1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2016 Broadcom 4 */ 5 6 #include <linux/err.h> 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/errno.h> 10 #include <linux/kernel.h> 11 #include <linux/interrupt.h> 12 #include <linux/platform_device.h> 13 #include <linux/scatterlist.h> 14 #include <linux/crypto.h> 15 #include <linux/kthread.h> 16 #include <linux/rtnetlink.h> 17 #include <linux/sched.h> 18 #include <linux/of.h> 19 #include <linux/io.h> 20 #include <linux/bitops.h> 21 22 #include <crypto/algapi.h> 23 #include <crypto/aead.h> 24 #include <crypto/internal/aead.h> 25 #include <crypto/aes.h> 26 #include <crypto/internal/des.h> 27 #include <crypto/hmac.h> 28 #include <crypto/md5.h> 29 #include <crypto/authenc.h> 30 #include <crypto/skcipher.h> 31 #include <crypto/hash.h> 32 #include <crypto/sha1.h> 33 #include <crypto/sha2.h> 34 #include <crypto/sha3.h> 35 36 #include "util.h" 37 #include "cipher.h" 38 #include "spu.h" 39 #include "spum.h" 40 #include "spu2.h" 41 42 /* ================= Device Structure ================== */ 43 44 struct bcm_device_private iproc_priv; 45 46 /* ==================== Parameters ===================== */ 47 48 int flow_debug_logging; 49 module_param(flow_debug_logging, int, 0644); 50 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging"); 51 52 int packet_debug_logging; 53 module_param(packet_debug_logging, int, 0644); 54 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging"); 55 56 int debug_logging_sleep; 57 module_param(debug_logging_sleep, int, 0644); 58 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep"); 59 60 /* 61 * The value of these module parameters is used to set the priority for each 62 * algo type when this driver registers algos with the kernel crypto API. 63 * To use a priority other than the default, set the priority in the insmod or 64 * modprobe. Changing the module priority after init time has no effect. 65 * 66 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE 67 * algos, but more preferred than generic software algos. 68 */ 69 static int cipher_pri = 150; 70 module_param(cipher_pri, int, 0644); 71 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos"); 72 73 static int hash_pri = 100; 74 module_param(hash_pri, int, 0644); 75 MODULE_PARM_DESC(hash_pri, "Priority for hash algos"); 76 77 static int aead_pri = 150; 78 module_param(aead_pri, int, 0644); 79 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos"); 80 81 /* A type 3 BCM header, expected to precede the SPU header for SPU-M. 82 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset). 83 * 0x60 - ring 0 84 * 0x68 - ring 1 85 * 0x70 - ring 2 86 * 0x78 - ring 3 87 */ 88 static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 }; 89 /* 90 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN 91 * is set dynamically after reading SPU type from device tree. 92 */ 93 #define BCM_HDR_LEN iproc_priv.bcm_hdr_len 94 95 /* min and max time to sleep before retrying when mbox queue is full. usec */ 96 #define MBOX_SLEEP_MIN 800 97 #define MBOX_SLEEP_MAX 1000 98 99 /** 100 * select_channel() - Select a SPU channel to handle a crypto request. Selects 101 * channel in round robin order. 102 * 103 * Return: channel index 104 */ 105 static u8 select_channel(void) 106 { 107 u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan); 108 109 return chan_idx % iproc_priv.spu.num_chan; 110 } 111 112 /** 113 * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to 114 * receive a SPU response message for an skcipher request. Includes buffers to 115 * catch SPU message headers and the response data. 116 * @mssg: mailbox message containing the receive sg 117 * @rctx: crypto request context 118 * @rx_frag_num: number of scatterlist elements required to hold the 119 * SPU response message 120 * @chunksize: Number of bytes of response data expected 121 * @stat_pad_len: Number of bytes required to pad the STAT field to 122 * a 4-byte boundary 123 * 124 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 125 * when the request completes, whether the request is handled successfully or 126 * there is an error. 127 * 128 * Returns: 129 * 0 if successful 130 * < 0 if an error 131 */ 132 static int 133 spu_skcipher_rx_sg_create(struct brcm_message *mssg, 134 struct iproc_reqctx_s *rctx, 135 u8 rx_frag_num, 136 unsigned int chunksize, u32 stat_pad_len) 137 { 138 struct spu_hw *spu = &iproc_priv.spu; 139 struct scatterlist *sg; /* used to build sgs in mbox message */ 140 struct iproc_ctx_s *ctx = rctx->ctx; 141 u32 datalen; /* Number of bytes of response data expected */ 142 143 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), 144 rctx->gfp); 145 if (!mssg->spu.dst) 146 return -ENOMEM; 147 148 sg = mssg->spu.dst; 149 sg_init_table(sg, rx_frag_num); 150 /* Space for SPU message header */ 151 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); 152 153 /* If XTS tweak in payload, add buffer to receive encrypted tweak */ 154 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 155 spu->spu_xts_tweak_in_payload()) 156 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, 157 SPU_XTS_TWEAK_SIZE); 158 159 /* Copy in each dst sg entry from request, up to chunksize */ 160 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, 161 rctx->dst_nents, chunksize); 162 if (datalen < chunksize) { 163 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u", 164 __func__, chunksize, datalen); 165 return -EFAULT; 166 } 167 168 if (stat_pad_len) 169 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); 170 171 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); 172 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); 173 174 return 0; 175 } 176 177 /** 178 * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to 179 * send a SPU request message for an skcipher request. Includes SPU message 180 * headers and the request data. 181 * @mssg: mailbox message containing the transmit sg 182 * @rctx: crypto request context 183 * @tx_frag_num: number of scatterlist elements required to construct the 184 * SPU request message 185 * @chunksize: Number of bytes of request data 186 * @pad_len: Number of pad bytes 187 * 188 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 189 * when the request completes, whether the request is handled successfully or 190 * there is an error. 191 * 192 * Returns: 193 * 0 if successful 194 * < 0 if an error 195 */ 196 static int 197 spu_skcipher_tx_sg_create(struct brcm_message *mssg, 198 struct iproc_reqctx_s *rctx, 199 u8 tx_frag_num, unsigned int chunksize, u32 pad_len) 200 { 201 struct spu_hw *spu = &iproc_priv.spu; 202 struct scatterlist *sg; /* used to build sgs in mbox message */ 203 struct iproc_ctx_s *ctx = rctx->ctx; 204 u32 datalen; /* Number of bytes of response data expected */ 205 u32 stat_len; 206 207 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), 208 rctx->gfp); 209 if (unlikely(!mssg->spu.src)) 210 return -ENOMEM; 211 212 sg = mssg->spu.src; 213 sg_init_table(sg, tx_frag_num); 214 215 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, 216 BCM_HDR_LEN + ctx->spu_req_hdr_len); 217 218 /* if XTS tweak in payload, copy from IV (where crypto API puts it) */ 219 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 220 spu->spu_xts_tweak_in_payload()) 221 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE); 222 223 /* Copy in each src sg entry from request, up to chunksize */ 224 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, 225 rctx->src_nents, chunksize); 226 if (unlikely(datalen < chunksize)) { 227 pr_err("%s(): failed to copy src sg to mbox msg", 228 __func__); 229 return -EFAULT; 230 } 231 232 if (pad_len) 233 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); 234 235 stat_len = spu->spu_tx_status_len(); 236 if (stat_len) { 237 memset(rctx->msg_buf.tx_stat, 0, stat_len); 238 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); 239 } 240 return 0; 241 } 242 243 static int mailbox_send_message(struct brcm_message *mssg, u32 flags, 244 u8 chan_idx) 245 { 246 int err; 247 int retry_cnt = 0; 248 struct device *dev = &(iproc_priv.pdev->dev); 249 250 err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg); 251 if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) { 252 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) { 253 /* 254 * Mailbox queue is full. Since MAY_SLEEP is set, assume 255 * not in atomic context and we can wait and try again. 256 */ 257 retry_cnt++; 258 usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX); 259 err = mbox_send_message(iproc_priv.mbox[chan_idx], 260 mssg); 261 atomic_inc(&iproc_priv.mb_no_spc); 262 } 263 } 264 if (err < 0) { 265 atomic_inc(&iproc_priv.mb_send_fail); 266 return err; 267 } 268 269 /* Check error returned by mailbox controller */ 270 err = mssg->error; 271 if (unlikely(err < 0)) { 272 dev_err(dev, "message error %d", err); 273 /* Signal txdone for mailbox channel */ 274 } 275 276 /* Signal txdone for mailbox channel */ 277 mbox_client_txdone(iproc_priv.mbox[chan_idx], err); 278 return err; 279 } 280 281 /** 282 * handle_skcipher_req() - Submit as much of a block cipher request as fits in 283 * a single SPU request message, starting at the current position in the request 284 * data. 285 * @rctx: Crypto request context 286 * 287 * This may be called on the crypto API thread, or, when a request is so large 288 * it must be broken into multiple SPU messages, on the thread used to invoke 289 * the response callback. When requests are broken into multiple SPU 290 * messages, we assume subsequent messages depend on previous results, and 291 * thus always wait for previous results before submitting the next message. 292 * Because requests are submitted in lock step like this, there is no need 293 * to synchronize access to request data structures. 294 * 295 * Return: -EINPROGRESS: request has been accepted and result will be returned 296 * asynchronously 297 * Any other value indicates an error 298 */ 299 static int handle_skcipher_req(struct iproc_reqctx_s *rctx) 300 { 301 struct spu_hw *spu = &iproc_priv.spu; 302 struct crypto_async_request *areq = rctx->parent; 303 struct skcipher_request *req = 304 container_of(areq, struct skcipher_request, base); 305 struct iproc_ctx_s *ctx = rctx->ctx; 306 struct spu_cipher_parms cipher_parms; 307 int err; 308 unsigned int chunksize; /* Num bytes of request to submit */ 309 int remaining; /* Bytes of request still to process */ 310 int chunk_start; /* Beginning of data for current SPU msg */ 311 312 /* IV or ctr value to use in this SPU msg */ 313 u8 local_iv_ctr[MAX_IV_SIZE]; 314 u32 stat_pad_len; /* num bytes to align status field */ 315 u32 pad_len; /* total length of all padding */ 316 struct brcm_message *mssg; /* mailbox message */ 317 318 /* number of entries in src and dst sg in mailbox message. */ 319 u8 rx_frag_num = 2; /* response header and STATUS */ 320 u8 tx_frag_num = 1; /* request header */ 321 322 flow_log("%s\n", __func__); 323 324 cipher_parms.alg = ctx->cipher.alg; 325 cipher_parms.mode = ctx->cipher.mode; 326 cipher_parms.type = ctx->cipher_type; 327 cipher_parms.key_len = ctx->enckeylen; 328 cipher_parms.key_buf = ctx->enckey; 329 cipher_parms.iv_buf = local_iv_ctr; 330 cipher_parms.iv_len = rctx->iv_ctr_len; 331 332 mssg = &rctx->mb_mssg; 333 chunk_start = rctx->src_sent; 334 remaining = rctx->total_todo - chunk_start; 335 336 /* determine the chunk we are breaking off and update the indexes */ 337 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && 338 (remaining > ctx->max_payload)) 339 chunksize = ctx->max_payload; 340 else 341 chunksize = remaining; 342 343 rctx->src_sent += chunksize; 344 rctx->total_sent = rctx->src_sent; 345 346 /* Count number of sg entries to be included in this request */ 347 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); 348 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); 349 350 if ((ctx->cipher.mode == CIPHER_MODE_CBC) && 351 rctx->is_encrypt && chunk_start) 352 /* 353 * Encrypting non-first first chunk. Copy last block of 354 * previous result to IV for this chunk. 355 */ 356 sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr, 357 rctx->iv_ctr_len, 358 chunk_start - rctx->iv_ctr_len); 359 360 if (rctx->iv_ctr_len) { 361 /* get our local copy of the iv */ 362 __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr, 363 rctx->iv_ctr_len); 364 365 /* generate the next IV if possible */ 366 if ((ctx->cipher.mode == CIPHER_MODE_CBC) && 367 !rctx->is_encrypt) { 368 /* 369 * CBC Decrypt: next IV is the last ciphertext block in 370 * this chunk 371 */ 372 sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr, 373 rctx->iv_ctr_len, 374 rctx->src_sent - rctx->iv_ctr_len); 375 } else if (ctx->cipher.mode == CIPHER_MODE_CTR) { 376 /* 377 * The SPU hardware increments the counter once for 378 * each AES block of 16 bytes. So update the counter 379 * for the next chunk, if there is one. Note that for 380 * this chunk, the counter has already been copied to 381 * local_iv_ctr. We can assume a block size of 16, 382 * because we only support CTR mode for AES, not for 383 * any other cipher alg. 384 */ 385 add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4); 386 } 387 } 388 389 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 390 flow_log("max_payload infinite\n"); 391 else 392 flow_log("max_payload %u\n", ctx->max_payload); 393 394 flow_log("sent:%u start:%u remains:%u size:%u\n", 395 rctx->src_sent, chunk_start, remaining, chunksize); 396 397 /* Copy SPU header template created at setkey time */ 398 memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr, 399 sizeof(rctx->msg_buf.bcm_spu_req_hdr)); 400 401 spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 402 ctx->spu_req_hdr_len, !(rctx->is_encrypt), 403 &cipher_parms, chunksize); 404 405 atomic64_add(chunksize, &iproc_priv.bytes_out); 406 407 stat_pad_len = spu->spu_wordalign_padlen(chunksize); 408 if (stat_pad_len) 409 rx_frag_num++; 410 pad_len = stat_pad_len; 411 if (pad_len) { 412 tx_frag_num++; 413 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0, 414 0, ctx->auth.alg, ctx->auth.mode, 415 rctx->total_sent, stat_pad_len); 416 } 417 418 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 419 ctx->spu_req_hdr_len); 420 packet_log("payload:\n"); 421 dump_sg(rctx->src_sg, rctx->src_skip, chunksize); 422 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); 423 424 /* 425 * Build mailbox message containing SPU request msg and rx buffers 426 * to catch response message 427 */ 428 memset(mssg, 0, sizeof(*mssg)); 429 mssg->type = BRCM_MESSAGE_SPU; 430 mssg->ctx = rctx; /* Will be returned in response */ 431 432 /* Create rx scatterlist to catch result */ 433 rx_frag_num += rctx->dst_nents; 434 435 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 436 spu->spu_xts_tweak_in_payload()) 437 rx_frag_num++; /* extra sg to insert tweak */ 438 439 err = spu_skcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize, 440 stat_pad_len); 441 if (err) 442 return err; 443 444 /* Create tx scatterlist containing SPU request message */ 445 tx_frag_num += rctx->src_nents; 446 if (spu->spu_tx_status_len()) 447 tx_frag_num++; 448 449 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 450 spu->spu_xts_tweak_in_payload()) 451 tx_frag_num++; /* extra sg to insert tweak */ 452 453 err = spu_skcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize, 454 pad_len); 455 if (err) 456 return err; 457 458 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); 459 if (unlikely(err < 0)) 460 return err; 461 462 return -EINPROGRESS; 463 } 464 465 /** 466 * handle_skcipher_resp() - Process a block cipher SPU response. Updates the 467 * total received count for the request and updates global stats. 468 * @rctx: Crypto request context 469 */ 470 static void handle_skcipher_resp(struct iproc_reqctx_s *rctx) 471 { 472 struct spu_hw *spu = &iproc_priv.spu; 473 struct crypto_async_request *areq = rctx->parent; 474 struct skcipher_request *req = skcipher_request_cast(areq); 475 struct iproc_ctx_s *ctx = rctx->ctx; 476 u32 payload_len; 477 478 /* See how much data was returned */ 479 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); 480 481 /* 482 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the 483 * encrypted tweak ("i") value; we don't count those. 484 */ 485 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 486 spu->spu_xts_tweak_in_payload() && 487 (payload_len >= SPU_XTS_TWEAK_SIZE)) 488 payload_len -= SPU_XTS_TWEAK_SIZE; 489 490 atomic64_add(payload_len, &iproc_priv.bytes_in); 491 492 flow_log("%s() offset: %u, bd_len: %u BD:\n", 493 __func__, rctx->total_received, payload_len); 494 495 dump_sg(req->dst, rctx->total_received, payload_len); 496 497 rctx->total_received += payload_len; 498 if (rctx->total_received == rctx->total_todo) { 499 atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]); 500 atomic_inc( 501 &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]); 502 } 503 } 504 505 /** 506 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to 507 * receive a SPU response message for an ahash request. 508 * @mssg: mailbox message containing the receive sg 509 * @rctx: crypto request context 510 * @rx_frag_num: number of scatterlist elements required to hold the 511 * SPU response message 512 * @digestsize: length of hash digest, in bytes 513 * @stat_pad_len: Number of bytes required to pad the STAT field to 514 * a 4-byte boundary 515 * 516 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 517 * when the request completes, whether the request is handled successfully or 518 * there is an error. 519 * 520 * Return: 521 * 0 if successful 522 * < 0 if an error 523 */ 524 static int 525 spu_ahash_rx_sg_create(struct brcm_message *mssg, 526 struct iproc_reqctx_s *rctx, 527 u8 rx_frag_num, unsigned int digestsize, 528 u32 stat_pad_len) 529 { 530 struct spu_hw *spu = &iproc_priv.spu; 531 struct scatterlist *sg; /* used to build sgs in mbox message */ 532 struct iproc_ctx_s *ctx = rctx->ctx; 533 534 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), 535 rctx->gfp); 536 if (!mssg->spu.dst) 537 return -ENOMEM; 538 539 sg = mssg->spu.dst; 540 sg_init_table(sg, rx_frag_num); 541 /* Space for SPU message header */ 542 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); 543 544 /* Space for digest */ 545 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); 546 547 if (stat_pad_len) 548 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); 549 550 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); 551 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); 552 return 0; 553 } 554 555 /** 556 * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send 557 * a SPU request message for an ahash request. Includes SPU message headers and 558 * the request data. 559 * @mssg: mailbox message containing the transmit sg 560 * @rctx: crypto request context 561 * @tx_frag_num: number of scatterlist elements required to construct the 562 * SPU request message 563 * @spu_hdr_len: length in bytes of SPU message header 564 * @hash_carry_len: Number of bytes of data carried over from previous req 565 * @new_data_len: Number of bytes of new request data 566 * @pad_len: Number of pad bytes 567 * 568 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 569 * when the request completes, whether the request is handled successfully or 570 * there is an error. 571 * 572 * Return: 573 * 0 if successful 574 * < 0 if an error 575 */ 576 static int 577 spu_ahash_tx_sg_create(struct brcm_message *mssg, 578 struct iproc_reqctx_s *rctx, 579 u8 tx_frag_num, 580 u32 spu_hdr_len, 581 unsigned int hash_carry_len, 582 unsigned int new_data_len, u32 pad_len) 583 { 584 struct spu_hw *spu = &iproc_priv.spu; 585 struct scatterlist *sg; /* used to build sgs in mbox message */ 586 u32 datalen; /* Number of bytes of response data expected */ 587 u32 stat_len; 588 589 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), 590 rctx->gfp); 591 if (!mssg->spu.src) 592 return -ENOMEM; 593 594 sg = mssg->spu.src; 595 sg_init_table(sg, tx_frag_num); 596 597 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, 598 BCM_HDR_LEN + spu_hdr_len); 599 600 if (hash_carry_len) 601 sg_set_buf(sg++, rctx->hash_carry, hash_carry_len); 602 603 if (new_data_len) { 604 /* Copy in each src sg entry from request, up to chunksize */ 605 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, 606 rctx->src_nents, new_data_len); 607 if (datalen < new_data_len) { 608 pr_err("%s(): failed to copy src sg to mbox msg", 609 __func__); 610 return -EFAULT; 611 } 612 } 613 614 if (pad_len) 615 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); 616 617 stat_len = spu->spu_tx_status_len(); 618 if (stat_len) { 619 memset(rctx->msg_buf.tx_stat, 0, stat_len); 620 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); 621 } 622 623 return 0; 624 } 625 626 /** 627 * handle_ahash_req() - Process an asynchronous hash request from the crypto 628 * API. 629 * @rctx: Crypto request context 630 * 631 * Builds a SPU request message embedded in a mailbox message and submits the 632 * mailbox message on a selected mailbox channel. The SPU request message is 633 * constructed as a scatterlist, including entries from the crypto API's 634 * src scatterlist to avoid copying the data to be hashed. This function is 635 * called either on the thread from the crypto API, or, in the case that the 636 * crypto API request is too large to fit in a single SPU request message, 637 * on the thread that invokes the receive callback with a response message. 638 * Because some operations require the response from one chunk before the next 639 * chunk can be submitted, we always wait for the response for the previous 640 * chunk before submitting the next chunk. Because requests are submitted in 641 * lock step like this, there is no need to synchronize access to request data 642 * structures. 643 * 644 * Return: 645 * -EINPROGRESS: request has been submitted to SPU and response will be 646 * returned asynchronously 647 * -EAGAIN: non-final request included a small amount of data, which for 648 * efficiency we did not submit to the SPU, but instead stored 649 * to be submitted to the SPU with the next part of the request 650 * other: an error code 651 */ 652 static int handle_ahash_req(struct iproc_reqctx_s *rctx) 653 { 654 struct spu_hw *spu = &iproc_priv.spu; 655 struct crypto_async_request *areq = rctx->parent; 656 struct ahash_request *req = ahash_request_cast(areq); 657 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 658 struct crypto_tfm *tfm = crypto_ahash_tfm(ahash); 659 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); 660 struct iproc_ctx_s *ctx = rctx->ctx; 661 662 /* number of bytes still to be hashed in this req */ 663 unsigned int nbytes_to_hash = 0; 664 int err; 665 unsigned int chunksize = 0; /* length of hash carry + new data */ 666 /* 667 * length of new data, not from hash carry, to be submitted in 668 * this hw request 669 */ 670 unsigned int new_data_len; 671 672 unsigned int __maybe_unused chunk_start = 0; 673 u32 db_size; /* Length of data field, incl gcm and hash padding */ 674 int pad_len = 0; /* total pad len, including gcm, hash, stat padding */ 675 u32 data_pad_len = 0; /* length of GCM/CCM padding */ 676 u32 stat_pad_len = 0; /* length of padding to align STATUS word */ 677 struct brcm_message *mssg; /* mailbox message */ 678 struct spu_request_opts req_opts; 679 struct spu_cipher_parms cipher_parms; 680 struct spu_hash_parms hash_parms; 681 struct spu_aead_parms aead_parms; 682 unsigned int local_nbuf; 683 u32 spu_hdr_len; 684 unsigned int digestsize; 685 u16 rem = 0; 686 687 /* 688 * number of entries in src and dst sg. Always includes SPU msg header. 689 * rx always includes a buffer to catch digest and STATUS. 690 */ 691 u8 rx_frag_num = 3; 692 u8 tx_frag_num = 1; 693 694 flow_log("total_todo %u, total_sent %u\n", 695 rctx->total_todo, rctx->total_sent); 696 697 memset(&req_opts, 0, sizeof(req_opts)); 698 memset(&cipher_parms, 0, sizeof(cipher_parms)); 699 memset(&hash_parms, 0, sizeof(hash_parms)); 700 memset(&aead_parms, 0, sizeof(aead_parms)); 701 702 req_opts.bd_suppress = true; 703 hash_parms.alg = ctx->auth.alg; 704 hash_parms.mode = ctx->auth.mode; 705 hash_parms.type = HASH_TYPE_NONE; 706 hash_parms.key_buf = (u8 *)ctx->authkey; 707 hash_parms.key_len = ctx->authkeylen; 708 709 /* 710 * For hash algorithms below assignment looks bit odd but 711 * it's needed for AES-XCBC and AES-CMAC hash algorithms 712 * to differentiate between 128, 192, 256 bit key values. 713 * Based on the key values, hash algorithm is selected. 714 * For example for 128 bit key, hash algorithm is AES-128. 715 */ 716 cipher_parms.type = ctx->cipher_type; 717 718 mssg = &rctx->mb_mssg; 719 chunk_start = rctx->src_sent; 720 721 /* 722 * Compute the amount remaining to hash. This may include data 723 * carried over from previous requests. 724 */ 725 nbytes_to_hash = rctx->total_todo - rctx->total_sent; 726 chunksize = nbytes_to_hash; 727 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && 728 (chunksize > ctx->max_payload)) 729 chunksize = ctx->max_payload; 730 731 /* 732 * If this is not a final request and the request data is not a multiple 733 * of a full block, then simply park the extra data and prefix it to the 734 * data for the next request. 735 */ 736 if (!rctx->is_final) { 737 u8 *dest = rctx->hash_carry + rctx->hash_carry_len; 738 u16 new_len; /* len of data to add to hash carry */ 739 740 rem = chunksize % blocksize; /* remainder */ 741 if (rem) { 742 /* chunksize not a multiple of blocksize */ 743 chunksize -= rem; 744 if (chunksize == 0) { 745 /* Don't have a full block to submit to hw */ 746 new_len = rem - rctx->hash_carry_len; 747 sg_copy_part_to_buf(req->src, dest, new_len, 748 rctx->src_sent); 749 rctx->hash_carry_len = rem; 750 flow_log("Exiting with hash carry len: %u\n", 751 rctx->hash_carry_len); 752 packet_dump(" buf: ", 753 rctx->hash_carry, 754 rctx->hash_carry_len); 755 return -EAGAIN; 756 } 757 } 758 } 759 760 /* if we have hash carry, then prefix it to the data in this request */ 761 local_nbuf = rctx->hash_carry_len; 762 rctx->hash_carry_len = 0; 763 if (local_nbuf) 764 tx_frag_num++; 765 new_data_len = chunksize - local_nbuf; 766 767 /* Count number of sg entries to be used in this request */ 768 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, 769 new_data_len); 770 771 /* AES hashing keeps key size in type field, so need to copy it here */ 772 if (hash_parms.alg == HASH_ALG_AES) 773 hash_parms.type = (enum hash_type)cipher_parms.type; 774 else 775 hash_parms.type = spu->spu_hash_type(rctx->total_sent); 776 777 digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg, 778 hash_parms.type); 779 hash_parms.digestsize = digestsize; 780 781 /* update the indexes */ 782 rctx->total_sent += chunksize; 783 /* if you sent a prebuf then that wasn't from this req->src */ 784 rctx->src_sent += new_data_len; 785 786 if ((rctx->total_sent == rctx->total_todo) && rctx->is_final) 787 hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg, 788 hash_parms.mode, 789 chunksize, 790 blocksize); 791 792 /* 793 * If a non-first chunk, then include the digest returned from the 794 * previous chunk so that hw can add to it (except for AES types). 795 */ 796 if ((hash_parms.type == HASH_TYPE_UPDT) && 797 (hash_parms.alg != HASH_ALG_AES)) { 798 hash_parms.key_buf = rctx->incr_hash; 799 hash_parms.key_len = digestsize; 800 } 801 802 atomic64_add(chunksize, &iproc_priv.bytes_out); 803 804 flow_log("%s() final: %u nbuf: %u ", 805 __func__, rctx->is_final, local_nbuf); 806 807 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 808 flow_log("max_payload infinite\n"); 809 else 810 flow_log("max_payload %u\n", ctx->max_payload); 811 812 flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize); 813 814 /* Prepend SPU header with type 3 BCM header */ 815 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); 816 817 hash_parms.prebuf_len = local_nbuf; 818 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + 819 BCM_HDR_LEN, 820 &req_opts, &cipher_parms, 821 &hash_parms, &aead_parms, 822 new_data_len); 823 824 if (spu_hdr_len == 0) { 825 pr_err("Failed to create SPU request header\n"); 826 return -EFAULT; 827 } 828 829 /* 830 * Determine total length of padding required. Put all padding in one 831 * buffer. 832 */ 833 data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize); 834 db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len, 835 0, 0, hash_parms.pad_len); 836 if (spu->spu_tx_status_len()) 837 stat_pad_len = spu->spu_wordalign_padlen(db_size); 838 if (stat_pad_len) 839 rx_frag_num++; 840 pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len; 841 if (pad_len) { 842 tx_frag_num++; 843 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len, 844 hash_parms.pad_len, ctx->auth.alg, 845 ctx->auth.mode, rctx->total_sent, 846 stat_pad_len); 847 } 848 849 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 850 spu_hdr_len); 851 packet_dump(" prebuf: ", rctx->hash_carry, local_nbuf); 852 flow_log("Data:\n"); 853 dump_sg(rctx->src_sg, rctx->src_skip, new_data_len); 854 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); 855 856 /* 857 * Build mailbox message containing SPU request msg and rx buffers 858 * to catch response message 859 */ 860 memset(mssg, 0, sizeof(*mssg)); 861 mssg->type = BRCM_MESSAGE_SPU; 862 mssg->ctx = rctx; /* Will be returned in response */ 863 864 /* Create rx scatterlist to catch result */ 865 err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize, 866 stat_pad_len); 867 if (err) 868 return err; 869 870 /* Create tx scatterlist containing SPU request message */ 871 tx_frag_num += rctx->src_nents; 872 if (spu->spu_tx_status_len()) 873 tx_frag_num++; 874 err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, 875 local_nbuf, new_data_len, pad_len); 876 if (err) 877 return err; 878 879 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); 880 if (unlikely(err < 0)) 881 return err; 882 883 return -EINPROGRESS; 884 } 885 886 /** 887 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash 888 * for an HMAC request. 889 * @req: The HMAC request from the crypto API 890 * @ctx: The session context 891 * 892 * Return: 0 if synchronous hash operation successful 893 * -EINVAL if the hash algo is unrecognized 894 * any other value indicates an error 895 */ 896 static int spu_hmac_outer_hash(struct ahash_request *req, 897 struct iproc_ctx_s *ctx) 898 { 899 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 900 unsigned int blocksize = 901 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 902 int rc; 903 904 switch (ctx->auth.alg) { 905 case HASH_ALG_MD5: 906 rc = do_shash("md5", req->result, ctx->opad, blocksize, 907 req->result, ctx->digestsize, NULL, 0); 908 break; 909 case HASH_ALG_SHA1: 910 rc = do_shash("sha1", req->result, ctx->opad, blocksize, 911 req->result, ctx->digestsize, NULL, 0); 912 break; 913 case HASH_ALG_SHA224: 914 rc = do_shash("sha224", req->result, ctx->opad, blocksize, 915 req->result, ctx->digestsize, NULL, 0); 916 break; 917 case HASH_ALG_SHA256: 918 rc = do_shash("sha256", req->result, ctx->opad, blocksize, 919 req->result, ctx->digestsize, NULL, 0); 920 break; 921 case HASH_ALG_SHA384: 922 rc = do_shash("sha384", req->result, ctx->opad, blocksize, 923 req->result, ctx->digestsize, NULL, 0); 924 break; 925 case HASH_ALG_SHA512: 926 rc = do_shash("sha512", req->result, ctx->opad, blocksize, 927 req->result, ctx->digestsize, NULL, 0); 928 break; 929 default: 930 pr_err("%s() Error : unknown hmac type\n", __func__); 931 rc = -EINVAL; 932 } 933 return rc; 934 } 935 936 /** 937 * ahash_req_done() - Process a hash result from the SPU hardware. 938 * @rctx: Crypto request context 939 * 940 * Return: 0 if successful 941 * < 0 if an error 942 */ 943 static int ahash_req_done(struct iproc_reqctx_s *rctx) 944 { 945 struct spu_hw *spu = &iproc_priv.spu; 946 struct crypto_async_request *areq = rctx->parent; 947 struct ahash_request *req = ahash_request_cast(areq); 948 struct iproc_ctx_s *ctx = rctx->ctx; 949 int err; 950 951 memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize); 952 953 if (spu->spu_type == SPU_TYPE_SPUM) { 954 /* byte swap the output from the UPDT function to network byte 955 * order 956 */ 957 if (ctx->auth.alg == HASH_ALG_MD5) { 958 __swab32s((u32 *)req->result); 959 __swab32s(((u32 *)req->result) + 1); 960 __swab32s(((u32 *)req->result) + 2); 961 __swab32s(((u32 *)req->result) + 3); 962 __swab32s(((u32 *)req->result) + 4); 963 } 964 } 965 966 flow_dump(" digest ", req->result, ctx->digestsize); 967 968 /* if this an HMAC then do the outer hash */ 969 if (rctx->is_sw_hmac) { 970 err = spu_hmac_outer_hash(req, ctx); 971 if (err < 0) 972 return err; 973 flow_dump(" hmac: ", req->result, ctx->digestsize); 974 } 975 976 if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) { 977 atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]); 978 atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]); 979 } else { 980 atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]); 981 atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]); 982 } 983 984 return 0; 985 } 986 987 /** 988 * handle_ahash_resp() - Process a SPU response message for a hash request. 989 * Checks if the entire crypto API request has been processed, and if so, 990 * invokes post processing on the result. 991 * @rctx: Crypto request context 992 */ 993 static void handle_ahash_resp(struct iproc_reqctx_s *rctx) 994 { 995 struct iproc_ctx_s *ctx = rctx->ctx; 996 struct crypto_async_request *areq = rctx->parent; 997 struct ahash_request *req = ahash_request_cast(areq); 998 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 999 unsigned int blocksize = 1000 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 1001 /* 1002 * Save hash to use as input to next op if incremental. Might be copying 1003 * too much, but that's easier than figuring out actual digest size here 1004 */ 1005 memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE); 1006 1007 flow_log("%s() blocksize:%u digestsize:%u\n", 1008 __func__, blocksize, ctx->digestsize); 1009 1010 atomic64_add(ctx->digestsize, &iproc_priv.bytes_in); 1011 1012 if (rctx->is_final && (rctx->total_sent == rctx->total_todo)) 1013 ahash_req_done(rctx); 1014 } 1015 1016 /** 1017 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive 1018 * a SPU response message for an AEAD request. Includes buffers to catch SPU 1019 * message headers and the response data. 1020 * @mssg: mailbox message containing the receive sg 1021 * @req: Crypto API request 1022 * @rctx: crypto request context 1023 * @rx_frag_num: number of scatterlist elements required to hold the 1024 * SPU response message 1025 * @assoc_len: Length of associated data included in the crypto request 1026 * @ret_iv_len: Length of IV returned in response 1027 * @resp_len: Number of bytes of response data expected to be written to 1028 * dst buffer from crypto API 1029 * @digestsize: Length of hash digest, in bytes 1030 * @stat_pad_len: Number of bytes required to pad the STAT field to 1031 * a 4-byte boundary 1032 * 1033 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 1034 * when the request completes, whether the request is handled successfully or 1035 * there is an error. 1036 * 1037 * Returns: 1038 * 0 if successful 1039 * < 0 if an error 1040 */ 1041 static int spu_aead_rx_sg_create(struct brcm_message *mssg, 1042 struct aead_request *req, 1043 struct iproc_reqctx_s *rctx, 1044 u8 rx_frag_num, 1045 unsigned int assoc_len, 1046 u32 ret_iv_len, unsigned int resp_len, 1047 unsigned int digestsize, u32 stat_pad_len) 1048 { 1049 struct spu_hw *spu = &iproc_priv.spu; 1050 struct scatterlist *sg; /* used to build sgs in mbox message */ 1051 struct iproc_ctx_s *ctx = rctx->ctx; 1052 u32 datalen; /* Number of bytes of response data expected */ 1053 u32 assoc_buf_len; 1054 u8 data_padlen = 0; 1055 1056 if (ctx->is_rfc4543) { 1057 /* RFC4543: only pad after data, not after AAD */ 1058 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1059 assoc_len + resp_len); 1060 assoc_buf_len = assoc_len; 1061 } else { 1062 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1063 resp_len); 1064 assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode, 1065 assoc_len, ret_iv_len, 1066 rctx->is_encrypt); 1067 } 1068 1069 if (ctx->cipher.mode == CIPHER_MODE_CCM) 1070 /* ICV (after data) must be in the next 32-bit word for CCM */ 1071 data_padlen += spu->spu_wordalign_padlen(assoc_buf_len + 1072 resp_len + 1073 data_padlen); 1074 1075 if (data_padlen) 1076 /* have to catch gcm pad in separate buffer */ 1077 rx_frag_num++; 1078 1079 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), 1080 rctx->gfp); 1081 if (!mssg->spu.dst) 1082 return -ENOMEM; 1083 1084 sg = mssg->spu.dst; 1085 sg_init_table(sg, rx_frag_num); 1086 1087 /* Space for SPU message header */ 1088 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); 1089 1090 if (assoc_buf_len) { 1091 /* 1092 * Don't write directly to req->dst, because SPU may pad the 1093 * assoc data in the response 1094 */ 1095 memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len); 1096 sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len); 1097 } 1098 1099 if (resp_len) { 1100 /* 1101 * Copy in each dst sg entry from request, up to chunksize. 1102 * dst sg catches just the data. digest caught in separate buf. 1103 */ 1104 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, 1105 rctx->dst_nents, resp_len); 1106 if (datalen < (resp_len)) { 1107 pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u", 1108 __func__, resp_len, datalen); 1109 return -EFAULT; 1110 } 1111 } 1112 1113 /* If GCM/CCM data is padded, catch padding in separate buffer */ 1114 if (data_padlen) { 1115 memset(rctx->msg_buf.a.gcmpad, 0, data_padlen); 1116 sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen); 1117 } 1118 1119 /* Always catch ICV in separate buffer */ 1120 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); 1121 1122 flow_log("stat_pad_len %u\n", stat_pad_len); 1123 if (stat_pad_len) { 1124 memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len); 1125 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); 1126 } 1127 1128 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); 1129 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); 1130 1131 return 0; 1132 } 1133 1134 /** 1135 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a 1136 * SPU request message for an AEAD request. Includes SPU message headers and the 1137 * request data. 1138 * @mssg: mailbox message containing the transmit sg 1139 * @rctx: crypto request context 1140 * @tx_frag_num: number of scatterlist elements required to construct the 1141 * SPU request message 1142 * @spu_hdr_len: length of SPU message header in bytes 1143 * @assoc: crypto API associated data scatterlist 1144 * @assoc_len: length of associated data 1145 * @assoc_nents: number of scatterlist entries containing assoc data 1146 * @aead_iv_len: length of AEAD IV, if included 1147 * @chunksize: Number of bytes of request data 1148 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM. 1149 * @pad_len: Number of pad bytes 1150 * @incl_icv: If true, write separate ICV buffer after data and 1151 * any padding 1152 * 1153 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 1154 * when the request completes, whether the request is handled successfully or 1155 * there is an error. 1156 * 1157 * Return: 1158 * 0 if successful 1159 * < 0 if an error 1160 */ 1161 static int spu_aead_tx_sg_create(struct brcm_message *mssg, 1162 struct iproc_reqctx_s *rctx, 1163 u8 tx_frag_num, 1164 u32 spu_hdr_len, 1165 struct scatterlist *assoc, 1166 unsigned int assoc_len, 1167 int assoc_nents, 1168 unsigned int aead_iv_len, 1169 unsigned int chunksize, 1170 u32 aad_pad_len, u32 pad_len, bool incl_icv) 1171 { 1172 struct spu_hw *spu = &iproc_priv.spu; 1173 struct scatterlist *sg; /* used to build sgs in mbox message */ 1174 struct scatterlist *assoc_sg = assoc; 1175 struct iproc_ctx_s *ctx = rctx->ctx; 1176 u32 datalen; /* Number of bytes of data to write */ 1177 u32 written; /* Number of bytes of data written */ 1178 u32 assoc_offset = 0; 1179 u32 stat_len; 1180 1181 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), 1182 rctx->gfp); 1183 if (!mssg->spu.src) 1184 return -ENOMEM; 1185 1186 sg = mssg->spu.src; 1187 sg_init_table(sg, tx_frag_num); 1188 1189 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, 1190 BCM_HDR_LEN + spu_hdr_len); 1191 1192 if (assoc_len) { 1193 /* Copy in each associated data sg entry from request */ 1194 written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset, 1195 assoc_nents, assoc_len); 1196 if (written < assoc_len) { 1197 pr_err("%s(): failed to copy assoc sg to mbox msg", 1198 __func__); 1199 return -EFAULT; 1200 } 1201 } 1202 1203 if (aead_iv_len) 1204 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len); 1205 1206 if (aad_pad_len) { 1207 memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len); 1208 sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len); 1209 } 1210 1211 datalen = chunksize; 1212 if ((chunksize > ctx->digestsize) && incl_icv) 1213 datalen -= ctx->digestsize; 1214 if (datalen) { 1215 /* For aead, a single msg should consume the entire src sg */ 1216 written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, 1217 rctx->src_nents, datalen); 1218 if (written < datalen) { 1219 pr_err("%s(): failed to copy src sg to mbox msg", 1220 __func__); 1221 return -EFAULT; 1222 } 1223 } 1224 1225 if (pad_len) { 1226 memset(rctx->msg_buf.spu_req_pad, 0, pad_len); 1227 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); 1228 } 1229 1230 if (incl_icv) 1231 sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize); 1232 1233 stat_len = spu->spu_tx_status_len(); 1234 if (stat_len) { 1235 memset(rctx->msg_buf.tx_stat, 0, stat_len); 1236 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); 1237 } 1238 return 0; 1239 } 1240 1241 /** 1242 * handle_aead_req() - Submit a SPU request message for the next chunk of the 1243 * current AEAD request. 1244 * @rctx: Crypto request context 1245 * 1246 * Unlike other operation types, we assume the length of the request fits in 1247 * a single SPU request message. aead_enqueue() makes sure this is true. 1248 * Comments for other op types regarding threads applies here as well. 1249 * 1250 * Unlike incremental hash ops, where the spu returns the entire hash for 1251 * truncated algs like sha-224, the SPU returns just the truncated hash in 1252 * response to aead requests. So digestsize is always ctx->digestsize here. 1253 * 1254 * Return: -EINPROGRESS: crypto request has been accepted and result will be 1255 * returned asynchronously 1256 * Any other value indicates an error 1257 */ 1258 static int handle_aead_req(struct iproc_reqctx_s *rctx) 1259 { 1260 struct spu_hw *spu = &iproc_priv.spu; 1261 struct crypto_async_request *areq = rctx->parent; 1262 struct aead_request *req = container_of(areq, 1263 struct aead_request, base); 1264 struct iproc_ctx_s *ctx = rctx->ctx; 1265 int err; 1266 unsigned int chunksize; 1267 unsigned int resp_len; 1268 u32 spu_hdr_len; 1269 u32 db_size; 1270 u32 stat_pad_len; 1271 u32 pad_len; 1272 struct brcm_message *mssg; /* mailbox message */ 1273 struct spu_request_opts req_opts; 1274 struct spu_cipher_parms cipher_parms; 1275 struct spu_hash_parms hash_parms; 1276 struct spu_aead_parms aead_parms; 1277 int assoc_nents = 0; 1278 bool incl_icv = false; 1279 unsigned int digestsize = ctx->digestsize; 1280 1281 /* number of entries in src and dst sg. Always includes SPU msg header. 1282 */ 1283 u8 rx_frag_num = 2; /* and STATUS */ 1284 u8 tx_frag_num = 1; 1285 1286 /* doing the whole thing at once */ 1287 chunksize = rctx->total_todo; 1288 1289 flow_log("%s: chunksize %u\n", __func__, chunksize); 1290 1291 memset(&req_opts, 0, sizeof(req_opts)); 1292 memset(&hash_parms, 0, sizeof(hash_parms)); 1293 memset(&aead_parms, 0, sizeof(aead_parms)); 1294 1295 req_opts.is_inbound = !(rctx->is_encrypt); 1296 req_opts.auth_first = ctx->auth_first; 1297 req_opts.is_aead = true; 1298 req_opts.is_esp = ctx->is_esp; 1299 1300 cipher_parms.alg = ctx->cipher.alg; 1301 cipher_parms.mode = ctx->cipher.mode; 1302 cipher_parms.type = ctx->cipher_type; 1303 cipher_parms.key_buf = ctx->enckey; 1304 cipher_parms.key_len = ctx->enckeylen; 1305 cipher_parms.iv_buf = rctx->msg_buf.iv_ctr; 1306 cipher_parms.iv_len = rctx->iv_ctr_len; 1307 1308 hash_parms.alg = ctx->auth.alg; 1309 hash_parms.mode = ctx->auth.mode; 1310 hash_parms.type = HASH_TYPE_NONE; 1311 hash_parms.key_buf = (u8 *)ctx->authkey; 1312 hash_parms.key_len = ctx->authkeylen; 1313 hash_parms.digestsize = digestsize; 1314 1315 if ((ctx->auth.alg == HASH_ALG_SHA224) && 1316 (ctx->authkeylen < SHA224_DIGEST_SIZE)) 1317 hash_parms.key_len = SHA224_DIGEST_SIZE; 1318 1319 aead_parms.assoc_size = req->assoclen; 1320 if (ctx->is_esp && !ctx->is_rfc4543) { 1321 /* 1322 * 8-byte IV is included assoc data in request. SPU2 1323 * expects AAD to include just SPI and seqno. So 1324 * subtract off the IV len. 1325 */ 1326 aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE; 1327 1328 if (rctx->is_encrypt) { 1329 aead_parms.return_iv = true; 1330 aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE; 1331 aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE; 1332 } 1333 } else { 1334 aead_parms.ret_iv_len = 0; 1335 } 1336 1337 /* 1338 * Count number of sg entries from the crypto API request that are to 1339 * be included in this mailbox message. For dst sg, don't count space 1340 * for digest. Digest gets caught in a separate buffer and copied back 1341 * to dst sg when processing response. 1342 */ 1343 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); 1344 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); 1345 if (aead_parms.assoc_size) 1346 assoc_nents = spu_sg_count(rctx->assoc, 0, 1347 aead_parms.assoc_size); 1348 1349 mssg = &rctx->mb_mssg; 1350 1351 rctx->total_sent = chunksize; 1352 rctx->src_sent = chunksize; 1353 if (spu->spu_assoc_resp_len(ctx->cipher.mode, 1354 aead_parms.assoc_size, 1355 aead_parms.ret_iv_len, 1356 rctx->is_encrypt)) 1357 rx_frag_num++; 1358 1359 aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode, 1360 rctx->iv_ctr_len); 1361 1362 if (ctx->auth.alg == HASH_ALG_AES) 1363 hash_parms.type = (enum hash_type)ctx->cipher_type; 1364 1365 /* General case AAD padding (CCM and RFC4543 special cases below) */ 1366 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1367 aead_parms.assoc_size); 1368 1369 /* General case data padding (CCM decrypt special case below) */ 1370 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1371 chunksize); 1372 1373 if (ctx->cipher.mode == CIPHER_MODE_CCM) { 1374 /* 1375 * for CCM, AAD len + 2 (rather than AAD len) needs to be 1376 * 128-bit aligned 1377 */ 1378 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len( 1379 ctx->cipher.mode, 1380 aead_parms.assoc_size + 2); 1381 1382 /* 1383 * And when decrypting CCM, need to pad without including 1384 * size of ICV which is tacked on to end of chunk 1385 */ 1386 if (!rctx->is_encrypt) 1387 aead_parms.data_pad_len = 1388 spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1389 chunksize - digestsize); 1390 1391 /* CCM also requires software to rewrite portions of IV: */ 1392 spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen, 1393 chunksize, rctx->is_encrypt, 1394 ctx->is_esp); 1395 } 1396 1397 if (ctx->is_rfc4543) { 1398 /* 1399 * RFC4543: data is included in AAD, so don't pad after AAD 1400 * and pad data based on both AAD + data size 1401 */ 1402 aead_parms.aad_pad_len = 0; 1403 if (!rctx->is_encrypt) 1404 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( 1405 ctx->cipher.mode, 1406 aead_parms.assoc_size + chunksize - 1407 digestsize); 1408 else 1409 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( 1410 ctx->cipher.mode, 1411 aead_parms.assoc_size + chunksize); 1412 1413 req_opts.is_rfc4543 = true; 1414 } 1415 1416 if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) { 1417 incl_icv = true; 1418 tx_frag_num++; 1419 /* Copy ICV from end of src scatterlist to digest buf */ 1420 sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize, 1421 req->assoclen + rctx->total_sent - 1422 digestsize); 1423 } 1424 1425 atomic64_add(chunksize, &iproc_priv.bytes_out); 1426 1427 flow_log("%s()-sent chunksize:%u\n", __func__, chunksize); 1428 1429 /* Prepend SPU header with type 3 BCM header */ 1430 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); 1431 1432 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + 1433 BCM_HDR_LEN, &req_opts, 1434 &cipher_parms, &hash_parms, 1435 &aead_parms, chunksize); 1436 1437 /* Determine total length of padding. Put all padding in one buffer. */ 1438 db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0, 1439 chunksize, aead_parms.aad_pad_len, 1440 aead_parms.data_pad_len, 0); 1441 1442 stat_pad_len = spu->spu_wordalign_padlen(db_size); 1443 1444 if (stat_pad_len) 1445 rx_frag_num++; 1446 pad_len = aead_parms.data_pad_len + stat_pad_len; 1447 if (pad_len) { 1448 tx_frag_num++; 1449 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 1450 aead_parms.data_pad_len, 0, 1451 ctx->auth.alg, ctx->auth.mode, 1452 rctx->total_sent, stat_pad_len); 1453 } 1454 1455 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 1456 spu_hdr_len); 1457 dump_sg(rctx->assoc, 0, aead_parms.assoc_size); 1458 packet_dump(" aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len); 1459 packet_log("BD:\n"); 1460 dump_sg(rctx->src_sg, rctx->src_skip, chunksize); 1461 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); 1462 1463 /* 1464 * Build mailbox message containing SPU request msg and rx buffers 1465 * to catch response message 1466 */ 1467 memset(mssg, 0, sizeof(*mssg)); 1468 mssg->type = BRCM_MESSAGE_SPU; 1469 mssg->ctx = rctx; /* Will be returned in response */ 1470 1471 /* Create rx scatterlist to catch result */ 1472 rx_frag_num += rctx->dst_nents; 1473 resp_len = chunksize; 1474 1475 /* 1476 * Always catch ICV in separate buffer. Have to for GCM/CCM because of 1477 * padding. Have to for SHA-224 and other truncated SHAs because SPU 1478 * sends entire digest back. 1479 */ 1480 rx_frag_num++; 1481 1482 if (((ctx->cipher.mode == CIPHER_MODE_GCM) || 1483 (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) { 1484 /* 1485 * Input is ciphertxt plus ICV, but ICV not incl 1486 * in output. 1487 */ 1488 resp_len -= ctx->digestsize; 1489 if (resp_len == 0) 1490 /* no rx frags to catch output data */ 1491 rx_frag_num -= rctx->dst_nents; 1492 } 1493 1494 err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num, 1495 aead_parms.assoc_size, 1496 aead_parms.ret_iv_len, resp_len, digestsize, 1497 stat_pad_len); 1498 if (err) 1499 return err; 1500 1501 /* Create tx scatterlist containing SPU request message */ 1502 tx_frag_num += rctx->src_nents; 1503 tx_frag_num += assoc_nents; 1504 if (aead_parms.aad_pad_len) 1505 tx_frag_num++; 1506 if (aead_parms.iv_len) 1507 tx_frag_num++; 1508 if (spu->spu_tx_status_len()) 1509 tx_frag_num++; 1510 err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, 1511 rctx->assoc, aead_parms.assoc_size, 1512 assoc_nents, aead_parms.iv_len, chunksize, 1513 aead_parms.aad_pad_len, pad_len, incl_icv); 1514 if (err) 1515 return err; 1516 1517 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); 1518 if (unlikely(err < 0)) 1519 return err; 1520 1521 return -EINPROGRESS; 1522 } 1523 1524 /** 1525 * handle_aead_resp() - Process a SPU response message for an AEAD request. 1526 * @rctx: Crypto request context 1527 */ 1528 static void handle_aead_resp(struct iproc_reqctx_s *rctx) 1529 { 1530 struct spu_hw *spu = &iproc_priv.spu; 1531 struct crypto_async_request *areq = rctx->parent; 1532 struct aead_request *req = container_of(areq, 1533 struct aead_request, base); 1534 struct iproc_ctx_s *ctx = rctx->ctx; 1535 u32 payload_len; 1536 unsigned int icv_offset; 1537 u32 result_len; 1538 1539 /* See how much data was returned */ 1540 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); 1541 flow_log("payload_len %u\n", payload_len); 1542 1543 /* only count payload */ 1544 atomic64_add(payload_len, &iproc_priv.bytes_in); 1545 1546 if (req->assoclen) 1547 packet_dump(" assoc_data ", rctx->msg_buf.a.resp_aad, 1548 req->assoclen); 1549 1550 /* 1551 * Copy the ICV back to the destination 1552 * buffer. In decrypt case, SPU gives us back the digest, but crypto 1553 * API doesn't expect ICV in dst buffer. 1554 */ 1555 result_len = req->cryptlen; 1556 if (rctx->is_encrypt) { 1557 icv_offset = req->assoclen + rctx->total_sent; 1558 packet_dump(" ICV: ", rctx->msg_buf.digest, ctx->digestsize); 1559 flow_log("copying ICV to dst sg at offset %u\n", icv_offset); 1560 sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest, 1561 ctx->digestsize, icv_offset); 1562 result_len += ctx->digestsize; 1563 } 1564 1565 packet_log("response data: "); 1566 dump_sg(req->dst, req->assoclen, result_len); 1567 1568 atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]); 1569 if (ctx->cipher.alg == CIPHER_ALG_AES) { 1570 if (ctx->cipher.mode == CIPHER_MODE_CCM) 1571 atomic_inc(&iproc_priv.aead_cnt[AES_CCM]); 1572 else if (ctx->cipher.mode == CIPHER_MODE_GCM) 1573 atomic_inc(&iproc_priv.aead_cnt[AES_GCM]); 1574 else 1575 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); 1576 } else { 1577 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); 1578 } 1579 } 1580 1581 /** 1582 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request 1583 * @rctx: request context 1584 * 1585 * Mailbox scatterlists are allocated for each chunk. So free them after 1586 * processing each chunk. 1587 */ 1588 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx) 1589 { 1590 /* mailbox message used to tx request */ 1591 struct brcm_message *mssg = &rctx->mb_mssg; 1592 1593 kfree(mssg->spu.src); 1594 kfree(mssg->spu.dst); 1595 memset(mssg, 0, sizeof(struct brcm_message)); 1596 } 1597 1598 /** 1599 * finish_req() - Used to invoke the complete callback from the requester when 1600 * a request has been handled asynchronously. 1601 * @rctx: Request context 1602 * @err: Indicates whether the request was successful or not 1603 * 1604 * Ensures that cleanup has been done for request 1605 */ 1606 static void finish_req(struct iproc_reqctx_s *rctx, int err) 1607 { 1608 struct crypto_async_request *areq = rctx->parent; 1609 1610 flow_log("%s() err:%d\n\n", __func__, err); 1611 1612 /* No harm done if already called */ 1613 spu_chunk_cleanup(rctx); 1614 1615 if (areq) 1616 crypto_request_complete(areq, err); 1617 } 1618 1619 /** 1620 * spu_rx_callback() - Callback from mailbox framework with a SPU response. 1621 * @cl: mailbox client structure for SPU driver 1622 * @msg: mailbox message containing SPU response 1623 */ 1624 static void spu_rx_callback(struct mbox_client *cl, void *msg) 1625 { 1626 struct spu_hw *spu = &iproc_priv.spu; 1627 struct brcm_message *mssg = msg; 1628 struct iproc_reqctx_s *rctx; 1629 int err; 1630 1631 rctx = mssg->ctx; 1632 if (unlikely(!rctx)) { 1633 /* This is fatal */ 1634 pr_err("%s(): no request context", __func__); 1635 err = -EFAULT; 1636 goto cb_finish; 1637 } 1638 1639 /* process the SPU status */ 1640 err = spu->spu_status_process(rctx->msg_buf.rx_stat); 1641 if (err != 0) { 1642 if (err == SPU_INVALID_ICV) 1643 atomic_inc(&iproc_priv.bad_icv); 1644 err = -EBADMSG; 1645 goto cb_finish; 1646 } 1647 1648 /* Process the SPU response message */ 1649 switch (rctx->ctx->alg->type) { 1650 case CRYPTO_ALG_TYPE_SKCIPHER: 1651 handle_skcipher_resp(rctx); 1652 break; 1653 case CRYPTO_ALG_TYPE_AHASH: 1654 handle_ahash_resp(rctx); 1655 break; 1656 case CRYPTO_ALG_TYPE_AEAD: 1657 handle_aead_resp(rctx); 1658 break; 1659 default: 1660 err = -EINVAL; 1661 goto cb_finish; 1662 } 1663 1664 /* 1665 * If this response does not complete the request, then send the next 1666 * request chunk. 1667 */ 1668 if (rctx->total_sent < rctx->total_todo) { 1669 /* Deallocate anything specific to previous chunk */ 1670 spu_chunk_cleanup(rctx); 1671 1672 switch (rctx->ctx->alg->type) { 1673 case CRYPTO_ALG_TYPE_SKCIPHER: 1674 err = handle_skcipher_req(rctx); 1675 break; 1676 case CRYPTO_ALG_TYPE_AHASH: 1677 err = handle_ahash_req(rctx); 1678 if (err == -EAGAIN) 1679 /* 1680 * we saved data in hash carry, but tell crypto 1681 * API we successfully completed request. 1682 */ 1683 err = 0; 1684 break; 1685 case CRYPTO_ALG_TYPE_AEAD: 1686 err = handle_aead_req(rctx); 1687 break; 1688 default: 1689 err = -EINVAL; 1690 } 1691 1692 if (err == -EINPROGRESS) 1693 /* Successfully submitted request for next chunk */ 1694 return; 1695 } 1696 1697 cb_finish: 1698 finish_req(rctx, err); 1699 } 1700 1701 /* ==================== Kernel Cryptographic API ==================== */ 1702 1703 /** 1704 * skcipher_enqueue() - Handle skcipher encrypt or decrypt request. 1705 * @req: Crypto API request 1706 * @encrypt: true if encrypting; false if decrypting 1707 * 1708 * Return: -EINPROGRESS if request accepted and result will be returned 1709 * asynchronously 1710 * < 0 if an error 1711 */ 1712 static int skcipher_enqueue(struct skcipher_request *req, bool encrypt) 1713 { 1714 struct iproc_reqctx_s *rctx = skcipher_request_ctx(req); 1715 struct iproc_ctx_s *ctx = 1716 crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); 1717 int err; 1718 1719 flow_log("%s() enc:%u\n", __func__, encrypt); 1720 1721 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 1722 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 1723 rctx->parent = &req->base; 1724 rctx->is_encrypt = encrypt; 1725 rctx->bd_suppress = false; 1726 rctx->total_todo = req->cryptlen; 1727 rctx->src_sent = 0; 1728 rctx->total_sent = 0; 1729 rctx->total_received = 0; 1730 rctx->ctx = ctx; 1731 1732 /* Initialize current position in src and dst scatterlists */ 1733 rctx->src_sg = req->src; 1734 rctx->src_nents = 0; 1735 rctx->src_skip = 0; 1736 rctx->dst_sg = req->dst; 1737 rctx->dst_nents = 0; 1738 rctx->dst_skip = 0; 1739 1740 if (ctx->cipher.mode == CIPHER_MODE_CBC || 1741 ctx->cipher.mode == CIPHER_MODE_CTR || 1742 ctx->cipher.mode == CIPHER_MODE_OFB || 1743 ctx->cipher.mode == CIPHER_MODE_XTS || 1744 ctx->cipher.mode == CIPHER_MODE_GCM || 1745 ctx->cipher.mode == CIPHER_MODE_CCM) { 1746 rctx->iv_ctr_len = 1747 crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req)); 1748 memcpy(rctx->msg_buf.iv_ctr, req->iv, rctx->iv_ctr_len); 1749 } else { 1750 rctx->iv_ctr_len = 0; 1751 } 1752 1753 /* Choose a SPU to process this request */ 1754 rctx->chan_idx = select_channel(); 1755 err = handle_skcipher_req(rctx); 1756 if (err != -EINPROGRESS) 1757 /* synchronous result */ 1758 spu_chunk_cleanup(rctx); 1759 1760 return err; 1761 } 1762 1763 static int des_setkey(struct crypto_skcipher *cipher, const u8 *key, 1764 unsigned int keylen) 1765 { 1766 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher); 1767 int err; 1768 1769 err = verify_skcipher_des_key(cipher, key); 1770 if (err) 1771 return err; 1772 1773 ctx->cipher_type = CIPHER_TYPE_DES; 1774 return 0; 1775 } 1776 1777 static int threedes_setkey(struct crypto_skcipher *cipher, const u8 *key, 1778 unsigned int keylen) 1779 { 1780 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher); 1781 int err; 1782 1783 err = verify_skcipher_des3_key(cipher, key); 1784 if (err) 1785 return err; 1786 1787 ctx->cipher_type = CIPHER_TYPE_3DES; 1788 return 0; 1789 } 1790 1791 static int aes_setkey(struct crypto_skcipher *cipher, const u8 *key, 1792 unsigned int keylen) 1793 { 1794 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher); 1795 1796 if (ctx->cipher.mode == CIPHER_MODE_XTS) 1797 /* XTS includes two keys of equal length */ 1798 keylen = keylen / 2; 1799 1800 switch (keylen) { 1801 case AES_KEYSIZE_128: 1802 ctx->cipher_type = CIPHER_TYPE_AES128; 1803 break; 1804 case AES_KEYSIZE_192: 1805 ctx->cipher_type = CIPHER_TYPE_AES192; 1806 break; 1807 case AES_KEYSIZE_256: 1808 ctx->cipher_type = CIPHER_TYPE_AES256; 1809 break; 1810 default: 1811 return -EINVAL; 1812 } 1813 WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && 1814 ((ctx->max_payload % AES_BLOCK_SIZE) != 0)); 1815 return 0; 1816 } 1817 1818 static int skcipher_setkey(struct crypto_skcipher *cipher, const u8 *key, 1819 unsigned int keylen) 1820 { 1821 struct spu_hw *spu = &iproc_priv.spu; 1822 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher); 1823 struct spu_cipher_parms cipher_parms; 1824 u32 alloc_len = 0; 1825 int err; 1826 1827 flow_log("skcipher_setkey() keylen: %d\n", keylen); 1828 flow_dump(" key: ", key, keylen); 1829 1830 switch (ctx->cipher.alg) { 1831 case CIPHER_ALG_DES: 1832 err = des_setkey(cipher, key, keylen); 1833 break; 1834 case CIPHER_ALG_3DES: 1835 err = threedes_setkey(cipher, key, keylen); 1836 break; 1837 case CIPHER_ALG_AES: 1838 err = aes_setkey(cipher, key, keylen); 1839 break; 1840 default: 1841 pr_err("%s() Error: unknown cipher alg\n", __func__); 1842 err = -EINVAL; 1843 } 1844 if (err) 1845 return err; 1846 1847 memcpy(ctx->enckey, key, keylen); 1848 ctx->enckeylen = keylen; 1849 1850 /* SPU needs XTS keys in the reverse order the crypto API presents */ 1851 if ((ctx->cipher.alg == CIPHER_ALG_AES) && 1852 (ctx->cipher.mode == CIPHER_MODE_XTS)) { 1853 unsigned int xts_keylen = keylen / 2; 1854 1855 memcpy(ctx->enckey, key + xts_keylen, xts_keylen); 1856 memcpy(ctx->enckey + xts_keylen, key, xts_keylen); 1857 } 1858 1859 if (spu->spu_type == SPU_TYPE_SPUM) 1860 alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN; 1861 else if (spu->spu_type == SPU_TYPE_SPU2) 1862 alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN; 1863 memset(ctx->bcm_spu_req_hdr, 0, alloc_len); 1864 cipher_parms.iv_buf = NULL; 1865 cipher_parms.iv_len = crypto_skcipher_ivsize(cipher); 1866 flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len); 1867 1868 cipher_parms.alg = ctx->cipher.alg; 1869 cipher_parms.mode = ctx->cipher.mode; 1870 cipher_parms.type = ctx->cipher_type; 1871 cipher_parms.key_buf = ctx->enckey; 1872 cipher_parms.key_len = ctx->enckeylen; 1873 1874 /* Prepend SPU request message with BCM header */ 1875 memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); 1876 ctx->spu_req_hdr_len = 1877 spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN, 1878 &cipher_parms); 1879 1880 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 1881 ctx->enckeylen, 1882 false); 1883 1884 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]); 1885 1886 return 0; 1887 } 1888 1889 static int skcipher_encrypt(struct skcipher_request *req) 1890 { 1891 flow_log("skcipher_encrypt() nbytes:%u\n", req->cryptlen); 1892 1893 return skcipher_enqueue(req, true); 1894 } 1895 1896 static int skcipher_decrypt(struct skcipher_request *req) 1897 { 1898 flow_log("skcipher_decrypt() nbytes:%u\n", req->cryptlen); 1899 return skcipher_enqueue(req, false); 1900 } 1901 1902 static int ahash_enqueue(struct ahash_request *req) 1903 { 1904 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 1905 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1906 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 1907 int err; 1908 const char *alg_name; 1909 1910 flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes); 1911 1912 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 1913 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 1914 rctx->parent = &req->base; 1915 rctx->ctx = ctx; 1916 rctx->bd_suppress = true; 1917 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); 1918 1919 /* Initialize position in src scatterlist */ 1920 rctx->src_sg = req->src; 1921 rctx->src_skip = 0; 1922 rctx->src_nents = 0; 1923 rctx->dst_sg = NULL; 1924 rctx->dst_skip = 0; 1925 rctx->dst_nents = 0; 1926 1927 /* SPU2 hardware does not compute hash of zero length data */ 1928 if ((rctx->is_final == 1) && (rctx->total_todo == 0) && 1929 (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) { 1930 alg_name = crypto_ahash_alg_name(tfm); 1931 flow_log("Doing %sfinal %s zero-len hash request in software\n", 1932 rctx->is_final ? "" : "non-", alg_name); 1933 err = do_shash((unsigned char *)alg_name, req->result, 1934 NULL, 0, NULL, 0, ctx->authkey, 1935 ctx->authkeylen); 1936 if (err < 0) 1937 flow_log("Hash request failed with error %d\n", err); 1938 return err; 1939 } 1940 /* Choose a SPU to process this request */ 1941 rctx->chan_idx = select_channel(); 1942 1943 err = handle_ahash_req(rctx); 1944 if (err != -EINPROGRESS) 1945 /* synchronous result */ 1946 spu_chunk_cleanup(rctx); 1947 1948 if (err == -EAGAIN) 1949 /* 1950 * we saved data in hash carry, but tell crypto API 1951 * we successfully completed request. 1952 */ 1953 err = 0; 1954 1955 return err; 1956 } 1957 1958 static int __ahash_init(struct ahash_request *req) 1959 { 1960 struct spu_hw *spu = &iproc_priv.spu; 1961 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 1962 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1963 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 1964 1965 flow_log("%s()\n", __func__); 1966 1967 /* Initialize the context */ 1968 rctx->hash_carry_len = 0; 1969 rctx->is_final = 0; 1970 1971 rctx->total_todo = 0; 1972 rctx->src_sent = 0; 1973 rctx->total_sent = 0; 1974 rctx->total_received = 0; 1975 1976 ctx->digestsize = crypto_ahash_digestsize(tfm); 1977 /* If we add a hash whose digest is larger, catch it here. */ 1978 WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE); 1979 1980 rctx->is_sw_hmac = false; 1981 1982 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0, 1983 true); 1984 1985 return 0; 1986 } 1987 1988 /** 1989 * spu_no_incr_hash() - Determine whether incremental hashing is supported. 1990 * @ctx: Crypto session context 1991 * 1992 * SPU-2 does not support incremental hashing (we'll have to revisit and 1993 * condition based on chip revision or device tree entry if future versions do 1994 * support incremental hash) 1995 * 1996 * SPU-M also doesn't support incremental hashing of AES-XCBC 1997 * 1998 * Return: true if incremental hashing is not supported 1999 * false otherwise 2000 */ 2001 static bool spu_no_incr_hash(struct iproc_ctx_s *ctx) 2002 { 2003 struct spu_hw *spu = &iproc_priv.spu; 2004 2005 if (spu->spu_type == SPU_TYPE_SPU2) 2006 return true; 2007 2008 if ((ctx->auth.alg == HASH_ALG_AES) && 2009 (ctx->auth.mode == HASH_MODE_XCBC)) 2010 return true; 2011 2012 /* Otherwise, incremental hashing is supported */ 2013 return false; 2014 } 2015 2016 static int ahash_init(struct ahash_request *req) 2017 { 2018 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2019 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2020 const char *alg_name; 2021 struct crypto_shash *hash; 2022 int ret; 2023 gfp_t gfp; 2024 2025 if (spu_no_incr_hash(ctx)) { 2026 /* 2027 * If we get an incremental hashing request and it's not 2028 * supported by the hardware, we need to handle it in software 2029 * by calling synchronous hash functions. 2030 */ 2031 alg_name = crypto_ahash_alg_name(tfm); 2032 hash = crypto_alloc_shash(alg_name, 0, 0); 2033 if (IS_ERR(hash)) { 2034 ret = PTR_ERR(hash); 2035 goto err; 2036 } 2037 2038 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2039 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2040 ctx->shash = kmalloc(sizeof(*ctx->shash) + 2041 crypto_shash_descsize(hash), gfp); 2042 if (!ctx->shash) { 2043 ret = -ENOMEM; 2044 goto err_hash; 2045 } 2046 ctx->shash->tfm = hash; 2047 2048 /* Set the key using data we already have from setkey */ 2049 if (ctx->authkeylen > 0) { 2050 ret = crypto_shash_setkey(hash, ctx->authkey, 2051 ctx->authkeylen); 2052 if (ret) 2053 goto err_shash; 2054 } 2055 2056 /* Initialize hash w/ this key and other params */ 2057 ret = crypto_shash_init(ctx->shash); 2058 if (ret) 2059 goto err_shash; 2060 } else { 2061 /* Otherwise call the internal function which uses SPU hw */ 2062 ret = __ahash_init(req); 2063 } 2064 2065 return ret; 2066 2067 err_shash: 2068 kfree(ctx->shash); 2069 err_hash: 2070 crypto_free_shash(hash); 2071 err: 2072 return ret; 2073 } 2074 2075 static int __ahash_update(struct ahash_request *req) 2076 { 2077 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2078 2079 flow_log("ahash_update() nbytes:%u\n", req->nbytes); 2080 2081 if (!req->nbytes) 2082 return 0; 2083 rctx->total_todo += req->nbytes; 2084 rctx->src_sent = 0; 2085 2086 return ahash_enqueue(req); 2087 } 2088 2089 static int ahash_update(struct ahash_request *req) 2090 { 2091 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2092 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2093 u8 *tmpbuf; 2094 int ret; 2095 int nents; 2096 gfp_t gfp; 2097 2098 if (spu_no_incr_hash(ctx)) { 2099 /* 2100 * If we get an incremental hashing request and it's not 2101 * supported by the hardware, we need to handle it in software 2102 * by calling synchronous hash functions. 2103 */ 2104 if (req->src) 2105 nents = sg_nents(req->src); 2106 else 2107 return -EINVAL; 2108 2109 /* Copy data from req scatterlist to tmp buffer */ 2110 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2111 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2112 tmpbuf = kmalloc(req->nbytes, gfp); 2113 if (!tmpbuf) 2114 return -ENOMEM; 2115 2116 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != 2117 req->nbytes) { 2118 kfree(tmpbuf); 2119 return -EINVAL; 2120 } 2121 2122 /* Call synchronous update */ 2123 ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes); 2124 kfree(tmpbuf); 2125 } else { 2126 /* Otherwise call the internal function which uses SPU hw */ 2127 ret = __ahash_update(req); 2128 } 2129 2130 return ret; 2131 } 2132 2133 static int __ahash_final(struct ahash_request *req) 2134 { 2135 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2136 2137 flow_log("ahash_final() nbytes:%u\n", req->nbytes); 2138 2139 rctx->is_final = 1; 2140 2141 return ahash_enqueue(req); 2142 } 2143 2144 static int ahash_final(struct ahash_request *req) 2145 { 2146 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2147 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2148 int ret; 2149 2150 if (spu_no_incr_hash(ctx)) { 2151 /* 2152 * If we get an incremental hashing request and it's not 2153 * supported by the hardware, we need to handle it in software 2154 * by calling synchronous hash functions. 2155 */ 2156 ret = crypto_shash_final(ctx->shash, req->result); 2157 2158 /* Done with hash, can deallocate it now */ 2159 crypto_free_shash(ctx->shash->tfm); 2160 kfree(ctx->shash); 2161 2162 } else { 2163 /* Otherwise call the internal function which uses SPU hw */ 2164 ret = __ahash_final(req); 2165 } 2166 2167 return ret; 2168 } 2169 2170 static int __ahash_finup(struct ahash_request *req) 2171 { 2172 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2173 2174 flow_log("ahash_finup() nbytes:%u\n", req->nbytes); 2175 2176 rctx->total_todo += req->nbytes; 2177 rctx->src_sent = 0; 2178 rctx->is_final = 1; 2179 2180 return ahash_enqueue(req); 2181 } 2182 2183 static int ahash_finup(struct ahash_request *req) 2184 { 2185 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2186 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2187 u8 *tmpbuf; 2188 int ret; 2189 int nents; 2190 gfp_t gfp; 2191 2192 if (spu_no_incr_hash(ctx)) { 2193 /* 2194 * If we get an incremental hashing request and it's not 2195 * supported by the hardware, we need to handle it in software 2196 * by calling synchronous hash functions. 2197 */ 2198 if (req->src) { 2199 nents = sg_nents(req->src); 2200 } else { 2201 ret = -EINVAL; 2202 goto ahash_finup_exit; 2203 } 2204 2205 /* Copy data from req scatterlist to tmp buffer */ 2206 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2207 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2208 tmpbuf = kmalloc(req->nbytes, gfp); 2209 if (!tmpbuf) { 2210 ret = -ENOMEM; 2211 goto ahash_finup_exit; 2212 } 2213 2214 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != 2215 req->nbytes) { 2216 ret = -EINVAL; 2217 goto ahash_finup_free; 2218 } 2219 2220 /* Call synchronous update */ 2221 ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes, 2222 req->result); 2223 } else { 2224 /* Otherwise call the internal function which uses SPU hw */ 2225 return __ahash_finup(req); 2226 } 2227 ahash_finup_free: 2228 kfree(tmpbuf); 2229 2230 ahash_finup_exit: 2231 /* Done with hash, can deallocate it now */ 2232 crypto_free_shash(ctx->shash->tfm); 2233 kfree(ctx->shash); 2234 return ret; 2235 } 2236 2237 static int ahash_digest(struct ahash_request *req) 2238 { 2239 int err; 2240 2241 flow_log("ahash_digest() nbytes:%u\n", req->nbytes); 2242 2243 /* whole thing at once */ 2244 err = __ahash_init(req); 2245 if (!err) 2246 err = __ahash_finup(req); 2247 2248 return err; 2249 } 2250 2251 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key, 2252 unsigned int keylen) 2253 { 2254 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); 2255 2256 flow_log("%s() ahash:%p key:%p keylen:%u\n", 2257 __func__, ahash, key, keylen); 2258 flow_dump(" key: ", key, keylen); 2259 2260 if (ctx->auth.alg == HASH_ALG_AES) { 2261 switch (keylen) { 2262 case AES_KEYSIZE_128: 2263 ctx->cipher_type = CIPHER_TYPE_AES128; 2264 break; 2265 case AES_KEYSIZE_192: 2266 ctx->cipher_type = CIPHER_TYPE_AES192; 2267 break; 2268 case AES_KEYSIZE_256: 2269 ctx->cipher_type = CIPHER_TYPE_AES256; 2270 break; 2271 default: 2272 pr_err("%s() Error: Invalid key length\n", __func__); 2273 return -EINVAL; 2274 } 2275 } else { 2276 pr_err("%s() Error: unknown hash alg\n", __func__); 2277 return -EINVAL; 2278 } 2279 memcpy(ctx->authkey, key, keylen); 2280 ctx->authkeylen = keylen; 2281 2282 return 0; 2283 } 2284 2285 static int ahash_export(struct ahash_request *req, void *out) 2286 { 2287 const struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2288 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out; 2289 2290 spu_exp->total_todo = rctx->total_todo; 2291 spu_exp->total_sent = rctx->total_sent; 2292 spu_exp->is_sw_hmac = rctx->is_sw_hmac; 2293 memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry)); 2294 spu_exp->hash_carry_len = rctx->hash_carry_len; 2295 memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash)); 2296 2297 return 0; 2298 } 2299 2300 static int ahash_import(struct ahash_request *req, const void *in) 2301 { 2302 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2303 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in; 2304 2305 rctx->total_todo = spu_exp->total_todo; 2306 rctx->total_sent = spu_exp->total_sent; 2307 rctx->is_sw_hmac = spu_exp->is_sw_hmac; 2308 memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry)); 2309 rctx->hash_carry_len = spu_exp->hash_carry_len; 2310 memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash)); 2311 2312 return 0; 2313 } 2314 2315 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key, 2316 unsigned int keylen) 2317 { 2318 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); 2319 unsigned int blocksize = 2320 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 2321 unsigned int digestsize = crypto_ahash_digestsize(ahash); 2322 unsigned int index; 2323 int rc; 2324 2325 flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n", 2326 __func__, ahash, key, keylen, blocksize, digestsize); 2327 flow_dump(" key: ", key, keylen); 2328 2329 if (keylen > blocksize) { 2330 switch (ctx->auth.alg) { 2331 case HASH_ALG_MD5: 2332 rc = do_shash("md5", ctx->authkey, key, keylen, NULL, 2333 0, NULL, 0); 2334 break; 2335 case HASH_ALG_SHA1: 2336 rc = do_shash("sha1", ctx->authkey, key, keylen, NULL, 2337 0, NULL, 0); 2338 break; 2339 case HASH_ALG_SHA224: 2340 rc = do_shash("sha224", ctx->authkey, key, keylen, NULL, 2341 0, NULL, 0); 2342 break; 2343 case HASH_ALG_SHA256: 2344 rc = do_shash("sha256", ctx->authkey, key, keylen, NULL, 2345 0, NULL, 0); 2346 break; 2347 case HASH_ALG_SHA384: 2348 rc = do_shash("sha384", ctx->authkey, key, keylen, NULL, 2349 0, NULL, 0); 2350 break; 2351 case HASH_ALG_SHA512: 2352 rc = do_shash("sha512", ctx->authkey, key, keylen, NULL, 2353 0, NULL, 0); 2354 break; 2355 case HASH_ALG_SHA3_224: 2356 rc = do_shash("sha3-224", ctx->authkey, key, keylen, 2357 NULL, 0, NULL, 0); 2358 break; 2359 case HASH_ALG_SHA3_256: 2360 rc = do_shash("sha3-256", ctx->authkey, key, keylen, 2361 NULL, 0, NULL, 0); 2362 break; 2363 case HASH_ALG_SHA3_384: 2364 rc = do_shash("sha3-384", ctx->authkey, key, keylen, 2365 NULL, 0, NULL, 0); 2366 break; 2367 case HASH_ALG_SHA3_512: 2368 rc = do_shash("sha3-512", ctx->authkey, key, keylen, 2369 NULL, 0, NULL, 0); 2370 break; 2371 default: 2372 pr_err("%s() Error: unknown hash alg\n", __func__); 2373 return -EINVAL; 2374 } 2375 if (rc < 0) { 2376 pr_err("%s() Error %d computing shash for %s\n", 2377 __func__, rc, hash_alg_name[ctx->auth.alg]); 2378 return rc; 2379 } 2380 ctx->authkeylen = digestsize; 2381 2382 flow_log(" keylen > digestsize... hashed\n"); 2383 flow_dump(" newkey: ", ctx->authkey, ctx->authkeylen); 2384 } else { 2385 memcpy(ctx->authkey, key, keylen); 2386 ctx->authkeylen = keylen; 2387 } 2388 2389 /* 2390 * Full HMAC operation in SPUM is not verified, 2391 * So keeping the generation of IPAD, OPAD and 2392 * outer hashing in software. 2393 */ 2394 if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) { 2395 memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen); 2396 memset(ctx->ipad + ctx->authkeylen, 0, 2397 blocksize - ctx->authkeylen); 2398 ctx->authkeylen = 0; 2399 unsafe_memcpy(ctx->opad, ctx->ipad, blocksize, 2400 "fortified memcpy causes -Wrestrict warning"); 2401 2402 for (index = 0; index < blocksize; index++) { 2403 ctx->ipad[index] ^= HMAC_IPAD_VALUE; 2404 ctx->opad[index] ^= HMAC_OPAD_VALUE; 2405 } 2406 2407 flow_dump(" ipad: ", ctx->ipad, blocksize); 2408 flow_dump(" opad: ", ctx->opad, blocksize); 2409 } 2410 ctx->digestsize = digestsize; 2411 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]); 2412 2413 return 0; 2414 } 2415 2416 static int ahash_hmac_init(struct ahash_request *req) 2417 { 2418 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2419 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2420 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2421 unsigned int blocksize = 2422 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 2423 2424 flow_log("ahash_hmac_init()\n"); 2425 2426 /* init the context as a hash */ 2427 ahash_init(req); 2428 2429 if (!spu_no_incr_hash(ctx)) { 2430 /* SPU-M can do incr hashing but needs sw for outer HMAC */ 2431 rctx->is_sw_hmac = true; 2432 ctx->auth.mode = HASH_MODE_HASH; 2433 /* start with a prepended ipad */ 2434 memcpy(rctx->hash_carry, ctx->ipad, blocksize); 2435 rctx->hash_carry_len = blocksize; 2436 rctx->total_todo += blocksize; 2437 } 2438 2439 return 0; 2440 } 2441 2442 static int ahash_hmac_update(struct ahash_request *req) 2443 { 2444 flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes); 2445 2446 if (!req->nbytes) 2447 return 0; 2448 2449 return ahash_update(req); 2450 } 2451 2452 static int ahash_hmac_final(struct ahash_request *req) 2453 { 2454 flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes); 2455 2456 return ahash_final(req); 2457 } 2458 2459 static int ahash_hmac_finup(struct ahash_request *req) 2460 { 2461 flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes); 2462 2463 return ahash_finup(req); 2464 } 2465 2466 static int ahash_hmac_digest(struct ahash_request *req) 2467 { 2468 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2469 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2470 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2471 unsigned int blocksize = 2472 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 2473 2474 flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes); 2475 2476 /* Perform initialization and then call finup */ 2477 __ahash_init(req); 2478 2479 if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) { 2480 /* 2481 * SPU2 supports full HMAC implementation in the 2482 * hardware, need not to generate IPAD, OPAD and 2483 * outer hash in software. 2484 * Only for hash key len > hash block size, SPU2 2485 * expects to perform hashing on the key, shorten 2486 * it to digest size and feed it as hash key. 2487 */ 2488 rctx->is_sw_hmac = false; 2489 ctx->auth.mode = HASH_MODE_HMAC; 2490 } else { 2491 rctx->is_sw_hmac = true; 2492 ctx->auth.mode = HASH_MODE_HASH; 2493 /* start with a prepended ipad */ 2494 memcpy(rctx->hash_carry, ctx->ipad, blocksize); 2495 rctx->hash_carry_len = blocksize; 2496 rctx->total_todo += blocksize; 2497 } 2498 2499 return __ahash_finup(req); 2500 } 2501 2502 /* aead helpers */ 2503 2504 static int aead_need_fallback(struct aead_request *req) 2505 { 2506 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2507 struct spu_hw *spu = &iproc_priv.spu; 2508 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2509 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); 2510 u32 payload_len; 2511 2512 /* 2513 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext 2514 * and AAD are both 0 bytes long. So use fallback in this case. 2515 */ 2516 if (((ctx->cipher.mode == CIPHER_MODE_GCM) || 2517 (ctx->cipher.mode == CIPHER_MODE_CCM)) && 2518 (req->assoclen == 0)) { 2519 if ((rctx->is_encrypt && (req->cryptlen == 0)) || 2520 (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) { 2521 flow_log("AES GCM/CCM needs fallback for 0 len req\n"); 2522 return 1; 2523 } 2524 } 2525 2526 /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */ 2527 if ((ctx->cipher.mode == CIPHER_MODE_CCM) && 2528 (spu->spu_type == SPU_TYPE_SPUM) && 2529 (ctx->digestsize != 8) && (ctx->digestsize != 12) && 2530 (ctx->digestsize != 16)) { 2531 flow_log("%s() AES CCM needs fallback for digest size %d\n", 2532 __func__, ctx->digestsize); 2533 return 1; 2534 } 2535 2536 /* 2537 * SPU-M on NSP has an issue where AES-CCM hash is not correct 2538 * when AAD size is 0 2539 */ 2540 if ((ctx->cipher.mode == CIPHER_MODE_CCM) && 2541 (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) && 2542 (req->assoclen == 0)) { 2543 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n", 2544 __func__); 2545 return 1; 2546 } 2547 2548 /* 2549 * RFC4106 and RFC4543 cannot handle the case where AAD is other than 2550 * 16 or 20 bytes long. So use fallback in this case. 2551 */ 2552 if (ctx->cipher.mode == CIPHER_MODE_GCM && 2553 ctx->cipher.alg == CIPHER_ALG_AES && 2554 rctx->iv_ctr_len == GCM_RFC4106_IV_SIZE && 2555 req->assoclen != 16 && req->assoclen != 20) { 2556 flow_log("RFC4106/RFC4543 needs fallback for assoclen" 2557 " other than 16 or 20 bytes\n"); 2558 return 1; 2559 } 2560 2561 payload_len = req->cryptlen; 2562 if (spu->spu_type == SPU_TYPE_SPUM) 2563 payload_len += req->assoclen; 2564 2565 flow_log("%s() payload len: %u\n", __func__, payload_len); 2566 2567 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 2568 return 0; 2569 else 2570 return payload_len > ctx->max_payload; 2571 } 2572 2573 static int aead_do_fallback(struct aead_request *req, bool is_encrypt) 2574 { 2575 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2576 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 2577 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2578 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 2579 struct aead_request *subreq; 2580 2581 flow_log("%s() enc:%u\n", __func__, is_encrypt); 2582 2583 if (!ctx->fallback_cipher) 2584 return -EINVAL; 2585 2586 subreq = &rctx->req; 2587 aead_request_set_tfm(subreq, ctx->fallback_cipher); 2588 aead_request_set_callback(subreq, aead_request_flags(req), 2589 req->base.complete, req->base.data); 2590 aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, 2591 req->iv); 2592 aead_request_set_ad(subreq, req->assoclen); 2593 2594 return is_encrypt ? crypto_aead_encrypt(req) : 2595 crypto_aead_decrypt(req); 2596 } 2597 2598 static int aead_enqueue(struct aead_request *req, bool is_encrypt) 2599 { 2600 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2601 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2602 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); 2603 int err; 2604 2605 flow_log("%s() enc:%u\n", __func__, is_encrypt); 2606 2607 if (req->assoclen > MAX_ASSOC_SIZE) { 2608 pr_err 2609 ("%s() Error: associated data too long. (%u > %u bytes)\n", 2610 __func__, req->assoclen, MAX_ASSOC_SIZE); 2611 return -EINVAL; 2612 } 2613 2614 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2615 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2616 rctx->parent = &req->base; 2617 rctx->is_encrypt = is_encrypt; 2618 rctx->bd_suppress = false; 2619 rctx->total_todo = req->cryptlen; 2620 rctx->src_sent = 0; 2621 rctx->total_sent = 0; 2622 rctx->total_received = 0; 2623 rctx->is_sw_hmac = false; 2624 rctx->ctx = ctx; 2625 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); 2626 2627 /* assoc data is at start of src sg */ 2628 rctx->assoc = req->src; 2629 2630 /* 2631 * Init current position in src scatterlist to be after assoc data. 2632 * src_skip set to buffer offset where data begins. (Assoc data could 2633 * end in the middle of a buffer.) 2634 */ 2635 if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg, 2636 &rctx->src_skip) < 0) { 2637 pr_err("%s() Error: Unable to find start of src data\n", 2638 __func__); 2639 return -EINVAL; 2640 } 2641 2642 rctx->src_nents = 0; 2643 rctx->dst_nents = 0; 2644 if (req->dst == req->src) { 2645 rctx->dst_sg = rctx->src_sg; 2646 rctx->dst_skip = rctx->src_skip; 2647 } else { 2648 /* 2649 * Expect req->dst to have room for assoc data followed by 2650 * output data and ICV, if encrypt. So initialize dst_sg 2651 * to point beyond assoc len offset. 2652 */ 2653 if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg, 2654 &rctx->dst_skip) < 0) { 2655 pr_err("%s() Error: Unable to find start of dst data\n", 2656 __func__); 2657 return -EINVAL; 2658 } 2659 } 2660 2661 if (ctx->cipher.mode == CIPHER_MODE_CBC || 2662 ctx->cipher.mode == CIPHER_MODE_CTR || 2663 ctx->cipher.mode == CIPHER_MODE_OFB || 2664 ctx->cipher.mode == CIPHER_MODE_XTS || 2665 ctx->cipher.mode == CIPHER_MODE_GCM) { 2666 rctx->iv_ctr_len = 2667 ctx->salt_len + 2668 crypto_aead_ivsize(crypto_aead_reqtfm(req)); 2669 } else if (ctx->cipher.mode == CIPHER_MODE_CCM) { 2670 rctx->iv_ctr_len = CCM_AES_IV_SIZE; 2671 } else { 2672 rctx->iv_ctr_len = 0; 2673 } 2674 2675 rctx->hash_carry_len = 0; 2676 2677 flow_log(" src sg: %p\n", req->src); 2678 flow_log(" rctx->src_sg: %p, src_skip %u\n", 2679 rctx->src_sg, rctx->src_skip); 2680 flow_log(" assoc: %p, assoclen %u\n", rctx->assoc, req->assoclen); 2681 flow_log(" dst sg: %p\n", req->dst); 2682 flow_log(" rctx->dst_sg: %p, dst_skip %u\n", 2683 rctx->dst_sg, rctx->dst_skip); 2684 flow_log(" iv_ctr_len:%u\n", rctx->iv_ctr_len); 2685 flow_dump(" iv: ", req->iv, rctx->iv_ctr_len); 2686 flow_log(" authkeylen:%u\n", ctx->authkeylen); 2687 flow_log(" is_esp: %s\n", ctx->is_esp ? "yes" : "no"); 2688 2689 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 2690 flow_log(" max_payload infinite"); 2691 else 2692 flow_log(" max_payload: %u\n", ctx->max_payload); 2693 2694 if (unlikely(aead_need_fallback(req))) 2695 return aead_do_fallback(req, is_encrypt); 2696 2697 /* 2698 * Do memory allocations for request after fallback check, because if we 2699 * do fallback, we won't call finish_req() to dealloc. 2700 */ 2701 if (rctx->iv_ctr_len) { 2702 if (ctx->salt_len) 2703 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset, 2704 ctx->salt, ctx->salt_len); 2705 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len, 2706 req->iv, 2707 rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset); 2708 } 2709 2710 rctx->chan_idx = select_channel(); 2711 err = handle_aead_req(rctx); 2712 if (err != -EINPROGRESS) 2713 /* synchronous result */ 2714 spu_chunk_cleanup(rctx); 2715 2716 return err; 2717 } 2718 2719 static int aead_authenc_setkey(struct crypto_aead *cipher, 2720 const u8 *key, unsigned int keylen) 2721 { 2722 struct spu_hw *spu = &iproc_priv.spu; 2723 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2724 struct crypto_tfm *tfm = crypto_aead_tfm(cipher); 2725 struct crypto_authenc_keys keys; 2726 int ret; 2727 2728 flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key, 2729 keylen); 2730 flow_dump(" key: ", key, keylen); 2731 2732 ret = crypto_authenc_extractkeys(&keys, key, keylen); 2733 if (ret) 2734 goto badkey; 2735 2736 if (keys.enckeylen > MAX_KEY_SIZE || 2737 keys.authkeylen > MAX_KEY_SIZE) 2738 goto badkey; 2739 2740 ctx->enckeylen = keys.enckeylen; 2741 ctx->authkeylen = keys.authkeylen; 2742 2743 memcpy(ctx->enckey, keys.enckey, keys.enckeylen); 2744 /* May end up padding auth key. So make sure it's zeroed. */ 2745 memset(ctx->authkey, 0, sizeof(ctx->authkey)); 2746 memcpy(ctx->authkey, keys.authkey, keys.authkeylen); 2747 2748 switch (ctx->alg->cipher_info.alg) { 2749 case CIPHER_ALG_DES: 2750 if (verify_aead_des_key(cipher, keys.enckey, keys.enckeylen)) 2751 return -EINVAL; 2752 2753 ctx->cipher_type = CIPHER_TYPE_DES; 2754 break; 2755 case CIPHER_ALG_3DES: 2756 if (verify_aead_des3_key(cipher, keys.enckey, keys.enckeylen)) 2757 return -EINVAL; 2758 2759 ctx->cipher_type = CIPHER_TYPE_3DES; 2760 break; 2761 case CIPHER_ALG_AES: 2762 switch (ctx->enckeylen) { 2763 case AES_KEYSIZE_128: 2764 ctx->cipher_type = CIPHER_TYPE_AES128; 2765 break; 2766 case AES_KEYSIZE_192: 2767 ctx->cipher_type = CIPHER_TYPE_AES192; 2768 break; 2769 case AES_KEYSIZE_256: 2770 ctx->cipher_type = CIPHER_TYPE_AES256; 2771 break; 2772 default: 2773 goto badkey; 2774 } 2775 break; 2776 default: 2777 pr_err("%s() Error: Unknown cipher alg\n", __func__); 2778 return -EINVAL; 2779 } 2780 2781 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, 2782 ctx->authkeylen); 2783 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen); 2784 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen); 2785 2786 /* setkey the fallback just in case we needto use it */ 2787 if (ctx->fallback_cipher) { 2788 flow_log(" running fallback setkey()\n"); 2789 2790 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; 2791 ctx->fallback_cipher->base.crt_flags |= 2792 tfm->crt_flags & CRYPTO_TFM_REQ_MASK; 2793 ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen); 2794 if (ret) 2795 flow_log(" fallback setkey() returned:%d\n", ret); 2796 } 2797 2798 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 2799 ctx->enckeylen, 2800 false); 2801 2802 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); 2803 2804 return ret; 2805 2806 badkey: 2807 ctx->enckeylen = 0; 2808 ctx->authkeylen = 0; 2809 ctx->digestsize = 0; 2810 2811 return -EINVAL; 2812 } 2813 2814 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher, 2815 const u8 *key, unsigned int keylen) 2816 { 2817 struct spu_hw *spu = &iproc_priv.spu; 2818 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2819 struct crypto_tfm *tfm = crypto_aead_tfm(cipher); 2820 2821 int ret = 0; 2822 2823 flow_log("%s() keylen:%u\n", __func__, keylen); 2824 flow_dump(" key: ", key, keylen); 2825 2826 if (!ctx->is_esp) 2827 ctx->digestsize = keylen; 2828 2829 ctx->enckeylen = keylen; 2830 ctx->authkeylen = 0; 2831 2832 switch (ctx->enckeylen) { 2833 case AES_KEYSIZE_128: 2834 ctx->cipher_type = CIPHER_TYPE_AES128; 2835 break; 2836 case AES_KEYSIZE_192: 2837 ctx->cipher_type = CIPHER_TYPE_AES192; 2838 break; 2839 case AES_KEYSIZE_256: 2840 ctx->cipher_type = CIPHER_TYPE_AES256; 2841 break; 2842 default: 2843 goto badkey; 2844 } 2845 2846 memcpy(ctx->enckey, key, ctx->enckeylen); 2847 2848 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, 2849 ctx->authkeylen); 2850 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen); 2851 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen); 2852 2853 /* setkey the fallback just in case we need to use it */ 2854 if (ctx->fallback_cipher) { 2855 flow_log(" running fallback setkey()\n"); 2856 2857 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; 2858 ctx->fallback_cipher->base.crt_flags |= 2859 tfm->crt_flags & CRYPTO_TFM_REQ_MASK; 2860 ret = crypto_aead_setkey(ctx->fallback_cipher, key, 2861 keylen + ctx->salt_len); 2862 if (ret) 2863 flow_log(" fallback setkey() returned:%d\n", ret); 2864 } 2865 2866 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 2867 ctx->enckeylen, 2868 false); 2869 2870 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); 2871 2872 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, 2873 ctx->authkeylen); 2874 2875 return ret; 2876 2877 badkey: 2878 ctx->enckeylen = 0; 2879 ctx->authkeylen = 0; 2880 ctx->digestsize = 0; 2881 2882 return -EINVAL; 2883 } 2884 2885 /** 2886 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES. 2887 * @cipher: AEAD structure 2888 * @key: Key followed by 4 bytes of salt 2889 * @keylen: Length of key plus salt, in bytes 2890 * 2891 * Extracts salt from key and stores it to be prepended to IV on each request. 2892 * Digest is always 16 bytes 2893 * 2894 * Return: Value from generic gcm setkey. 2895 */ 2896 static int aead_gcm_esp_setkey(struct crypto_aead *cipher, 2897 const u8 *key, unsigned int keylen) 2898 { 2899 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2900 2901 flow_log("%s\n", __func__); 2902 2903 if (keylen < GCM_ESP_SALT_SIZE) 2904 return -EINVAL; 2905 2906 ctx->salt_len = GCM_ESP_SALT_SIZE; 2907 ctx->salt_offset = GCM_ESP_SALT_OFFSET; 2908 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); 2909 keylen -= GCM_ESP_SALT_SIZE; 2910 ctx->digestsize = GCM_ESP_DIGESTSIZE; 2911 ctx->is_esp = true; 2912 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); 2913 2914 return aead_gcm_ccm_setkey(cipher, key, keylen); 2915 } 2916 2917 /** 2918 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC. 2919 * @cipher: AEAD structure 2920 * @key: Key followed by 4 bytes of salt 2921 * @keylen: Length of key plus salt, in bytes 2922 * 2923 * Extracts salt from key and stores it to be prepended to IV on each request. 2924 * Digest is always 16 bytes 2925 * 2926 * Return: Value from generic gcm setkey. 2927 */ 2928 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher, 2929 const u8 *key, unsigned int keylen) 2930 { 2931 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2932 2933 flow_log("%s\n", __func__); 2934 2935 if (keylen < GCM_ESP_SALT_SIZE) 2936 return -EINVAL; 2937 2938 ctx->salt_len = GCM_ESP_SALT_SIZE; 2939 ctx->salt_offset = GCM_ESP_SALT_OFFSET; 2940 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); 2941 keylen -= GCM_ESP_SALT_SIZE; 2942 ctx->digestsize = GCM_ESP_DIGESTSIZE; 2943 ctx->is_esp = true; 2944 ctx->is_rfc4543 = true; 2945 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); 2946 2947 return aead_gcm_ccm_setkey(cipher, key, keylen); 2948 } 2949 2950 /** 2951 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES. 2952 * @cipher: AEAD structure 2953 * @key: Key followed by 4 bytes of salt 2954 * @keylen: Length of key plus salt, in bytes 2955 * 2956 * Extracts salt from key and stores it to be prepended to IV on each request. 2957 * Digest is always 16 bytes 2958 * 2959 * Return: Value from generic ccm setkey. 2960 */ 2961 static int aead_ccm_esp_setkey(struct crypto_aead *cipher, 2962 const u8 *key, unsigned int keylen) 2963 { 2964 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2965 2966 flow_log("%s\n", __func__); 2967 2968 if (keylen < CCM_ESP_SALT_SIZE) 2969 return -EINVAL; 2970 2971 ctx->salt_len = CCM_ESP_SALT_SIZE; 2972 ctx->salt_offset = CCM_ESP_SALT_OFFSET; 2973 memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE); 2974 keylen -= CCM_ESP_SALT_SIZE; 2975 ctx->is_esp = true; 2976 flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE); 2977 2978 return aead_gcm_ccm_setkey(cipher, key, keylen); 2979 } 2980 2981 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize) 2982 { 2983 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2984 int ret = 0; 2985 2986 flow_log("%s() authkeylen:%u authsize:%u\n", 2987 __func__, ctx->authkeylen, authsize); 2988 2989 ctx->digestsize = authsize; 2990 2991 /* setkey the fallback just in case we needto use it */ 2992 if (ctx->fallback_cipher) { 2993 flow_log(" running fallback setauth()\n"); 2994 2995 ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize); 2996 if (ret) 2997 flow_log(" fallback setauth() returned:%d\n", ret); 2998 } 2999 3000 return ret; 3001 } 3002 3003 static int aead_encrypt(struct aead_request *req) 3004 { 3005 flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen, 3006 req->cryptlen); 3007 dump_sg(req->src, 0, req->cryptlen + req->assoclen); 3008 flow_log(" assoc_len:%u\n", req->assoclen); 3009 3010 return aead_enqueue(req, true); 3011 } 3012 3013 static int aead_decrypt(struct aead_request *req) 3014 { 3015 flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen); 3016 dump_sg(req->src, 0, req->cryptlen + req->assoclen); 3017 flow_log(" assoc_len:%u\n", req->assoclen); 3018 3019 return aead_enqueue(req, false); 3020 } 3021 3022 /* ==================== Supported Cipher Algorithms ==================== */ 3023 3024 static struct iproc_alg_s driver_algs[] = { 3025 { 3026 .type = CRYPTO_ALG_TYPE_AEAD, 3027 .alg.aead = { 3028 .base = { 3029 .cra_name = "gcm(aes)", 3030 .cra_driver_name = "gcm-aes-iproc", 3031 .cra_blocksize = AES_BLOCK_SIZE, 3032 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3033 }, 3034 .setkey = aead_gcm_ccm_setkey, 3035 .ivsize = GCM_AES_IV_SIZE, 3036 .maxauthsize = AES_BLOCK_SIZE, 3037 }, 3038 .cipher_info = { 3039 .alg = CIPHER_ALG_AES, 3040 .mode = CIPHER_MODE_GCM, 3041 }, 3042 .auth_info = { 3043 .alg = HASH_ALG_AES, 3044 .mode = HASH_MODE_GCM, 3045 }, 3046 .auth_first = 0, 3047 }, 3048 { 3049 .type = CRYPTO_ALG_TYPE_AEAD, 3050 .alg.aead = { 3051 .base = { 3052 .cra_name = "ccm(aes)", 3053 .cra_driver_name = "ccm-aes-iproc", 3054 .cra_blocksize = AES_BLOCK_SIZE, 3055 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3056 }, 3057 .setkey = aead_gcm_ccm_setkey, 3058 .ivsize = CCM_AES_IV_SIZE, 3059 .maxauthsize = AES_BLOCK_SIZE, 3060 }, 3061 .cipher_info = { 3062 .alg = CIPHER_ALG_AES, 3063 .mode = CIPHER_MODE_CCM, 3064 }, 3065 .auth_info = { 3066 .alg = HASH_ALG_AES, 3067 .mode = HASH_MODE_CCM, 3068 }, 3069 .auth_first = 0, 3070 }, 3071 { 3072 .type = CRYPTO_ALG_TYPE_AEAD, 3073 .alg.aead = { 3074 .base = { 3075 .cra_name = "rfc4106(gcm(aes))", 3076 .cra_driver_name = "gcm-aes-esp-iproc", 3077 .cra_blocksize = AES_BLOCK_SIZE, 3078 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3079 }, 3080 .setkey = aead_gcm_esp_setkey, 3081 .ivsize = GCM_RFC4106_IV_SIZE, 3082 .maxauthsize = AES_BLOCK_SIZE, 3083 }, 3084 .cipher_info = { 3085 .alg = CIPHER_ALG_AES, 3086 .mode = CIPHER_MODE_GCM, 3087 }, 3088 .auth_info = { 3089 .alg = HASH_ALG_AES, 3090 .mode = HASH_MODE_GCM, 3091 }, 3092 .auth_first = 0, 3093 }, 3094 { 3095 .type = CRYPTO_ALG_TYPE_AEAD, 3096 .alg.aead = { 3097 .base = { 3098 .cra_name = "rfc4309(ccm(aes))", 3099 .cra_driver_name = "ccm-aes-esp-iproc", 3100 .cra_blocksize = AES_BLOCK_SIZE, 3101 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3102 }, 3103 .setkey = aead_ccm_esp_setkey, 3104 .ivsize = CCM_AES_IV_SIZE, 3105 .maxauthsize = AES_BLOCK_SIZE, 3106 }, 3107 .cipher_info = { 3108 .alg = CIPHER_ALG_AES, 3109 .mode = CIPHER_MODE_CCM, 3110 }, 3111 .auth_info = { 3112 .alg = HASH_ALG_AES, 3113 .mode = HASH_MODE_CCM, 3114 }, 3115 .auth_first = 0, 3116 }, 3117 { 3118 .type = CRYPTO_ALG_TYPE_AEAD, 3119 .alg.aead = { 3120 .base = { 3121 .cra_name = "rfc4543(gcm(aes))", 3122 .cra_driver_name = "gmac-aes-esp-iproc", 3123 .cra_blocksize = AES_BLOCK_SIZE, 3124 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3125 }, 3126 .setkey = rfc4543_gcm_esp_setkey, 3127 .ivsize = GCM_RFC4106_IV_SIZE, 3128 .maxauthsize = AES_BLOCK_SIZE, 3129 }, 3130 .cipher_info = { 3131 .alg = CIPHER_ALG_AES, 3132 .mode = CIPHER_MODE_GCM, 3133 }, 3134 .auth_info = { 3135 .alg = HASH_ALG_AES, 3136 .mode = HASH_MODE_GCM, 3137 }, 3138 .auth_first = 0, 3139 }, 3140 { 3141 .type = CRYPTO_ALG_TYPE_AEAD, 3142 .alg.aead = { 3143 .base = { 3144 .cra_name = "authenc(hmac(md5),cbc(aes))", 3145 .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc", 3146 .cra_blocksize = AES_BLOCK_SIZE, 3147 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3148 CRYPTO_ALG_ASYNC | 3149 CRYPTO_ALG_ALLOCATES_MEMORY 3150 }, 3151 .setkey = aead_authenc_setkey, 3152 .ivsize = AES_BLOCK_SIZE, 3153 .maxauthsize = MD5_DIGEST_SIZE, 3154 }, 3155 .cipher_info = { 3156 .alg = CIPHER_ALG_AES, 3157 .mode = CIPHER_MODE_CBC, 3158 }, 3159 .auth_info = { 3160 .alg = HASH_ALG_MD5, 3161 .mode = HASH_MODE_HMAC, 3162 }, 3163 .auth_first = 0, 3164 }, 3165 { 3166 .type = CRYPTO_ALG_TYPE_AEAD, 3167 .alg.aead = { 3168 .base = { 3169 .cra_name = "authenc(hmac(sha1),cbc(aes))", 3170 .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc", 3171 .cra_blocksize = AES_BLOCK_SIZE, 3172 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3173 CRYPTO_ALG_ASYNC | 3174 CRYPTO_ALG_ALLOCATES_MEMORY 3175 }, 3176 .setkey = aead_authenc_setkey, 3177 .ivsize = AES_BLOCK_SIZE, 3178 .maxauthsize = SHA1_DIGEST_SIZE, 3179 }, 3180 .cipher_info = { 3181 .alg = CIPHER_ALG_AES, 3182 .mode = CIPHER_MODE_CBC, 3183 }, 3184 .auth_info = { 3185 .alg = HASH_ALG_SHA1, 3186 .mode = HASH_MODE_HMAC, 3187 }, 3188 .auth_first = 0, 3189 }, 3190 { 3191 .type = CRYPTO_ALG_TYPE_AEAD, 3192 .alg.aead = { 3193 .base = { 3194 .cra_name = "authenc(hmac(sha256),cbc(aes))", 3195 .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc", 3196 .cra_blocksize = AES_BLOCK_SIZE, 3197 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3198 CRYPTO_ALG_ASYNC | 3199 CRYPTO_ALG_ALLOCATES_MEMORY 3200 }, 3201 .setkey = aead_authenc_setkey, 3202 .ivsize = AES_BLOCK_SIZE, 3203 .maxauthsize = SHA256_DIGEST_SIZE, 3204 }, 3205 .cipher_info = { 3206 .alg = CIPHER_ALG_AES, 3207 .mode = CIPHER_MODE_CBC, 3208 }, 3209 .auth_info = { 3210 .alg = HASH_ALG_SHA256, 3211 .mode = HASH_MODE_HMAC, 3212 }, 3213 .auth_first = 0, 3214 }, 3215 { 3216 .type = CRYPTO_ALG_TYPE_AEAD, 3217 .alg.aead = { 3218 .base = { 3219 .cra_name = "authenc(hmac(md5),cbc(des))", 3220 .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc", 3221 .cra_blocksize = DES_BLOCK_SIZE, 3222 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3223 CRYPTO_ALG_ASYNC | 3224 CRYPTO_ALG_ALLOCATES_MEMORY 3225 }, 3226 .setkey = aead_authenc_setkey, 3227 .ivsize = DES_BLOCK_SIZE, 3228 .maxauthsize = MD5_DIGEST_SIZE, 3229 }, 3230 .cipher_info = { 3231 .alg = CIPHER_ALG_DES, 3232 .mode = CIPHER_MODE_CBC, 3233 }, 3234 .auth_info = { 3235 .alg = HASH_ALG_MD5, 3236 .mode = HASH_MODE_HMAC, 3237 }, 3238 .auth_first = 0, 3239 }, 3240 { 3241 .type = CRYPTO_ALG_TYPE_AEAD, 3242 .alg.aead = { 3243 .base = { 3244 .cra_name = "authenc(hmac(sha1),cbc(des))", 3245 .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc", 3246 .cra_blocksize = DES_BLOCK_SIZE, 3247 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3248 CRYPTO_ALG_ASYNC | 3249 CRYPTO_ALG_ALLOCATES_MEMORY 3250 }, 3251 .setkey = aead_authenc_setkey, 3252 .ivsize = DES_BLOCK_SIZE, 3253 .maxauthsize = SHA1_DIGEST_SIZE, 3254 }, 3255 .cipher_info = { 3256 .alg = CIPHER_ALG_DES, 3257 .mode = CIPHER_MODE_CBC, 3258 }, 3259 .auth_info = { 3260 .alg = HASH_ALG_SHA1, 3261 .mode = HASH_MODE_HMAC, 3262 }, 3263 .auth_first = 0, 3264 }, 3265 { 3266 .type = CRYPTO_ALG_TYPE_AEAD, 3267 .alg.aead = { 3268 .base = { 3269 .cra_name = "authenc(hmac(sha224),cbc(des))", 3270 .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc", 3271 .cra_blocksize = DES_BLOCK_SIZE, 3272 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3273 CRYPTO_ALG_ASYNC | 3274 CRYPTO_ALG_ALLOCATES_MEMORY 3275 }, 3276 .setkey = aead_authenc_setkey, 3277 .ivsize = DES_BLOCK_SIZE, 3278 .maxauthsize = SHA224_DIGEST_SIZE, 3279 }, 3280 .cipher_info = { 3281 .alg = CIPHER_ALG_DES, 3282 .mode = CIPHER_MODE_CBC, 3283 }, 3284 .auth_info = { 3285 .alg = HASH_ALG_SHA224, 3286 .mode = HASH_MODE_HMAC, 3287 }, 3288 .auth_first = 0, 3289 }, 3290 { 3291 .type = CRYPTO_ALG_TYPE_AEAD, 3292 .alg.aead = { 3293 .base = { 3294 .cra_name = "authenc(hmac(sha256),cbc(des))", 3295 .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc", 3296 .cra_blocksize = DES_BLOCK_SIZE, 3297 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3298 CRYPTO_ALG_ASYNC | 3299 CRYPTO_ALG_ALLOCATES_MEMORY 3300 }, 3301 .setkey = aead_authenc_setkey, 3302 .ivsize = DES_BLOCK_SIZE, 3303 .maxauthsize = SHA256_DIGEST_SIZE, 3304 }, 3305 .cipher_info = { 3306 .alg = CIPHER_ALG_DES, 3307 .mode = CIPHER_MODE_CBC, 3308 }, 3309 .auth_info = { 3310 .alg = HASH_ALG_SHA256, 3311 .mode = HASH_MODE_HMAC, 3312 }, 3313 .auth_first = 0, 3314 }, 3315 { 3316 .type = CRYPTO_ALG_TYPE_AEAD, 3317 .alg.aead = { 3318 .base = { 3319 .cra_name = "authenc(hmac(sha384),cbc(des))", 3320 .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc", 3321 .cra_blocksize = DES_BLOCK_SIZE, 3322 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3323 CRYPTO_ALG_ASYNC | 3324 CRYPTO_ALG_ALLOCATES_MEMORY 3325 }, 3326 .setkey = aead_authenc_setkey, 3327 .ivsize = DES_BLOCK_SIZE, 3328 .maxauthsize = SHA384_DIGEST_SIZE, 3329 }, 3330 .cipher_info = { 3331 .alg = CIPHER_ALG_DES, 3332 .mode = CIPHER_MODE_CBC, 3333 }, 3334 .auth_info = { 3335 .alg = HASH_ALG_SHA384, 3336 .mode = HASH_MODE_HMAC, 3337 }, 3338 .auth_first = 0, 3339 }, 3340 { 3341 .type = CRYPTO_ALG_TYPE_AEAD, 3342 .alg.aead = { 3343 .base = { 3344 .cra_name = "authenc(hmac(sha512),cbc(des))", 3345 .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc", 3346 .cra_blocksize = DES_BLOCK_SIZE, 3347 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3348 CRYPTO_ALG_ASYNC | 3349 CRYPTO_ALG_ALLOCATES_MEMORY 3350 }, 3351 .setkey = aead_authenc_setkey, 3352 .ivsize = DES_BLOCK_SIZE, 3353 .maxauthsize = SHA512_DIGEST_SIZE, 3354 }, 3355 .cipher_info = { 3356 .alg = CIPHER_ALG_DES, 3357 .mode = CIPHER_MODE_CBC, 3358 }, 3359 .auth_info = { 3360 .alg = HASH_ALG_SHA512, 3361 .mode = HASH_MODE_HMAC, 3362 }, 3363 .auth_first = 0, 3364 }, 3365 { 3366 .type = CRYPTO_ALG_TYPE_AEAD, 3367 .alg.aead = { 3368 .base = { 3369 .cra_name = "authenc(hmac(md5),cbc(des3_ede))", 3370 .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc", 3371 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3372 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3373 CRYPTO_ALG_ASYNC | 3374 CRYPTO_ALG_ALLOCATES_MEMORY 3375 }, 3376 .setkey = aead_authenc_setkey, 3377 .ivsize = DES3_EDE_BLOCK_SIZE, 3378 .maxauthsize = MD5_DIGEST_SIZE, 3379 }, 3380 .cipher_info = { 3381 .alg = CIPHER_ALG_3DES, 3382 .mode = CIPHER_MODE_CBC, 3383 }, 3384 .auth_info = { 3385 .alg = HASH_ALG_MD5, 3386 .mode = HASH_MODE_HMAC, 3387 }, 3388 .auth_first = 0, 3389 }, 3390 { 3391 .type = CRYPTO_ALG_TYPE_AEAD, 3392 .alg.aead = { 3393 .base = { 3394 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", 3395 .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc", 3396 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3397 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3398 CRYPTO_ALG_ASYNC | 3399 CRYPTO_ALG_ALLOCATES_MEMORY 3400 }, 3401 .setkey = aead_authenc_setkey, 3402 .ivsize = DES3_EDE_BLOCK_SIZE, 3403 .maxauthsize = SHA1_DIGEST_SIZE, 3404 }, 3405 .cipher_info = { 3406 .alg = CIPHER_ALG_3DES, 3407 .mode = CIPHER_MODE_CBC, 3408 }, 3409 .auth_info = { 3410 .alg = HASH_ALG_SHA1, 3411 .mode = HASH_MODE_HMAC, 3412 }, 3413 .auth_first = 0, 3414 }, 3415 { 3416 .type = CRYPTO_ALG_TYPE_AEAD, 3417 .alg.aead = { 3418 .base = { 3419 .cra_name = "authenc(hmac(sha224),cbc(des3_ede))", 3420 .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc", 3421 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3422 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3423 CRYPTO_ALG_ASYNC | 3424 CRYPTO_ALG_ALLOCATES_MEMORY 3425 }, 3426 .setkey = aead_authenc_setkey, 3427 .ivsize = DES3_EDE_BLOCK_SIZE, 3428 .maxauthsize = SHA224_DIGEST_SIZE, 3429 }, 3430 .cipher_info = { 3431 .alg = CIPHER_ALG_3DES, 3432 .mode = CIPHER_MODE_CBC, 3433 }, 3434 .auth_info = { 3435 .alg = HASH_ALG_SHA224, 3436 .mode = HASH_MODE_HMAC, 3437 }, 3438 .auth_first = 0, 3439 }, 3440 { 3441 .type = CRYPTO_ALG_TYPE_AEAD, 3442 .alg.aead = { 3443 .base = { 3444 .cra_name = "authenc(hmac(sha256),cbc(des3_ede))", 3445 .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc", 3446 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3447 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3448 CRYPTO_ALG_ASYNC | 3449 CRYPTO_ALG_ALLOCATES_MEMORY 3450 }, 3451 .setkey = aead_authenc_setkey, 3452 .ivsize = DES3_EDE_BLOCK_SIZE, 3453 .maxauthsize = SHA256_DIGEST_SIZE, 3454 }, 3455 .cipher_info = { 3456 .alg = CIPHER_ALG_3DES, 3457 .mode = CIPHER_MODE_CBC, 3458 }, 3459 .auth_info = { 3460 .alg = HASH_ALG_SHA256, 3461 .mode = HASH_MODE_HMAC, 3462 }, 3463 .auth_first = 0, 3464 }, 3465 { 3466 .type = CRYPTO_ALG_TYPE_AEAD, 3467 .alg.aead = { 3468 .base = { 3469 .cra_name = "authenc(hmac(sha384),cbc(des3_ede))", 3470 .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc", 3471 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3472 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3473 CRYPTO_ALG_ASYNC | 3474 CRYPTO_ALG_ALLOCATES_MEMORY 3475 }, 3476 .setkey = aead_authenc_setkey, 3477 .ivsize = DES3_EDE_BLOCK_SIZE, 3478 .maxauthsize = SHA384_DIGEST_SIZE, 3479 }, 3480 .cipher_info = { 3481 .alg = CIPHER_ALG_3DES, 3482 .mode = CIPHER_MODE_CBC, 3483 }, 3484 .auth_info = { 3485 .alg = HASH_ALG_SHA384, 3486 .mode = HASH_MODE_HMAC, 3487 }, 3488 .auth_first = 0, 3489 }, 3490 { 3491 .type = CRYPTO_ALG_TYPE_AEAD, 3492 .alg.aead = { 3493 .base = { 3494 .cra_name = "authenc(hmac(sha512),cbc(des3_ede))", 3495 .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc", 3496 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3497 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3498 CRYPTO_ALG_ASYNC | 3499 CRYPTO_ALG_ALLOCATES_MEMORY 3500 }, 3501 .setkey = aead_authenc_setkey, 3502 .ivsize = DES3_EDE_BLOCK_SIZE, 3503 .maxauthsize = SHA512_DIGEST_SIZE, 3504 }, 3505 .cipher_info = { 3506 .alg = CIPHER_ALG_3DES, 3507 .mode = CIPHER_MODE_CBC, 3508 }, 3509 .auth_info = { 3510 .alg = HASH_ALG_SHA512, 3511 .mode = HASH_MODE_HMAC, 3512 }, 3513 .auth_first = 0, 3514 }, 3515 3516 /* SKCIPHER algorithms. */ 3517 { 3518 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3519 .alg.skcipher = { 3520 .base.cra_name = "cbc(des)", 3521 .base.cra_driver_name = "cbc-des-iproc", 3522 .base.cra_blocksize = DES_BLOCK_SIZE, 3523 .min_keysize = DES_KEY_SIZE, 3524 .max_keysize = DES_KEY_SIZE, 3525 .ivsize = DES_BLOCK_SIZE, 3526 }, 3527 .cipher_info = { 3528 .alg = CIPHER_ALG_DES, 3529 .mode = CIPHER_MODE_CBC, 3530 }, 3531 .auth_info = { 3532 .alg = HASH_ALG_NONE, 3533 .mode = HASH_MODE_NONE, 3534 }, 3535 }, 3536 { 3537 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3538 .alg.skcipher = { 3539 .base.cra_name = "ecb(des)", 3540 .base.cra_driver_name = "ecb-des-iproc", 3541 .base.cra_blocksize = DES_BLOCK_SIZE, 3542 .min_keysize = DES_KEY_SIZE, 3543 .max_keysize = DES_KEY_SIZE, 3544 .ivsize = 0, 3545 }, 3546 .cipher_info = { 3547 .alg = CIPHER_ALG_DES, 3548 .mode = CIPHER_MODE_ECB, 3549 }, 3550 .auth_info = { 3551 .alg = HASH_ALG_NONE, 3552 .mode = HASH_MODE_NONE, 3553 }, 3554 }, 3555 { 3556 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3557 .alg.skcipher = { 3558 .base.cra_name = "cbc(des3_ede)", 3559 .base.cra_driver_name = "cbc-des3-iproc", 3560 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, 3561 .min_keysize = DES3_EDE_KEY_SIZE, 3562 .max_keysize = DES3_EDE_KEY_SIZE, 3563 .ivsize = DES3_EDE_BLOCK_SIZE, 3564 }, 3565 .cipher_info = { 3566 .alg = CIPHER_ALG_3DES, 3567 .mode = CIPHER_MODE_CBC, 3568 }, 3569 .auth_info = { 3570 .alg = HASH_ALG_NONE, 3571 .mode = HASH_MODE_NONE, 3572 }, 3573 }, 3574 { 3575 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3576 .alg.skcipher = { 3577 .base.cra_name = "ecb(des3_ede)", 3578 .base.cra_driver_name = "ecb-des3-iproc", 3579 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, 3580 .min_keysize = DES3_EDE_KEY_SIZE, 3581 .max_keysize = DES3_EDE_KEY_SIZE, 3582 .ivsize = 0, 3583 }, 3584 .cipher_info = { 3585 .alg = CIPHER_ALG_3DES, 3586 .mode = CIPHER_MODE_ECB, 3587 }, 3588 .auth_info = { 3589 .alg = HASH_ALG_NONE, 3590 .mode = HASH_MODE_NONE, 3591 }, 3592 }, 3593 { 3594 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3595 .alg.skcipher = { 3596 .base.cra_name = "cbc(aes)", 3597 .base.cra_driver_name = "cbc-aes-iproc", 3598 .base.cra_blocksize = AES_BLOCK_SIZE, 3599 .min_keysize = AES_MIN_KEY_SIZE, 3600 .max_keysize = AES_MAX_KEY_SIZE, 3601 .ivsize = AES_BLOCK_SIZE, 3602 }, 3603 .cipher_info = { 3604 .alg = CIPHER_ALG_AES, 3605 .mode = CIPHER_MODE_CBC, 3606 }, 3607 .auth_info = { 3608 .alg = HASH_ALG_NONE, 3609 .mode = HASH_MODE_NONE, 3610 }, 3611 }, 3612 { 3613 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3614 .alg.skcipher = { 3615 .base.cra_name = "ecb(aes)", 3616 .base.cra_driver_name = "ecb-aes-iproc", 3617 .base.cra_blocksize = AES_BLOCK_SIZE, 3618 .min_keysize = AES_MIN_KEY_SIZE, 3619 .max_keysize = AES_MAX_KEY_SIZE, 3620 .ivsize = 0, 3621 }, 3622 .cipher_info = { 3623 .alg = CIPHER_ALG_AES, 3624 .mode = CIPHER_MODE_ECB, 3625 }, 3626 .auth_info = { 3627 .alg = HASH_ALG_NONE, 3628 .mode = HASH_MODE_NONE, 3629 }, 3630 }, 3631 { 3632 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3633 .alg.skcipher = { 3634 .base.cra_name = "ctr(aes)", 3635 .base.cra_driver_name = "ctr-aes-iproc", 3636 .base.cra_blocksize = AES_BLOCK_SIZE, 3637 .min_keysize = AES_MIN_KEY_SIZE, 3638 .max_keysize = AES_MAX_KEY_SIZE, 3639 .ivsize = AES_BLOCK_SIZE, 3640 }, 3641 .cipher_info = { 3642 .alg = CIPHER_ALG_AES, 3643 .mode = CIPHER_MODE_CTR, 3644 }, 3645 .auth_info = { 3646 .alg = HASH_ALG_NONE, 3647 .mode = HASH_MODE_NONE, 3648 }, 3649 }, 3650 { 3651 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3652 .alg.skcipher = { 3653 .base.cra_name = "xts(aes)", 3654 .base.cra_driver_name = "xts-aes-iproc", 3655 .base.cra_blocksize = AES_BLOCK_SIZE, 3656 .min_keysize = 2 * AES_MIN_KEY_SIZE, 3657 .max_keysize = 2 * AES_MAX_KEY_SIZE, 3658 .ivsize = AES_BLOCK_SIZE, 3659 }, 3660 .cipher_info = { 3661 .alg = CIPHER_ALG_AES, 3662 .mode = CIPHER_MODE_XTS, 3663 }, 3664 .auth_info = { 3665 .alg = HASH_ALG_NONE, 3666 .mode = HASH_MODE_NONE, 3667 }, 3668 }, 3669 3670 /* AHASH algorithms. */ 3671 { 3672 .type = CRYPTO_ALG_TYPE_AHASH, 3673 .alg.hash = { 3674 .halg.digestsize = MD5_DIGEST_SIZE, 3675 .halg.base = { 3676 .cra_name = "md5", 3677 .cra_driver_name = "md5-iproc", 3678 .cra_blocksize = MD5_BLOCK_WORDS * 4, 3679 .cra_flags = CRYPTO_ALG_ASYNC | 3680 CRYPTO_ALG_ALLOCATES_MEMORY, 3681 } 3682 }, 3683 .cipher_info = { 3684 .alg = CIPHER_ALG_NONE, 3685 .mode = CIPHER_MODE_NONE, 3686 }, 3687 .auth_info = { 3688 .alg = HASH_ALG_MD5, 3689 .mode = HASH_MODE_HASH, 3690 }, 3691 }, 3692 { 3693 .type = CRYPTO_ALG_TYPE_AHASH, 3694 .alg.hash = { 3695 .halg.digestsize = MD5_DIGEST_SIZE, 3696 .halg.base = { 3697 .cra_name = "hmac(md5)", 3698 .cra_driver_name = "hmac-md5-iproc", 3699 .cra_blocksize = MD5_BLOCK_WORDS * 4, 3700 } 3701 }, 3702 .cipher_info = { 3703 .alg = CIPHER_ALG_NONE, 3704 .mode = CIPHER_MODE_NONE, 3705 }, 3706 .auth_info = { 3707 .alg = HASH_ALG_MD5, 3708 .mode = HASH_MODE_HMAC, 3709 }, 3710 }, 3711 {.type = CRYPTO_ALG_TYPE_AHASH, 3712 .alg.hash = { 3713 .halg.digestsize = SHA1_DIGEST_SIZE, 3714 .halg.base = { 3715 .cra_name = "sha1", 3716 .cra_driver_name = "sha1-iproc", 3717 .cra_blocksize = SHA1_BLOCK_SIZE, 3718 } 3719 }, 3720 .cipher_info = { 3721 .alg = CIPHER_ALG_NONE, 3722 .mode = CIPHER_MODE_NONE, 3723 }, 3724 .auth_info = { 3725 .alg = HASH_ALG_SHA1, 3726 .mode = HASH_MODE_HASH, 3727 }, 3728 }, 3729 {.type = CRYPTO_ALG_TYPE_AHASH, 3730 .alg.hash = { 3731 .halg.digestsize = SHA1_DIGEST_SIZE, 3732 .halg.base = { 3733 .cra_name = "hmac(sha1)", 3734 .cra_driver_name = "hmac-sha1-iproc", 3735 .cra_blocksize = SHA1_BLOCK_SIZE, 3736 } 3737 }, 3738 .cipher_info = { 3739 .alg = CIPHER_ALG_NONE, 3740 .mode = CIPHER_MODE_NONE, 3741 }, 3742 .auth_info = { 3743 .alg = HASH_ALG_SHA1, 3744 .mode = HASH_MODE_HMAC, 3745 }, 3746 }, 3747 {.type = CRYPTO_ALG_TYPE_AHASH, 3748 .alg.hash = { 3749 .halg.digestsize = SHA224_DIGEST_SIZE, 3750 .halg.base = { 3751 .cra_name = "sha224", 3752 .cra_driver_name = "sha224-iproc", 3753 .cra_blocksize = SHA224_BLOCK_SIZE, 3754 } 3755 }, 3756 .cipher_info = { 3757 .alg = CIPHER_ALG_NONE, 3758 .mode = CIPHER_MODE_NONE, 3759 }, 3760 .auth_info = { 3761 .alg = HASH_ALG_SHA224, 3762 .mode = HASH_MODE_HASH, 3763 }, 3764 }, 3765 {.type = CRYPTO_ALG_TYPE_AHASH, 3766 .alg.hash = { 3767 .halg.digestsize = SHA224_DIGEST_SIZE, 3768 .halg.base = { 3769 .cra_name = "hmac(sha224)", 3770 .cra_driver_name = "hmac-sha224-iproc", 3771 .cra_blocksize = SHA224_BLOCK_SIZE, 3772 } 3773 }, 3774 .cipher_info = { 3775 .alg = CIPHER_ALG_NONE, 3776 .mode = CIPHER_MODE_NONE, 3777 }, 3778 .auth_info = { 3779 .alg = HASH_ALG_SHA224, 3780 .mode = HASH_MODE_HMAC, 3781 }, 3782 }, 3783 {.type = CRYPTO_ALG_TYPE_AHASH, 3784 .alg.hash = { 3785 .halg.digestsize = SHA256_DIGEST_SIZE, 3786 .halg.base = { 3787 .cra_name = "sha256", 3788 .cra_driver_name = "sha256-iproc", 3789 .cra_blocksize = SHA256_BLOCK_SIZE, 3790 } 3791 }, 3792 .cipher_info = { 3793 .alg = CIPHER_ALG_NONE, 3794 .mode = CIPHER_MODE_NONE, 3795 }, 3796 .auth_info = { 3797 .alg = HASH_ALG_SHA256, 3798 .mode = HASH_MODE_HASH, 3799 }, 3800 }, 3801 {.type = CRYPTO_ALG_TYPE_AHASH, 3802 .alg.hash = { 3803 .halg.digestsize = SHA256_DIGEST_SIZE, 3804 .halg.base = { 3805 .cra_name = "hmac(sha256)", 3806 .cra_driver_name = "hmac-sha256-iproc", 3807 .cra_blocksize = SHA256_BLOCK_SIZE, 3808 } 3809 }, 3810 .cipher_info = { 3811 .alg = CIPHER_ALG_NONE, 3812 .mode = CIPHER_MODE_NONE, 3813 }, 3814 .auth_info = { 3815 .alg = HASH_ALG_SHA256, 3816 .mode = HASH_MODE_HMAC, 3817 }, 3818 }, 3819 { 3820 .type = CRYPTO_ALG_TYPE_AHASH, 3821 .alg.hash = { 3822 .halg.digestsize = SHA384_DIGEST_SIZE, 3823 .halg.base = { 3824 .cra_name = "sha384", 3825 .cra_driver_name = "sha384-iproc", 3826 .cra_blocksize = SHA384_BLOCK_SIZE, 3827 } 3828 }, 3829 .cipher_info = { 3830 .alg = CIPHER_ALG_NONE, 3831 .mode = CIPHER_MODE_NONE, 3832 }, 3833 .auth_info = { 3834 .alg = HASH_ALG_SHA384, 3835 .mode = HASH_MODE_HASH, 3836 }, 3837 }, 3838 { 3839 .type = CRYPTO_ALG_TYPE_AHASH, 3840 .alg.hash = { 3841 .halg.digestsize = SHA384_DIGEST_SIZE, 3842 .halg.base = { 3843 .cra_name = "hmac(sha384)", 3844 .cra_driver_name = "hmac-sha384-iproc", 3845 .cra_blocksize = SHA384_BLOCK_SIZE, 3846 } 3847 }, 3848 .cipher_info = { 3849 .alg = CIPHER_ALG_NONE, 3850 .mode = CIPHER_MODE_NONE, 3851 }, 3852 .auth_info = { 3853 .alg = HASH_ALG_SHA384, 3854 .mode = HASH_MODE_HMAC, 3855 }, 3856 }, 3857 { 3858 .type = CRYPTO_ALG_TYPE_AHASH, 3859 .alg.hash = { 3860 .halg.digestsize = SHA512_DIGEST_SIZE, 3861 .halg.base = { 3862 .cra_name = "sha512", 3863 .cra_driver_name = "sha512-iproc", 3864 .cra_blocksize = SHA512_BLOCK_SIZE, 3865 } 3866 }, 3867 .cipher_info = { 3868 .alg = CIPHER_ALG_NONE, 3869 .mode = CIPHER_MODE_NONE, 3870 }, 3871 .auth_info = { 3872 .alg = HASH_ALG_SHA512, 3873 .mode = HASH_MODE_HASH, 3874 }, 3875 }, 3876 { 3877 .type = CRYPTO_ALG_TYPE_AHASH, 3878 .alg.hash = { 3879 .halg.digestsize = SHA512_DIGEST_SIZE, 3880 .halg.base = { 3881 .cra_name = "hmac(sha512)", 3882 .cra_driver_name = "hmac-sha512-iproc", 3883 .cra_blocksize = SHA512_BLOCK_SIZE, 3884 } 3885 }, 3886 .cipher_info = { 3887 .alg = CIPHER_ALG_NONE, 3888 .mode = CIPHER_MODE_NONE, 3889 }, 3890 .auth_info = { 3891 .alg = HASH_ALG_SHA512, 3892 .mode = HASH_MODE_HMAC, 3893 }, 3894 }, 3895 { 3896 .type = CRYPTO_ALG_TYPE_AHASH, 3897 .alg.hash = { 3898 .halg.digestsize = SHA3_224_DIGEST_SIZE, 3899 .halg.base = { 3900 .cra_name = "sha3-224", 3901 .cra_driver_name = "sha3-224-iproc", 3902 .cra_blocksize = SHA3_224_BLOCK_SIZE, 3903 } 3904 }, 3905 .cipher_info = { 3906 .alg = CIPHER_ALG_NONE, 3907 .mode = CIPHER_MODE_NONE, 3908 }, 3909 .auth_info = { 3910 .alg = HASH_ALG_SHA3_224, 3911 .mode = HASH_MODE_HASH, 3912 }, 3913 }, 3914 { 3915 .type = CRYPTO_ALG_TYPE_AHASH, 3916 .alg.hash = { 3917 .halg.digestsize = SHA3_224_DIGEST_SIZE, 3918 .halg.base = { 3919 .cra_name = "hmac(sha3-224)", 3920 .cra_driver_name = "hmac-sha3-224-iproc", 3921 .cra_blocksize = SHA3_224_BLOCK_SIZE, 3922 } 3923 }, 3924 .cipher_info = { 3925 .alg = CIPHER_ALG_NONE, 3926 .mode = CIPHER_MODE_NONE, 3927 }, 3928 .auth_info = { 3929 .alg = HASH_ALG_SHA3_224, 3930 .mode = HASH_MODE_HMAC 3931 }, 3932 }, 3933 { 3934 .type = CRYPTO_ALG_TYPE_AHASH, 3935 .alg.hash = { 3936 .halg.digestsize = SHA3_256_DIGEST_SIZE, 3937 .halg.base = { 3938 .cra_name = "sha3-256", 3939 .cra_driver_name = "sha3-256-iproc", 3940 .cra_blocksize = SHA3_256_BLOCK_SIZE, 3941 } 3942 }, 3943 .cipher_info = { 3944 .alg = CIPHER_ALG_NONE, 3945 .mode = CIPHER_MODE_NONE, 3946 }, 3947 .auth_info = { 3948 .alg = HASH_ALG_SHA3_256, 3949 .mode = HASH_MODE_HASH, 3950 }, 3951 }, 3952 { 3953 .type = CRYPTO_ALG_TYPE_AHASH, 3954 .alg.hash = { 3955 .halg.digestsize = SHA3_256_DIGEST_SIZE, 3956 .halg.base = { 3957 .cra_name = "hmac(sha3-256)", 3958 .cra_driver_name = "hmac-sha3-256-iproc", 3959 .cra_blocksize = SHA3_256_BLOCK_SIZE, 3960 } 3961 }, 3962 .cipher_info = { 3963 .alg = CIPHER_ALG_NONE, 3964 .mode = CIPHER_MODE_NONE, 3965 }, 3966 .auth_info = { 3967 .alg = HASH_ALG_SHA3_256, 3968 .mode = HASH_MODE_HMAC, 3969 }, 3970 }, 3971 { 3972 .type = CRYPTO_ALG_TYPE_AHASH, 3973 .alg.hash = { 3974 .halg.digestsize = SHA3_384_DIGEST_SIZE, 3975 .halg.base = { 3976 .cra_name = "sha3-384", 3977 .cra_driver_name = "sha3-384-iproc", 3978 .cra_blocksize = SHA3_224_BLOCK_SIZE, 3979 } 3980 }, 3981 .cipher_info = { 3982 .alg = CIPHER_ALG_NONE, 3983 .mode = CIPHER_MODE_NONE, 3984 }, 3985 .auth_info = { 3986 .alg = HASH_ALG_SHA3_384, 3987 .mode = HASH_MODE_HASH, 3988 }, 3989 }, 3990 { 3991 .type = CRYPTO_ALG_TYPE_AHASH, 3992 .alg.hash = { 3993 .halg.digestsize = SHA3_384_DIGEST_SIZE, 3994 .halg.base = { 3995 .cra_name = "hmac(sha3-384)", 3996 .cra_driver_name = "hmac-sha3-384-iproc", 3997 .cra_blocksize = SHA3_384_BLOCK_SIZE, 3998 } 3999 }, 4000 .cipher_info = { 4001 .alg = CIPHER_ALG_NONE, 4002 .mode = CIPHER_MODE_NONE, 4003 }, 4004 .auth_info = { 4005 .alg = HASH_ALG_SHA3_384, 4006 .mode = HASH_MODE_HMAC, 4007 }, 4008 }, 4009 { 4010 .type = CRYPTO_ALG_TYPE_AHASH, 4011 .alg.hash = { 4012 .halg.digestsize = SHA3_512_DIGEST_SIZE, 4013 .halg.base = { 4014 .cra_name = "sha3-512", 4015 .cra_driver_name = "sha3-512-iproc", 4016 .cra_blocksize = SHA3_512_BLOCK_SIZE, 4017 } 4018 }, 4019 .cipher_info = { 4020 .alg = CIPHER_ALG_NONE, 4021 .mode = CIPHER_MODE_NONE, 4022 }, 4023 .auth_info = { 4024 .alg = HASH_ALG_SHA3_512, 4025 .mode = HASH_MODE_HASH, 4026 }, 4027 }, 4028 { 4029 .type = CRYPTO_ALG_TYPE_AHASH, 4030 .alg.hash = { 4031 .halg.digestsize = SHA3_512_DIGEST_SIZE, 4032 .halg.base = { 4033 .cra_name = "hmac(sha3-512)", 4034 .cra_driver_name = "hmac-sha3-512-iproc", 4035 .cra_blocksize = SHA3_512_BLOCK_SIZE, 4036 } 4037 }, 4038 .cipher_info = { 4039 .alg = CIPHER_ALG_NONE, 4040 .mode = CIPHER_MODE_NONE, 4041 }, 4042 .auth_info = { 4043 .alg = HASH_ALG_SHA3_512, 4044 .mode = HASH_MODE_HMAC, 4045 }, 4046 }, 4047 { 4048 .type = CRYPTO_ALG_TYPE_AHASH, 4049 .alg.hash = { 4050 .halg.digestsize = AES_BLOCK_SIZE, 4051 .halg.base = { 4052 .cra_name = "xcbc(aes)", 4053 .cra_driver_name = "xcbc-aes-iproc", 4054 .cra_blocksize = AES_BLOCK_SIZE, 4055 } 4056 }, 4057 .cipher_info = { 4058 .alg = CIPHER_ALG_NONE, 4059 .mode = CIPHER_MODE_NONE, 4060 }, 4061 .auth_info = { 4062 .alg = HASH_ALG_AES, 4063 .mode = HASH_MODE_XCBC, 4064 }, 4065 }, 4066 { 4067 .type = CRYPTO_ALG_TYPE_AHASH, 4068 .alg.hash = { 4069 .halg.digestsize = AES_BLOCK_SIZE, 4070 .halg.base = { 4071 .cra_name = "cmac(aes)", 4072 .cra_driver_name = "cmac-aes-iproc", 4073 .cra_blocksize = AES_BLOCK_SIZE, 4074 } 4075 }, 4076 .cipher_info = { 4077 .alg = CIPHER_ALG_NONE, 4078 .mode = CIPHER_MODE_NONE, 4079 }, 4080 .auth_info = { 4081 .alg = HASH_ALG_AES, 4082 .mode = HASH_MODE_CMAC, 4083 }, 4084 }, 4085 }; 4086 4087 static int generic_cra_init(struct crypto_tfm *tfm, 4088 struct iproc_alg_s *cipher_alg) 4089 { 4090 struct spu_hw *spu = &iproc_priv.spu; 4091 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 4092 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); 4093 4094 flow_log("%s()\n", __func__); 4095 4096 ctx->alg = cipher_alg; 4097 ctx->cipher = cipher_alg->cipher_info; 4098 ctx->auth = cipher_alg->auth_info; 4099 ctx->auth_first = cipher_alg->auth_first; 4100 ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg, 4101 ctx->cipher.mode, 4102 blocksize); 4103 ctx->fallback_cipher = NULL; 4104 4105 ctx->enckeylen = 0; 4106 ctx->authkeylen = 0; 4107 4108 atomic_inc(&iproc_priv.stream_count); 4109 atomic_inc(&iproc_priv.session_count); 4110 4111 return 0; 4112 } 4113 4114 static int skcipher_init_tfm(struct crypto_skcipher *skcipher) 4115 { 4116 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 4117 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher); 4118 struct iproc_alg_s *cipher_alg; 4119 4120 flow_log("%s()\n", __func__); 4121 4122 crypto_skcipher_set_reqsize(skcipher, sizeof(struct iproc_reqctx_s)); 4123 4124 cipher_alg = container_of(alg, struct iproc_alg_s, alg.skcipher); 4125 return generic_cra_init(tfm, cipher_alg); 4126 } 4127 4128 static int ahash_cra_init(struct crypto_tfm *tfm) 4129 { 4130 int err; 4131 struct crypto_alg *alg = tfm->__crt_alg; 4132 struct iproc_alg_s *cipher_alg; 4133 4134 cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s, 4135 alg.hash); 4136 4137 err = generic_cra_init(tfm, cipher_alg); 4138 flow_log("%s()\n", __func__); 4139 4140 /* 4141 * export state size has to be < 512 bytes. So don't include msg bufs 4142 * in state size. 4143 */ 4144 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 4145 sizeof(struct iproc_reqctx_s)); 4146 4147 return err; 4148 } 4149 4150 static int aead_cra_init(struct crypto_aead *aead) 4151 { 4152 unsigned int reqsize = sizeof(struct iproc_reqctx_s); 4153 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 4154 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 4155 struct crypto_alg *alg = tfm->__crt_alg; 4156 struct aead_alg *aalg = container_of(alg, struct aead_alg, base); 4157 struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s, 4158 alg.aead); 4159 4160 int err = generic_cra_init(tfm, cipher_alg); 4161 4162 flow_log("%s()\n", __func__); 4163 4164 ctx->is_esp = false; 4165 ctx->salt_len = 0; 4166 ctx->salt_offset = 0; 4167 4168 /* random first IV */ 4169 get_random_bytes(ctx->iv, MAX_IV_SIZE); 4170 flow_dump(" iv: ", ctx->iv, MAX_IV_SIZE); 4171 4172 if (err) 4173 goto out; 4174 4175 if (!(alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK)) 4176 goto reqsize; 4177 4178 flow_log("%s() creating fallback cipher\n", __func__); 4179 4180 ctx->fallback_cipher = crypto_alloc_aead(alg->cra_name, 0, 4181 CRYPTO_ALG_ASYNC | 4182 CRYPTO_ALG_NEED_FALLBACK); 4183 if (IS_ERR(ctx->fallback_cipher)) { 4184 pr_err("%s() Error: failed to allocate fallback for %s\n", 4185 __func__, alg->cra_name); 4186 return PTR_ERR(ctx->fallback_cipher); 4187 } 4188 4189 reqsize += crypto_aead_reqsize(ctx->fallback_cipher); 4190 4191 reqsize: 4192 crypto_aead_set_reqsize(aead, reqsize); 4193 4194 out: 4195 return err; 4196 } 4197 4198 static void generic_cra_exit(struct crypto_tfm *tfm) 4199 { 4200 atomic_dec(&iproc_priv.session_count); 4201 } 4202 4203 static void skcipher_exit_tfm(struct crypto_skcipher *tfm) 4204 { 4205 generic_cra_exit(crypto_skcipher_tfm(tfm)); 4206 } 4207 4208 static void aead_cra_exit(struct crypto_aead *aead) 4209 { 4210 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 4211 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 4212 4213 generic_cra_exit(tfm); 4214 4215 if (ctx->fallback_cipher) { 4216 crypto_free_aead(ctx->fallback_cipher); 4217 ctx->fallback_cipher = NULL; 4218 } 4219 } 4220 4221 /** 4222 * spu_functions_register() - Specify hardware-specific SPU functions based on 4223 * SPU type read from device tree. 4224 * @dev: device structure 4225 * @spu_type: SPU hardware generation 4226 * @spu_subtype: SPU hardware version 4227 */ 4228 static void spu_functions_register(struct device *dev, 4229 enum spu_spu_type spu_type, 4230 enum spu_spu_subtype spu_subtype) 4231 { 4232 struct spu_hw *spu = &iproc_priv.spu; 4233 4234 if (spu_type == SPU_TYPE_SPUM) { 4235 dev_dbg(dev, "Registering SPUM functions"); 4236 spu->spu_dump_msg_hdr = spum_dump_msg_hdr; 4237 spu->spu_payload_length = spum_payload_length; 4238 spu->spu_response_hdr_len = spum_response_hdr_len; 4239 spu->spu_hash_pad_len = spum_hash_pad_len; 4240 spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len; 4241 spu->spu_assoc_resp_len = spum_assoc_resp_len; 4242 spu->spu_aead_ivlen = spum_aead_ivlen; 4243 spu->spu_hash_type = spum_hash_type; 4244 spu->spu_digest_size = spum_digest_size; 4245 spu->spu_create_request = spum_create_request; 4246 spu->spu_cipher_req_init = spum_cipher_req_init; 4247 spu->spu_cipher_req_finish = spum_cipher_req_finish; 4248 spu->spu_request_pad = spum_request_pad; 4249 spu->spu_tx_status_len = spum_tx_status_len; 4250 spu->spu_rx_status_len = spum_rx_status_len; 4251 spu->spu_status_process = spum_status_process; 4252 spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload; 4253 spu->spu_ccm_update_iv = spum_ccm_update_iv; 4254 spu->spu_wordalign_padlen = spum_wordalign_padlen; 4255 if (spu_subtype == SPU_SUBTYPE_SPUM_NS2) 4256 spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload; 4257 else 4258 spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload; 4259 } else { 4260 dev_dbg(dev, "Registering SPU2 functions"); 4261 spu->spu_dump_msg_hdr = spu2_dump_msg_hdr; 4262 spu->spu_ctx_max_payload = spu2_ctx_max_payload; 4263 spu->spu_payload_length = spu2_payload_length; 4264 spu->spu_response_hdr_len = spu2_response_hdr_len; 4265 spu->spu_hash_pad_len = spu2_hash_pad_len; 4266 spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len; 4267 spu->spu_assoc_resp_len = spu2_assoc_resp_len; 4268 spu->spu_aead_ivlen = spu2_aead_ivlen; 4269 spu->spu_hash_type = spu2_hash_type; 4270 spu->spu_digest_size = spu2_digest_size; 4271 spu->spu_create_request = spu2_create_request; 4272 spu->spu_cipher_req_init = spu2_cipher_req_init; 4273 spu->spu_cipher_req_finish = spu2_cipher_req_finish; 4274 spu->spu_request_pad = spu2_request_pad; 4275 spu->spu_tx_status_len = spu2_tx_status_len; 4276 spu->spu_rx_status_len = spu2_rx_status_len; 4277 spu->spu_status_process = spu2_status_process; 4278 spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload; 4279 spu->spu_ccm_update_iv = spu2_ccm_update_iv; 4280 spu->spu_wordalign_padlen = spu2_wordalign_padlen; 4281 } 4282 } 4283 4284 /** 4285 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox 4286 * channel for the SPU being probed. 4287 * @dev: SPU driver device structure 4288 * 4289 * Return: 0 if successful 4290 * < 0 otherwise 4291 */ 4292 static int spu_mb_init(struct device *dev) 4293 { 4294 struct mbox_client *mcl = &iproc_priv.mcl; 4295 int err, i; 4296 4297 iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan, 4298 sizeof(struct mbox_chan *), GFP_KERNEL); 4299 if (!iproc_priv.mbox) 4300 return -ENOMEM; 4301 4302 mcl->dev = dev; 4303 mcl->tx_block = false; 4304 mcl->tx_tout = 0; 4305 mcl->knows_txdone = true; 4306 mcl->rx_callback = spu_rx_callback; 4307 mcl->tx_done = NULL; 4308 4309 for (i = 0; i < iproc_priv.spu.num_chan; i++) { 4310 iproc_priv.mbox[i] = mbox_request_channel(mcl, i); 4311 if (IS_ERR(iproc_priv.mbox[i])) { 4312 err = PTR_ERR(iproc_priv.mbox[i]); 4313 dev_err(dev, 4314 "Mbox channel %d request failed with err %d", 4315 i, err); 4316 iproc_priv.mbox[i] = NULL; 4317 goto free_channels; 4318 } 4319 } 4320 4321 return 0; 4322 free_channels: 4323 for (i = 0; i < iproc_priv.spu.num_chan; i++) { 4324 if (iproc_priv.mbox[i]) 4325 mbox_free_channel(iproc_priv.mbox[i]); 4326 } 4327 4328 return err; 4329 } 4330 4331 static void spu_mb_release(struct platform_device *pdev) 4332 { 4333 int i; 4334 4335 for (i = 0; i < iproc_priv.spu.num_chan; i++) 4336 mbox_free_channel(iproc_priv.mbox[i]); 4337 } 4338 4339 static void spu_counters_init(void) 4340 { 4341 int i; 4342 int j; 4343 4344 atomic_set(&iproc_priv.session_count, 0); 4345 atomic_set(&iproc_priv.stream_count, 0); 4346 atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan); 4347 atomic64_set(&iproc_priv.bytes_in, 0); 4348 atomic64_set(&iproc_priv.bytes_out, 0); 4349 for (i = 0; i < SPU_OP_NUM; i++) { 4350 atomic_set(&iproc_priv.op_counts[i], 0); 4351 atomic_set(&iproc_priv.setkey_cnt[i], 0); 4352 } 4353 for (i = 0; i < CIPHER_ALG_LAST; i++) 4354 for (j = 0; j < CIPHER_MODE_LAST; j++) 4355 atomic_set(&iproc_priv.cipher_cnt[i][j], 0); 4356 4357 for (i = 0; i < HASH_ALG_LAST; i++) { 4358 atomic_set(&iproc_priv.hash_cnt[i], 0); 4359 atomic_set(&iproc_priv.hmac_cnt[i], 0); 4360 } 4361 for (i = 0; i < AEAD_TYPE_LAST; i++) 4362 atomic_set(&iproc_priv.aead_cnt[i], 0); 4363 4364 atomic_set(&iproc_priv.mb_no_spc, 0); 4365 atomic_set(&iproc_priv.mb_send_fail, 0); 4366 atomic_set(&iproc_priv.bad_icv, 0); 4367 } 4368 4369 static int spu_register_skcipher(struct iproc_alg_s *driver_alg) 4370 { 4371 struct skcipher_alg *crypto = &driver_alg->alg.skcipher; 4372 int err; 4373 4374 crypto->base.cra_module = THIS_MODULE; 4375 crypto->base.cra_priority = cipher_pri; 4376 crypto->base.cra_alignmask = 0; 4377 crypto->base.cra_ctxsize = sizeof(struct iproc_ctx_s); 4378 crypto->base.cra_flags = CRYPTO_ALG_ASYNC | 4379 CRYPTO_ALG_ALLOCATES_MEMORY | 4380 CRYPTO_ALG_KERN_DRIVER_ONLY; 4381 4382 crypto->init = skcipher_init_tfm; 4383 crypto->exit = skcipher_exit_tfm; 4384 crypto->setkey = skcipher_setkey; 4385 crypto->encrypt = skcipher_encrypt; 4386 crypto->decrypt = skcipher_decrypt; 4387 4388 err = crypto_register_skcipher(crypto); 4389 /* Mark alg as having been registered, if successful */ 4390 if (err == 0) 4391 driver_alg->registered = true; 4392 pr_debug(" registered skcipher %s\n", crypto->base.cra_driver_name); 4393 return err; 4394 } 4395 4396 static int spu_register_ahash(struct iproc_alg_s *driver_alg) 4397 { 4398 struct spu_hw *spu = &iproc_priv.spu; 4399 struct ahash_alg *hash = &driver_alg->alg.hash; 4400 int err; 4401 4402 /* AES-XCBC is the only AES hash type currently supported on SPU-M */ 4403 if ((driver_alg->auth_info.alg == HASH_ALG_AES) && 4404 (driver_alg->auth_info.mode != HASH_MODE_XCBC) && 4405 (spu->spu_type == SPU_TYPE_SPUM)) 4406 return 0; 4407 4408 /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */ 4409 if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) && 4410 (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2)) 4411 return 0; 4412 4413 hash->halg.base.cra_module = THIS_MODULE; 4414 hash->halg.base.cra_priority = hash_pri; 4415 hash->halg.base.cra_alignmask = 0; 4416 hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s); 4417 hash->halg.base.cra_init = ahash_cra_init; 4418 hash->halg.base.cra_exit = generic_cra_exit; 4419 hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC | 4420 CRYPTO_ALG_ALLOCATES_MEMORY; 4421 hash->halg.statesize = sizeof(struct spu_hash_export_s); 4422 4423 if (driver_alg->auth_info.mode != HASH_MODE_HMAC) { 4424 hash->init = ahash_init; 4425 hash->update = ahash_update; 4426 hash->final = ahash_final; 4427 hash->finup = ahash_finup; 4428 hash->digest = ahash_digest; 4429 if ((driver_alg->auth_info.alg == HASH_ALG_AES) && 4430 ((driver_alg->auth_info.mode == HASH_MODE_XCBC) || 4431 (driver_alg->auth_info.mode == HASH_MODE_CMAC))) { 4432 hash->setkey = ahash_setkey; 4433 } 4434 } else { 4435 hash->setkey = ahash_hmac_setkey; 4436 hash->init = ahash_hmac_init; 4437 hash->update = ahash_hmac_update; 4438 hash->final = ahash_hmac_final; 4439 hash->finup = ahash_hmac_finup; 4440 hash->digest = ahash_hmac_digest; 4441 } 4442 hash->export = ahash_export; 4443 hash->import = ahash_import; 4444 4445 err = crypto_register_ahash(hash); 4446 /* Mark alg as having been registered, if successful */ 4447 if (err == 0) 4448 driver_alg->registered = true; 4449 pr_debug(" registered ahash %s\n", 4450 hash->halg.base.cra_driver_name); 4451 return err; 4452 } 4453 4454 static int spu_register_aead(struct iproc_alg_s *driver_alg) 4455 { 4456 struct aead_alg *aead = &driver_alg->alg.aead; 4457 int err; 4458 4459 aead->base.cra_module = THIS_MODULE; 4460 aead->base.cra_priority = aead_pri; 4461 aead->base.cra_alignmask = 0; 4462 aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s); 4463 4464 aead->base.cra_flags |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY; 4465 /* setkey set in alg initialization */ 4466 aead->setauthsize = aead_setauthsize; 4467 aead->encrypt = aead_encrypt; 4468 aead->decrypt = aead_decrypt; 4469 aead->init = aead_cra_init; 4470 aead->exit = aead_cra_exit; 4471 4472 err = crypto_register_aead(aead); 4473 /* Mark alg as having been registered, if successful */ 4474 if (err == 0) 4475 driver_alg->registered = true; 4476 pr_debug(" registered aead %s\n", aead->base.cra_driver_name); 4477 return err; 4478 } 4479 4480 /* register crypto algorithms the device supports */ 4481 static int spu_algs_register(struct device *dev) 4482 { 4483 int i, j; 4484 int err; 4485 4486 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { 4487 switch (driver_algs[i].type) { 4488 case CRYPTO_ALG_TYPE_SKCIPHER: 4489 err = spu_register_skcipher(&driver_algs[i]); 4490 break; 4491 case CRYPTO_ALG_TYPE_AHASH: 4492 err = spu_register_ahash(&driver_algs[i]); 4493 break; 4494 case CRYPTO_ALG_TYPE_AEAD: 4495 err = spu_register_aead(&driver_algs[i]); 4496 break; 4497 default: 4498 dev_err(dev, 4499 "iproc-crypto: unknown alg type: %d", 4500 driver_algs[i].type); 4501 err = -EINVAL; 4502 } 4503 4504 if (err) { 4505 dev_err(dev, "alg registration failed with error %d\n", 4506 err); 4507 goto err_algs; 4508 } 4509 } 4510 4511 return 0; 4512 4513 err_algs: 4514 for (j = 0; j < i; j++) { 4515 /* Skip any algorithm not registered */ 4516 if (!driver_algs[j].registered) 4517 continue; 4518 switch (driver_algs[j].type) { 4519 case CRYPTO_ALG_TYPE_SKCIPHER: 4520 crypto_unregister_skcipher(&driver_algs[j].alg.skcipher); 4521 driver_algs[j].registered = false; 4522 break; 4523 case CRYPTO_ALG_TYPE_AHASH: 4524 crypto_unregister_ahash(&driver_algs[j].alg.hash); 4525 driver_algs[j].registered = false; 4526 break; 4527 case CRYPTO_ALG_TYPE_AEAD: 4528 crypto_unregister_aead(&driver_algs[j].alg.aead); 4529 driver_algs[j].registered = false; 4530 break; 4531 } 4532 } 4533 return err; 4534 } 4535 4536 /* ==================== Kernel Platform API ==================== */ 4537 4538 static struct spu_type_subtype spum_ns2_types = { 4539 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2 4540 }; 4541 4542 static struct spu_type_subtype spum_nsp_types = { 4543 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP 4544 }; 4545 4546 static struct spu_type_subtype spu2_types = { 4547 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1 4548 }; 4549 4550 static struct spu_type_subtype spu2_v2_types = { 4551 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2 4552 }; 4553 4554 static const struct of_device_id bcm_spu_dt_ids[] = { 4555 { 4556 .compatible = "brcm,spum-crypto", 4557 .data = &spum_ns2_types, 4558 }, 4559 { 4560 .compatible = "brcm,spum-nsp-crypto", 4561 .data = &spum_nsp_types, 4562 }, 4563 { 4564 .compatible = "brcm,spu2-crypto", 4565 .data = &spu2_types, 4566 }, 4567 { 4568 .compatible = "brcm,spu2-v2-crypto", 4569 .data = &spu2_v2_types, 4570 }, 4571 { /* sentinel */ } 4572 }; 4573 4574 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids); 4575 4576 static int spu_dt_read(struct platform_device *pdev) 4577 { 4578 struct device *dev = &pdev->dev; 4579 struct spu_hw *spu = &iproc_priv.spu; 4580 struct resource *spu_ctrl_regs; 4581 const struct spu_type_subtype *matched_spu_type; 4582 struct device_node *dn = pdev->dev.of_node; 4583 int err, i; 4584 4585 /* Count number of mailbox channels */ 4586 spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells"); 4587 4588 matched_spu_type = of_device_get_match_data(dev); 4589 if (!matched_spu_type) { 4590 dev_err(dev, "Failed to match device\n"); 4591 return -ENODEV; 4592 } 4593 4594 spu->spu_type = matched_spu_type->type; 4595 spu->spu_subtype = matched_spu_type->subtype; 4596 4597 for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs = 4598 platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) { 4599 4600 spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs); 4601 if (IS_ERR(spu->reg_vbase[i])) { 4602 err = PTR_ERR(spu->reg_vbase[i]); 4603 dev_err(dev, "Failed to map registers: %d\n", 4604 err); 4605 spu->reg_vbase[i] = NULL; 4606 return err; 4607 } 4608 } 4609 spu->num_spu = i; 4610 dev_dbg(dev, "Device has %d SPUs", spu->num_spu); 4611 4612 return 0; 4613 } 4614 4615 static int bcm_spu_probe(struct platform_device *pdev) 4616 { 4617 struct device *dev = &pdev->dev; 4618 struct spu_hw *spu = &iproc_priv.spu; 4619 int err; 4620 4621 iproc_priv.pdev = pdev; 4622 platform_set_drvdata(iproc_priv.pdev, 4623 &iproc_priv); 4624 4625 err = spu_dt_read(pdev); 4626 if (err < 0) 4627 goto failure; 4628 4629 err = spu_mb_init(dev); 4630 if (err < 0) 4631 goto failure; 4632 4633 if (spu->spu_type == SPU_TYPE_SPUM) 4634 iproc_priv.bcm_hdr_len = 8; 4635 else if (spu->spu_type == SPU_TYPE_SPU2) 4636 iproc_priv.bcm_hdr_len = 0; 4637 4638 spu_functions_register(dev, spu->spu_type, spu->spu_subtype); 4639 4640 spu_counters_init(); 4641 4642 spu_setup_debugfs(); 4643 4644 err = spu_algs_register(dev); 4645 if (err < 0) 4646 goto fail_reg; 4647 4648 return 0; 4649 4650 fail_reg: 4651 spu_free_debugfs(); 4652 failure: 4653 spu_mb_release(pdev); 4654 dev_err(dev, "%s failed with error %d.\n", __func__, err); 4655 4656 return err; 4657 } 4658 4659 static void bcm_spu_remove(struct platform_device *pdev) 4660 { 4661 int i; 4662 struct device *dev = &pdev->dev; 4663 char *cdn; 4664 4665 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { 4666 /* 4667 * Not all algorithms were registered, depending on whether 4668 * hardware is SPU or SPU2. So here we make sure to skip 4669 * those algorithms that were not previously registered. 4670 */ 4671 if (!driver_algs[i].registered) 4672 continue; 4673 4674 switch (driver_algs[i].type) { 4675 case CRYPTO_ALG_TYPE_SKCIPHER: 4676 crypto_unregister_skcipher(&driver_algs[i].alg.skcipher); 4677 dev_dbg(dev, " unregistered cipher %s\n", 4678 driver_algs[i].alg.skcipher.base.cra_driver_name); 4679 driver_algs[i].registered = false; 4680 break; 4681 case CRYPTO_ALG_TYPE_AHASH: 4682 crypto_unregister_ahash(&driver_algs[i].alg.hash); 4683 cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name; 4684 dev_dbg(dev, " unregistered hash %s\n", cdn); 4685 driver_algs[i].registered = false; 4686 break; 4687 case CRYPTO_ALG_TYPE_AEAD: 4688 crypto_unregister_aead(&driver_algs[i].alg.aead); 4689 dev_dbg(dev, " unregistered aead %s\n", 4690 driver_algs[i].alg.aead.base.cra_driver_name); 4691 driver_algs[i].registered = false; 4692 break; 4693 } 4694 } 4695 spu_free_debugfs(); 4696 spu_mb_release(pdev); 4697 } 4698 4699 /* ===== Kernel Module API ===== */ 4700 4701 static struct platform_driver bcm_spu_pdriver = { 4702 .driver = { 4703 .name = "brcm-spu-crypto", 4704 .of_match_table = of_match_ptr(bcm_spu_dt_ids), 4705 }, 4706 .probe = bcm_spu_probe, 4707 .remove_new = bcm_spu_remove, 4708 }; 4709 module_platform_driver(bcm_spu_pdriver); 4710 4711 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>"); 4712 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver"); 4713 MODULE_LICENSE("GPL v2"); 4714