xref: /linux/drivers/crypto/bcm/cipher.c (revision a266ef69b890f099069cf51bb40572611c435a54)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2016 Broadcom
4  */
5 
6 #include <linux/err.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/errno.h>
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/platform_device.h>
13 #include <linux/scatterlist.h>
14 #include <linux/crypto.h>
15 #include <linux/kthread.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/sched.h>
18 #include <linux/of_address.h>
19 #include <linux/of_device.h>
20 #include <linux/io.h>
21 #include <linux/bitops.h>
22 
23 #include <crypto/algapi.h>
24 #include <crypto/aead.h>
25 #include <crypto/internal/aead.h>
26 #include <crypto/aes.h>
27 #include <crypto/internal/des.h>
28 #include <crypto/hmac.h>
29 #include <crypto/md5.h>
30 #include <crypto/authenc.h>
31 #include <crypto/skcipher.h>
32 #include <crypto/hash.h>
33 #include <crypto/sha1.h>
34 #include <crypto/sha2.h>
35 #include <crypto/sha3.h>
36 
37 #include "util.h"
38 #include "cipher.h"
39 #include "spu.h"
40 #include "spum.h"
41 #include "spu2.h"
42 
43 /* ================= Device Structure ================== */
44 
45 struct bcm_device_private iproc_priv;
46 
47 /* ==================== Parameters ===================== */
48 
49 int flow_debug_logging;
50 module_param(flow_debug_logging, int, 0644);
51 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
52 
53 int packet_debug_logging;
54 module_param(packet_debug_logging, int, 0644);
55 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
56 
57 int debug_logging_sleep;
58 module_param(debug_logging_sleep, int, 0644);
59 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
60 
61 /*
62  * The value of these module parameters is used to set the priority for each
63  * algo type when this driver registers algos with the kernel crypto API.
64  * To use a priority other than the default, set the priority in the insmod or
65  * modprobe. Changing the module priority after init time has no effect.
66  *
67  * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
68  * algos, but more preferred than generic software algos.
69  */
70 static int cipher_pri = 150;
71 module_param(cipher_pri, int, 0644);
72 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
73 
74 static int hash_pri = 100;
75 module_param(hash_pri, int, 0644);
76 MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
77 
78 static int aead_pri = 150;
79 module_param(aead_pri, int, 0644);
80 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
81 
82 /* A type 3 BCM header, expected to precede the SPU header for SPU-M.
83  * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
84  * 0x60 - ring 0
85  * 0x68 - ring 1
86  * 0x70 - ring 2
87  * 0x78 - ring 3
88  */
89 static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
90 /*
91  * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
92  * is set dynamically after reading SPU type from device tree.
93  */
94 #define BCM_HDR_LEN  iproc_priv.bcm_hdr_len
95 
96 /* min and max time to sleep before retrying when mbox queue is full. usec */
97 #define MBOX_SLEEP_MIN  800
98 #define MBOX_SLEEP_MAX 1000
99 
100 /**
101  * select_channel() - Select a SPU channel to handle a crypto request. Selects
102  * channel in round robin order.
103  *
104  * Return:  channel index
105  */
106 static u8 select_channel(void)
107 {
108 	u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
109 
110 	return chan_idx % iproc_priv.spu.num_chan;
111 }
112 
113 /**
114  * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to
115  * receive a SPU response message for an skcipher request. Includes buffers to
116  * catch SPU message headers and the response data.
117  * @mssg:	mailbox message containing the receive sg
118  * @rctx:	crypto request context
119  * @rx_frag_num: number of scatterlist elements required to hold the
120  *		SPU response message
121  * @chunksize:	Number of bytes of response data expected
122  * @stat_pad_len: Number of bytes required to pad the STAT field to
123  *		a 4-byte boundary
124  *
125  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
126  * when the request completes, whether the request is handled successfully or
127  * there is an error.
128  *
129  * Returns:
130  *   0 if successful
131  *   < 0 if an error
132  */
133 static int
134 spu_skcipher_rx_sg_create(struct brcm_message *mssg,
135 			    struct iproc_reqctx_s *rctx,
136 			    u8 rx_frag_num,
137 			    unsigned int chunksize, u32 stat_pad_len)
138 {
139 	struct spu_hw *spu = &iproc_priv.spu;
140 	struct scatterlist *sg;	/* used to build sgs in mbox message */
141 	struct iproc_ctx_s *ctx = rctx->ctx;
142 	u32 datalen;		/* Number of bytes of response data expected */
143 
144 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
145 				rctx->gfp);
146 	if (!mssg->spu.dst)
147 		return -ENOMEM;
148 
149 	sg = mssg->spu.dst;
150 	sg_init_table(sg, rx_frag_num);
151 	/* Space for SPU message header */
152 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
153 
154 	/* If XTS tweak in payload, add buffer to receive encrypted tweak */
155 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
156 	    spu->spu_xts_tweak_in_payload())
157 		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
158 			   SPU_XTS_TWEAK_SIZE);
159 
160 	/* Copy in each dst sg entry from request, up to chunksize */
161 	datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
162 				 rctx->dst_nents, chunksize);
163 	if (datalen < chunksize) {
164 		pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
165 		       __func__, chunksize, datalen);
166 		return -EFAULT;
167 	}
168 
169 	if (stat_pad_len)
170 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
171 
172 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
173 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
174 
175 	return 0;
176 }
177 
178 /**
179  * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to
180  * send a SPU request message for an skcipher request. Includes SPU message
181  * headers and the request data.
182  * @mssg:	mailbox message containing the transmit sg
183  * @rctx:	crypto request context
184  * @tx_frag_num: number of scatterlist elements required to construct the
185  *		SPU request message
186  * @chunksize:	Number of bytes of request data
187  * @pad_len:	Number of pad bytes
188  *
189  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
190  * when the request completes, whether the request is handled successfully or
191  * there is an error.
192  *
193  * Returns:
194  *   0 if successful
195  *   < 0 if an error
196  */
197 static int
198 spu_skcipher_tx_sg_create(struct brcm_message *mssg,
199 			    struct iproc_reqctx_s *rctx,
200 			    u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
201 {
202 	struct spu_hw *spu = &iproc_priv.spu;
203 	struct scatterlist *sg;	/* used to build sgs in mbox message */
204 	struct iproc_ctx_s *ctx = rctx->ctx;
205 	u32 datalen;		/* Number of bytes of response data expected */
206 	u32 stat_len;
207 
208 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
209 				rctx->gfp);
210 	if (unlikely(!mssg->spu.src))
211 		return -ENOMEM;
212 
213 	sg = mssg->spu.src;
214 	sg_init_table(sg, tx_frag_num);
215 
216 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
217 		   BCM_HDR_LEN + ctx->spu_req_hdr_len);
218 
219 	/* if XTS tweak in payload, copy from IV (where crypto API puts it) */
220 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
221 	    spu->spu_xts_tweak_in_payload())
222 		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
223 
224 	/* Copy in each src sg entry from request, up to chunksize */
225 	datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
226 				 rctx->src_nents, chunksize);
227 	if (unlikely(datalen < chunksize)) {
228 		pr_err("%s(): failed to copy src sg to mbox msg",
229 		       __func__);
230 		return -EFAULT;
231 	}
232 
233 	if (pad_len)
234 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
235 
236 	stat_len = spu->spu_tx_status_len();
237 	if (stat_len) {
238 		memset(rctx->msg_buf.tx_stat, 0, stat_len);
239 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
240 	}
241 	return 0;
242 }
243 
244 static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
245 				u8 chan_idx)
246 {
247 	int err;
248 	int retry_cnt = 0;
249 	struct device *dev = &(iproc_priv.pdev->dev);
250 
251 	err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
252 	if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
253 		while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
254 			/*
255 			 * Mailbox queue is full. Since MAY_SLEEP is set, assume
256 			 * not in atomic context and we can wait and try again.
257 			 */
258 			retry_cnt++;
259 			usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
260 			err = mbox_send_message(iproc_priv.mbox[chan_idx],
261 						mssg);
262 			atomic_inc(&iproc_priv.mb_no_spc);
263 		}
264 	}
265 	if (err < 0) {
266 		atomic_inc(&iproc_priv.mb_send_fail);
267 		return err;
268 	}
269 
270 	/* Check error returned by mailbox controller */
271 	err = mssg->error;
272 	if (unlikely(err < 0)) {
273 		dev_err(dev, "message error %d", err);
274 		/* Signal txdone for mailbox channel */
275 	}
276 
277 	/* Signal txdone for mailbox channel */
278 	mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
279 	return err;
280 }
281 
282 /**
283  * handle_skcipher_req() - Submit as much of a block cipher request as fits in
284  * a single SPU request message, starting at the current position in the request
285  * data.
286  * @rctx:	Crypto request context
287  *
288  * This may be called on the crypto API thread, or, when a request is so large
289  * it must be broken into multiple SPU messages, on the thread used to invoke
290  * the response callback. When requests are broken into multiple SPU
291  * messages, we assume subsequent messages depend on previous results, and
292  * thus always wait for previous results before submitting the next message.
293  * Because requests are submitted in lock step like this, there is no need
294  * to synchronize access to request data structures.
295  *
296  * Return: -EINPROGRESS: request has been accepted and result will be returned
297  *			 asynchronously
298  *         Any other value indicates an error
299  */
300 static int handle_skcipher_req(struct iproc_reqctx_s *rctx)
301 {
302 	struct spu_hw *spu = &iproc_priv.spu;
303 	struct crypto_async_request *areq = rctx->parent;
304 	struct skcipher_request *req =
305 	    container_of(areq, struct skcipher_request, base);
306 	struct iproc_ctx_s *ctx = rctx->ctx;
307 	struct spu_cipher_parms cipher_parms;
308 	int err;
309 	unsigned int chunksize;	/* Num bytes of request to submit */
310 	int remaining;	/* Bytes of request still to process */
311 	int chunk_start;	/* Beginning of data for current SPU msg */
312 
313 	/* IV or ctr value to use in this SPU msg */
314 	u8 local_iv_ctr[MAX_IV_SIZE];
315 	u32 stat_pad_len;	/* num bytes to align status field */
316 	u32 pad_len;		/* total length of all padding */
317 	struct brcm_message *mssg;	/* mailbox message */
318 
319 	/* number of entries in src and dst sg in mailbox message. */
320 	u8 rx_frag_num = 2;	/* response header and STATUS */
321 	u8 tx_frag_num = 1;	/* request header */
322 
323 	flow_log("%s\n", __func__);
324 
325 	cipher_parms.alg = ctx->cipher.alg;
326 	cipher_parms.mode = ctx->cipher.mode;
327 	cipher_parms.type = ctx->cipher_type;
328 	cipher_parms.key_len = ctx->enckeylen;
329 	cipher_parms.key_buf = ctx->enckey;
330 	cipher_parms.iv_buf = local_iv_ctr;
331 	cipher_parms.iv_len = rctx->iv_ctr_len;
332 
333 	mssg = &rctx->mb_mssg;
334 	chunk_start = rctx->src_sent;
335 	remaining = rctx->total_todo - chunk_start;
336 
337 	/* determine the chunk we are breaking off and update the indexes */
338 	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
339 	    (remaining > ctx->max_payload))
340 		chunksize = ctx->max_payload;
341 	else
342 		chunksize = remaining;
343 
344 	rctx->src_sent += chunksize;
345 	rctx->total_sent = rctx->src_sent;
346 
347 	/* Count number of sg entries to be included in this request */
348 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
349 	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
350 
351 	if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
352 	    rctx->is_encrypt && chunk_start)
353 		/*
354 		 * Encrypting non-first first chunk. Copy last block of
355 		 * previous result to IV for this chunk.
356 		 */
357 		sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
358 				    rctx->iv_ctr_len,
359 				    chunk_start - rctx->iv_ctr_len);
360 
361 	if (rctx->iv_ctr_len) {
362 		/* get our local copy of the iv */
363 		__builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
364 				 rctx->iv_ctr_len);
365 
366 		/* generate the next IV if possible */
367 		if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
368 		    !rctx->is_encrypt) {
369 			/*
370 			 * CBC Decrypt: next IV is the last ciphertext block in
371 			 * this chunk
372 			 */
373 			sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
374 					    rctx->iv_ctr_len,
375 					    rctx->src_sent - rctx->iv_ctr_len);
376 		} else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
377 			/*
378 			 * The SPU hardware increments the counter once for
379 			 * each AES block of 16 bytes. So update the counter
380 			 * for the next chunk, if there is one. Note that for
381 			 * this chunk, the counter has already been copied to
382 			 * local_iv_ctr. We can assume a block size of 16,
383 			 * because we only support CTR mode for AES, not for
384 			 * any other cipher alg.
385 			 */
386 			add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
387 		}
388 	}
389 
390 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
391 		flow_log("max_payload infinite\n");
392 	else
393 		flow_log("max_payload %u\n", ctx->max_payload);
394 
395 	flow_log("sent:%u start:%u remains:%u size:%u\n",
396 		 rctx->src_sent, chunk_start, remaining, chunksize);
397 
398 	/* Copy SPU header template created at setkey time */
399 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
400 	       sizeof(rctx->msg_buf.bcm_spu_req_hdr));
401 
402 	spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
403 				   ctx->spu_req_hdr_len, !(rctx->is_encrypt),
404 				   &cipher_parms, chunksize);
405 
406 	atomic64_add(chunksize, &iproc_priv.bytes_out);
407 
408 	stat_pad_len = spu->spu_wordalign_padlen(chunksize);
409 	if (stat_pad_len)
410 		rx_frag_num++;
411 	pad_len = stat_pad_len;
412 	if (pad_len) {
413 		tx_frag_num++;
414 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
415 				     0, ctx->auth.alg, ctx->auth.mode,
416 				     rctx->total_sent, stat_pad_len);
417 	}
418 
419 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
420 			      ctx->spu_req_hdr_len);
421 	packet_log("payload:\n");
422 	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
423 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
424 
425 	/*
426 	 * Build mailbox message containing SPU request msg and rx buffers
427 	 * to catch response message
428 	 */
429 	memset(mssg, 0, sizeof(*mssg));
430 	mssg->type = BRCM_MESSAGE_SPU;
431 	mssg->ctx = rctx;	/* Will be returned in response */
432 
433 	/* Create rx scatterlist to catch result */
434 	rx_frag_num += rctx->dst_nents;
435 
436 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
437 	    spu->spu_xts_tweak_in_payload())
438 		rx_frag_num++;	/* extra sg to insert tweak */
439 
440 	err = spu_skcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
441 					  stat_pad_len);
442 	if (err)
443 		return err;
444 
445 	/* Create tx scatterlist containing SPU request message */
446 	tx_frag_num += rctx->src_nents;
447 	if (spu->spu_tx_status_len())
448 		tx_frag_num++;
449 
450 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
451 	    spu->spu_xts_tweak_in_payload())
452 		tx_frag_num++;	/* extra sg to insert tweak */
453 
454 	err = spu_skcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
455 					  pad_len);
456 	if (err)
457 		return err;
458 
459 	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
460 	if (unlikely(err < 0))
461 		return err;
462 
463 	return -EINPROGRESS;
464 }
465 
466 /**
467  * handle_skcipher_resp() - Process a block cipher SPU response. Updates the
468  * total received count for the request and updates global stats.
469  * @rctx:	Crypto request context
470  */
471 static void handle_skcipher_resp(struct iproc_reqctx_s *rctx)
472 {
473 	struct spu_hw *spu = &iproc_priv.spu;
474 	struct crypto_async_request *areq = rctx->parent;
475 	struct skcipher_request *req = skcipher_request_cast(areq);
476 	struct iproc_ctx_s *ctx = rctx->ctx;
477 	u32 payload_len;
478 
479 	/* See how much data was returned */
480 	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
481 
482 	/*
483 	 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
484 	 * encrypted tweak ("i") value; we don't count those.
485 	 */
486 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
487 	    spu->spu_xts_tweak_in_payload() &&
488 	    (payload_len >= SPU_XTS_TWEAK_SIZE))
489 		payload_len -= SPU_XTS_TWEAK_SIZE;
490 
491 	atomic64_add(payload_len, &iproc_priv.bytes_in);
492 
493 	flow_log("%s() offset: %u, bd_len: %u BD:\n",
494 		 __func__, rctx->total_received, payload_len);
495 
496 	dump_sg(req->dst, rctx->total_received, payload_len);
497 
498 	rctx->total_received += payload_len;
499 	if (rctx->total_received == rctx->total_todo) {
500 		atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
501 		atomic_inc(
502 		   &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
503 	}
504 }
505 
506 /**
507  * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
508  * receive a SPU response message for an ahash request.
509  * @mssg:	mailbox message containing the receive sg
510  * @rctx:	crypto request context
511  * @rx_frag_num: number of scatterlist elements required to hold the
512  *		SPU response message
513  * @digestsize: length of hash digest, in bytes
514  * @stat_pad_len: Number of bytes required to pad the STAT field to
515  *		a 4-byte boundary
516  *
517  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
518  * when the request completes, whether the request is handled successfully or
519  * there is an error.
520  *
521  * Return:
522  *   0 if successful
523  *   < 0 if an error
524  */
525 static int
526 spu_ahash_rx_sg_create(struct brcm_message *mssg,
527 		       struct iproc_reqctx_s *rctx,
528 		       u8 rx_frag_num, unsigned int digestsize,
529 		       u32 stat_pad_len)
530 {
531 	struct spu_hw *spu = &iproc_priv.spu;
532 	struct scatterlist *sg;	/* used to build sgs in mbox message */
533 	struct iproc_ctx_s *ctx = rctx->ctx;
534 
535 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
536 				rctx->gfp);
537 	if (!mssg->spu.dst)
538 		return -ENOMEM;
539 
540 	sg = mssg->spu.dst;
541 	sg_init_table(sg, rx_frag_num);
542 	/* Space for SPU message header */
543 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
544 
545 	/* Space for digest */
546 	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
547 
548 	if (stat_pad_len)
549 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
550 
551 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
552 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
553 	return 0;
554 }
555 
556 /**
557  * spu_ahash_tx_sg_create() -  Build up the scatterlist of buffers used to send
558  * a SPU request message for an ahash request. Includes SPU message headers and
559  * the request data.
560  * @mssg:	mailbox message containing the transmit sg
561  * @rctx:	crypto request context
562  * @tx_frag_num: number of scatterlist elements required to construct the
563  *		SPU request message
564  * @spu_hdr_len: length in bytes of SPU message header
565  * @hash_carry_len: Number of bytes of data carried over from previous req
566  * @new_data_len: Number of bytes of new request data
567  * @pad_len:	Number of pad bytes
568  *
569  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
570  * when the request completes, whether the request is handled successfully or
571  * there is an error.
572  *
573  * Return:
574  *   0 if successful
575  *   < 0 if an error
576  */
577 static int
578 spu_ahash_tx_sg_create(struct brcm_message *mssg,
579 		       struct iproc_reqctx_s *rctx,
580 		       u8 tx_frag_num,
581 		       u32 spu_hdr_len,
582 		       unsigned int hash_carry_len,
583 		       unsigned int new_data_len, u32 pad_len)
584 {
585 	struct spu_hw *spu = &iproc_priv.spu;
586 	struct scatterlist *sg;	/* used to build sgs in mbox message */
587 	u32 datalen;		/* Number of bytes of response data expected */
588 	u32 stat_len;
589 
590 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
591 				rctx->gfp);
592 	if (!mssg->spu.src)
593 		return -ENOMEM;
594 
595 	sg = mssg->spu.src;
596 	sg_init_table(sg, tx_frag_num);
597 
598 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
599 		   BCM_HDR_LEN + spu_hdr_len);
600 
601 	if (hash_carry_len)
602 		sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
603 
604 	if (new_data_len) {
605 		/* Copy in each src sg entry from request, up to chunksize */
606 		datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
607 					 rctx->src_nents, new_data_len);
608 		if (datalen < new_data_len) {
609 			pr_err("%s(): failed to copy src sg to mbox msg",
610 			       __func__);
611 			return -EFAULT;
612 		}
613 	}
614 
615 	if (pad_len)
616 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
617 
618 	stat_len = spu->spu_tx_status_len();
619 	if (stat_len) {
620 		memset(rctx->msg_buf.tx_stat, 0, stat_len);
621 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
622 	}
623 
624 	return 0;
625 }
626 
627 /**
628  * handle_ahash_req() - Process an asynchronous hash request from the crypto
629  * API.
630  * @rctx:  Crypto request context
631  *
632  * Builds a SPU request message embedded in a mailbox message and submits the
633  * mailbox message on a selected mailbox channel. The SPU request message is
634  * constructed as a scatterlist, including entries from the crypto API's
635  * src scatterlist to avoid copying the data to be hashed. This function is
636  * called either on the thread from the crypto API, or, in the case that the
637  * crypto API request is too large to fit in a single SPU request message,
638  * on the thread that invokes the receive callback with a response message.
639  * Because some operations require the response from one chunk before the next
640  * chunk can be submitted, we always wait for the response for the previous
641  * chunk before submitting the next chunk. Because requests are submitted in
642  * lock step like this, there is no need to synchronize access to request data
643  * structures.
644  *
645  * Return:
646  *   -EINPROGRESS: request has been submitted to SPU and response will be
647  *		   returned asynchronously
648  *   -EAGAIN:      non-final request included a small amount of data, which for
649  *		   efficiency we did not submit to the SPU, but instead stored
650  *		   to be submitted to the SPU with the next part of the request
651  *   other:        an error code
652  */
653 static int handle_ahash_req(struct iproc_reqctx_s *rctx)
654 {
655 	struct spu_hw *spu = &iproc_priv.spu;
656 	struct crypto_async_request *areq = rctx->parent;
657 	struct ahash_request *req = ahash_request_cast(areq);
658 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
659 	struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
660 	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
661 	struct iproc_ctx_s *ctx = rctx->ctx;
662 
663 	/* number of bytes still to be hashed in this req */
664 	unsigned int nbytes_to_hash = 0;
665 	int err;
666 	unsigned int chunksize = 0;	/* length of hash carry + new data */
667 	/*
668 	 * length of new data, not from hash carry, to be submitted in
669 	 * this hw request
670 	 */
671 	unsigned int new_data_len;
672 
673 	unsigned int __maybe_unused chunk_start = 0;
674 	u32 db_size;	 /* Length of data field, incl gcm and hash padding */
675 	int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
676 	u32 data_pad_len = 0;	/* length of GCM/CCM padding */
677 	u32 stat_pad_len = 0;	/* length of padding to align STATUS word */
678 	struct brcm_message *mssg;	/* mailbox message */
679 	struct spu_request_opts req_opts;
680 	struct spu_cipher_parms cipher_parms;
681 	struct spu_hash_parms hash_parms;
682 	struct spu_aead_parms aead_parms;
683 	unsigned int local_nbuf;
684 	u32 spu_hdr_len;
685 	unsigned int digestsize;
686 	u16 rem = 0;
687 
688 	/*
689 	 * number of entries in src and dst sg. Always includes SPU msg header.
690 	 * rx always includes a buffer to catch digest and STATUS.
691 	 */
692 	u8 rx_frag_num = 3;
693 	u8 tx_frag_num = 1;
694 
695 	flow_log("total_todo %u, total_sent %u\n",
696 		 rctx->total_todo, rctx->total_sent);
697 
698 	memset(&req_opts, 0, sizeof(req_opts));
699 	memset(&cipher_parms, 0, sizeof(cipher_parms));
700 	memset(&hash_parms, 0, sizeof(hash_parms));
701 	memset(&aead_parms, 0, sizeof(aead_parms));
702 
703 	req_opts.bd_suppress = true;
704 	hash_parms.alg = ctx->auth.alg;
705 	hash_parms.mode = ctx->auth.mode;
706 	hash_parms.type = HASH_TYPE_NONE;
707 	hash_parms.key_buf = (u8 *)ctx->authkey;
708 	hash_parms.key_len = ctx->authkeylen;
709 
710 	/*
711 	 * For hash algorithms below assignment looks bit odd but
712 	 * it's needed for AES-XCBC and AES-CMAC hash algorithms
713 	 * to differentiate between 128, 192, 256 bit key values.
714 	 * Based on the key values, hash algorithm is selected.
715 	 * For example for 128 bit key, hash algorithm is AES-128.
716 	 */
717 	cipher_parms.type = ctx->cipher_type;
718 
719 	mssg = &rctx->mb_mssg;
720 	chunk_start = rctx->src_sent;
721 
722 	/*
723 	 * Compute the amount remaining to hash. This may include data
724 	 * carried over from previous requests.
725 	 */
726 	nbytes_to_hash = rctx->total_todo - rctx->total_sent;
727 	chunksize = nbytes_to_hash;
728 	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
729 	    (chunksize > ctx->max_payload))
730 		chunksize = ctx->max_payload;
731 
732 	/*
733 	 * If this is not a final request and the request data is not a multiple
734 	 * of a full block, then simply park the extra data and prefix it to the
735 	 * data for the next request.
736 	 */
737 	if (!rctx->is_final) {
738 		u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
739 		u16 new_len;  /* len of data to add to hash carry */
740 
741 		rem = chunksize % blocksize;   /* remainder */
742 		if (rem) {
743 			/* chunksize not a multiple of blocksize */
744 			chunksize -= rem;
745 			if (chunksize == 0) {
746 				/* Don't have a full block to submit to hw */
747 				new_len = rem - rctx->hash_carry_len;
748 				sg_copy_part_to_buf(req->src, dest, new_len,
749 						    rctx->src_sent);
750 				rctx->hash_carry_len = rem;
751 				flow_log("Exiting with hash carry len: %u\n",
752 					 rctx->hash_carry_len);
753 				packet_dump("  buf: ",
754 					    rctx->hash_carry,
755 					    rctx->hash_carry_len);
756 				return -EAGAIN;
757 			}
758 		}
759 	}
760 
761 	/* if we have hash carry, then prefix it to the data in this request */
762 	local_nbuf = rctx->hash_carry_len;
763 	rctx->hash_carry_len = 0;
764 	if (local_nbuf)
765 		tx_frag_num++;
766 	new_data_len = chunksize - local_nbuf;
767 
768 	/* Count number of sg entries to be used in this request */
769 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
770 				       new_data_len);
771 
772 	/* AES hashing keeps key size in type field, so need to copy it here */
773 	if (hash_parms.alg == HASH_ALG_AES)
774 		hash_parms.type = (enum hash_type)cipher_parms.type;
775 	else
776 		hash_parms.type = spu->spu_hash_type(rctx->total_sent);
777 
778 	digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
779 					  hash_parms.type);
780 	hash_parms.digestsize =	digestsize;
781 
782 	/* update the indexes */
783 	rctx->total_sent += chunksize;
784 	/* if you sent a prebuf then that wasn't from this req->src */
785 	rctx->src_sent += new_data_len;
786 
787 	if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
788 		hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
789 							   hash_parms.mode,
790 							   chunksize,
791 							   blocksize);
792 
793 	/*
794 	 * If a non-first chunk, then include the digest returned from the
795 	 * previous chunk so that hw can add to it (except for AES types).
796 	 */
797 	if ((hash_parms.type == HASH_TYPE_UPDT) &&
798 	    (hash_parms.alg != HASH_ALG_AES)) {
799 		hash_parms.key_buf = rctx->incr_hash;
800 		hash_parms.key_len = digestsize;
801 	}
802 
803 	atomic64_add(chunksize, &iproc_priv.bytes_out);
804 
805 	flow_log("%s() final: %u nbuf: %u ",
806 		 __func__, rctx->is_final, local_nbuf);
807 
808 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
809 		flow_log("max_payload infinite\n");
810 	else
811 		flow_log("max_payload %u\n", ctx->max_payload);
812 
813 	flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
814 
815 	/* Prepend SPU header with type 3 BCM header */
816 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
817 
818 	hash_parms.prebuf_len = local_nbuf;
819 	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
820 					      BCM_HDR_LEN,
821 					      &req_opts, &cipher_parms,
822 					      &hash_parms, &aead_parms,
823 					      new_data_len);
824 
825 	if (spu_hdr_len == 0) {
826 		pr_err("Failed to create SPU request header\n");
827 		return -EFAULT;
828 	}
829 
830 	/*
831 	 * Determine total length of padding required. Put all padding in one
832 	 * buffer.
833 	 */
834 	data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
835 	db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
836 				   0, 0, hash_parms.pad_len);
837 	if (spu->spu_tx_status_len())
838 		stat_pad_len = spu->spu_wordalign_padlen(db_size);
839 	if (stat_pad_len)
840 		rx_frag_num++;
841 	pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
842 	if (pad_len) {
843 		tx_frag_num++;
844 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
845 				     hash_parms.pad_len, ctx->auth.alg,
846 				     ctx->auth.mode, rctx->total_sent,
847 				     stat_pad_len);
848 	}
849 
850 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
851 			      spu_hdr_len);
852 	packet_dump("    prebuf: ", rctx->hash_carry, local_nbuf);
853 	flow_log("Data:\n");
854 	dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
855 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
856 
857 	/*
858 	 * Build mailbox message containing SPU request msg and rx buffers
859 	 * to catch response message
860 	 */
861 	memset(mssg, 0, sizeof(*mssg));
862 	mssg->type = BRCM_MESSAGE_SPU;
863 	mssg->ctx = rctx;	/* Will be returned in response */
864 
865 	/* Create rx scatterlist to catch result */
866 	err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
867 				     stat_pad_len);
868 	if (err)
869 		return err;
870 
871 	/* Create tx scatterlist containing SPU request message */
872 	tx_frag_num += rctx->src_nents;
873 	if (spu->spu_tx_status_len())
874 		tx_frag_num++;
875 	err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
876 				     local_nbuf, new_data_len, pad_len);
877 	if (err)
878 		return err;
879 
880 	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
881 	if (unlikely(err < 0))
882 		return err;
883 
884 	return -EINPROGRESS;
885 }
886 
887 /**
888  * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
889  * for an HMAC request.
890  * @req:  The HMAC request from the crypto API
891  * @ctx:  The session context
892  *
893  * Return: 0 if synchronous hash operation successful
894  *         -EINVAL if the hash algo is unrecognized
895  *         any other value indicates an error
896  */
897 static int spu_hmac_outer_hash(struct ahash_request *req,
898 			       struct iproc_ctx_s *ctx)
899 {
900 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
901 	unsigned int blocksize =
902 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
903 	int rc;
904 
905 	switch (ctx->auth.alg) {
906 	case HASH_ALG_MD5:
907 		rc = do_shash("md5", req->result, ctx->opad, blocksize,
908 			      req->result, ctx->digestsize, NULL, 0);
909 		break;
910 	case HASH_ALG_SHA1:
911 		rc = do_shash("sha1", req->result, ctx->opad, blocksize,
912 			      req->result, ctx->digestsize, NULL, 0);
913 		break;
914 	case HASH_ALG_SHA224:
915 		rc = do_shash("sha224", req->result, ctx->opad, blocksize,
916 			      req->result, ctx->digestsize, NULL, 0);
917 		break;
918 	case HASH_ALG_SHA256:
919 		rc = do_shash("sha256", req->result, ctx->opad, blocksize,
920 			      req->result, ctx->digestsize, NULL, 0);
921 		break;
922 	case HASH_ALG_SHA384:
923 		rc = do_shash("sha384", req->result, ctx->opad, blocksize,
924 			      req->result, ctx->digestsize, NULL, 0);
925 		break;
926 	case HASH_ALG_SHA512:
927 		rc = do_shash("sha512", req->result, ctx->opad, blocksize,
928 			      req->result, ctx->digestsize, NULL, 0);
929 		break;
930 	default:
931 		pr_err("%s() Error : unknown hmac type\n", __func__);
932 		rc = -EINVAL;
933 	}
934 	return rc;
935 }
936 
937 /**
938  * ahash_req_done() - Process a hash result from the SPU hardware.
939  * @rctx: Crypto request context
940  *
941  * Return: 0 if successful
942  *         < 0 if an error
943  */
944 static int ahash_req_done(struct iproc_reqctx_s *rctx)
945 {
946 	struct spu_hw *spu = &iproc_priv.spu;
947 	struct crypto_async_request *areq = rctx->parent;
948 	struct ahash_request *req = ahash_request_cast(areq);
949 	struct iproc_ctx_s *ctx = rctx->ctx;
950 	int err;
951 
952 	memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
953 
954 	if (spu->spu_type == SPU_TYPE_SPUM) {
955 		/* byte swap the output from the UPDT function to network byte
956 		 * order
957 		 */
958 		if (ctx->auth.alg == HASH_ALG_MD5) {
959 			__swab32s((u32 *)req->result);
960 			__swab32s(((u32 *)req->result) + 1);
961 			__swab32s(((u32 *)req->result) + 2);
962 			__swab32s(((u32 *)req->result) + 3);
963 			__swab32s(((u32 *)req->result) + 4);
964 		}
965 	}
966 
967 	flow_dump("  digest ", req->result, ctx->digestsize);
968 
969 	/* if this an HMAC then do the outer hash */
970 	if (rctx->is_sw_hmac) {
971 		err = spu_hmac_outer_hash(req, ctx);
972 		if (err < 0)
973 			return err;
974 		flow_dump("  hmac: ", req->result, ctx->digestsize);
975 	}
976 
977 	if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
978 		atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
979 		atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
980 	} else {
981 		atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
982 		atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
983 	}
984 
985 	return 0;
986 }
987 
988 /**
989  * handle_ahash_resp() - Process a SPU response message for a hash request.
990  * Checks if the entire crypto API request has been processed, and if so,
991  * invokes post processing on the result.
992  * @rctx: Crypto request context
993  */
994 static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
995 {
996 	struct iproc_ctx_s *ctx = rctx->ctx;
997 	struct crypto_async_request *areq = rctx->parent;
998 	struct ahash_request *req = ahash_request_cast(areq);
999 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1000 	unsigned int blocksize =
1001 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1002 	/*
1003 	 * Save hash to use as input to next op if incremental. Might be copying
1004 	 * too much, but that's easier than figuring out actual digest size here
1005 	 */
1006 	memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1007 
1008 	flow_log("%s() blocksize:%u digestsize:%u\n",
1009 		 __func__, blocksize, ctx->digestsize);
1010 
1011 	atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1012 
1013 	if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1014 		ahash_req_done(rctx);
1015 }
1016 
1017 /**
1018  * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1019  * a SPU response message for an AEAD request. Includes buffers to catch SPU
1020  * message headers and the response data.
1021  * @mssg:	mailbox message containing the receive sg
1022  * @req:	Crypto API request
1023  * @rctx:	crypto request context
1024  * @rx_frag_num: number of scatterlist elements required to hold the
1025  *		SPU response message
1026  * @assoc_len:	Length of associated data included in the crypto request
1027  * @ret_iv_len: Length of IV returned in response
1028  * @resp_len:	Number of bytes of response data expected to be written to
1029  *              dst buffer from crypto API
1030  * @digestsize: Length of hash digest, in bytes
1031  * @stat_pad_len: Number of bytes required to pad the STAT field to
1032  *		a 4-byte boundary
1033  *
1034  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1035  * when the request completes, whether the request is handled successfully or
1036  * there is an error.
1037  *
1038  * Returns:
1039  *   0 if successful
1040  *   < 0 if an error
1041  */
1042 static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1043 				 struct aead_request *req,
1044 				 struct iproc_reqctx_s *rctx,
1045 				 u8 rx_frag_num,
1046 				 unsigned int assoc_len,
1047 				 u32 ret_iv_len, unsigned int resp_len,
1048 				 unsigned int digestsize, u32 stat_pad_len)
1049 {
1050 	struct spu_hw *spu = &iproc_priv.spu;
1051 	struct scatterlist *sg;	/* used to build sgs in mbox message */
1052 	struct iproc_ctx_s *ctx = rctx->ctx;
1053 	u32 datalen;		/* Number of bytes of response data expected */
1054 	u32 assoc_buf_len;
1055 	u8 data_padlen = 0;
1056 
1057 	if (ctx->is_rfc4543) {
1058 		/* RFC4543: only pad after data, not after AAD */
1059 		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1060 							  assoc_len + resp_len);
1061 		assoc_buf_len = assoc_len;
1062 	} else {
1063 		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1064 							  resp_len);
1065 		assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1066 						assoc_len, ret_iv_len,
1067 						rctx->is_encrypt);
1068 	}
1069 
1070 	if (ctx->cipher.mode == CIPHER_MODE_CCM)
1071 		/* ICV (after data) must be in the next 32-bit word for CCM */
1072 		data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1073 							 resp_len +
1074 							 data_padlen);
1075 
1076 	if (data_padlen)
1077 		/* have to catch gcm pad in separate buffer */
1078 		rx_frag_num++;
1079 
1080 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1081 				rctx->gfp);
1082 	if (!mssg->spu.dst)
1083 		return -ENOMEM;
1084 
1085 	sg = mssg->spu.dst;
1086 	sg_init_table(sg, rx_frag_num);
1087 
1088 	/* Space for SPU message header */
1089 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1090 
1091 	if (assoc_buf_len) {
1092 		/*
1093 		 * Don't write directly to req->dst, because SPU may pad the
1094 		 * assoc data in the response
1095 		 */
1096 		memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1097 		sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1098 	}
1099 
1100 	if (resp_len) {
1101 		/*
1102 		 * Copy in each dst sg entry from request, up to chunksize.
1103 		 * dst sg catches just the data. digest caught in separate buf.
1104 		 */
1105 		datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1106 					 rctx->dst_nents, resp_len);
1107 		if (datalen < (resp_len)) {
1108 			pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1109 			       __func__, resp_len, datalen);
1110 			return -EFAULT;
1111 		}
1112 	}
1113 
1114 	/* If GCM/CCM data is padded, catch padding in separate buffer */
1115 	if (data_padlen) {
1116 		memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1117 		sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1118 	}
1119 
1120 	/* Always catch ICV in separate buffer */
1121 	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1122 
1123 	flow_log("stat_pad_len %u\n", stat_pad_len);
1124 	if (stat_pad_len) {
1125 		memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1126 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1127 	}
1128 
1129 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1130 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1131 
1132 	return 0;
1133 }
1134 
1135 /**
1136  * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1137  * SPU request message for an AEAD request. Includes SPU message headers and the
1138  * request data.
1139  * @mssg:	mailbox message containing the transmit sg
1140  * @rctx:	crypto request context
1141  * @tx_frag_num: number of scatterlist elements required to construct the
1142  *		SPU request message
1143  * @spu_hdr_len: length of SPU message header in bytes
1144  * @assoc:	crypto API associated data scatterlist
1145  * @assoc_len:	length of associated data
1146  * @assoc_nents: number of scatterlist entries containing assoc data
1147  * @aead_iv_len: length of AEAD IV, if included
1148  * @chunksize:	Number of bytes of request data
1149  * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1150  * @pad_len:	Number of pad bytes
1151  * @incl_icv:	If true, write separate ICV buffer after data and
1152  *              any padding
1153  *
1154  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1155  * when the request completes, whether the request is handled successfully or
1156  * there is an error.
1157  *
1158  * Return:
1159  *   0 if successful
1160  *   < 0 if an error
1161  */
1162 static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1163 				 struct iproc_reqctx_s *rctx,
1164 				 u8 tx_frag_num,
1165 				 u32 spu_hdr_len,
1166 				 struct scatterlist *assoc,
1167 				 unsigned int assoc_len,
1168 				 int assoc_nents,
1169 				 unsigned int aead_iv_len,
1170 				 unsigned int chunksize,
1171 				 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1172 {
1173 	struct spu_hw *spu = &iproc_priv.spu;
1174 	struct scatterlist *sg;	/* used to build sgs in mbox message */
1175 	struct scatterlist *assoc_sg = assoc;
1176 	struct iproc_ctx_s *ctx = rctx->ctx;
1177 	u32 datalen;		/* Number of bytes of data to write */
1178 	u32 written;		/* Number of bytes of data written */
1179 	u32 assoc_offset = 0;
1180 	u32 stat_len;
1181 
1182 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1183 				rctx->gfp);
1184 	if (!mssg->spu.src)
1185 		return -ENOMEM;
1186 
1187 	sg = mssg->spu.src;
1188 	sg_init_table(sg, tx_frag_num);
1189 
1190 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1191 		   BCM_HDR_LEN + spu_hdr_len);
1192 
1193 	if (assoc_len) {
1194 		/* Copy in each associated data sg entry from request */
1195 		written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1196 					 assoc_nents, assoc_len);
1197 		if (written < assoc_len) {
1198 			pr_err("%s(): failed to copy assoc sg to mbox msg",
1199 			       __func__);
1200 			return -EFAULT;
1201 		}
1202 	}
1203 
1204 	if (aead_iv_len)
1205 		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1206 
1207 	if (aad_pad_len) {
1208 		memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1209 		sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1210 	}
1211 
1212 	datalen = chunksize;
1213 	if ((chunksize > ctx->digestsize) && incl_icv)
1214 		datalen -= ctx->digestsize;
1215 	if (datalen) {
1216 		/* For aead, a single msg should consume the entire src sg */
1217 		written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1218 					 rctx->src_nents, datalen);
1219 		if (written < datalen) {
1220 			pr_err("%s(): failed to copy src sg to mbox msg",
1221 			       __func__);
1222 			return -EFAULT;
1223 		}
1224 	}
1225 
1226 	if (pad_len) {
1227 		memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1228 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1229 	}
1230 
1231 	if (incl_icv)
1232 		sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1233 
1234 	stat_len = spu->spu_tx_status_len();
1235 	if (stat_len) {
1236 		memset(rctx->msg_buf.tx_stat, 0, stat_len);
1237 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1238 	}
1239 	return 0;
1240 }
1241 
1242 /**
1243  * handle_aead_req() - Submit a SPU request message for the next chunk of the
1244  * current AEAD request.
1245  * @rctx:  Crypto request context
1246  *
1247  * Unlike other operation types, we assume the length of the request fits in
1248  * a single SPU request message. aead_enqueue() makes sure this is true.
1249  * Comments for other op types regarding threads applies here as well.
1250  *
1251  * Unlike incremental hash ops, where the spu returns the entire hash for
1252  * truncated algs like sha-224, the SPU returns just the truncated hash in
1253  * response to aead requests. So digestsize is always ctx->digestsize here.
1254  *
1255  * Return: -EINPROGRESS: crypto request has been accepted and result will be
1256  *			 returned asynchronously
1257  *         Any other value indicates an error
1258  */
1259 static int handle_aead_req(struct iproc_reqctx_s *rctx)
1260 {
1261 	struct spu_hw *spu = &iproc_priv.spu;
1262 	struct crypto_async_request *areq = rctx->parent;
1263 	struct aead_request *req = container_of(areq,
1264 						struct aead_request, base);
1265 	struct iproc_ctx_s *ctx = rctx->ctx;
1266 	int err;
1267 	unsigned int chunksize;
1268 	unsigned int resp_len;
1269 	u32 spu_hdr_len;
1270 	u32 db_size;
1271 	u32 stat_pad_len;
1272 	u32 pad_len;
1273 	struct brcm_message *mssg;	/* mailbox message */
1274 	struct spu_request_opts req_opts;
1275 	struct spu_cipher_parms cipher_parms;
1276 	struct spu_hash_parms hash_parms;
1277 	struct spu_aead_parms aead_parms;
1278 	int assoc_nents = 0;
1279 	bool incl_icv = false;
1280 	unsigned int digestsize = ctx->digestsize;
1281 
1282 	/* number of entries in src and dst sg. Always includes SPU msg header.
1283 	 */
1284 	u8 rx_frag_num = 2;	/* and STATUS */
1285 	u8 tx_frag_num = 1;
1286 
1287 	/* doing the whole thing at once */
1288 	chunksize = rctx->total_todo;
1289 
1290 	flow_log("%s: chunksize %u\n", __func__, chunksize);
1291 
1292 	memset(&req_opts, 0, sizeof(req_opts));
1293 	memset(&hash_parms, 0, sizeof(hash_parms));
1294 	memset(&aead_parms, 0, sizeof(aead_parms));
1295 
1296 	req_opts.is_inbound = !(rctx->is_encrypt);
1297 	req_opts.auth_first = ctx->auth_first;
1298 	req_opts.is_aead = true;
1299 	req_opts.is_esp = ctx->is_esp;
1300 
1301 	cipher_parms.alg = ctx->cipher.alg;
1302 	cipher_parms.mode = ctx->cipher.mode;
1303 	cipher_parms.type = ctx->cipher_type;
1304 	cipher_parms.key_buf = ctx->enckey;
1305 	cipher_parms.key_len = ctx->enckeylen;
1306 	cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1307 	cipher_parms.iv_len = rctx->iv_ctr_len;
1308 
1309 	hash_parms.alg = ctx->auth.alg;
1310 	hash_parms.mode = ctx->auth.mode;
1311 	hash_parms.type = HASH_TYPE_NONE;
1312 	hash_parms.key_buf = (u8 *)ctx->authkey;
1313 	hash_parms.key_len = ctx->authkeylen;
1314 	hash_parms.digestsize = digestsize;
1315 
1316 	if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1317 	    (ctx->authkeylen < SHA224_DIGEST_SIZE))
1318 		hash_parms.key_len = SHA224_DIGEST_SIZE;
1319 
1320 	aead_parms.assoc_size = req->assoclen;
1321 	if (ctx->is_esp && !ctx->is_rfc4543) {
1322 		/*
1323 		 * 8-byte IV is included assoc data in request. SPU2
1324 		 * expects AAD to include just SPI and seqno. So
1325 		 * subtract off the IV len.
1326 		 */
1327 		aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
1328 
1329 		if (rctx->is_encrypt) {
1330 			aead_parms.return_iv = true;
1331 			aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
1332 			aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1333 		}
1334 	} else {
1335 		aead_parms.ret_iv_len = 0;
1336 	}
1337 
1338 	/*
1339 	 * Count number of sg entries from the crypto API request that are to
1340 	 * be included in this mailbox message. For dst sg, don't count space
1341 	 * for digest. Digest gets caught in a separate buffer and copied back
1342 	 * to dst sg when processing response.
1343 	 */
1344 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1345 	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1346 	if (aead_parms.assoc_size)
1347 		assoc_nents = spu_sg_count(rctx->assoc, 0,
1348 					   aead_parms.assoc_size);
1349 
1350 	mssg = &rctx->mb_mssg;
1351 
1352 	rctx->total_sent = chunksize;
1353 	rctx->src_sent = chunksize;
1354 	if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1355 				    aead_parms.assoc_size,
1356 				    aead_parms.ret_iv_len,
1357 				    rctx->is_encrypt))
1358 		rx_frag_num++;
1359 
1360 	aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1361 						rctx->iv_ctr_len);
1362 
1363 	if (ctx->auth.alg == HASH_ALG_AES)
1364 		hash_parms.type = (enum hash_type)ctx->cipher_type;
1365 
1366 	/* General case AAD padding (CCM and RFC4543 special cases below) */
1367 	aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1368 						 aead_parms.assoc_size);
1369 
1370 	/* General case data padding (CCM decrypt special case below) */
1371 	aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1372 							   chunksize);
1373 
1374 	if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1375 		/*
1376 		 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1377 		 * 128-bit aligned
1378 		 */
1379 		aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1380 					 ctx->cipher.mode,
1381 					 aead_parms.assoc_size + 2);
1382 
1383 		/*
1384 		 * And when decrypting CCM, need to pad without including
1385 		 * size of ICV which is tacked on to end of chunk
1386 		 */
1387 		if (!rctx->is_encrypt)
1388 			aead_parms.data_pad_len =
1389 				spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1390 							chunksize - digestsize);
1391 
1392 		/* CCM also requires software to rewrite portions of IV: */
1393 		spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1394 				       chunksize, rctx->is_encrypt,
1395 				       ctx->is_esp);
1396 	}
1397 
1398 	if (ctx->is_rfc4543) {
1399 		/*
1400 		 * RFC4543: data is included in AAD, so don't pad after AAD
1401 		 * and pad data based on both AAD + data size
1402 		 */
1403 		aead_parms.aad_pad_len = 0;
1404 		if (!rctx->is_encrypt)
1405 			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1406 					ctx->cipher.mode,
1407 					aead_parms.assoc_size + chunksize -
1408 					digestsize);
1409 		else
1410 			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1411 					ctx->cipher.mode,
1412 					aead_parms.assoc_size + chunksize);
1413 
1414 		req_opts.is_rfc4543 = true;
1415 	}
1416 
1417 	if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1418 		incl_icv = true;
1419 		tx_frag_num++;
1420 		/* Copy ICV from end of src scatterlist to digest buf */
1421 		sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1422 				    req->assoclen + rctx->total_sent -
1423 				    digestsize);
1424 	}
1425 
1426 	atomic64_add(chunksize, &iproc_priv.bytes_out);
1427 
1428 	flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1429 
1430 	/* Prepend SPU header with type 3 BCM header */
1431 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1432 
1433 	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1434 					      BCM_HDR_LEN, &req_opts,
1435 					      &cipher_parms, &hash_parms,
1436 					      &aead_parms, chunksize);
1437 
1438 	/* Determine total length of padding. Put all padding in one buffer. */
1439 	db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1440 				   chunksize, aead_parms.aad_pad_len,
1441 				   aead_parms.data_pad_len, 0);
1442 
1443 	stat_pad_len = spu->spu_wordalign_padlen(db_size);
1444 
1445 	if (stat_pad_len)
1446 		rx_frag_num++;
1447 	pad_len = aead_parms.data_pad_len + stat_pad_len;
1448 	if (pad_len) {
1449 		tx_frag_num++;
1450 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1451 				     aead_parms.data_pad_len, 0,
1452 				     ctx->auth.alg, ctx->auth.mode,
1453 				     rctx->total_sent, stat_pad_len);
1454 	}
1455 
1456 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1457 			      spu_hdr_len);
1458 	dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1459 	packet_dump("    aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1460 	packet_log("BD:\n");
1461 	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1462 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1463 
1464 	/*
1465 	 * Build mailbox message containing SPU request msg and rx buffers
1466 	 * to catch response message
1467 	 */
1468 	memset(mssg, 0, sizeof(*mssg));
1469 	mssg->type = BRCM_MESSAGE_SPU;
1470 	mssg->ctx = rctx;	/* Will be returned in response */
1471 
1472 	/* Create rx scatterlist to catch result */
1473 	rx_frag_num += rctx->dst_nents;
1474 	resp_len = chunksize;
1475 
1476 	/*
1477 	 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1478 	 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1479 	 * sends entire digest back.
1480 	 */
1481 	rx_frag_num++;
1482 
1483 	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1484 	     (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1485 		/*
1486 		 * Input is ciphertxt plus ICV, but ICV not incl
1487 		 * in output.
1488 		 */
1489 		resp_len -= ctx->digestsize;
1490 		if (resp_len == 0)
1491 			/* no rx frags to catch output data */
1492 			rx_frag_num -= rctx->dst_nents;
1493 	}
1494 
1495 	err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1496 				    aead_parms.assoc_size,
1497 				    aead_parms.ret_iv_len, resp_len, digestsize,
1498 				    stat_pad_len);
1499 	if (err)
1500 		return err;
1501 
1502 	/* Create tx scatterlist containing SPU request message */
1503 	tx_frag_num += rctx->src_nents;
1504 	tx_frag_num += assoc_nents;
1505 	if (aead_parms.aad_pad_len)
1506 		tx_frag_num++;
1507 	if (aead_parms.iv_len)
1508 		tx_frag_num++;
1509 	if (spu->spu_tx_status_len())
1510 		tx_frag_num++;
1511 	err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1512 				    rctx->assoc, aead_parms.assoc_size,
1513 				    assoc_nents, aead_parms.iv_len, chunksize,
1514 				    aead_parms.aad_pad_len, pad_len, incl_icv);
1515 	if (err)
1516 		return err;
1517 
1518 	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1519 	if (unlikely(err < 0))
1520 		return err;
1521 
1522 	return -EINPROGRESS;
1523 }
1524 
1525 /**
1526  * handle_aead_resp() - Process a SPU response message for an AEAD request.
1527  * @rctx:  Crypto request context
1528  */
1529 static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1530 {
1531 	struct spu_hw *spu = &iproc_priv.spu;
1532 	struct crypto_async_request *areq = rctx->parent;
1533 	struct aead_request *req = container_of(areq,
1534 						struct aead_request, base);
1535 	struct iproc_ctx_s *ctx = rctx->ctx;
1536 	u32 payload_len;
1537 	unsigned int icv_offset;
1538 	u32 result_len;
1539 
1540 	/* See how much data was returned */
1541 	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1542 	flow_log("payload_len %u\n", payload_len);
1543 
1544 	/* only count payload */
1545 	atomic64_add(payload_len, &iproc_priv.bytes_in);
1546 
1547 	if (req->assoclen)
1548 		packet_dump("  assoc_data ", rctx->msg_buf.a.resp_aad,
1549 			    req->assoclen);
1550 
1551 	/*
1552 	 * Copy the ICV back to the destination
1553 	 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1554 	 * API doesn't expect ICV in dst buffer.
1555 	 */
1556 	result_len = req->cryptlen;
1557 	if (rctx->is_encrypt) {
1558 		icv_offset = req->assoclen + rctx->total_sent;
1559 		packet_dump("  ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1560 		flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1561 		sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1562 				      ctx->digestsize, icv_offset);
1563 		result_len += ctx->digestsize;
1564 	}
1565 
1566 	packet_log("response data:  ");
1567 	dump_sg(req->dst, req->assoclen, result_len);
1568 
1569 	atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1570 	if (ctx->cipher.alg == CIPHER_ALG_AES) {
1571 		if (ctx->cipher.mode == CIPHER_MODE_CCM)
1572 			atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1573 		else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1574 			atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1575 		else
1576 			atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1577 	} else {
1578 		atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1579 	}
1580 }
1581 
1582 /**
1583  * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1584  * @rctx:  request context
1585  *
1586  * Mailbox scatterlists are allocated for each chunk. So free them after
1587  * processing each chunk.
1588  */
1589 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1590 {
1591 	/* mailbox message used to tx request */
1592 	struct brcm_message *mssg = &rctx->mb_mssg;
1593 
1594 	kfree(mssg->spu.src);
1595 	kfree(mssg->spu.dst);
1596 	memset(mssg, 0, sizeof(struct brcm_message));
1597 }
1598 
1599 /**
1600  * finish_req() - Used to invoke the complete callback from the requester when
1601  * a request has been handled asynchronously.
1602  * @rctx:  Request context
1603  * @err:   Indicates whether the request was successful or not
1604  *
1605  * Ensures that cleanup has been done for request
1606  */
1607 static void finish_req(struct iproc_reqctx_s *rctx, int err)
1608 {
1609 	struct crypto_async_request *areq = rctx->parent;
1610 
1611 	flow_log("%s() err:%d\n\n", __func__, err);
1612 
1613 	/* No harm done if already called */
1614 	spu_chunk_cleanup(rctx);
1615 
1616 	if (areq)
1617 		areq->complete(areq, err);
1618 }
1619 
1620 /**
1621  * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1622  * @cl:		mailbox client structure for SPU driver
1623  * @msg:	mailbox message containing SPU response
1624  */
1625 static void spu_rx_callback(struct mbox_client *cl, void *msg)
1626 {
1627 	struct spu_hw *spu = &iproc_priv.spu;
1628 	struct brcm_message *mssg = msg;
1629 	struct iproc_reqctx_s *rctx;
1630 	int err;
1631 
1632 	rctx = mssg->ctx;
1633 	if (unlikely(!rctx)) {
1634 		/* This is fatal */
1635 		pr_err("%s(): no request context", __func__);
1636 		err = -EFAULT;
1637 		goto cb_finish;
1638 	}
1639 
1640 	/* process the SPU status */
1641 	err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1642 	if (err != 0) {
1643 		if (err == SPU_INVALID_ICV)
1644 			atomic_inc(&iproc_priv.bad_icv);
1645 		err = -EBADMSG;
1646 		goto cb_finish;
1647 	}
1648 
1649 	/* Process the SPU response message */
1650 	switch (rctx->ctx->alg->type) {
1651 	case CRYPTO_ALG_TYPE_SKCIPHER:
1652 		handle_skcipher_resp(rctx);
1653 		break;
1654 	case CRYPTO_ALG_TYPE_AHASH:
1655 		handle_ahash_resp(rctx);
1656 		break;
1657 	case CRYPTO_ALG_TYPE_AEAD:
1658 		handle_aead_resp(rctx);
1659 		break;
1660 	default:
1661 		err = -EINVAL;
1662 		goto cb_finish;
1663 	}
1664 
1665 	/*
1666 	 * If this response does not complete the request, then send the next
1667 	 * request chunk.
1668 	 */
1669 	if (rctx->total_sent < rctx->total_todo) {
1670 		/* Deallocate anything specific to previous chunk */
1671 		spu_chunk_cleanup(rctx);
1672 
1673 		switch (rctx->ctx->alg->type) {
1674 		case CRYPTO_ALG_TYPE_SKCIPHER:
1675 			err = handle_skcipher_req(rctx);
1676 			break;
1677 		case CRYPTO_ALG_TYPE_AHASH:
1678 			err = handle_ahash_req(rctx);
1679 			if (err == -EAGAIN)
1680 				/*
1681 				 * we saved data in hash carry, but tell crypto
1682 				 * API we successfully completed request.
1683 				 */
1684 				err = 0;
1685 			break;
1686 		case CRYPTO_ALG_TYPE_AEAD:
1687 			err = handle_aead_req(rctx);
1688 			break;
1689 		default:
1690 			err = -EINVAL;
1691 		}
1692 
1693 		if (err == -EINPROGRESS)
1694 			/* Successfully submitted request for next chunk */
1695 			return;
1696 	}
1697 
1698 cb_finish:
1699 	finish_req(rctx, err);
1700 }
1701 
1702 /* ==================== Kernel Cryptographic API ==================== */
1703 
1704 /**
1705  * skcipher_enqueue() - Handle skcipher encrypt or decrypt request.
1706  * @req:	Crypto API request
1707  * @encrypt:	true if encrypting; false if decrypting
1708  *
1709  * Return: -EINPROGRESS if request accepted and result will be returned
1710  *			asynchronously
1711  *	   < 0 if an error
1712  */
1713 static int skcipher_enqueue(struct skcipher_request *req, bool encrypt)
1714 {
1715 	struct iproc_reqctx_s *rctx = skcipher_request_ctx(req);
1716 	struct iproc_ctx_s *ctx =
1717 	    crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
1718 	int err;
1719 
1720 	flow_log("%s() enc:%u\n", __func__, encrypt);
1721 
1722 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1723 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1724 	rctx->parent = &req->base;
1725 	rctx->is_encrypt = encrypt;
1726 	rctx->bd_suppress = false;
1727 	rctx->total_todo = req->cryptlen;
1728 	rctx->src_sent = 0;
1729 	rctx->total_sent = 0;
1730 	rctx->total_received = 0;
1731 	rctx->ctx = ctx;
1732 
1733 	/* Initialize current position in src and dst scatterlists */
1734 	rctx->src_sg = req->src;
1735 	rctx->src_nents = 0;
1736 	rctx->src_skip = 0;
1737 	rctx->dst_sg = req->dst;
1738 	rctx->dst_nents = 0;
1739 	rctx->dst_skip = 0;
1740 
1741 	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1742 	    ctx->cipher.mode == CIPHER_MODE_CTR ||
1743 	    ctx->cipher.mode == CIPHER_MODE_OFB ||
1744 	    ctx->cipher.mode == CIPHER_MODE_XTS ||
1745 	    ctx->cipher.mode == CIPHER_MODE_GCM ||
1746 	    ctx->cipher.mode == CIPHER_MODE_CCM) {
1747 		rctx->iv_ctr_len =
1748 		    crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1749 		memcpy(rctx->msg_buf.iv_ctr, req->iv, rctx->iv_ctr_len);
1750 	} else {
1751 		rctx->iv_ctr_len = 0;
1752 	}
1753 
1754 	/* Choose a SPU to process this request */
1755 	rctx->chan_idx = select_channel();
1756 	err = handle_skcipher_req(rctx);
1757 	if (err != -EINPROGRESS)
1758 		/* synchronous result */
1759 		spu_chunk_cleanup(rctx);
1760 
1761 	return err;
1762 }
1763 
1764 static int des_setkey(struct crypto_skcipher *cipher, const u8 *key,
1765 		      unsigned int keylen)
1766 {
1767 	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1768 	int err;
1769 
1770 	err = verify_skcipher_des_key(cipher, key);
1771 	if (err)
1772 		return err;
1773 
1774 	ctx->cipher_type = CIPHER_TYPE_DES;
1775 	return 0;
1776 }
1777 
1778 static int threedes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1779 			   unsigned int keylen)
1780 {
1781 	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1782 	int err;
1783 
1784 	err = verify_skcipher_des3_key(cipher, key);
1785 	if (err)
1786 		return err;
1787 
1788 	ctx->cipher_type = CIPHER_TYPE_3DES;
1789 	return 0;
1790 }
1791 
1792 static int aes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1793 		      unsigned int keylen)
1794 {
1795 	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1796 
1797 	if (ctx->cipher.mode == CIPHER_MODE_XTS)
1798 		/* XTS includes two keys of equal length */
1799 		keylen = keylen / 2;
1800 
1801 	switch (keylen) {
1802 	case AES_KEYSIZE_128:
1803 		ctx->cipher_type = CIPHER_TYPE_AES128;
1804 		break;
1805 	case AES_KEYSIZE_192:
1806 		ctx->cipher_type = CIPHER_TYPE_AES192;
1807 		break;
1808 	case AES_KEYSIZE_256:
1809 		ctx->cipher_type = CIPHER_TYPE_AES256;
1810 		break;
1811 	default:
1812 		return -EINVAL;
1813 	}
1814 	WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1815 		((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1816 	return 0;
1817 }
1818 
1819 static int skcipher_setkey(struct crypto_skcipher *cipher, const u8 *key,
1820 			     unsigned int keylen)
1821 {
1822 	struct spu_hw *spu = &iproc_priv.spu;
1823 	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1824 	struct spu_cipher_parms cipher_parms;
1825 	u32 alloc_len = 0;
1826 	int err;
1827 
1828 	flow_log("skcipher_setkey() keylen: %d\n", keylen);
1829 	flow_dump("  key: ", key, keylen);
1830 
1831 	switch (ctx->cipher.alg) {
1832 	case CIPHER_ALG_DES:
1833 		err = des_setkey(cipher, key, keylen);
1834 		break;
1835 	case CIPHER_ALG_3DES:
1836 		err = threedes_setkey(cipher, key, keylen);
1837 		break;
1838 	case CIPHER_ALG_AES:
1839 		err = aes_setkey(cipher, key, keylen);
1840 		break;
1841 	default:
1842 		pr_err("%s() Error: unknown cipher alg\n", __func__);
1843 		err = -EINVAL;
1844 	}
1845 	if (err)
1846 		return err;
1847 
1848 	memcpy(ctx->enckey, key, keylen);
1849 	ctx->enckeylen = keylen;
1850 
1851 	/* SPU needs XTS keys in the reverse order the crypto API presents */
1852 	if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1853 	    (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1854 		unsigned int xts_keylen = keylen / 2;
1855 
1856 		memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1857 		memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1858 	}
1859 
1860 	if (spu->spu_type == SPU_TYPE_SPUM)
1861 		alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1862 	else if (spu->spu_type == SPU_TYPE_SPU2)
1863 		alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1864 	memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1865 	cipher_parms.iv_buf = NULL;
1866 	cipher_parms.iv_len = crypto_skcipher_ivsize(cipher);
1867 	flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1868 
1869 	cipher_parms.alg = ctx->cipher.alg;
1870 	cipher_parms.mode = ctx->cipher.mode;
1871 	cipher_parms.type = ctx->cipher_type;
1872 	cipher_parms.key_buf = ctx->enckey;
1873 	cipher_parms.key_len = ctx->enckeylen;
1874 
1875 	/* Prepend SPU request message with BCM header */
1876 	memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1877 	ctx->spu_req_hdr_len =
1878 	    spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1879 				     &cipher_parms);
1880 
1881 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1882 							  ctx->enckeylen,
1883 							  false);
1884 
1885 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1886 
1887 	return 0;
1888 }
1889 
1890 static int skcipher_encrypt(struct skcipher_request *req)
1891 {
1892 	flow_log("skcipher_encrypt() nbytes:%u\n", req->cryptlen);
1893 
1894 	return skcipher_enqueue(req, true);
1895 }
1896 
1897 static int skcipher_decrypt(struct skcipher_request *req)
1898 {
1899 	flow_log("skcipher_decrypt() nbytes:%u\n", req->cryptlen);
1900 	return skcipher_enqueue(req, false);
1901 }
1902 
1903 static int ahash_enqueue(struct ahash_request *req)
1904 {
1905 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1906 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1907 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1908 	int err;
1909 	const char *alg_name;
1910 
1911 	flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
1912 
1913 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1914 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1915 	rctx->parent = &req->base;
1916 	rctx->ctx = ctx;
1917 	rctx->bd_suppress = true;
1918 	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
1919 
1920 	/* Initialize position in src scatterlist */
1921 	rctx->src_sg = req->src;
1922 	rctx->src_skip = 0;
1923 	rctx->src_nents = 0;
1924 	rctx->dst_sg = NULL;
1925 	rctx->dst_skip = 0;
1926 	rctx->dst_nents = 0;
1927 
1928 	/* SPU2 hardware does not compute hash of zero length data */
1929 	if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
1930 	    (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
1931 		alg_name = crypto_ahash_alg_name(tfm);
1932 		flow_log("Doing %sfinal %s zero-len hash request in software\n",
1933 			 rctx->is_final ? "" : "non-", alg_name);
1934 		err = do_shash((unsigned char *)alg_name, req->result,
1935 			       NULL, 0, NULL, 0, ctx->authkey,
1936 			       ctx->authkeylen);
1937 		if (err < 0)
1938 			flow_log("Hash request failed with error %d\n", err);
1939 		return err;
1940 	}
1941 	/* Choose a SPU to process this request */
1942 	rctx->chan_idx = select_channel();
1943 
1944 	err = handle_ahash_req(rctx);
1945 	if (err != -EINPROGRESS)
1946 		/* synchronous result */
1947 		spu_chunk_cleanup(rctx);
1948 
1949 	if (err == -EAGAIN)
1950 		/*
1951 		 * we saved data in hash carry, but tell crypto API
1952 		 * we successfully completed request.
1953 		 */
1954 		err = 0;
1955 
1956 	return err;
1957 }
1958 
1959 static int __ahash_init(struct ahash_request *req)
1960 {
1961 	struct spu_hw *spu = &iproc_priv.spu;
1962 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1963 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1964 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1965 
1966 	flow_log("%s()\n", __func__);
1967 
1968 	/* Initialize the context */
1969 	rctx->hash_carry_len = 0;
1970 	rctx->is_final = 0;
1971 
1972 	rctx->total_todo = 0;
1973 	rctx->src_sent = 0;
1974 	rctx->total_sent = 0;
1975 	rctx->total_received = 0;
1976 
1977 	ctx->digestsize = crypto_ahash_digestsize(tfm);
1978 	/* If we add a hash whose digest is larger, catch it here. */
1979 	WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
1980 
1981 	rctx->is_sw_hmac = false;
1982 
1983 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
1984 							  true);
1985 
1986 	return 0;
1987 }
1988 
1989 /**
1990  * spu_no_incr_hash() - Determine whether incremental hashing is supported.
1991  * @ctx:  Crypto session context
1992  *
1993  * SPU-2 does not support incremental hashing (we'll have to revisit and
1994  * condition based on chip revision or device tree entry if future versions do
1995  * support incremental hash)
1996  *
1997  * SPU-M also doesn't support incremental hashing of AES-XCBC
1998  *
1999  * Return: true if incremental hashing is not supported
2000  *         false otherwise
2001  */
2002 static bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2003 {
2004 	struct spu_hw *spu = &iproc_priv.spu;
2005 
2006 	if (spu->spu_type == SPU_TYPE_SPU2)
2007 		return true;
2008 
2009 	if ((ctx->auth.alg == HASH_ALG_AES) &&
2010 	    (ctx->auth.mode == HASH_MODE_XCBC))
2011 		return true;
2012 
2013 	/* Otherwise, incremental hashing is supported */
2014 	return false;
2015 }
2016 
2017 static int ahash_init(struct ahash_request *req)
2018 {
2019 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2020 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2021 	const char *alg_name;
2022 	struct crypto_shash *hash;
2023 	int ret;
2024 	gfp_t gfp;
2025 
2026 	if (spu_no_incr_hash(ctx)) {
2027 		/*
2028 		 * If we get an incremental hashing request and it's not
2029 		 * supported by the hardware, we need to handle it in software
2030 		 * by calling synchronous hash functions.
2031 		 */
2032 		alg_name = crypto_ahash_alg_name(tfm);
2033 		hash = crypto_alloc_shash(alg_name, 0, 0);
2034 		if (IS_ERR(hash)) {
2035 			ret = PTR_ERR(hash);
2036 			goto err;
2037 		}
2038 
2039 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2040 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2041 		ctx->shash = kmalloc(sizeof(*ctx->shash) +
2042 				     crypto_shash_descsize(hash), gfp);
2043 		if (!ctx->shash) {
2044 			ret = -ENOMEM;
2045 			goto err_hash;
2046 		}
2047 		ctx->shash->tfm = hash;
2048 
2049 		/* Set the key using data we already have from setkey */
2050 		if (ctx->authkeylen > 0) {
2051 			ret = crypto_shash_setkey(hash, ctx->authkey,
2052 						  ctx->authkeylen);
2053 			if (ret)
2054 				goto err_shash;
2055 		}
2056 
2057 		/* Initialize hash w/ this key and other params */
2058 		ret = crypto_shash_init(ctx->shash);
2059 		if (ret)
2060 			goto err_shash;
2061 	} else {
2062 		/* Otherwise call the internal function which uses SPU hw */
2063 		ret = __ahash_init(req);
2064 	}
2065 
2066 	return ret;
2067 
2068 err_shash:
2069 	kfree(ctx->shash);
2070 err_hash:
2071 	crypto_free_shash(hash);
2072 err:
2073 	return ret;
2074 }
2075 
2076 static int __ahash_update(struct ahash_request *req)
2077 {
2078 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2079 
2080 	flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2081 
2082 	if (!req->nbytes)
2083 		return 0;
2084 	rctx->total_todo += req->nbytes;
2085 	rctx->src_sent = 0;
2086 
2087 	return ahash_enqueue(req);
2088 }
2089 
2090 static int ahash_update(struct ahash_request *req)
2091 {
2092 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2093 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2094 	u8 *tmpbuf;
2095 	int ret;
2096 	int nents;
2097 	gfp_t gfp;
2098 
2099 	if (spu_no_incr_hash(ctx)) {
2100 		/*
2101 		 * If we get an incremental hashing request and it's not
2102 		 * supported by the hardware, we need to handle it in software
2103 		 * by calling synchronous hash functions.
2104 		 */
2105 		if (req->src)
2106 			nents = sg_nents(req->src);
2107 		else
2108 			return -EINVAL;
2109 
2110 		/* Copy data from req scatterlist to tmp buffer */
2111 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2112 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2113 		tmpbuf = kmalloc(req->nbytes, gfp);
2114 		if (!tmpbuf)
2115 			return -ENOMEM;
2116 
2117 		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2118 				req->nbytes) {
2119 			kfree(tmpbuf);
2120 			return -EINVAL;
2121 		}
2122 
2123 		/* Call synchronous update */
2124 		ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2125 		kfree(tmpbuf);
2126 	} else {
2127 		/* Otherwise call the internal function which uses SPU hw */
2128 		ret = __ahash_update(req);
2129 	}
2130 
2131 	return ret;
2132 }
2133 
2134 static int __ahash_final(struct ahash_request *req)
2135 {
2136 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2137 
2138 	flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2139 
2140 	rctx->is_final = 1;
2141 
2142 	return ahash_enqueue(req);
2143 }
2144 
2145 static int ahash_final(struct ahash_request *req)
2146 {
2147 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2148 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2149 	int ret;
2150 
2151 	if (spu_no_incr_hash(ctx)) {
2152 		/*
2153 		 * If we get an incremental hashing request and it's not
2154 		 * supported by the hardware, we need to handle it in software
2155 		 * by calling synchronous hash functions.
2156 		 */
2157 		ret = crypto_shash_final(ctx->shash, req->result);
2158 
2159 		/* Done with hash, can deallocate it now */
2160 		crypto_free_shash(ctx->shash->tfm);
2161 		kfree(ctx->shash);
2162 
2163 	} else {
2164 		/* Otherwise call the internal function which uses SPU hw */
2165 		ret = __ahash_final(req);
2166 	}
2167 
2168 	return ret;
2169 }
2170 
2171 static int __ahash_finup(struct ahash_request *req)
2172 {
2173 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2174 
2175 	flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2176 
2177 	rctx->total_todo += req->nbytes;
2178 	rctx->src_sent = 0;
2179 	rctx->is_final = 1;
2180 
2181 	return ahash_enqueue(req);
2182 }
2183 
2184 static int ahash_finup(struct ahash_request *req)
2185 {
2186 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2187 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2188 	u8 *tmpbuf;
2189 	int ret;
2190 	int nents;
2191 	gfp_t gfp;
2192 
2193 	if (spu_no_incr_hash(ctx)) {
2194 		/*
2195 		 * If we get an incremental hashing request and it's not
2196 		 * supported by the hardware, we need to handle it in software
2197 		 * by calling synchronous hash functions.
2198 		 */
2199 		if (req->src) {
2200 			nents = sg_nents(req->src);
2201 		} else {
2202 			ret = -EINVAL;
2203 			goto ahash_finup_exit;
2204 		}
2205 
2206 		/* Copy data from req scatterlist to tmp buffer */
2207 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2208 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2209 		tmpbuf = kmalloc(req->nbytes, gfp);
2210 		if (!tmpbuf) {
2211 			ret = -ENOMEM;
2212 			goto ahash_finup_exit;
2213 		}
2214 
2215 		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2216 				req->nbytes) {
2217 			ret = -EINVAL;
2218 			goto ahash_finup_free;
2219 		}
2220 
2221 		/* Call synchronous update */
2222 		ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2223 					 req->result);
2224 	} else {
2225 		/* Otherwise call the internal function which uses SPU hw */
2226 		return __ahash_finup(req);
2227 	}
2228 ahash_finup_free:
2229 	kfree(tmpbuf);
2230 
2231 ahash_finup_exit:
2232 	/* Done with hash, can deallocate it now */
2233 	crypto_free_shash(ctx->shash->tfm);
2234 	kfree(ctx->shash);
2235 	return ret;
2236 }
2237 
2238 static int ahash_digest(struct ahash_request *req)
2239 {
2240 	int err;
2241 
2242 	flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2243 
2244 	/* whole thing at once */
2245 	err = __ahash_init(req);
2246 	if (!err)
2247 		err = __ahash_finup(req);
2248 
2249 	return err;
2250 }
2251 
2252 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2253 			unsigned int keylen)
2254 {
2255 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2256 
2257 	flow_log("%s() ahash:%p key:%p keylen:%u\n",
2258 		 __func__, ahash, key, keylen);
2259 	flow_dump("  key: ", key, keylen);
2260 
2261 	if (ctx->auth.alg == HASH_ALG_AES) {
2262 		switch (keylen) {
2263 		case AES_KEYSIZE_128:
2264 			ctx->cipher_type = CIPHER_TYPE_AES128;
2265 			break;
2266 		case AES_KEYSIZE_192:
2267 			ctx->cipher_type = CIPHER_TYPE_AES192;
2268 			break;
2269 		case AES_KEYSIZE_256:
2270 			ctx->cipher_type = CIPHER_TYPE_AES256;
2271 			break;
2272 		default:
2273 			pr_err("%s() Error: Invalid key length\n", __func__);
2274 			return -EINVAL;
2275 		}
2276 	} else {
2277 		pr_err("%s() Error: unknown hash alg\n", __func__);
2278 		return -EINVAL;
2279 	}
2280 	memcpy(ctx->authkey, key, keylen);
2281 	ctx->authkeylen = keylen;
2282 
2283 	return 0;
2284 }
2285 
2286 static int ahash_export(struct ahash_request *req, void *out)
2287 {
2288 	const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2289 	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2290 
2291 	spu_exp->total_todo = rctx->total_todo;
2292 	spu_exp->total_sent = rctx->total_sent;
2293 	spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2294 	memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2295 	spu_exp->hash_carry_len = rctx->hash_carry_len;
2296 	memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2297 
2298 	return 0;
2299 }
2300 
2301 static int ahash_import(struct ahash_request *req, const void *in)
2302 {
2303 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2304 	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2305 
2306 	rctx->total_todo = spu_exp->total_todo;
2307 	rctx->total_sent = spu_exp->total_sent;
2308 	rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2309 	memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2310 	rctx->hash_carry_len = spu_exp->hash_carry_len;
2311 	memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2312 
2313 	return 0;
2314 }
2315 
2316 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2317 			     unsigned int keylen)
2318 {
2319 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2320 	unsigned int blocksize =
2321 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2322 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
2323 	unsigned int index;
2324 	int rc;
2325 
2326 	flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2327 		 __func__, ahash, key, keylen, blocksize, digestsize);
2328 	flow_dump("  key: ", key, keylen);
2329 
2330 	if (keylen > blocksize) {
2331 		switch (ctx->auth.alg) {
2332 		case HASH_ALG_MD5:
2333 			rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2334 				      0, NULL, 0);
2335 			break;
2336 		case HASH_ALG_SHA1:
2337 			rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2338 				      0, NULL, 0);
2339 			break;
2340 		case HASH_ALG_SHA224:
2341 			rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2342 				      0, NULL, 0);
2343 			break;
2344 		case HASH_ALG_SHA256:
2345 			rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2346 				      0, NULL, 0);
2347 			break;
2348 		case HASH_ALG_SHA384:
2349 			rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2350 				      0, NULL, 0);
2351 			break;
2352 		case HASH_ALG_SHA512:
2353 			rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2354 				      0, NULL, 0);
2355 			break;
2356 		case HASH_ALG_SHA3_224:
2357 			rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2358 				      NULL, 0, NULL, 0);
2359 			break;
2360 		case HASH_ALG_SHA3_256:
2361 			rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2362 				      NULL, 0, NULL, 0);
2363 			break;
2364 		case HASH_ALG_SHA3_384:
2365 			rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2366 				      NULL, 0, NULL, 0);
2367 			break;
2368 		case HASH_ALG_SHA3_512:
2369 			rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2370 				      NULL, 0, NULL, 0);
2371 			break;
2372 		default:
2373 			pr_err("%s() Error: unknown hash alg\n", __func__);
2374 			return -EINVAL;
2375 		}
2376 		if (rc < 0) {
2377 			pr_err("%s() Error %d computing shash for %s\n",
2378 			       __func__, rc, hash_alg_name[ctx->auth.alg]);
2379 			return rc;
2380 		}
2381 		ctx->authkeylen = digestsize;
2382 
2383 		flow_log("  keylen > digestsize... hashed\n");
2384 		flow_dump("  newkey: ", ctx->authkey, ctx->authkeylen);
2385 	} else {
2386 		memcpy(ctx->authkey, key, keylen);
2387 		ctx->authkeylen = keylen;
2388 	}
2389 
2390 	/*
2391 	 * Full HMAC operation in SPUM is not verified,
2392 	 * So keeping the generation of IPAD, OPAD and
2393 	 * outer hashing in software.
2394 	 */
2395 	if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2396 		memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2397 		memset(ctx->ipad + ctx->authkeylen, 0,
2398 		       blocksize - ctx->authkeylen);
2399 		ctx->authkeylen = 0;
2400 		memcpy(ctx->opad, ctx->ipad, blocksize);
2401 
2402 		for (index = 0; index < blocksize; index++) {
2403 			ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2404 			ctx->opad[index] ^= HMAC_OPAD_VALUE;
2405 		}
2406 
2407 		flow_dump("  ipad: ", ctx->ipad, blocksize);
2408 		flow_dump("  opad: ", ctx->opad, blocksize);
2409 	}
2410 	ctx->digestsize = digestsize;
2411 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2412 
2413 	return 0;
2414 }
2415 
2416 static int ahash_hmac_init(struct ahash_request *req)
2417 {
2418 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2419 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2420 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2421 	unsigned int blocksize =
2422 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2423 
2424 	flow_log("ahash_hmac_init()\n");
2425 
2426 	/* init the context as a hash */
2427 	ahash_init(req);
2428 
2429 	if (!spu_no_incr_hash(ctx)) {
2430 		/* SPU-M can do incr hashing but needs sw for outer HMAC */
2431 		rctx->is_sw_hmac = true;
2432 		ctx->auth.mode = HASH_MODE_HASH;
2433 		/* start with a prepended ipad */
2434 		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2435 		rctx->hash_carry_len = blocksize;
2436 		rctx->total_todo += blocksize;
2437 	}
2438 
2439 	return 0;
2440 }
2441 
2442 static int ahash_hmac_update(struct ahash_request *req)
2443 {
2444 	flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2445 
2446 	if (!req->nbytes)
2447 		return 0;
2448 
2449 	return ahash_update(req);
2450 }
2451 
2452 static int ahash_hmac_final(struct ahash_request *req)
2453 {
2454 	flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2455 
2456 	return ahash_final(req);
2457 }
2458 
2459 static int ahash_hmac_finup(struct ahash_request *req)
2460 {
2461 	flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2462 
2463 	return ahash_finup(req);
2464 }
2465 
2466 static int ahash_hmac_digest(struct ahash_request *req)
2467 {
2468 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2469 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2470 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2471 	unsigned int blocksize =
2472 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2473 
2474 	flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2475 
2476 	/* Perform initialization and then call finup */
2477 	__ahash_init(req);
2478 
2479 	if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2480 		/*
2481 		 * SPU2 supports full HMAC implementation in the
2482 		 * hardware, need not to generate IPAD, OPAD and
2483 		 * outer hash in software.
2484 		 * Only for hash key len > hash block size, SPU2
2485 		 * expects to perform hashing on the key, shorten
2486 		 * it to digest size and feed it as hash key.
2487 		 */
2488 		rctx->is_sw_hmac = false;
2489 		ctx->auth.mode = HASH_MODE_HMAC;
2490 	} else {
2491 		rctx->is_sw_hmac = true;
2492 		ctx->auth.mode = HASH_MODE_HASH;
2493 		/* start with a prepended ipad */
2494 		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2495 		rctx->hash_carry_len = blocksize;
2496 		rctx->total_todo += blocksize;
2497 	}
2498 
2499 	return __ahash_finup(req);
2500 }
2501 
2502 /* aead helpers */
2503 
2504 static int aead_need_fallback(struct aead_request *req)
2505 {
2506 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2507 	struct spu_hw *spu = &iproc_priv.spu;
2508 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2509 	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2510 	u32 payload_len;
2511 
2512 	/*
2513 	 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2514 	 * and AAD are both 0 bytes long. So use fallback in this case.
2515 	 */
2516 	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2517 	     (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2518 	    (req->assoclen == 0)) {
2519 		if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2520 		    (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2521 			flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2522 			return 1;
2523 		}
2524 	}
2525 
2526 	/* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2527 	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2528 	    (spu->spu_type == SPU_TYPE_SPUM) &&
2529 	    (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2530 	    (ctx->digestsize != 16)) {
2531 		flow_log("%s() AES CCM needs fallback for digest size %d\n",
2532 			 __func__, ctx->digestsize);
2533 		return 1;
2534 	}
2535 
2536 	/*
2537 	 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2538 	 * when AAD size is 0
2539 	 */
2540 	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2541 	    (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2542 	    (req->assoclen == 0)) {
2543 		flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2544 			 __func__);
2545 		return 1;
2546 	}
2547 
2548 	/*
2549 	 * RFC4106 and RFC4543 cannot handle the case where AAD is other than
2550 	 * 16 or 20 bytes long. So use fallback in this case.
2551 	 */
2552 	if (ctx->cipher.mode == CIPHER_MODE_GCM &&
2553 	    ctx->cipher.alg == CIPHER_ALG_AES &&
2554 	    rctx->iv_ctr_len == GCM_RFC4106_IV_SIZE &&
2555 	    req->assoclen != 16 && req->assoclen != 20) {
2556 		flow_log("RFC4106/RFC4543 needs fallback for assoclen"
2557 			 " other than 16 or 20 bytes\n");
2558 		return 1;
2559 	}
2560 
2561 	payload_len = req->cryptlen;
2562 	if (spu->spu_type == SPU_TYPE_SPUM)
2563 		payload_len += req->assoclen;
2564 
2565 	flow_log("%s() payload len: %u\n", __func__, payload_len);
2566 
2567 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2568 		return 0;
2569 	else
2570 		return payload_len > ctx->max_payload;
2571 }
2572 
2573 static void aead_complete(struct crypto_async_request *areq, int err)
2574 {
2575 	struct aead_request *req =
2576 	    container_of(areq, struct aead_request, base);
2577 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2578 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2579 
2580 	flow_log("%s() err:%d\n", __func__, err);
2581 
2582 	areq->tfm = crypto_aead_tfm(aead);
2583 
2584 	areq->complete = rctx->old_complete;
2585 	areq->data = rctx->old_data;
2586 
2587 	areq->complete(areq, err);
2588 }
2589 
2590 static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2591 {
2592 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2593 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2594 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2595 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2596 	int err;
2597 	u32 req_flags;
2598 
2599 	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2600 
2601 	if (ctx->fallback_cipher) {
2602 		/* Store the cipher tfm and then use the fallback tfm */
2603 		rctx->old_tfm = tfm;
2604 		aead_request_set_tfm(req, ctx->fallback_cipher);
2605 		/*
2606 		 * Save the callback and chain ourselves in, so we can restore
2607 		 * the tfm
2608 		 */
2609 		rctx->old_complete = req->base.complete;
2610 		rctx->old_data = req->base.data;
2611 		req_flags = aead_request_flags(req);
2612 		aead_request_set_callback(req, req_flags, aead_complete, req);
2613 		err = is_encrypt ? crypto_aead_encrypt(req) :
2614 		    crypto_aead_decrypt(req);
2615 
2616 		if (err == 0) {
2617 			/*
2618 			 * fallback was synchronous (did not return
2619 			 * -EINPROGRESS). So restore request state here.
2620 			 */
2621 			aead_request_set_callback(req, req_flags,
2622 						  rctx->old_complete, req);
2623 			req->base.data = rctx->old_data;
2624 			aead_request_set_tfm(req, aead);
2625 			flow_log("%s() fallback completed successfully\n\n",
2626 				 __func__);
2627 		}
2628 	} else {
2629 		err = -EINVAL;
2630 	}
2631 
2632 	return err;
2633 }
2634 
2635 static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2636 {
2637 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2638 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2639 	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2640 	int err;
2641 
2642 	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2643 
2644 	if (req->assoclen > MAX_ASSOC_SIZE) {
2645 		pr_err
2646 		    ("%s() Error: associated data too long. (%u > %u bytes)\n",
2647 		     __func__, req->assoclen, MAX_ASSOC_SIZE);
2648 		return -EINVAL;
2649 	}
2650 
2651 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2652 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2653 	rctx->parent = &req->base;
2654 	rctx->is_encrypt = is_encrypt;
2655 	rctx->bd_suppress = false;
2656 	rctx->total_todo = req->cryptlen;
2657 	rctx->src_sent = 0;
2658 	rctx->total_sent = 0;
2659 	rctx->total_received = 0;
2660 	rctx->is_sw_hmac = false;
2661 	rctx->ctx = ctx;
2662 	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2663 
2664 	/* assoc data is at start of src sg */
2665 	rctx->assoc = req->src;
2666 
2667 	/*
2668 	 * Init current position in src scatterlist to be after assoc data.
2669 	 * src_skip set to buffer offset where data begins. (Assoc data could
2670 	 * end in the middle of a buffer.)
2671 	 */
2672 	if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2673 			     &rctx->src_skip) < 0) {
2674 		pr_err("%s() Error: Unable to find start of src data\n",
2675 		       __func__);
2676 		return -EINVAL;
2677 	}
2678 
2679 	rctx->src_nents = 0;
2680 	rctx->dst_nents = 0;
2681 	if (req->dst == req->src) {
2682 		rctx->dst_sg = rctx->src_sg;
2683 		rctx->dst_skip = rctx->src_skip;
2684 	} else {
2685 		/*
2686 		 * Expect req->dst to have room for assoc data followed by
2687 		 * output data and ICV, if encrypt. So initialize dst_sg
2688 		 * to point beyond assoc len offset.
2689 		 */
2690 		if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2691 				     &rctx->dst_skip) < 0) {
2692 			pr_err("%s() Error: Unable to find start of dst data\n",
2693 			       __func__);
2694 			return -EINVAL;
2695 		}
2696 	}
2697 
2698 	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2699 	    ctx->cipher.mode == CIPHER_MODE_CTR ||
2700 	    ctx->cipher.mode == CIPHER_MODE_OFB ||
2701 	    ctx->cipher.mode == CIPHER_MODE_XTS ||
2702 	    ctx->cipher.mode == CIPHER_MODE_GCM) {
2703 		rctx->iv_ctr_len =
2704 			ctx->salt_len +
2705 			crypto_aead_ivsize(crypto_aead_reqtfm(req));
2706 	} else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2707 		rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2708 	} else {
2709 		rctx->iv_ctr_len = 0;
2710 	}
2711 
2712 	rctx->hash_carry_len = 0;
2713 
2714 	flow_log("  src sg: %p\n", req->src);
2715 	flow_log("  rctx->src_sg: %p, src_skip %u\n",
2716 		 rctx->src_sg, rctx->src_skip);
2717 	flow_log("  assoc:  %p, assoclen %u\n", rctx->assoc, req->assoclen);
2718 	flow_log("  dst sg: %p\n", req->dst);
2719 	flow_log("  rctx->dst_sg: %p, dst_skip %u\n",
2720 		 rctx->dst_sg, rctx->dst_skip);
2721 	flow_log("  iv_ctr_len:%u\n", rctx->iv_ctr_len);
2722 	flow_dump("  iv: ", req->iv, rctx->iv_ctr_len);
2723 	flow_log("  authkeylen:%u\n", ctx->authkeylen);
2724 	flow_log("  is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2725 
2726 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2727 		flow_log("  max_payload infinite");
2728 	else
2729 		flow_log("  max_payload: %u\n", ctx->max_payload);
2730 
2731 	if (unlikely(aead_need_fallback(req)))
2732 		return aead_do_fallback(req, is_encrypt);
2733 
2734 	/*
2735 	 * Do memory allocations for request after fallback check, because if we
2736 	 * do fallback, we won't call finish_req() to dealloc.
2737 	 */
2738 	if (rctx->iv_ctr_len) {
2739 		if (ctx->salt_len)
2740 			memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2741 			       ctx->salt, ctx->salt_len);
2742 		memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2743 		       req->iv,
2744 		       rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2745 	}
2746 
2747 	rctx->chan_idx = select_channel();
2748 	err = handle_aead_req(rctx);
2749 	if (err != -EINPROGRESS)
2750 		/* synchronous result */
2751 		spu_chunk_cleanup(rctx);
2752 
2753 	return err;
2754 }
2755 
2756 static int aead_authenc_setkey(struct crypto_aead *cipher,
2757 			       const u8 *key, unsigned int keylen)
2758 {
2759 	struct spu_hw *spu = &iproc_priv.spu;
2760 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2761 	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2762 	struct crypto_authenc_keys keys;
2763 	int ret;
2764 
2765 	flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2766 		 keylen);
2767 	flow_dump("  key: ", key, keylen);
2768 
2769 	ret = crypto_authenc_extractkeys(&keys, key, keylen);
2770 	if (ret)
2771 		goto badkey;
2772 
2773 	if (keys.enckeylen > MAX_KEY_SIZE ||
2774 	    keys.authkeylen > MAX_KEY_SIZE)
2775 		goto badkey;
2776 
2777 	ctx->enckeylen = keys.enckeylen;
2778 	ctx->authkeylen = keys.authkeylen;
2779 
2780 	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
2781 	/* May end up padding auth key. So make sure it's zeroed. */
2782 	memset(ctx->authkey, 0, sizeof(ctx->authkey));
2783 	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
2784 
2785 	switch (ctx->alg->cipher_info.alg) {
2786 	case CIPHER_ALG_DES:
2787 		if (verify_aead_des_key(cipher, keys.enckey, keys.enckeylen))
2788 			return -EINVAL;
2789 
2790 		ctx->cipher_type = CIPHER_TYPE_DES;
2791 		break;
2792 	case CIPHER_ALG_3DES:
2793 		if (verify_aead_des3_key(cipher, keys.enckey, keys.enckeylen))
2794 			return -EINVAL;
2795 
2796 		ctx->cipher_type = CIPHER_TYPE_3DES;
2797 		break;
2798 	case CIPHER_ALG_AES:
2799 		switch (ctx->enckeylen) {
2800 		case AES_KEYSIZE_128:
2801 			ctx->cipher_type = CIPHER_TYPE_AES128;
2802 			break;
2803 		case AES_KEYSIZE_192:
2804 			ctx->cipher_type = CIPHER_TYPE_AES192;
2805 			break;
2806 		case AES_KEYSIZE_256:
2807 			ctx->cipher_type = CIPHER_TYPE_AES256;
2808 			break;
2809 		default:
2810 			goto badkey;
2811 		}
2812 		break;
2813 	default:
2814 		pr_err("%s() Error: Unknown cipher alg\n", __func__);
2815 		return -EINVAL;
2816 	}
2817 
2818 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2819 		 ctx->authkeylen);
2820 	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2821 	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2822 
2823 	/* setkey the fallback just in case we needto use it */
2824 	if (ctx->fallback_cipher) {
2825 		flow_log("  running fallback setkey()\n");
2826 
2827 		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2828 		ctx->fallback_cipher->base.crt_flags |=
2829 		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2830 		ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen);
2831 		if (ret)
2832 			flow_log("  fallback setkey() returned:%d\n", ret);
2833 	}
2834 
2835 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2836 							  ctx->enckeylen,
2837 							  false);
2838 
2839 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2840 
2841 	return ret;
2842 
2843 badkey:
2844 	ctx->enckeylen = 0;
2845 	ctx->authkeylen = 0;
2846 	ctx->digestsize = 0;
2847 
2848 	return -EINVAL;
2849 }
2850 
2851 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2852 			       const u8 *key, unsigned int keylen)
2853 {
2854 	struct spu_hw *spu = &iproc_priv.spu;
2855 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2856 	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2857 
2858 	int ret = 0;
2859 
2860 	flow_log("%s() keylen:%u\n", __func__, keylen);
2861 	flow_dump("  key: ", key, keylen);
2862 
2863 	if (!ctx->is_esp)
2864 		ctx->digestsize = keylen;
2865 
2866 	ctx->enckeylen = keylen;
2867 	ctx->authkeylen = 0;
2868 
2869 	switch (ctx->enckeylen) {
2870 	case AES_KEYSIZE_128:
2871 		ctx->cipher_type = CIPHER_TYPE_AES128;
2872 		break;
2873 	case AES_KEYSIZE_192:
2874 		ctx->cipher_type = CIPHER_TYPE_AES192;
2875 		break;
2876 	case AES_KEYSIZE_256:
2877 		ctx->cipher_type = CIPHER_TYPE_AES256;
2878 		break;
2879 	default:
2880 		goto badkey;
2881 	}
2882 
2883 	memcpy(ctx->enckey, key, ctx->enckeylen);
2884 
2885 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2886 		 ctx->authkeylen);
2887 	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2888 	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2889 
2890 	/* setkey the fallback just in case we need to use it */
2891 	if (ctx->fallback_cipher) {
2892 		flow_log("  running fallback setkey()\n");
2893 
2894 		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2895 		ctx->fallback_cipher->base.crt_flags |=
2896 		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2897 		ret = crypto_aead_setkey(ctx->fallback_cipher, key,
2898 					 keylen + ctx->salt_len);
2899 		if (ret)
2900 			flow_log("  fallback setkey() returned:%d\n", ret);
2901 	}
2902 
2903 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2904 							  ctx->enckeylen,
2905 							  false);
2906 
2907 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2908 
2909 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2910 		 ctx->authkeylen);
2911 
2912 	return ret;
2913 
2914 badkey:
2915 	ctx->enckeylen = 0;
2916 	ctx->authkeylen = 0;
2917 	ctx->digestsize = 0;
2918 
2919 	return -EINVAL;
2920 }
2921 
2922 /**
2923  * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
2924  * @cipher: AEAD structure
2925  * @key:    Key followed by 4 bytes of salt
2926  * @keylen: Length of key plus salt, in bytes
2927  *
2928  * Extracts salt from key and stores it to be prepended to IV on each request.
2929  * Digest is always 16 bytes
2930  *
2931  * Return: Value from generic gcm setkey.
2932  */
2933 static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
2934 			       const u8 *key, unsigned int keylen)
2935 {
2936 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2937 
2938 	flow_log("%s\n", __func__);
2939 
2940 	if (keylen < GCM_ESP_SALT_SIZE)
2941 		return -EINVAL;
2942 
2943 	ctx->salt_len = GCM_ESP_SALT_SIZE;
2944 	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
2945 	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
2946 	keylen -= GCM_ESP_SALT_SIZE;
2947 	ctx->digestsize = GCM_ESP_DIGESTSIZE;
2948 	ctx->is_esp = true;
2949 	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
2950 
2951 	return aead_gcm_ccm_setkey(cipher, key, keylen);
2952 }
2953 
2954 /**
2955  * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
2956  * @cipher: AEAD structure
2957  * @key:    Key followed by 4 bytes of salt
2958  * @keylen: Length of key plus salt, in bytes
2959  *
2960  * Extracts salt from key and stores it to be prepended to IV on each request.
2961  * Digest is always 16 bytes
2962  *
2963  * Return: Value from generic gcm setkey.
2964  */
2965 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
2966 				  const u8 *key, unsigned int keylen)
2967 {
2968 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2969 
2970 	flow_log("%s\n", __func__);
2971 
2972 	if (keylen < GCM_ESP_SALT_SIZE)
2973 		return -EINVAL;
2974 
2975 	ctx->salt_len = GCM_ESP_SALT_SIZE;
2976 	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
2977 	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
2978 	keylen -= GCM_ESP_SALT_SIZE;
2979 	ctx->digestsize = GCM_ESP_DIGESTSIZE;
2980 	ctx->is_esp = true;
2981 	ctx->is_rfc4543 = true;
2982 	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
2983 
2984 	return aead_gcm_ccm_setkey(cipher, key, keylen);
2985 }
2986 
2987 /**
2988  * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
2989  * @cipher: AEAD structure
2990  * @key:    Key followed by 4 bytes of salt
2991  * @keylen: Length of key plus salt, in bytes
2992  *
2993  * Extracts salt from key and stores it to be prepended to IV on each request.
2994  * Digest is always 16 bytes
2995  *
2996  * Return: Value from generic ccm setkey.
2997  */
2998 static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
2999 			       const u8 *key, unsigned int keylen)
3000 {
3001 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3002 
3003 	flow_log("%s\n", __func__);
3004 
3005 	if (keylen < CCM_ESP_SALT_SIZE)
3006 		return -EINVAL;
3007 
3008 	ctx->salt_len = CCM_ESP_SALT_SIZE;
3009 	ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3010 	memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3011 	keylen -= CCM_ESP_SALT_SIZE;
3012 	ctx->is_esp = true;
3013 	flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3014 
3015 	return aead_gcm_ccm_setkey(cipher, key, keylen);
3016 }
3017 
3018 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3019 {
3020 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3021 	int ret = 0;
3022 
3023 	flow_log("%s() authkeylen:%u authsize:%u\n",
3024 		 __func__, ctx->authkeylen, authsize);
3025 
3026 	ctx->digestsize = authsize;
3027 
3028 	/* setkey the fallback just in case we needto use it */
3029 	if (ctx->fallback_cipher) {
3030 		flow_log("  running fallback setauth()\n");
3031 
3032 		ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3033 		if (ret)
3034 			flow_log("  fallback setauth() returned:%d\n", ret);
3035 	}
3036 
3037 	return ret;
3038 }
3039 
3040 static int aead_encrypt(struct aead_request *req)
3041 {
3042 	flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3043 		 req->cryptlen);
3044 	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3045 	flow_log("  assoc_len:%u\n", req->assoclen);
3046 
3047 	return aead_enqueue(req, true);
3048 }
3049 
3050 static int aead_decrypt(struct aead_request *req)
3051 {
3052 	flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3053 	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3054 	flow_log("  assoc_len:%u\n", req->assoclen);
3055 
3056 	return aead_enqueue(req, false);
3057 }
3058 
3059 /* ==================== Supported Cipher Algorithms ==================== */
3060 
3061 static struct iproc_alg_s driver_algs[] = {
3062 	{
3063 	 .type = CRYPTO_ALG_TYPE_AEAD,
3064 	 .alg.aead = {
3065 		 .base = {
3066 			.cra_name = "gcm(aes)",
3067 			.cra_driver_name = "gcm-aes-iproc",
3068 			.cra_blocksize = AES_BLOCK_SIZE,
3069 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3070 		 },
3071 		 .setkey = aead_gcm_ccm_setkey,
3072 		 .ivsize = GCM_AES_IV_SIZE,
3073 		.maxauthsize = AES_BLOCK_SIZE,
3074 	 },
3075 	 .cipher_info = {
3076 			 .alg = CIPHER_ALG_AES,
3077 			 .mode = CIPHER_MODE_GCM,
3078 			 },
3079 	 .auth_info = {
3080 		       .alg = HASH_ALG_AES,
3081 		       .mode = HASH_MODE_GCM,
3082 		       },
3083 	 .auth_first = 0,
3084 	 },
3085 	{
3086 	 .type = CRYPTO_ALG_TYPE_AEAD,
3087 	 .alg.aead = {
3088 		 .base = {
3089 			.cra_name = "ccm(aes)",
3090 			.cra_driver_name = "ccm-aes-iproc",
3091 			.cra_blocksize = AES_BLOCK_SIZE,
3092 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3093 		 },
3094 		 .setkey = aead_gcm_ccm_setkey,
3095 		 .ivsize = CCM_AES_IV_SIZE,
3096 		.maxauthsize = AES_BLOCK_SIZE,
3097 	 },
3098 	 .cipher_info = {
3099 			 .alg = CIPHER_ALG_AES,
3100 			 .mode = CIPHER_MODE_CCM,
3101 			 },
3102 	 .auth_info = {
3103 		       .alg = HASH_ALG_AES,
3104 		       .mode = HASH_MODE_CCM,
3105 		       },
3106 	 .auth_first = 0,
3107 	 },
3108 	{
3109 	 .type = CRYPTO_ALG_TYPE_AEAD,
3110 	 .alg.aead = {
3111 		 .base = {
3112 			.cra_name = "rfc4106(gcm(aes))",
3113 			.cra_driver_name = "gcm-aes-esp-iproc",
3114 			.cra_blocksize = AES_BLOCK_SIZE,
3115 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3116 		 },
3117 		 .setkey = aead_gcm_esp_setkey,
3118 		 .ivsize = GCM_RFC4106_IV_SIZE,
3119 		 .maxauthsize = AES_BLOCK_SIZE,
3120 	 },
3121 	 .cipher_info = {
3122 			 .alg = CIPHER_ALG_AES,
3123 			 .mode = CIPHER_MODE_GCM,
3124 			 },
3125 	 .auth_info = {
3126 		       .alg = HASH_ALG_AES,
3127 		       .mode = HASH_MODE_GCM,
3128 		       },
3129 	 .auth_first = 0,
3130 	 },
3131 	{
3132 	 .type = CRYPTO_ALG_TYPE_AEAD,
3133 	 .alg.aead = {
3134 		 .base = {
3135 			.cra_name = "rfc4309(ccm(aes))",
3136 			.cra_driver_name = "ccm-aes-esp-iproc",
3137 			.cra_blocksize = AES_BLOCK_SIZE,
3138 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3139 		 },
3140 		 .setkey = aead_ccm_esp_setkey,
3141 		 .ivsize = CCM_AES_IV_SIZE,
3142 		 .maxauthsize = AES_BLOCK_SIZE,
3143 	 },
3144 	 .cipher_info = {
3145 			 .alg = CIPHER_ALG_AES,
3146 			 .mode = CIPHER_MODE_CCM,
3147 			 },
3148 	 .auth_info = {
3149 		       .alg = HASH_ALG_AES,
3150 		       .mode = HASH_MODE_CCM,
3151 		       },
3152 	 .auth_first = 0,
3153 	 },
3154 	{
3155 	 .type = CRYPTO_ALG_TYPE_AEAD,
3156 	 .alg.aead = {
3157 		 .base = {
3158 			.cra_name = "rfc4543(gcm(aes))",
3159 			.cra_driver_name = "gmac-aes-esp-iproc",
3160 			.cra_blocksize = AES_BLOCK_SIZE,
3161 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3162 		 },
3163 		 .setkey = rfc4543_gcm_esp_setkey,
3164 		 .ivsize = GCM_RFC4106_IV_SIZE,
3165 		 .maxauthsize = AES_BLOCK_SIZE,
3166 	 },
3167 	 .cipher_info = {
3168 			 .alg = CIPHER_ALG_AES,
3169 			 .mode = CIPHER_MODE_GCM,
3170 			 },
3171 	 .auth_info = {
3172 		       .alg = HASH_ALG_AES,
3173 		       .mode = HASH_MODE_GCM,
3174 		       },
3175 	 .auth_first = 0,
3176 	 },
3177 	{
3178 	 .type = CRYPTO_ALG_TYPE_AEAD,
3179 	 .alg.aead = {
3180 		 .base = {
3181 			.cra_name = "authenc(hmac(md5),cbc(aes))",
3182 			.cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3183 			.cra_blocksize = AES_BLOCK_SIZE,
3184 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3185 				     CRYPTO_ALG_ASYNC |
3186 				     CRYPTO_ALG_ALLOCATES_MEMORY
3187 		 },
3188 		 .setkey = aead_authenc_setkey,
3189 		.ivsize = AES_BLOCK_SIZE,
3190 		.maxauthsize = MD5_DIGEST_SIZE,
3191 	 },
3192 	 .cipher_info = {
3193 			 .alg = CIPHER_ALG_AES,
3194 			 .mode = CIPHER_MODE_CBC,
3195 			 },
3196 	 .auth_info = {
3197 		       .alg = HASH_ALG_MD5,
3198 		       .mode = HASH_MODE_HMAC,
3199 		       },
3200 	 .auth_first = 0,
3201 	 },
3202 	{
3203 	 .type = CRYPTO_ALG_TYPE_AEAD,
3204 	 .alg.aead = {
3205 		 .base = {
3206 			.cra_name = "authenc(hmac(sha1),cbc(aes))",
3207 			.cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3208 			.cra_blocksize = AES_BLOCK_SIZE,
3209 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3210 				     CRYPTO_ALG_ASYNC |
3211 				     CRYPTO_ALG_ALLOCATES_MEMORY
3212 		 },
3213 		 .setkey = aead_authenc_setkey,
3214 		 .ivsize = AES_BLOCK_SIZE,
3215 		 .maxauthsize = SHA1_DIGEST_SIZE,
3216 	 },
3217 	 .cipher_info = {
3218 			 .alg = CIPHER_ALG_AES,
3219 			 .mode = CIPHER_MODE_CBC,
3220 			 },
3221 	 .auth_info = {
3222 		       .alg = HASH_ALG_SHA1,
3223 		       .mode = HASH_MODE_HMAC,
3224 		       },
3225 	 .auth_first = 0,
3226 	 },
3227 	{
3228 	 .type = CRYPTO_ALG_TYPE_AEAD,
3229 	 .alg.aead = {
3230 		 .base = {
3231 			.cra_name = "authenc(hmac(sha256),cbc(aes))",
3232 			.cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3233 			.cra_blocksize = AES_BLOCK_SIZE,
3234 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3235 				     CRYPTO_ALG_ASYNC |
3236 				     CRYPTO_ALG_ALLOCATES_MEMORY
3237 		 },
3238 		 .setkey = aead_authenc_setkey,
3239 		 .ivsize = AES_BLOCK_SIZE,
3240 		 .maxauthsize = SHA256_DIGEST_SIZE,
3241 	 },
3242 	 .cipher_info = {
3243 			 .alg = CIPHER_ALG_AES,
3244 			 .mode = CIPHER_MODE_CBC,
3245 			 },
3246 	 .auth_info = {
3247 		       .alg = HASH_ALG_SHA256,
3248 		       .mode = HASH_MODE_HMAC,
3249 		       },
3250 	 .auth_first = 0,
3251 	 },
3252 	{
3253 	 .type = CRYPTO_ALG_TYPE_AEAD,
3254 	 .alg.aead = {
3255 		 .base = {
3256 			.cra_name = "authenc(hmac(md5),cbc(des))",
3257 			.cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3258 			.cra_blocksize = DES_BLOCK_SIZE,
3259 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3260 				     CRYPTO_ALG_ASYNC |
3261 				     CRYPTO_ALG_ALLOCATES_MEMORY
3262 		 },
3263 		 .setkey = aead_authenc_setkey,
3264 		 .ivsize = DES_BLOCK_SIZE,
3265 		 .maxauthsize = MD5_DIGEST_SIZE,
3266 	 },
3267 	 .cipher_info = {
3268 			 .alg = CIPHER_ALG_DES,
3269 			 .mode = CIPHER_MODE_CBC,
3270 			 },
3271 	 .auth_info = {
3272 		       .alg = HASH_ALG_MD5,
3273 		       .mode = HASH_MODE_HMAC,
3274 		       },
3275 	 .auth_first = 0,
3276 	 },
3277 	{
3278 	 .type = CRYPTO_ALG_TYPE_AEAD,
3279 	 .alg.aead = {
3280 		 .base = {
3281 			.cra_name = "authenc(hmac(sha1),cbc(des))",
3282 			.cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3283 			.cra_blocksize = DES_BLOCK_SIZE,
3284 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3285 				     CRYPTO_ALG_ASYNC |
3286 				     CRYPTO_ALG_ALLOCATES_MEMORY
3287 		 },
3288 		 .setkey = aead_authenc_setkey,
3289 		 .ivsize = DES_BLOCK_SIZE,
3290 		 .maxauthsize = SHA1_DIGEST_SIZE,
3291 	 },
3292 	 .cipher_info = {
3293 			 .alg = CIPHER_ALG_DES,
3294 			 .mode = CIPHER_MODE_CBC,
3295 			 },
3296 	 .auth_info = {
3297 		       .alg = HASH_ALG_SHA1,
3298 		       .mode = HASH_MODE_HMAC,
3299 		       },
3300 	 .auth_first = 0,
3301 	 },
3302 	{
3303 	 .type = CRYPTO_ALG_TYPE_AEAD,
3304 	 .alg.aead = {
3305 		 .base = {
3306 			.cra_name = "authenc(hmac(sha224),cbc(des))",
3307 			.cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3308 			.cra_blocksize = DES_BLOCK_SIZE,
3309 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3310 				     CRYPTO_ALG_ASYNC |
3311 				     CRYPTO_ALG_ALLOCATES_MEMORY
3312 		 },
3313 		 .setkey = aead_authenc_setkey,
3314 		 .ivsize = DES_BLOCK_SIZE,
3315 		 .maxauthsize = SHA224_DIGEST_SIZE,
3316 	 },
3317 	 .cipher_info = {
3318 			 .alg = CIPHER_ALG_DES,
3319 			 .mode = CIPHER_MODE_CBC,
3320 			 },
3321 	 .auth_info = {
3322 		       .alg = HASH_ALG_SHA224,
3323 		       .mode = HASH_MODE_HMAC,
3324 		       },
3325 	 .auth_first = 0,
3326 	 },
3327 	{
3328 	 .type = CRYPTO_ALG_TYPE_AEAD,
3329 	 .alg.aead = {
3330 		 .base = {
3331 			.cra_name = "authenc(hmac(sha256),cbc(des))",
3332 			.cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3333 			.cra_blocksize = DES_BLOCK_SIZE,
3334 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3335 				     CRYPTO_ALG_ASYNC |
3336 				     CRYPTO_ALG_ALLOCATES_MEMORY
3337 		 },
3338 		 .setkey = aead_authenc_setkey,
3339 		 .ivsize = DES_BLOCK_SIZE,
3340 		 .maxauthsize = SHA256_DIGEST_SIZE,
3341 	 },
3342 	 .cipher_info = {
3343 			 .alg = CIPHER_ALG_DES,
3344 			 .mode = CIPHER_MODE_CBC,
3345 			 },
3346 	 .auth_info = {
3347 		       .alg = HASH_ALG_SHA256,
3348 		       .mode = HASH_MODE_HMAC,
3349 		       },
3350 	 .auth_first = 0,
3351 	 },
3352 	{
3353 	 .type = CRYPTO_ALG_TYPE_AEAD,
3354 	 .alg.aead = {
3355 		 .base = {
3356 			.cra_name = "authenc(hmac(sha384),cbc(des))",
3357 			.cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3358 			.cra_blocksize = DES_BLOCK_SIZE,
3359 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3360 				     CRYPTO_ALG_ASYNC |
3361 				     CRYPTO_ALG_ALLOCATES_MEMORY
3362 		 },
3363 		 .setkey = aead_authenc_setkey,
3364 		 .ivsize = DES_BLOCK_SIZE,
3365 		 .maxauthsize = SHA384_DIGEST_SIZE,
3366 	 },
3367 	 .cipher_info = {
3368 			 .alg = CIPHER_ALG_DES,
3369 			 .mode = CIPHER_MODE_CBC,
3370 			 },
3371 	 .auth_info = {
3372 		       .alg = HASH_ALG_SHA384,
3373 		       .mode = HASH_MODE_HMAC,
3374 		       },
3375 	 .auth_first = 0,
3376 	 },
3377 	{
3378 	 .type = CRYPTO_ALG_TYPE_AEAD,
3379 	 .alg.aead = {
3380 		 .base = {
3381 			.cra_name = "authenc(hmac(sha512),cbc(des))",
3382 			.cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3383 			.cra_blocksize = DES_BLOCK_SIZE,
3384 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3385 				     CRYPTO_ALG_ASYNC |
3386 				     CRYPTO_ALG_ALLOCATES_MEMORY
3387 		 },
3388 		 .setkey = aead_authenc_setkey,
3389 		 .ivsize = DES_BLOCK_SIZE,
3390 		 .maxauthsize = SHA512_DIGEST_SIZE,
3391 	 },
3392 	 .cipher_info = {
3393 			 .alg = CIPHER_ALG_DES,
3394 			 .mode = CIPHER_MODE_CBC,
3395 			 },
3396 	 .auth_info = {
3397 		       .alg = HASH_ALG_SHA512,
3398 		       .mode = HASH_MODE_HMAC,
3399 		       },
3400 	 .auth_first = 0,
3401 	 },
3402 	{
3403 	 .type = CRYPTO_ALG_TYPE_AEAD,
3404 	 .alg.aead = {
3405 		 .base = {
3406 			.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3407 			.cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3408 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3409 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3410 				     CRYPTO_ALG_ASYNC |
3411 				     CRYPTO_ALG_ALLOCATES_MEMORY
3412 		 },
3413 		 .setkey = aead_authenc_setkey,
3414 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3415 		 .maxauthsize = MD5_DIGEST_SIZE,
3416 	 },
3417 	 .cipher_info = {
3418 			 .alg = CIPHER_ALG_3DES,
3419 			 .mode = CIPHER_MODE_CBC,
3420 			 },
3421 	 .auth_info = {
3422 		       .alg = HASH_ALG_MD5,
3423 		       .mode = HASH_MODE_HMAC,
3424 		       },
3425 	 .auth_first = 0,
3426 	 },
3427 	{
3428 	 .type = CRYPTO_ALG_TYPE_AEAD,
3429 	 .alg.aead = {
3430 		 .base = {
3431 			.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3432 			.cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3433 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3434 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3435 				     CRYPTO_ALG_ASYNC |
3436 				     CRYPTO_ALG_ALLOCATES_MEMORY
3437 		 },
3438 		 .setkey = aead_authenc_setkey,
3439 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3440 		 .maxauthsize = SHA1_DIGEST_SIZE,
3441 	 },
3442 	 .cipher_info = {
3443 			 .alg = CIPHER_ALG_3DES,
3444 			 .mode = CIPHER_MODE_CBC,
3445 			 },
3446 	 .auth_info = {
3447 		       .alg = HASH_ALG_SHA1,
3448 		       .mode = HASH_MODE_HMAC,
3449 		       },
3450 	 .auth_first = 0,
3451 	 },
3452 	{
3453 	 .type = CRYPTO_ALG_TYPE_AEAD,
3454 	 .alg.aead = {
3455 		 .base = {
3456 			.cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3457 			.cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3458 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3459 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3460 				     CRYPTO_ALG_ASYNC |
3461 				     CRYPTO_ALG_ALLOCATES_MEMORY
3462 		 },
3463 		 .setkey = aead_authenc_setkey,
3464 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3465 		 .maxauthsize = SHA224_DIGEST_SIZE,
3466 	 },
3467 	 .cipher_info = {
3468 			 .alg = CIPHER_ALG_3DES,
3469 			 .mode = CIPHER_MODE_CBC,
3470 			 },
3471 	 .auth_info = {
3472 		       .alg = HASH_ALG_SHA224,
3473 		       .mode = HASH_MODE_HMAC,
3474 		       },
3475 	 .auth_first = 0,
3476 	 },
3477 	{
3478 	 .type = CRYPTO_ALG_TYPE_AEAD,
3479 	 .alg.aead = {
3480 		 .base = {
3481 			.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3482 			.cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3483 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3484 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3485 				     CRYPTO_ALG_ASYNC |
3486 				     CRYPTO_ALG_ALLOCATES_MEMORY
3487 		 },
3488 		 .setkey = aead_authenc_setkey,
3489 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3490 		 .maxauthsize = SHA256_DIGEST_SIZE,
3491 	 },
3492 	 .cipher_info = {
3493 			 .alg = CIPHER_ALG_3DES,
3494 			 .mode = CIPHER_MODE_CBC,
3495 			 },
3496 	 .auth_info = {
3497 		       .alg = HASH_ALG_SHA256,
3498 		       .mode = HASH_MODE_HMAC,
3499 		       },
3500 	 .auth_first = 0,
3501 	 },
3502 	{
3503 	 .type = CRYPTO_ALG_TYPE_AEAD,
3504 	 .alg.aead = {
3505 		 .base = {
3506 			.cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3507 			.cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3508 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3509 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3510 				     CRYPTO_ALG_ASYNC |
3511 				     CRYPTO_ALG_ALLOCATES_MEMORY
3512 		 },
3513 		 .setkey = aead_authenc_setkey,
3514 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3515 		 .maxauthsize = SHA384_DIGEST_SIZE,
3516 	 },
3517 	 .cipher_info = {
3518 			 .alg = CIPHER_ALG_3DES,
3519 			 .mode = CIPHER_MODE_CBC,
3520 			 },
3521 	 .auth_info = {
3522 		       .alg = HASH_ALG_SHA384,
3523 		       .mode = HASH_MODE_HMAC,
3524 		       },
3525 	 .auth_first = 0,
3526 	 },
3527 	{
3528 	 .type = CRYPTO_ALG_TYPE_AEAD,
3529 	 .alg.aead = {
3530 		 .base = {
3531 			.cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3532 			.cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3533 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3534 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3535 				     CRYPTO_ALG_ASYNC |
3536 				     CRYPTO_ALG_ALLOCATES_MEMORY
3537 		 },
3538 		 .setkey = aead_authenc_setkey,
3539 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3540 		 .maxauthsize = SHA512_DIGEST_SIZE,
3541 	 },
3542 	 .cipher_info = {
3543 			 .alg = CIPHER_ALG_3DES,
3544 			 .mode = CIPHER_MODE_CBC,
3545 			 },
3546 	 .auth_info = {
3547 		       .alg = HASH_ALG_SHA512,
3548 		       .mode = HASH_MODE_HMAC,
3549 		       },
3550 	 .auth_first = 0,
3551 	 },
3552 
3553 /* SKCIPHER algorithms. */
3554 	{
3555 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3556 	 .alg.skcipher = {
3557 			.base.cra_name = "ofb(des)",
3558 			.base.cra_driver_name = "ofb-des-iproc",
3559 			.base.cra_blocksize = DES_BLOCK_SIZE,
3560 			.min_keysize = DES_KEY_SIZE,
3561 			.max_keysize = DES_KEY_SIZE,
3562 			.ivsize = DES_BLOCK_SIZE,
3563 			},
3564 	 .cipher_info = {
3565 			 .alg = CIPHER_ALG_DES,
3566 			 .mode = CIPHER_MODE_OFB,
3567 			 },
3568 	 .auth_info = {
3569 		       .alg = HASH_ALG_NONE,
3570 		       .mode = HASH_MODE_NONE,
3571 		       },
3572 	 },
3573 	{
3574 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3575 	 .alg.skcipher = {
3576 			.base.cra_name = "cbc(des)",
3577 			.base.cra_driver_name = "cbc-des-iproc",
3578 			.base.cra_blocksize = DES_BLOCK_SIZE,
3579 			.min_keysize = DES_KEY_SIZE,
3580 			.max_keysize = DES_KEY_SIZE,
3581 			.ivsize = DES_BLOCK_SIZE,
3582 			},
3583 	 .cipher_info = {
3584 			 .alg = CIPHER_ALG_DES,
3585 			 .mode = CIPHER_MODE_CBC,
3586 			 },
3587 	 .auth_info = {
3588 		       .alg = HASH_ALG_NONE,
3589 		       .mode = HASH_MODE_NONE,
3590 		       },
3591 	 },
3592 	{
3593 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3594 	 .alg.skcipher = {
3595 			.base.cra_name = "ecb(des)",
3596 			.base.cra_driver_name = "ecb-des-iproc",
3597 			.base.cra_blocksize = DES_BLOCK_SIZE,
3598 			.min_keysize = DES_KEY_SIZE,
3599 			.max_keysize = DES_KEY_SIZE,
3600 			.ivsize = 0,
3601 			},
3602 	 .cipher_info = {
3603 			 .alg = CIPHER_ALG_DES,
3604 			 .mode = CIPHER_MODE_ECB,
3605 			 },
3606 	 .auth_info = {
3607 		       .alg = HASH_ALG_NONE,
3608 		       .mode = HASH_MODE_NONE,
3609 		       },
3610 	 },
3611 	{
3612 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3613 	 .alg.skcipher = {
3614 			.base.cra_name = "ofb(des3_ede)",
3615 			.base.cra_driver_name = "ofb-des3-iproc",
3616 			.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3617 			.min_keysize = DES3_EDE_KEY_SIZE,
3618 			.max_keysize = DES3_EDE_KEY_SIZE,
3619 			.ivsize = DES3_EDE_BLOCK_SIZE,
3620 			},
3621 	 .cipher_info = {
3622 			 .alg = CIPHER_ALG_3DES,
3623 			 .mode = CIPHER_MODE_OFB,
3624 			 },
3625 	 .auth_info = {
3626 		       .alg = HASH_ALG_NONE,
3627 		       .mode = HASH_MODE_NONE,
3628 		       },
3629 	 },
3630 	{
3631 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3632 	 .alg.skcipher = {
3633 			.base.cra_name = "cbc(des3_ede)",
3634 			.base.cra_driver_name = "cbc-des3-iproc",
3635 			.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3636 			.min_keysize = DES3_EDE_KEY_SIZE,
3637 			.max_keysize = DES3_EDE_KEY_SIZE,
3638 			.ivsize = DES3_EDE_BLOCK_SIZE,
3639 			},
3640 	 .cipher_info = {
3641 			 .alg = CIPHER_ALG_3DES,
3642 			 .mode = CIPHER_MODE_CBC,
3643 			 },
3644 	 .auth_info = {
3645 		       .alg = HASH_ALG_NONE,
3646 		       .mode = HASH_MODE_NONE,
3647 		       },
3648 	 },
3649 	{
3650 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3651 	 .alg.skcipher = {
3652 			.base.cra_name = "ecb(des3_ede)",
3653 			.base.cra_driver_name = "ecb-des3-iproc",
3654 			.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3655 			.min_keysize = DES3_EDE_KEY_SIZE,
3656 			.max_keysize = DES3_EDE_KEY_SIZE,
3657 			.ivsize = 0,
3658 			},
3659 	 .cipher_info = {
3660 			 .alg = CIPHER_ALG_3DES,
3661 			 .mode = CIPHER_MODE_ECB,
3662 			 },
3663 	 .auth_info = {
3664 		       .alg = HASH_ALG_NONE,
3665 		       .mode = HASH_MODE_NONE,
3666 		       },
3667 	 },
3668 	{
3669 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3670 	 .alg.skcipher = {
3671 			.base.cra_name = "ofb(aes)",
3672 			.base.cra_driver_name = "ofb-aes-iproc",
3673 			.base.cra_blocksize = AES_BLOCK_SIZE,
3674 			.min_keysize = AES_MIN_KEY_SIZE,
3675 			.max_keysize = AES_MAX_KEY_SIZE,
3676 			.ivsize = AES_BLOCK_SIZE,
3677 			},
3678 	 .cipher_info = {
3679 			 .alg = CIPHER_ALG_AES,
3680 			 .mode = CIPHER_MODE_OFB,
3681 			 },
3682 	 .auth_info = {
3683 		       .alg = HASH_ALG_NONE,
3684 		       .mode = HASH_MODE_NONE,
3685 		       },
3686 	 },
3687 	{
3688 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3689 	 .alg.skcipher = {
3690 			.base.cra_name = "cbc(aes)",
3691 			.base.cra_driver_name = "cbc-aes-iproc",
3692 			.base.cra_blocksize = AES_BLOCK_SIZE,
3693 			.min_keysize = AES_MIN_KEY_SIZE,
3694 			.max_keysize = AES_MAX_KEY_SIZE,
3695 			.ivsize = AES_BLOCK_SIZE,
3696 			},
3697 	 .cipher_info = {
3698 			 .alg = CIPHER_ALG_AES,
3699 			 .mode = CIPHER_MODE_CBC,
3700 			 },
3701 	 .auth_info = {
3702 		       .alg = HASH_ALG_NONE,
3703 		       .mode = HASH_MODE_NONE,
3704 		       },
3705 	 },
3706 	{
3707 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3708 	 .alg.skcipher = {
3709 			.base.cra_name = "ecb(aes)",
3710 			.base.cra_driver_name = "ecb-aes-iproc",
3711 			.base.cra_blocksize = AES_BLOCK_SIZE,
3712 			.min_keysize = AES_MIN_KEY_SIZE,
3713 			.max_keysize = AES_MAX_KEY_SIZE,
3714 			.ivsize = 0,
3715 			},
3716 	 .cipher_info = {
3717 			 .alg = CIPHER_ALG_AES,
3718 			 .mode = CIPHER_MODE_ECB,
3719 			 },
3720 	 .auth_info = {
3721 		       .alg = HASH_ALG_NONE,
3722 		       .mode = HASH_MODE_NONE,
3723 		       },
3724 	 },
3725 	{
3726 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3727 	 .alg.skcipher = {
3728 			.base.cra_name = "ctr(aes)",
3729 			.base.cra_driver_name = "ctr-aes-iproc",
3730 			.base.cra_blocksize = AES_BLOCK_SIZE,
3731 			.min_keysize = AES_MIN_KEY_SIZE,
3732 			.max_keysize = AES_MAX_KEY_SIZE,
3733 			.ivsize = AES_BLOCK_SIZE,
3734 			},
3735 	 .cipher_info = {
3736 			 .alg = CIPHER_ALG_AES,
3737 			 .mode = CIPHER_MODE_CTR,
3738 			 },
3739 	 .auth_info = {
3740 		       .alg = HASH_ALG_NONE,
3741 		       .mode = HASH_MODE_NONE,
3742 		       },
3743 	 },
3744 {
3745 	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3746 	 .alg.skcipher = {
3747 			.base.cra_name = "xts(aes)",
3748 			.base.cra_driver_name = "xts-aes-iproc",
3749 			.base.cra_blocksize = AES_BLOCK_SIZE,
3750 			.min_keysize = 2 * AES_MIN_KEY_SIZE,
3751 			.max_keysize = 2 * AES_MAX_KEY_SIZE,
3752 			.ivsize = AES_BLOCK_SIZE,
3753 			},
3754 	 .cipher_info = {
3755 			 .alg = CIPHER_ALG_AES,
3756 			 .mode = CIPHER_MODE_XTS,
3757 			 },
3758 	 .auth_info = {
3759 		       .alg = HASH_ALG_NONE,
3760 		       .mode = HASH_MODE_NONE,
3761 		       },
3762 	 },
3763 
3764 /* AHASH algorithms. */
3765 	{
3766 	 .type = CRYPTO_ALG_TYPE_AHASH,
3767 	 .alg.hash = {
3768 		      .halg.digestsize = MD5_DIGEST_SIZE,
3769 		      .halg.base = {
3770 				    .cra_name = "md5",
3771 				    .cra_driver_name = "md5-iproc",
3772 				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3773 				    .cra_flags = CRYPTO_ALG_ASYNC |
3774 						 CRYPTO_ALG_ALLOCATES_MEMORY,
3775 				}
3776 		      },
3777 	 .cipher_info = {
3778 			 .alg = CIPHER_ALG_NONE,
3779 			 .mode = CIPHER_MODE_NONE,
3780 			 },
3781 	 .auth_info = {
3782 		       .alg = HASH_ALG_MD5,
3783 		       .mode = HASH_MODE_HASH,
3784 		       },
3785 	 },
3786 	{
3787 	 .type = CRYPTO_ALG_TYPE_AHASH,
3788 	 .alg.hash = {
3789 		      .halg.digestsize = MD5_DIGEST_SIZE,
3790 		      .halg.base = {
3791 				    .cra_name = "hmac(md5)",
3792 				    .cra_driver_name = "hmac-md5-iproc",
3793 				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3794 				}
3795 		      },
3796 	 .cipher_info = {
3797 			 .alg = CIPHER_ALG_NONE,
3798 			 .mode = CIPHER_MODE_NONE,
3799 			 },
3800 	 .auth_info = {
3801 		       .alg = HASH_ALG_MD5,
3802 		       .mode = HASH_MODE_HMAC,
3803 		       },
3804 	 },
3805 	{.type = CRYPTO_ALG_TYPE_AHASH,
3806 	 .alg.hash = {
3807 		      .halg.digestsize = SHA1_DIGEST_SIZE,
3808 		      .halg.base = {
3809 				    .cra_name = "sha1",
3810 				    .cra_driver_name = "sha1-iproc",
3811 				    .cra_blocksize = SHA1_BLOCK_SIZE,
3812 				}
3813 		      },
3814 	 .cipher_info = {
3815 			 .alg = CIPHER_ALG_NONE,
3816 			 .mode = CIPHER_MODE_NONE,
3817 			 },
3818 	 .auth_info = {
3819 		       .alg = HASH_ALG_SHA1,
3820 		       .mode = HASH_MODE_HASH,
3821 		       },
3822 	 },
3823 	{.type = CRYPTO_ALG_TYPE_AHASH,
3824 	 .alg.hash = {
3825 		      .halg.digestsize = SHA1_DIGEST_SIZE,
3826 		      .halg.base = {
3827 				    .cra_name = "hmac(sha1)",
3828 				    .cra_driver_name = "hmac-sha1-iproc",
3829 				    .cra_blocksize = SHA1_BLOCK_SIZE,
3830 				}
3831 		      },
3832 	 .cipher_info = {
3833 			 .alg = CIPHER_ALG_NONE,
3834 			 .mode = CIPHER_MODE_NONE,
3835 			 },
3836 	 .auth_info = {
3837 		       .alg = HASH_ALG_SHA1,
3838 		       .mode = HASH_MODE_HMAC,
3839 		       },
3840 	 },
3841 	{.type = CRYPTO_ALG_TYPE_AHASH,
3842 	 .alg.hash = {
3843 			.halg.digestsize = SHA224_DIGEST_SIZE,
3844 			.halg.base = {
3845 				    .cra_name = "sha224",
3846 				    .cra_driver_name = "sha224-iproc",
3847 				    .cra_blocksize = SHA224_BLOCK_SIZE,
3848 			}
3849 		      },
3850 	 .cipher_info = {
3851 			 .alg = CIPHER_ALG_NONE,
3852 			 .mode = CIPHER_MODE_NONE,
3853 			 },
3854 	 .auth_info = {
3855 		       .alg = HASH_ALG_SHA224,
3856 		       .mode = HASH_MODE_HASH,
3857 		       },
3858 	 },
3859 	{.type = CRYPTO_ALG_TYPE_AHASH,
3860 	 .alg.hash = {
3861 		      .halg.digestsize = SHA224_DIGEST_SIZE,
3862 		      .halg.base = {
3863 				    .cra_name = "hmac(sha224)",
3864 				    .cra_driver_name = "hmac-sha224-iproc",
3865 				    .cra_blocksize = SHA224_BLOCK_SIZE,
3866 				}
3867 		      },
3868 	 .cipher_info = {
3869 			 .alg = CIPHER_ALG_NONE,
3870 			 .mode = CIPHER_MODE_NONE,
3871 			 },
3872 	 .auth_info = {
3873 		       .alg = HASH_ALG_SHA224,
3874 		       .mode = HASH_MODE_HMAC,
3875 		       },
3876 	 },
3877 	{.type = CRYPTO_ALG_TYPE_AHASH,
3878 	 .alg.hash = {
3879 		      .halg.digestsize = SHA256_DIGEST_SIZE,
3880 		      .halg.base = {
3881 				    .cra_name = "sha256",
3882 				    .cra_driver_name = "sha256-iproc",
3883 				    .cra_blocksize = SHA256_BLOCK_SIZE,
3884 				}
3885 		      },
3886 	 .cipher_info = {
3887 			 .alg = CIPHER_ALG_NONE,
3888 			 .mode = CIPHER_MODE_NONE,
3889 			 },
3890 	 .auth_info = {
3891 		       .alg = HASH_ALG_SHA256,
3892 		       .mode = HASH_MODE_HASH,
3893 		       },
3894 	 },
3895 	{.type = CRYPTO_ALG_TYPE_AHASH,
3896 	 .alg.hash = {
3897 		      .halg.digestsize = SHA256_DIGEST_SIZE,
3898 		      .halg.base = {
3899 				    .cra_name = "hmac(sha256)",
3900 				    .cra_driver_name = "hmac-sha256-iproc",
3901 				    .cra_blocksize = SHA256_BLOCK_SIZE,
3902 				}
3903 		      },
3904 	 .cipher_info = {
3905 			 .alg = CIPHER_ALG_NONE,
3906 			 .mode = CIPHER_MODE_NONE,
3907 			 },
3908 	 .auth_info = {
3909 		       .alg = HASH_ALG_SHA256,
3910 		       .mode = HASH_MODE_HMAC,
3911 		       },
3912 	 },
3913 	{
3914 	.type = CRYPTO_ALG_TYPE_AHASH,
3915 	 .alg.hash = {
3916 		      .halg.digestsize = SHA384_DIGEST_SIZE,
3917 		      .halg.base = {
3918 				    .cra_name = "sha384",
3919 				    .cra_driver_name = "sha384-iproc",
3920 				    .cra_blocksize = SHA384_BLOCK_SIZE,
3921 				}
3922 		      },
3923 	 .cipher_info = {
3924 			 .alg = CIPHER_ALG_NONE,
3925 			 .mode = CIPHER_MODE_NONE,
3926 			 },
3927 	 .auth_info = {
3928 		       .alg = HASH_ALG_SHA384,
3929 		       .mode = HASH_MODE_HASH,
3930 		       },
3931 	 },
3932 	{
3933 	 .type = CRYPTO_ALG_TYPE_AHASH,
3934 	 .alg.hash = {
3935 		      .halg.digestsize = SHA384_DIGEST_SIZE,
3936 		      .halg.base = {
3937 				    .cra_name = "hmac(sha384)",
3938 				    .cra_driver_name = "hmac-sha384-iproc",
3939 				    .cra_blocksize = SHA384_BLOCK_SIZE,
3940 				}
3941 		      },
3942 	 .cipher_info = {
3943 			 .alg = CIPHER_ALG_NONE,
3944 			 .mode = CIPHER_MODE_NONE,
3945 			 },
3946 	 .auth_info = {
3947 		       .alg = HASH_ALG_SHA384,
3948 		       .mode = HASH_MODE_HMAC,
3949 		       },
3950 	 },
3951 	{
3952 	 .type = CRYPTO_ALG_TYPE_AHASH,
3953 	 .alg.hash = {
3954 		      .halg.digestsize = SHA512_DIGEST_SIZE,
3955 		      .halg.base = {
3956 				    .cra_name = "sha512",
3957 				    .cra_driver_name = "sha512-iproc",
3958 				    .cra_blocksize = SHA512_BLOCK_SIZE,
3959 				}
3960 		      },
3961 	 .cipher_info = {
3962 			 .alg = CIPHER_ALG_NONE,
3963 			 .mode = CIPHER_MODE_NONE,
3964 			 },
3965 	 .auth_info = {
3966 		       .alg = HASH_ALG_SHA512,
3967 		       .mode = HASH_MODE_HASH,
3968 		       },
3969 	 },
3970 	{
3971 	 .type = CRYPTO_ALG_TYPE_AHASH,
3972 	 .alg.hash = {
3973 		      .halg.digestsize = SHA512_DIGEST_SIZE,
3974 		      .halg.base = {
3975 				    .cra_name = "hmac(sha512)",
3976 				    .cra_driver_name = "hmac-sha512-iproc",
3977 				    .cra_blocksize = SHA512_BLOCK_SIZE,
3978 				}
3979 		      },
3980 	 .cipher_info = {
3981 			 .alg = CIPHER_ALG_NONE,
3982 			 .mode = CIPHER_MODE_NONE,
3983 			 },
3984 	 .auth_info = {
3985 		       .alg = HASH_ALG_SHA512,
3986 		       .mode = HASH_MODE_HMAC,
3987 		       },
3988 	 },
3989 	{
3990 	 .type = CRYPTO_ALG_TYPE_AHASH,
3991 	 .alg.hash = {
3992 		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
3993 		      .halg.base = {
3994 				    .cra_name = "sha3-224",
3995 				    .cra_driver_name = "sha3-224-iproc",
3996 				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
3997 				}
3998 		      },
3999 	 .cipher_info = {
4000 			 .alg = CIPHER_ALG_NONE,
4001 			 .mode = CIPHER_MODE_NONE,
4002 			 },
4003 	 .auth_info = {
4004 		       .alg = HASH_ALG_SHA3_224,
4005 		       .mode = HASH_MODE_HASH,
4006 		       },
4007 	 },
4008 	{
4009 	 .type = CRYPTO_ALG_TYPE_AHASH,
4010 	 .alg.hash = {
4011 		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
4012 		      .halg.base = {
4013 				    .cra_name = "hmac(sha3-224)",
4014 				    .cra_driver_name = "hmac-sha3-224-iproc",
4015 				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4016 				}
4017 		      },
4018 	 .cipher_info = {
4019 			 .alg = CIPHER_ALG_NONE,
4020 			 .mode = CIPHER_MODE_NONE,
4021 			 },
4022 	 .auth_info = {
4023 		       .alg = HASH_ALG_SHA3_224,
4024 		       .mode = HASH_MODE_HMAC
4025 		       },
4026 	 },
4027 	{
4028 	 .type = CRYPTO_ALG_TYPE_AHASH,
4029 	 .alg.hash = {
4030 		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
4031 		      .halg.base = {
4032 				    .cra_name = "sha3-256",
4033 				    .cra_driver_name = "sha3-256-iproc",
4034 				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
4035 				}
4036 		      },
4037 	 .cipher_info = {
4038 			 .alg = CIPHER_ALG_NONE,
4039 			 .mode = CIPHER_MODE_NONE,
4040 			 },
4041 	 .auth_info = {
4042 		       .alg = HASH_ALG_SHA3_256,
4043 		       .mode = HASH_MODE_HASH,
4044 		       },
4045 	 },
4046 	{
4047 	 .type = CRYPTO_ALG_TYPE_AHASH,
4048 	 .alg.hash = {
4049 		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
4050 		      .halg.base = {
4051 				    .cra_name = "hmac(sha3-256)",
4052 				    .cra_driver_name = "hmac-sha3-256-iproc",
4053 				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
4054 				}
4055 		      },
4056 	 .cipher_info = {
4057 			 .alg = CIPHER_ALG_NONE,
4058 			 .mode = CIPHER_MODE_NONE,
4059 			 },
4060 	 .auth_info = {
4061 		       .alg = HASH_ALG_SHA3_256,
4062 		       .mode = HASH_MODE_HMAC,
4063 		       },
4064 	 },
4065 	{
4066 	 .type = CRYPTO_ALG_TYPE_AHASH,
4067 	 .alg.hash = {
4068 		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
4069 		      .halg.base = {
4070 				    .cra_name = "sha3-384",
4071 				    .cra_driver_name = "sha3-384-iproc",
4072 				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4073 				}
4074 		      },
4075 	 .cipher_info = {
4076 			 .alg = CIPHER_ALG_NONE,
4077 			 .mode = CIPHER_MODE_NONE,
4078 			 },
4079 	 .auth_info = {
4080 		       .alg = HASH_ALG_SHA3_384,
4081 		       .mode = HASH_MODE_HASH,
4082 		       },
4083 	 },
4084 	{
4085 	 .type = CRYPTO_ALG_TYPE_AHASH,
4086 	 .alg.hash = {
4087 		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
4088 		      .halg.base = {
4089 				    .cra_name = "hmac(sha3-384)",
4090 				    .cra_driver_name = "hmac-sha3-384-iproc",
4091 				    .cra_blocksize = SHA3_384_BLOCK_SIZE,
4092 				}
4093 		      },
4094 	 .cipher_info = {
4095 			 .alg = CIPHER_ALG_NONE,
4096 			 .mode = CIPHER_MODE_NONE,
4097 			 },
4098 	 .auth_info = {
4099 		       .alg = HASH_ALG_SHA3_384,
4100 		       .mode = HASH_MODE_HMAC,
4101 		       },
4102 	 },
4103 	{
4104 	 .type = CRYPTO_ALG_TYPE_AHASH,
4105 	 .alg.hash = {
4106 		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4107 		      .halg.base = {
4108 				    .cra_name = "sha3-512",
4109 				    .cra_driver_name = "sha3-512-iproc",
4110 				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4111 				}
4112 		      },
4113 	 .cipher_info = {
4114 			 .alg = CIPHER_ALG_NONE,
4115 			 .mode = CIPHER_MODE_NONE,
4116 			 },
4117 	 .auth_info = {
4118 		       .alg = HASH_ALG_SHA3_512,
4119 		       .mode = HASH_MODE_HASH,
4120 		       },
4121 	 },
4122 	{
4123 	 .type = CRYPTO_ALG_TYPE_AHASH,
4124 	 .alg.hash = {
4125 		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4126 		      .halg.base = {
4127 				    .cra_name = "hmac(sha3-512)",
4128 				    .cra_driver_name = "hmac-sha3-512-iproc",
4129 				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4130 				}
4131 		      },
4132 	 .cipher_info = {
4133 			 .alg = CIPHER_ALG_NONE,
4134 			 .mode = CIPHER_MODE_NONE,
4135 			 },
4136 	 .auth_info = {
4137 		       .alg = HASH_ALG_SHA3_512,
4138 		       .mode = HASH_MODE_HMAC,
4139 		       },
4140 	 },
4141 	{
4142 	 .type = CRYPTO_ALG_TYPE_AHASH,
4143 	 .alg.hash = {
4144 		      .halg.digestsize = AES_BLOCK_SIZE,
4145 		      .halg.base = {
4146 				    .cra_name = "xcbc(aes)",
4147 				    .cra_driver_name = "xcbc-aes-iproc",
4148 				    .cra_blocksize = AES_BLOCK_SIZE,
4149 				}
4150 		      },
4151 	 .cipher_info = {
4152 			 .alg = CIPHER_ALG_NONE,
4153 			 .mode = CIPHER_MODE_NONE,
4154 			 },
4155 	 .auth_info = {
4156 		       .alg = HASH_ALG_AES,
4157 		       .mode = HASH_MODE_XCBC,
4158 		       },
4159 	 },
4160 	{
4161 	 .type = CRYPTO_ALG_TYPE_AHASH,
4162 	 .alg.hash = {
4163 		      .halg.digestsize = AES_BLOCK_SIZE,
4164 		      .halg.base = {
4165 				    .cra_name = "cmac(aes)",
4166 				    .cra_driver_name = "cmac-aes-iproc",
4167 				    .cra_blocksize = AES_BLOCK_SIZE,
4168 				}
4169 		      },
4170 	 .cipher_info = {
4171 			 .alg = CIPHER_ALG_NONE,
4172 			 .mode = CIPHER_MODE_NONE,
4173 			 },
4174 	 .auth_info = {
4175 		       .alg = HASH_ALG_AES,
4176 		       .mode = HASH_MODE_CMAC,
4177 		       },
4178 	 },
4179 };
4180 
4181 static int generic_cra_init(struct crypto_tfm *tfm,
4182 			    struct iproc_alg_s *cipher_alg)
4183 {
4184 	struct spu_hw *spu = &iproc_priv.spu;
4185 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4186 	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4187 
4188 	flow_log("%s()\n", __func__);
4189 
4190 	ctx->alg = cipher_alg;
4191 	ctx->cipher = cipher_alg->cipher_info;
4192 	ctx->auth = cipher_alg->auth_info;
4193 	ctx->auth_first = cipher_alg->auth_first;
4194 	ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4195 						    ctx->cipher.mode,
4196 						    blocksize);
4197 	ctx->fallback_cipher = NULL;
4198 
4199 	ctx->enckeylen = 0;
4200 	ctx->authkeylen = 0;
4201 
4202 	atomic_inc(&iproc_priv.stream_count);
4203 	atomic_inc(&iproc_priv.session_count);
4204 
4205 	return 0;
4206 }
4207 
4208 static int skcipher_init_tfm(struct crypto_skcipher *skcipher)
4209 {
4210 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
4211 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
4212 	struct iproc_alg_s *cipher_alg;
4213 
4214 	flow_log("%s()\n", __func__);
4215 
4216 	crypto_skcipher_set_reqsize(skcipher, sizeof(struct iproc_reqctx_s));
4217 
4218 	cipher_alg = container_of(alg, struct iproc_alg_s, alg.skcipher);
4219 	return generic_cra_init(tfm, cipher_alg);
4220 }
4221 
4222 static int ahash_cra_init(struct crypto_tfm *tfm)
4223 {
4224 	int err;
4225 	struct crypto_alg *alg = tfm->__crt_alg;
4226 	struct iproc_alg_s *cipher_alg;
4227 
4228 	cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4229 				  alg.hash);
4230 
4231 	err = generic_cra_init(tfm, cipher_alg);
4232 	flow_log("%s()\n", __func__);
4233 
4234 	/*
4235 	 * export state size has to be < 512 bytes. So don't include msg bufs
4236 	 * in state size.
4237 	 */
4238 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4239 				 sizeof(struct iproc_reqctx_s));
4240 
4241 	return err;
4242 }
4243 
4244 static int aead_cra_init(struct crypto_aead *aead)
4245 {
4246 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4247 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4248 	struct crypto_alg *alg = tfm->__crt_alg;
4249 	struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4250 	struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4251 						      alg.aead);
4252 
4253 	int err = generic_cra_init(tfm, cipher_alg);
4254 
4255 	flow_log("%s()\n", __func__);
4256 
4257 	crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4258 	ctx->is_esp = false;
4259 	ctx->salt_len = 0;
4260 	ctx->salt_offset = 0;
4261 
4262 	/* random first IV */
4263 	get_random_bytes(ctx->iv, MAX_IV_SIZE);
4264 	flow_dump("  iv: ", ctx->iv, MAX_IV_SIZE);
4265 
4266 	if (!err) {
4267 		if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4268 			flow_log("%s() creating fallback cipher\n", __func__);
4269 
4270 			ctx->fallback_cipher =
4271 			    crypto_alloc_aead(alg->cra_name, 0,
4272 					      CRYPTO_ALG_ASYNC |
4273 					      CRYPTO_ALG_NEED_FALLBACK);
4274 			if (IS_ERR(ctx->fallback_cipher)) {
4275 				pr_err("%s() Error: failed to allocate fallback for %s\n",
4276 				       __func__, alg->cra_name);
4277 				return PTR_ERR(ctx->fallback_cipher);
4278 			}
4279 		}
4280 	}
4281 
4282 	return err;
4283 }
4284 
4285 static void generic_cra_exit(struct crypto_tfm *tfm)
4286 {
4287 	atomic_dec(&iproc_priv.session_count);
4288 }
4289 
4290 static void skcipher_exit_tfm(struct crypto_skcipher *tfm)
4291 {
4292 	generic_cra_exit(crypto_skcipher_tfm(tfm));
4293 }
4294 
4295 static void aead_cra_exit(struct crypto_aead *aead)
4296 {
4297 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4298 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4299 
4300 	generic_cra_exit(tfm);
4301 
4302 	if (ctx->fallback_cipher) {
4303 		crypto_free_aead(ctx->fallback_cipher);
4304 		ctx->fallback_cipher = NULL;
4305 	}
4306 }
4307 
4308 /**
4309  * spu_functions_register() - Specify hardware-specific SPU functions based on
4310  * SPU type read from device tree.
4311  * @dev:	device structure
4312  * @spu_type:	SPU hardware generation
4313  * @spu_subtype: SPU hardware version
4314  */
4315 static void spu_functions_register(struct device *dev,
4316 				   enum spu_spu_type spu_type,
4317 				   enum spu_spu_subtype spu_subtype)
4318 {
4319 	struct spu_hw *spu = &iproc_priv.spu;
4320 
4321 	if (spu_type == SPU_TYPE_SPUM) {
4322 		dev_dbg(dev, "Registering SPUM functions");
4323 		spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4324 		spu->spu_payload_length = spum_payload_length;
4325 		spu->spu_response_hdr_len = spum_response_hdr_len;
4326 		spu->spu_hash_pad_len = spum_hash_pad_len;
4327 		spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4328 		spu->spu_assoc_resp_len = spum_assoc_resp_len;
4329 		spu->spu_aead_ivlen = spum_aead_ivlen;
4330 		spu->spu_hash_type = spum_hash_type;
4331 		spu->spu_digest_size = spum_digest_size;
4332 		spu->spu_create_request = spum_create_request;
4333 		spu->spu_cipher_req_init = spum_cipher_req_init;
4334 		spu->spu_cipher_req_finish = spum_cipher_req_finish;
4335 		spu->spu_request_pad = spum_request_pad;
4336 		spu->spu_tx_status_len = spum_tx_status_len;
4337 		spu->spu_rx_status_len = spum_rx_status_len;
4338 		spu->spu_status_process = spum_status_process;
4339 		spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4340 		spu->spu_ccm_update_iv = spum_ccm_update_iv;
4341 		spu->spu_wordalign_padlen = spum_wordalign_padlen;
4342 		if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4343 			spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4344 		else
4345 			spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4346 	} else {
4347 		dev_dbg(dev, "Registering SPU2 functions");
4348 		spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4349 		spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4350 		spu->spu_payload_length = spu2_payload_length;
4351 		spu->spu_response_hdr_len = spu2_response_hdr_len;
4352 		spu->spu_hash_pad_len = spu2_hash_pad_len;
4353 		spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4354 		spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4355 		spu->spu_aead_ivlen = spu2_aead_ivlen;
4356 		spu->spu_hash_type = spu2_hash_type;
4357 		spu->spu_digest_size = spu2_digest_size;
4358 		spu->spu_create_request = spu2_create_request;
4359 		spu->spu_cipher_req_init = spu2_cipher_req_init;
4360 		spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4361 		spu->spu_request_pad = spu2_request_pad;
4362 		spu->spu_tx_status_len = spu2_tx_status_len;
4363 		spu->spu_rx_status_len = spu2_rx_status_len;
4364 		spu->spu_status_process = spu2_status_process;
4365 		spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4366 		spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4367 		spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4368 	}
4369 }
4370 
4371 /**
4372  * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4373  * channel for the SPU being probed.
4374  * @dev:  SPU driver device structure
4375  *
4376  * Return: 0 if successful
4377  *	   < 0 otherwise
4378  */
4379 static int spu_mb_init(struct device *dev)
4380 {
4381 	struct mbox_client *mcl = &iproc_priv.mcl;
4382 	int err, i;
4383 
4384 	iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4385 				  sizeof(struct mbox_chan *), GFP_KERNEL);
4386 	if (!iproc_priv.mbox)
4387 		return -ENOMEM;
4388 
4389 	mcl->dev = dev;
4390 	mcl->tx_block = false;
4391 	mcl->tx_tout = 0;
4392 	mcl->knows_txdone = true;
4393 	mcl->rx_callback = spu_rx_callback;
4394 	mcl->tx_done = NULL;
4395 
4396 	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4397 		iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4398 		if (IS_ERR(iproc_priv.mbox[i])) {
4399 			err = PTR_ERR(iproc_priv.mbox[i]);
4400 			dev_err(dev,
4401 				"Mbox channel %d request failed with err %d",
4402 				i, err);
4403 			iproc_priv.mbox[i] = NULL;
4404 			goto free_channels;
4405 		}
4406 	}
4407 
4408 	return 0;
4409 free_channels:
4410 	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4411 		if (iproc_priv.mbox[i])
4412 			mbox_free_channel(iproc_priv.mbox[i]);
4413 	}
4414 
4415 	return err;
4416 }
4417 
4418 static void spu_mb_release(struct platform_device *pdev)
4419 {
4420 	int i;
4421 
4422 	for (i = 0; i < iproc_priv.spu.num_chan; i++)
4423 		mbox_free_channel(iproc_priv.mbox[i]);
4424 }
4425 
4426 static void spu_counters_init(void)
4427 {
4428 	int i;
4429 	int j;
4430 
4431 	atomic_set(&iproc_priv.session_count, 0);
4432 	atomic_set(&iproc_priv.stream_count, 0);
4433 	atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
4434 	atomic64_set(&iproc_priv.bytes_in, 0);
4435 	atomic64_set(&iproc_priv.bytes_out, 0);
4436 	for (i = 0; i < SPU_OP_NUM; i++) {
4437 		atomic_set(&iproc_priv.op_counts[i], 0);
4438 		atomic_set(&iproc_priv.setkey_cnt[i], 0);
4439 	}
4440 	for (i = 0; i < CIPHER_ALG_LAST; i++)
4441 		for (j = 0; j < CIPHER_MODE_LAST; j++)
4442 			atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4443 
4444 	for (i = 0; i < HASH_ALG_LAST; i++) {
4445 		atomic_set(&iproc_priv.hash_cnt[i], 0);
4446 		atomic_set(&iproc_priv.hmac_cnt[i], 0);
4447 	}
4448 	for (i = 0; i < AEAD_TYPE_LAST; i++)
4449 		atomic_set(&iproc_priv.aead_cnt[i], 0);
4450 
4451 	atomic_set(&iproc_priv.mb_no_spc, 0);
4452 	atomic_set(&iproc_priv.mb_send_fail, 0);
4453 	atomic_set(&iproc_priv.bad_icv, 0);
4454 }
4455 
4456 static int spu_register_skcipher(struct iproc_alg_s *driver_alg)
4457 {
4458 	struct skcipher_alg *crypto = &driver_alg->alg.skcipher;
4459 	int err;
4460 
4461 	crypto->base.cra_module = THIS_MODULE;
4462 	crypto->base.cra_priority = cipher_pri;
4463 	crypto->base.cra_alignmask = 0;
4464 	crypto->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4465 	crypto->base.cra_flags = CRYPTO_ALG_ASYNC |
4466 				 CRYPTO_ALG_ALLOCATES_MEMORY |
4467 				 CRYPTO_ALG_KERN_DRIVER_ONLY;
4468 
4469 	crypto->init = skcipher_init_tfm;
4470 	crypto->exit = skcipher_exit_tfm;
4471 	crypto->setkey = skcipher_setkey;
4472 	crypto->encrypt = skcipher_encrypt;
4473 	crypto->decrypt = skcipher_decrypt;
4474 
4475 	err = crypto_register_skcipher(crypto);
4476 	/* Mark alg as having been registered, if successful */
4477 	if (err == 0)
4478 		driver_alg->registered = true;
4479 	pr_debug("  registered skcipher %s\n", crypto->base.cra_driver_name);
4480 	return err;
4481 }
4482 
4483 static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4484 {
4485 	struct spu_hw *spu = &iproc_priv.spu;
4486 	struct ahash_alg *hash = &driver_alg->alg.hash;
4487 	int err;
4488 
4489 	/* AES-XCBC is the only AES hash type currently supported on SPU-M */
4490 	if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4491 	    (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4492 	    (spu->spu_type == SPU_TYPE_SPUM))
4493 		return 0;
4494 
4495 	/* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4496 	if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4497 	    (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4498 		return 0;
4499 
4500 	hash->halg.base.cra_module = THIS_MODULE;
4501 	hash->halg.base.cra_priority = hash_pri;
4502 	hash->halg.base.cra_alignmask = 0;
4503 	hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4504 	hash->halg.base.cra_init = ahash_cra_init;
4505 	hash->halg.base.cra_exit = generic_cra_exit;
4506 	hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC |
4507 				    CRYPTO_ALG_ALLOCATES_MEMORY;
4508 	hash->halg.statesize = sizeof(struct spu_hash_export_s);
4509 
4510 	if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4511 		hash->init = ahash_init;
4512 		hash->update = ahash_update;
4513 		hash->final = ahash_final;
4514 		hash->finup = ahash_finup;
4515 		hash->digest = ahash_digest;
4516 		if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4517 		    ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4518 		    (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4519 			hash->setkey = ahash_setkey;
4520 		}
4521 	} else {
4522 		hash->setkey = ahash_hmac_setkey;
4523 		hash->init = ahash_hmac_init;
4524 		hash->update = ahash_hmac_update;
4525 		hash->final = ahash_hmac_final;
4526 		hash->finup = ahash_hmac_finup;
4527 		hash->digest = ahash_hmac_digest;
4528 	}
4529 	hash->export = ahash_export;
4530 	hash->import = ahash_import;
4531 
4532 	err = crypto_register_ahash(hash);
4533 	/* Mark alg as having been registered, if successful */
4534 	if (err == 0)
4535 		driver_alg->registered = true;
4536 	pr_debug("  registered ahash %s\n",
4537 		 hash->halg.base.cra_driver_name);
4538 	return err;
4539 }
4540 
4541 static int spu_register_aead(struct iproc_alg_s *driver_alg)
4542 {
4543 	struct aead_alg *aead = &driver_alg->alg.aead;
4544 	int err;
4545 
4546 	aead->base.cra_module = THIS_MODULE;
4547 	aead->base.cra_priority = aead_pri;
4548 	aead->base.cra_alignmask = 0;
4549 	aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4550 
4551 	aead->base.cra_flags |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY;
4552 	/* setkey set in alg initialization */
4553 	aead->setauthsize = aead_setauthsize;
4554 	aead->encrypt = aead_encrypt;
4555 	aead->decrypt = aead_decrypt;
4556 	aead->init = aead_cra_init;
4557 	aead->exit = aead_cra_exit;
4558 
4559 	err = crypto_register_aead(aead);
4560 	/* Mark alg as having been registered, if successful */
4561 	if (err == 0)
4562 		driver_alg->registered = true;
4563 	pr_debug("  registered aead %s\n", aead->base.cra_driver_name);
4564 	return err;
4565 }
4566 
4567 /* register crypto algorithms the device supports */
4568 static int spu_algs_register(struct device *dev)
4569 {
4570 	int i, j;
4571 	int err;
4572 
4573 	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4574 		switch (driver_algs[i].type) {
4575 		case CRYPTO_ALG_TYPE_SKCIPHER:
4576 			err = spu_register_skcipher(&driver_algs[i]);
4577 			break;
4578 		case CRYPTO_ALG_TYPE_AHASH:
4579 			err = spu_register_ahash(&driver_algs[i]);
4580 			break;
4581 		case CRYPTO_ALG_TYPE_AEAD:
4582 			err = spu_register_aead(&driver_algs[i]);
4583 			break;
4584 		default:
4585 			dev_err(dev,
4586 				"iproc-crypto: unknown alg type: %d",
4587 				driver_algs[i].type);
4588 			err = -EINVAL;
4589 		}
4590 
4591 		if (err) {
4592 			dev_err(dev, "alg registration failed with error %d\n",
4593 				err);
4594 			goto err_algs;
4595 		}
4596 	}
4597 
4598 	return 0;
4599 
4600 err_algs:
4601 	for (j = 0; j < i; j++) {
4602 		/* Skip any algorithm not registered */
4603 		if (!driver_algs[j].registered)
4604 			continue;
4605 		switch (driver_algs[j].type) {
4606 		case CRYPTO_ALG_TYPE_SKCIPHER:
4607 			crypto_unregister_skcipher(&driver_algs[j].alg.skcipher);
4608 			driver_algs[j].registered = false;
4609 			break;
4610 		case CRYPTO_ALG_TYPE_AHASH:
4611 			crypto_unregister_ahash(&driver_algs[j].alg.hash);
4612 			driver_algs[j].registered = false;
4613 			break;
4614 		case CRYPTO_ALG_TYPE_AEAD:
4615 			crypto_unregister_aead(&driver_algs[j].alg.aead);
4616 			driver_algs[j].registered = false;
4617 			break;
4618 		}
4619 	}
4620 	return err;
4621 }
4622 
4623 /* ==================== Kernel Platform API ==================== */
4624 
4625 static struct spu_type_subtype spum_ns2_types = {
4626 	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4627 };
4628 
4629 static struct spu_type_subtype spum_nsp_types = {
4630 	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4631 };
4632 
4633 static struct spu_type_subtype spu2_types = {
4634 	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4635 };
4636 
4637 static struct spu_type_subtype spu2_v2_types = {
4638 	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4639 };
4640 
4641 static const struct of_device_id bcm_spu_dt_ids[] = {
4642 	{
4643 		.compatible = "brcm,spum-crypto",
4644 		.data = &spum_ns2_types,
4645 	},
4646 	{
4647 		.compatible = "brcm,spum-nsp-crypto",
4648 		.data = &spum_nsp_types,
4649 	},
4650 	{
4651 		.compatible = "brcm,spu2-crypto",
4652 		.data = &spu2_types,
4653 	},
4654 	{
4655 		.compatible = "brcm,spu2-v2-crypto",
4656 		.data = &spu2_v2_types,
4657 	},
4658 	{ /* sentinel */ }
4659 };
4660 
4661 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4662 
4663 static int spu_dt_read(struct platform_device *pdev)
4664 {
4665 	struct device *dev = &pdev->dev;
4666 	struct spu_hw *spu = &iproc_priv.spu;
4667 	struct resource *spu_ctrl_regs;
4668 	const struct spu_type_subtype *matched_spu_type;
4669 	struct device_node *dn = pdev->dev.of_node;
4670 	int err, i;
4671 
4672 	/* Count number of mailbox channels */
4673 	spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
4674 
4675 	matched_spu_type = of_device_get_match_data(dev);
4676 	if (!matched_spu_type) {
4677 		dev_err(dev, "Failed to match device\n");
4678 		return -ENODEV;
4679 	}
4680 
4681 	spu->spu_type = matched_spu_type->type;
4682 	spu->spu_subtype = matched_spu_type->subtype;
4683 
4684 	for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4685 		platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
4686 
4687 		spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4688 		if (IS_ERR(spu->reg_vbase[i])) {
4689 			err = PTR_ERR(spu->reg_vbase[i]);
4690 			dev_err(dev, "Failed to map registers: %d\n",
4691 				err);
4692 			spu->reg_vbase[i] = NULL;
4693 			return err;
4694 		}
4695 	}
4696 	spu->num_spu = i;
4697 	dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
4698 
4699 	return 0;
4700 }
4701 
4702 static int bcm_spu_probe(struct platform_device *pdev)
4703 {
4704 	struct device *dev = &pdev->dev;
4705 	struct spu_hw *spu = &iproc_priv.spu;
4706 	int err;
4707 
4708 	iproc_priv.pdev  = pdev;
4709 	platform_set_drvdata(iproc_priv.pdev,
4710 			     &iproc_priv);
4711 
4712 	err = spu_dt_read(pdev);
4713 	if (err < 0)
4714 		goto failure;
4715 
4716 	err = spu_mb_init(dev);
4717 	if (err < 0)
4718 		goto failure;
4719 
4720 	if (spu->spu_type == SPU_TYPE_SPUM)
4721 		iproc_priv.bcm_hdr_len = 8;
4722 	else if (spu->spu_type == SPU_TYPE_SPU2)
4723 		iproc_priv.bcm_hdr_len = 0;
4724 
4725 	spu_functions_register(dev, spu->spu_type, spu->spu_subtype);
4726 
4727 	spu_counters_init();
4728 
4729 	spu_setup_debugfs();
4730 
4731 	err = spu_algs_register(dev);
4732 	if (err < 0)
4733 		goto fail_reg;
4734 
4735 	return 0;
4736 
4737 fail_reg:
4738 	spu_free_debugfs();
4739 failure:
4740 	spu_mb_release(pdev);
4741 	dev_err(dev, "%s failed with error %d.\n", __func__, err);
4742 
4743 	return err;
4744 }
4745 
4746 static int bcm_spu_remove(struct platform_device *pdev)
4747 {
4748 	int i;
4749 	struct device *dev = &pdev->dev;
4750 	char *cdn;
4751 
4752 	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4753 		/*
4754 		 * Not all algorithms were registered, depending on whether
4755 		 * hardware is SPU or SPU2.  So here we make sure to skip
4756 		 * those algorithms that were not previously registered.
4757 		 */
4758 		if (!driver_algs[i].registered)
4759 			continue;
4760 
4761 		switch (driver_algs[i].type) {
4762 		case CRYPTO_ALG_TYPE_SKCIPHER:
4763 			crypto_unregister_skcipher(&driver_algs[i].alg.skcipher);
4764 			dev_dbg(dev, "  unregistered cipher %s\n",
4765 				driver_algs[i].alg.skcipher.base.cra_driver_name);
4766 			driver_algs[i].registered = false;
4767 			break;
4768 		case CRYPTO_ALG_TYPE_AHASH:
4769 			crypto_unregister_ahash(&driver_algs[i].alg.hash);
4770 			cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4771 			dev_dbg(dev, "  unregistered hash %s\n", cdn);
4772 			driver_algs[i].registered = false;
4773 			break;
4774 		case CRYPTO_ALG_TYPE_AEAD:
4775 			crypto_unregister_aead(&driver_algs[i].alg.aead);
4776 			dev_dbg(dev, "  unregistered aead %s\n",
4777 				driver_algs[i].alg.aead.base.cra_driver_name);
4778 			driver_algs[i].registered = false;
4779 			break;
4780 		}
4781 	}
4782 	spu_free_debugfs();
4783 	spu_mb_release(pdev);
4784 	return 0;
4785 }
4786 
4787 /* ===== Kernel Module API ===== */
4788 
4789 static struct platform_driver bcm_spu_pdriver = {
4790 	.driver = {
4791 		   .name = "brcm-spu-crypto",
4792 		   .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4793 		   },
4794 	.probe = bcm_spu_probe,
4795 	.remove = bcm_spu_remove,
4796 };
4797 module_platform_driver(bcm_spu_pdriver);
4798 
4799 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4800 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4801 MODULE_LICENSE("GPL v2");
4802