctrl0 |= SPU2_CHK_TAG; 633 634 ctrl0 |= (((u64)auth_type << SPU2_HASH_TYPE_SHIFT) | 635 ((u64)auth_mode << SPU2_HASH_MODE_SHIFT)); 636 637 fmd->ctrl0 = cpu_to_le64(ctrl0); 638 } 639 640 /** 641 * spu2_fmd_ctrl1_write() - Write ctrl1 field in fixed metadata (FMD) field of 642 * SPU request packet. 643 * @fmd: Start of FMD field to be written 644 * @is_inbound: true if decrypting. false if encrypting. 645 * @assoc_size: Length of additional associated data, in bytes 646 * @auth_key_len: Length of authentication key, in bytes 647 * @cipher_key_len: Length of cipher key, in bytes 648 * @gen_iv: If true, hw generates IV and returns in response 649 * @hash_iv: IV participates in hash. Used for IPSEC and TLS. 650 * @return_iv: Return IV in output packet before payload 651 * @ret_iv_len: Length of IV returned from SPU, in bytes 652 * @ret_iv_offset: Offset into full IV of start of returned IV 653 * @cipher_iv_len: Length of input cipher IV, in bytes 654 * @digest_size: Length of digest (aka, hash tag or ICV), in bytes 655 * @return_payload: Return payload in SPU response 656 * @return_md : return metadata in SPU response 657 * 658 * Packet can have AAD2 w/o AAD1. For algorithms currently supported, 659 * associated data goes in AAD2. 660 */ 661 static void spu2_fmd_ctrl1_write(struct SPU2_FMD *fmd, bool is_inbound, 662 u64 assoc_size, 663 u64 auth_key_len, u64 cipher_key_len, 664 bool gen_iv, bool hash_iv, bool return_iv, 665 u64 ret_iv_len, u64 ret_iv_offset, 666 u64 cipher_iv_len, u64 digest_size, 667 bool return_payload, bool return_md) 668 { 669 u64 ctrl1 = 0; 670 671 if (is_inbound && digest_size) 672 ctrl1 |= SPU2_TAG_LOC; 673 674 if (assoc_size) { 675 ctrl1 |= SPU2_HAS_AAD2; 676 ctrl1 |= SPU2_RETURN_AAD2; /* need aad2 for gcm aes esp */ 677 } 678 679 if (auth_key_len) 680 ctrl1 |= ((auth_key_len << SPU2_HASH_KEY_LEN_SHIFT) & 681 SPU2_HASH_KEY_LEN); 682 683 if (cipher_key_len) 684 ctrl1 |= ((cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) & 685 SPU2_CIPH_KEY_LEN); 686 687 if (gen_iv) 688 ctrl1 |= SPU2_GENIV; 689 690 if (hash_iv) 691 ctrl1 |= SPU2_HASH_IV; 692 693 if (return_iv) { 694 ctrl1 |= SPU2_RET_IV; 695 ctrl1 |= ret_iv_len << SPU2_RET_IV_LEN_SHIFT; 696 ctrl1 |= ret_iv_offset << SPU2_IV_OFFSET_SHIFT; 697 } 698 699 ctrl1 |= ((cipher_iv_len << SPU2_IV_LEN_SHIFT) & SPU2_IV_LEN); 700 701 if (digest_size) 702 ctrl1 |= ((digest_size << SPU2_HASH_TAG_LEN_SHIFT) & 703 SPU2_HASH_TAG_LEN); 704 705 /* Let's ask for the output pkt to include FMD, but don't need to 706 * get keys and IVs back in OMD. 707 */ 708 if (return_md) 709 ctrl1 |= ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT); 710 else 711 ctrl1 |= ((u64)SPU2_RET_NO_MD << SPU2_RETURN_MD_SHIFT); 712 713 /* Crypto API does not get assoc data back. So no need for AAD2. */ 714 715 if (return_payload) 716 ctrl1 |= SPU2_RETURN_PAY; 717 718 fmd->ctrl1 = cpu_to_le64(ctrl1); 719 } 720 721 /** 722 * spu2_fmd_ctrl2_write() - Set the ctrl2 field in the fixed metadata field of 723 * SPU2 header. 724 * @fmd: Start of FMD field to be written 725 * @cipher_offset: Number of bytes from Start of Packet (end of FD field) where 726 * data to be encrypted or decrypted begins 727 * @auth_key_len: Length of authentication key, in bytes 728 * @auth_iv_len: Length of authentication initialization vector, in bytes 729 * @cipher_key_len: Length of cipher key, in bytes 730 * @cipher_iv_len: Length of cipher IV, in bytes 731 */ 732 static void spu2_fmd_ctrl2_write(struct SPU2_FMD *fmd, u64 cipher_offset, 733 u64 auth_key_len, u64 auth_iv_len, 734 u64 cipher_key_len, u64 cipher_iv_len) 735 { 736 u64 ctrl2; 737 u64 aad1_offset; 738 u64 aad2_offset; 739 u16 aad1_len = 0; 740 u64 payload_offset; 741 742 /* AAD1 offset is from start of FD. FD length always 0. */ 743 aad1_offset = 0; 744 745 aad2_offset = aad1_offset; 746 payload_offset = cipher_offset; 747 ctrl2 = aad1_offset | 748 (aad1_len << SPU2_AAD1_LEN_SHIFT) | 749 (aad2_offset << SPU2_AAD2_OFFSET_SHIFT) | 750 (payload_offset << SPU2_PL_OFFSET_SHIFT); 751 752 fmd->ctrl2 = cpu_to_le64(ctrl2); 753 } 754 755 /** 756 * spu2_fmd_ctrl3_write() - Set the ctrl3 field in FMD 757 * @fmd: Fixed meta data. First field in SPU2 msg header. 758 * @payload_len: Length of payload, in bytes 759 */ 760 static void spu2_fmd_ctrl3_write(struct SPU2_FMD *fmd, u64 payload_len) 761 { 762 u64 ctrl3; 763 764 ctrl3 = payload_len & SPU2_PL_LEN; 765 766 fmd->ctrl3 = cpu_to_le64(ctrl3); 767 } 768 769 /** 770 * spu2_ctx_max_payload() - Determine the maximum length of the payload for a 771 * SPU message for a given cipher and hash alg context. 772 * @cipher_alg: The cipher algorithm 773 * @cipher_mode: The cipher mode 774 * @blocksize: The size of a block of data for this algo 775 * 776 * For SPU2, the hardware generally ignores the PayloadLen field in ctrl3 of 777 * FMD and just keeps computing until it receives a DMA descriptor with the EOF 778 * flag set. So we consider the max payload to be infinite. AES CCM is an 779 * exception. 780 * 781 * Return: Max payload length in bytes 782 */ 783 u32 spu2_ctx_max_payload(enum spu_cipher_alg cipher_alg, 784 enum spu_cipher_mode cipher_mode, 785 unsigned int blocksize) 786 { 787 if ((cipher_alg == CIPHER_ALG_AES) && 788 (cipher_mode == CIPHER_MODE_CCM)) { 789 u32 excess = SPU2_MAX_PAYLOAD % blocksize; 790 791 return SPU2_MAX_PAYLOAD - excess; 792 } else { 793 return SPU_MAX_PAYLOAD_INF; 794 } 795 } 796 797 /** 798 * spu2_payload_length() - Given a SPU2 message header, extract the payload 799 * length. 800 * @spu_hdr: Start of SPU message header (FMD) 801 * 802 * Return: payload length, in bytes 803 */ 804 u32 spu2_payload_length(u8 *spu_hdr) 805 { 806 struct SPU2_FMD *fmd = (struct SPU2_FMD *)spu_hdr; 807 u32 pl_len; 808 u64 ctrl3; 809 810 ctrl3 = le64_to_cpu(fmd->ctrl3); 811 pl_len = ctrl3 & SPU2_PL_LEN; 812 813 return pl_len; 814 } 815 816 /** 817 * spu2_response_hdr_len() - Determine the expected length of a SPU response 818 * header. 819 * @auth_key_len: Length of authentication key, in bytes 820 * @enc_key_len: Length of encryption key, in bytes 821 * @is_hash: Unused 822 * 823 * For SPU2, includes just FMD. OMD is never requested. 824 * 825 * Return: Length of FMD, in bytes 826 */ 827 u16 spu2_response_hdr_len(u16 auth_key_len, u16 enc_key_len, bool is_hash) 828 { 829 return FMD_SIZE; 830 } 831 832 /** 833 * spu2_hash_pad_len() - Calculate the length of hash padding required to extend 834 * data to a full block size. 835 * @hash_alg: hash algorithm 836 * @hash_mode: hash mode 837 * @chunksize: length of data, in bytes 838 * @hash_block_size: size of a hash block, in bytes 839 * 840 * SPU2 hardware does all hash padding 841 * 842 * Return: length of hash pad in bytes 843 */ 844 u16 spu2_hash_pad_len(enum hash_alg hash_alg, enum hash_mode hash_mode, 845 u32 chunksize, u16 hash_block_size) 846 { 847 return 0; 848 } 849 850 /** 851 * spu2_gcm_ccm_pad_len() - Determine the length of GCM/CCM padding for either 852 * the AAD field or the data. 853 * @cipher_mode: Unused 854 * @data_size: Unused 855 * 856 * Return: 0. Unlike SPU-M, SPU2 hardware does any GCM/CCM padding required. 857 */ 858 u32 spu2_gcm_ccm_pad_len(enum spu_cipher_mode cipher_mode, 859 unsigned int data_size) 860 { 861 return 0; 862 } 863 864 /** 865 * spu2_assoc_resp_len() - Determine the size of the AAD2 buffer needed to catch 866 * associated data in a SPU2 output packet. 867 * @cipher_mode: cipher mode 868 * @assoc_len: length of additional associated data, in bytes 869 * @iv_len: length of initialization vector, in bytes 870 * @is_encrypt: true if encrypting. false if decrypt. 871 * 872 * Return: Length of buffer to catch associated data in response 873 */ 874 u32 spu2_assoc_resp_len(enum spu_cipher_mode cipher_mode, 875 unsigned int assoc_len, unsigned int iv_len, 876 bool is_encrypt) 877 { 878 u32 resp_len = assoc_len; 879 880 if (is_encrypt) 881 /* gcm aes esp has to write 8-byte IV in response */ 882 resp_len += iv_len; 883 return resp_len; 884 } 885 886 /** 887 * spu2_aead_ivlen() - Calculate the length of the AEAD IV to be included 888 * in a SPU request after the AAD and before the payload. 889 * @cipher_mode: cipher mode 890 * @iv_len: initialization vector length in bytes 891 * 892 * For SPU2, AEAD IV is included in OMD and does not need to be repeated 893 * prior to the payload. 894 * 895 * Return: Length of AEAD IV in bytes 896 */ 897 u8 spu2_aead_ivlen(enum spu_cipher_mode cipher_mode, u16 iv_len) 898 { 899 return 0; 900 } 901 902 /** 903 * spu2_hash_type() - Determine the type of hash operation. 904 * @src_sent: The number of bytes in the current request that have already 905 * been sent to the SPU to be hashed. 906 * 907 * SPU2 always does a FULL hash operation 908 */ 909 enum hash_type spu2_hash_type(u32 src_sent) 910 { 911 return HASH_TYPE_FULL; 912 } 913 914 /** 915 * spu2_digest_size() - Determine the size of a hash digest to expect the SPU to 916 * return. 917 * @alg_digest_size: Number of bytes in the final digest for the given algo 918 * @alg: The hash algorithm 919 * @htype: Type of hash operation (init, update, full, etc) 920 * 921 */ 922 u32 spu2_digest_size(u32 alg_digest_size, enum hash_alg alg, 923 enum hash_type htype) 924 { 925 return alg_digest_size; 926 } 927 928 /** 929 * spu2_create_request() - Build a SPU2 request message header, includint FMD and 930 * OMD. 931 * @spu_hdr: Start of buffer where SPU request header is to be written 932 * @req_opts: SPU request message options 933 * @cipher_parms: Parameters related to cipher algorithm 934 * @hash_parms: Parameters related to hash algorithm 935 * @aead_parms: Parameters related to AEAD operation 936 * @data_size: Length of data to be encrypted or authenticated. If AEAD, does 937 * not include length of AAD. 938 * 939 * Construct the message starting at spu_hdr. Caller should allocate this buffer 940 * in DMA-able memory at least SPU_HEADER_ALLOC_LEN bytes long. 941 * 942 * Return: the length of the SPU header in bytes. 0 if an error occurs. 943 */ 944 u32 spu2_create_request(u8 *spu_hdr, 945 struct spu_request_opts *req_opts, 946 struct spu_cipher_parms *cipher_parms, 947 struct spu_hash_parms *hash_parms, 948 struct spu_aead_parms *aead_parms, 949 unsigned int data_size) 950 { 951 struct SPU2_FMD *fmd; 952 u8 *ptr; 953 unsigned int buf_len; 954 int err; 955 enum spu2_cipher_type spu2_ciph_type = SPU2_CIPHER_TYPE_NONE; 956 enum spu2_cipher_mode spu2_ciph_mode; 957 enum spu2_hash_type spu2_auth_type = SPU2_HASH_TYPE_NONE; 958 enum spu2_hash_mode spu2_auth_mode; 959 bool return_md = true; 960 enum spu2_proto_sel proto = SPU2_PROTO_RESV; 961 962 /* size of the payload */ 963 unsigned int payload_len = 964 hash_parms->prebuf_len + data_size + hash_parms->pad_len - 965 ((req_opts->is_aead && req_opts->is_inbound) ? 966 hash_parms->digestsize : 0); 967 968 /* offset of prebuf or data from start of AAD2 */ 969 unsigned int cipher_offset = aead_parms->assoc_size + 970 aead_parms->aad_pad_len + aead_parms->iv_len; 971 972 /* total size of the data following OMD (without STAT word padding) */ 973 unsigned int real_db_size = spu_real_db_size(aead_parms->assoc_size, 974 aead_parms->iv_len, 975 hash_parms->prebuf_len, 976 data_size, 977 aead_parms->aad_pad_len, 978 aead_parms->data_pad_len, 979 hash_parms->pad_len); 980 unsigned int assoc_size = aead_parms->assoc_size; 981 982 if (req_opts->is_aead && 983 (cipher_parms->alg == CIPHER_ALG_AES) && 984 (cipher_parms->mode == CIPHER_MODE_GCM)) 985 /* 986 * On SPU 2, aes gcm cipher first on encrypt, auth first on 987 * decrypt 988 */ 989 req_opts->auth_first = req_opts->is_inbound; 990 991 /* and do opposite for ccm (auth 1st on encrypt) */ 992 if (req_opts->is_aead && 993 (cipher_parms->alg == CIPHER_ALG_AES) && 994 (cipher_parms->mode == CIPHER_MODE_CCM)) 995 req_opts->auth_first = !req_opts->is_inbound; 996 997 flow_log("%s()\n", __func__); 998 flow_log(" in:%u authFirst:%u\n", 999 req_opts->is_inbound, req_opts->auth_first); 1000 flow_log(" cipher alg:%u mode:%u type %u\n", cipher_parms->alg, 1001 cipher_parms->mode, cipher_parms->type); 1002 flow_log(" is_esp: %s\n", req_opts->is_esp ? "yes" : "no"); 1003 flow_log(" key: %d\n", cipher_parms->key_len); 1004 flow_dump(" key: ", cipher_parms->key_buf, cipher_parms->key_len); 1005 flow_log(" iv: %d\n", cipher_parms->iv_len); 1006 flow_dump(" iv: ", cipher_parms->iv_buf, cipher_parms->iv_len); 1007 flow_log(" auth alg:%u mode:%u type %u\n", 1008 hash_parms->alg, hash_parms->mode, hash_parms->type); 1009 flow_log(" digestsize: %u\n", hash_parms->digestsize); 1010 flow_log(" authkey: %d\n", hash_parms->key_len); 1011 flow_dump(" authkey: ", hash_parms->key_buf, hash_parms->key_len); 1012 flow_log(" assoc_size:%u\n", assoc_size); 1013 flow_log(" prebuf_len:%u\n", hash_parms->prebuf_len); 1014 flow_log(" data_size:%u\n", data_size); 1015 flow_log(" hash_pad_len:%u\n", hash_parms->pad_len); 1016 flow_log(" real_db_size:%u\n", real_db_size); 1017 flow_log(" cipher_offset:%u payload_len:%u\n", 1018 cipher_offset, payload_len); 1019 flow_log(" aead_iv: %u\n", aead_parms->iv_len); 1020 1021 /* Convert to spu2 values for cipher alg, hash alg */ 1022 err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode, 1023 cipher_parms->type, 1024 &spu2_ciph_type, &spu2_ciph_mode); 1025 1026 /* If we are doing GCM hashing only - either via rfc4543 transform 1027 * or because we happen to do GCM with AAD only and no payload - we 1028 * need to configure hardware to use hash key rather than cipher key 1029 * and put data into payload. This is because unlike SPU-M, running 1030 * GCM cipher with 0 size payload is not permitted. 1031 */ 1032 if ((req_opts->is_rfc4543) || 1033 ((spu2_ciph_mode == SPU2_CIPHER_MODE_GCM) && 1034 (payload_len == 0))) { 1035 /* Use hashing (only) and set up hash key */ 1036 spu2_ciph_type = SPU2_CIPHER_TYPE_NONE; 1037 hash_parms->key_len = cipher_parms->key_len; 1038 memcpy(hash_parms->key_buf, cipher_parms->key_buf, 1039 cipher_parms->key_len); 1040 cipher_parms->key_len = 0; 1041 1042 if (req_opts->is_rfc4543) 1043 payload_len += assoc_size; 1044 else 1045 payload_len = assoc_size; 1046 cipher_offset = 0; 1047 assoc_size = 0; 1048 } 1049 1050 if (err) 1051 return 0; 1052 1053 flow_log("spu2 cipher type %s, cipher mode %s\n", 1054 spu2_ciph_type_name(spu2_ciph_type), 1055 spu2_ciph_mode_name(spu2_ciph_mode)); 1056 1057 err = spu2_hash_xlate(hash_parms->alg, hash_parms->mode, 1058 hash_parms->type, 1059 cipher_parms->type, 1060 &spu2_auth_type, &spu2_auth_mode); 1061 if (err) 1062 return 0; 1063 1064 flow_log("spu2 hash type %s, hash mode %s\n", 1065 spu2_hash_type_name(spu2_auth_type), 1066 spu2_hash_mode_name(spu2_auth_mode)); 1067 1068 fmd = (struct SPU2_FMD *)spu_hdr; 1069 1070 spu2_fmd_ctrl0_write(fmd, req_opts->is_inbound, req_opts->auth_first, 1071 proto, spu2_ciph_type, spu2_ciph_mode, 1072 spu2_auth_type, spu2_auth_mode); 1073 1074 spu2_fmd_ctrl1_write(fmd, req_opts->is_inbound, assoc_size, 1075 hash_parms->key_len, cipher_parms->key_len, 1076 false, false, 1077 aead_parms->return_iv, aead_parms->ret_iv_len, 1078 aead_parms->ret_iv_off, 1079 cipher_parms->iv_len, hash_parms->digestsize, 1080 !req_opts->bd_suppress, return_md); 1081 1082 spu2_fmd_ctrl2_write(fmd, cipher_offset, hash_parms->key_len, 0, 1083 cipher_parms->key_len, cipher_parms->iv_len); 1084 1085 spu2_fmd_ctrl3_write(fmd, payload_len); 1086 1087 ptr = (u8 *)(fmd + 1); 1088 buf_len = sizeof(struct SPU2_FMD); 1089 1090 /* Write OMD */ 1091 if (hash_parms->key_len) { 1092 memcpy(ptr, hash_parms->key_buf, hash_parms->key_len); 1093 ptr += hash_parms->key_len; 1094 buf_len += hash_parms->key_len; 1095 } 1096 if (cipher_parms->key_len) { 1097 memcpy(ptr, cipher_parms->key_buf, cipher_parms->key_len); 1098 ptr += cipher_parms->key_len; 1099 buf_len += cipher_parms->key_len; 1100 } 1101 if (cipher_parms->iv_len) { 1102 memcpy(ptr, cipher_parms->iv_buf, cipher_parms->iv_len); 1103 ptr += cipher_parms->iv_len; 1104 buf_len += cipher_parms->iv_len; 1105 } 1106 1107 packet_dump(" SPU request header: ", spu_hdr, buf_len); 1108 1109 return buf_len; 1110 } 1111 1112 /** 1113 * spu2_cipher_req_init() - Build an skcipher SPU2 request message header, 1114 * including FMD and OMD. 1115 * @spu_hdr: Location of start of SPU request (FMD field) 1116 * @cipher_parms: Parameters describing cipher request 1117 * 1118 * Called at setkey time to initialize a msg header that can be reused for all 1119 * subsequent skcipher requests. Construct the message starting at spu_hdr. 1120 * Caller should allocate this buffer in DMA-able memory at least 1121 * SPU_HEADER_ALLOC_LEN bytes long. 1122 * 1123 * Return: the total length of the SPU header (FMD and OMD) in bytes. 0 if an 1124 * error occurs. 1125 */ 1126 u16 spu2_cipher_req_init(u8 *spu_hdr, struct spu_cipher_parms *cipher_parms) 1127 { 1128 struct SPU2_FMD *fmd; 1129 u8 *omd; 1130 enum spu2_cipher_type spu2_type = SPU2_CIPHER_TYPE_NONE; 1131 enum spu2_cipher_mode spu2_mode; 1132 int err; 1133 1134 flow_log("%s()\n", __func__); 1135 flow_log(" cipher alg:%u mode:%u type %u\n", cipher_parms->alg, 1136 cipher_parms->mode, cipher_parms->type); 1137 flow_log(" cipher_iv_len: %u\n", cipher_parms->iv_len); 1138 flow_log(" key: %d\n", cipher_parms->key_len); 1139 flow_dump(" key: ", cipher_parms->key_buf, cipher_parms->key_len); 1140 1141 /* Convert to spu2 values */ 1142 err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode, 1143 cipher_parms->type, &spu2_type, &spu2_mode); 1144 if (err) 1145 return 0; 1146 1147 flow_log("spu2 cipher type %s, cipher mode %s\n", 1148 spu2_ciph_type_name(spu2_type), 1149 spu2_ciph_mode_name(spu2_mode)); 1150 1151 /* Construct the FMD header */ 1152 fmd = (struct SPU2_FMD *)spu_hdr; 1153 err = spu2_fmd_init(fmd, spu2_type, spu2_mode, cipher_parms->key_len, 1154 cipher_parms->iv_len); 1155 if (err) 1156 return 0; 1157 1158 /* Write cipher key to OMD */ 1159 omd = (u8 *)(fmd + 1); 1160 if (cipher_parms->key_buf && cipher_parms->key_len) 1161 memcpy(omd, cipher_parms->key_buf, cipher_parms->key_len); 1162 1163 packet_dump(" SPU request header: ", spu_hdr, 1164 FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len); 1165 1166 return FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len; 1167 } 1168 1169 /** 1170 * spu2_cipher_req_finish() - Finish building a SPU request message header for a 1171 * block cipher request. 1172 * @spu_hdr: Start of the request message header (MH field) 1173 * @spu_req_hdr_len: Length in bytes of the SPU request header 1174 * @is_inbound: 0 encrypt, 1 decrypt 1175 * @cipher_parms: Parameters describing cipher operation to be performed 1176 * @data_size: Length of the data in the BD field 1177 * 1178 * Assumes much of the header was already filled in at setkey() time in 1179 * spu_cipher_req_init(). 1180 * spu_cipher_req_init() fills in the encryption key. 1181 */ 1182 void spu2_cipher_req_finish(u8 *spu_hdr, 1183 u16 spu_req_hdr_len, 1184 unsigned int is_inbound, 1185 struct spu_cipher_parms *cipher_parms, 1186 unsigned int data_size) 1187 { 1188 struct SPU2_FMD *fmd; 1189 u8 *omd; /* start of optional metadata */ 1190 u64 ctrl0; 1191 u64 ctrl3; 1192 1193 flow_log("%s()\n", __func__); 1194 flow_log(" in: %u\n", is_inbound); 1195 flow_log(" cipher alg: %u, cipher_type: %u\n", cipher_parms->alg, 1196 cipher_parms->type); 1197 flow_log(" iv len: %d\n", cipher_parms->iv_len); 1198 flow_dump(" iv: ", cipher_parms->iv_buf, cipher_parms->iv_len); 1199 flow_log(" data_size: %u\n", data_size); 1200 1201 fmd = (struct SPU2_FMD *)spu_hdr; 1202 omd = (u8 *)(fmd + 1); 1203 1204 /* 1205 * FMD ctrl0 was initialized at setkey time. update it to indicate 1206 * whether we are encrypting or decrypting. 1207 */ 1208 ctrl0 = le64_to_cpu(fmd->ctrl0); 1209 if (is_inbound) 1210 ctrl0 &= ~SPU2_CIPH_ENCRYPT_EN; /* decrypt */ 1211 else 1212 ctrl0 |= SPU2_CIPH_ENCRYPT_EN; /* encrypt */ 1213 fmd->ctrl0 = cpu_to_le64(ctrl0); 1214 1215 if (cipher_parms->alg && cipher_parms->iv_buf && cipher_parms->iv_len) { 1216 /* cipher iv provided so put it in here */ 1217 memcpy(omd + cipher_parms->key_len, cipher_parms->iv_buf, 1218 cipher_parms->iv_len); 1219 } 1220 1221 ctrl3 = le64_to_cpu(fmd->ctrl3); 1222 data_size &= SPU2_PL_LEN; 1223 ctrl3 |= data_size; 1224 fmd->ctrl3 = cpu_to_le64(ctrl3); 1225 1226 packet_dump(" SPU request header: ", spu_hdr, spu_req_hdr_len); 1227 } 1228 1229 /** 1230 * spu2_request_pad() - Create pad bytes at the end of the data. 1231 * @pad_start: Start of buffer where pad bytes are to be written 1232 * @gcm_padding: Length of GCM padding, in bytes 1233 * @hash_pad_len: Number of bytes of padding extend data to full block 1234 * @auth_alg: Authentication algorithm 1235 * @auth_mode: Authentication mode 1236 * @total_sent: Length inserted at end of hash pad 1237 * @status_padding: Number of bytes of padding to align STATUS word 1238 * 1239 * There may be three forms of pad: 1240 * 1. GCM pad - for GCM mode ciphers, pad to 16-byte alignment 1241 * 2. hash pad - pad to a block length, with 0x80 data terminator and 1242 * size at the end 1243 * 3. STAT pad - to ensure the STAT field is 4-byte aligned 1244 */ 1245 void spu2_request_pad(u8 *pad_start, u32 gcm_padding, u32 hash_pad_len, 1246 enum hash_alg auth_alg, enum hash_mode auth_mode, 1247 unsigned int total_sent, u32 status_padding) 1248 { 1249 u8 *ptr = pad_start; 1250 1251 /* fix data alignent for GCM */ 1252 if (gcm_padding > 0) { 1253 flow_log(" GCM: padding to 16 byte alignment: %u bytes\n", 1254 gcm_padding); 1255 memset(ptr, 0, gcm_padding); 1256 ptr += gcm_padding; 1257 } 1258 1259 if (hash_pad_len > 0) { 1260 /* clear the padding section */ 1261 memset(ptr, 0, hash_pad_len); 1262 1263 /* terminate the data */ 1264 *ptr = 0x80; 1265 ptr += (hash_pad_len - sizeof(u64)); 1266 1267 /* add the size at the end as required per alg */ 1268 if (auth_alg == HASH_ALG_MD5) 1269 *(__le64 *)ptr = cpu_to_le64(total_sent * 8ull); 1270 else /* SHA1, SHA2-224, SHA2-256 */ 1271 *(__be64 *)ptr = cpu_to_be64(total_sent * 8ull); 1272 ptr += sizeof(u64); 1273 } 1274 1275 /* pad to a 4byte alignment for STAT */ 1276 if (status_padding > 0) { 1277 flow_log(" STAT: padding to 4 byte alignment: %u bytes\n", 1278 status_padding); 1279 1280 memset(ptr, 0, status_padding); 1281 ptr += status_padding; 1282 } 1283 } 1284 1285 /** 1286 * spu2_xts_tweak_in_payload() - Indicate that SPU2 does NOT place the XTS 1287 * tweak field in the packet payload (it uses IV instead) 1288 * 1289 * Return: 0 1290 */ 1291 u8 spu2_xts_tweak_in_payload(void) 1292 { 1293 return 0; 1294 } 1295 1296 /** 1297 * spu2_tx_status_len() - Return the length of the STATUS field in a SPU 1298 * response message. 1299 * 1300 * Return: Length of STATUS field in bytes. 1301 */ 1302 u8 spu2_tx_status_len(void) 1303 { 1304 return SPU2_TX_STATUS_LEN; 1305 } 1306 1307 /** 1308 * spu2_rx_status_len() - Return the length of the STATUS field in a SPU 1309 * response message. 1310 * 1311 * Return: Length of STATUS field in bytes. 1312 */ 1313 u8 spu2_rx_status_len(void) 1314 { 1315 return SPU2_RX_STATUS_LEN; 1316 } 1317 1318 /** 1319 * spu2_status_process() - Process the status from a SPU response message. 1320 * @statp: start of STATUS word 1321 * 1322 * Return: 0 - if status is good and response should be processed 1323 * !0 - status indicates an error and response is invalid 1324 */ 1325 int spu2_status_process(u8 *statp) 1326 { 1327 /* SPU2 status is 2 bytes by default - SPU_RX_STATUS_LEN */ 1328 u16 status = le16_to_cpu(*(__le16 *)statp); 1329 1330 if (status == 0) 1331 return 0; 1332 1333 flow_log("rx status is %#x\n", status); 1334 if (status == SPU2_INVALID_ICV) 1335 return SPU_INVALID_ICV; 1336 1337 return -EBADMSG; 1338 } 1339 1340 /** 1341 * spu2_ccm_update_iv() - Update the IV as per the requirements for CCM mode. 1342 * 1343 * @digestsize: Digest size of this request 1344 * @cipher_parms: (pointer to) cipher parmaeters, includes IV buf & IV len 1345 * @assoclen: Length of AAD data 1346 * @chunksize: length of input data to be sent in this req 1347 * @is_encrypt: true if this is an output/encrypt operation 1348 * @is_esp: true if this is an ESP / RFC4309 operation 1349 * 1350 */ 1351 void spu2_ccm_update_iv(unsigned int digestsize, 1352 struct spu_cipher_parms *cipher_parms, 1353 unsigned int assoclen, unsigned int chunksize, 1354 bool is_encrypt, bool is_esp) 1355 { 1356 int L; /* size of length field, in bytes */ 1357 1358 /* 1359 * In RFC4309 mode, L is fixed at 4 bytes; otherwise, IV from 1360 * testmgr contains (L-1) in bottom 3 bits of first byte, 1361 * per RFC 3610. 1362 */ 1363 if (is_esp) 1364 L = CCM_ESP_L_VALUE; 1365 else 1366 L = ((cipher_parms->iv_buf[0] & CCM_B0_L_PRIME) >> 1367 CCM_B0_L_PRIME_SHIFT) + 1; 1368 1369 /* SPU2 doesn't want these length bytes nor the first byte... */ 1370 cipher_parms->iv_len -= (1 + L); 1371 memmove(cipher_parms->iv_buf, &cipher_parms->iv_buf[1], 1372 cipher_parms->iv_len); 1373 } 1374 1375 /** 1376 * spu2_wordalign_padlen() - SPU2 does not require padding. 1377 * @data_size: length of data field in bytes 1378 * 1379 * Return: length of status field padding, in bytes (always 0 on SPU2) 1380 */ 1381 u32 spu2_wordalign_padlen(u32 data_size) 1382 { 1383 return 0; 1384 } 1385