1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2016 Broadcom 4 */ 5 6 #include <linux/err.h> 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/errno.h> 10 #include <linux/kernel.h> 11 #include <linux/interrupt.h> 12 #include <linux/platform_device.h> 13 #include <linux/scatterlist.h> 14 #include <linux/crypto.h> 15 #include <linux/kthread.h> 16 #include <linux/rtnetlink.h> 17 #include <linux/sched.h> 18 #include <linux/of_address.h> 19 #include <linux/of_device.h> 20 #include <linux/io.h> 21 #include <linux/bitops.h> 22 23 #include <crypto/algapi.h> 24 #include <crypto/aead.h> 25 #include <crypto/internal/aead.h> 26 #include <crypto/aes.h> 27 #include <crypto/internal/des.h> 28 #include <crypto/hmac.h> 29 #include <crypto/sha.h> 30 #include <crypto/md5.h> 31 #include <crypto/authenc.h> 32 #include <crypto/skcipher.h> 33 #include <crypto/hash.h> 34 #include <crypto/sha3.h> 35 36 #include "util.h" 37 #include "cipher.h" 38 #include "spu.h" 39 #include "spum.h" 40 #include "spu2.h" 41 42 /* ================= Device Structure ================== */ 43 44 struct device_private iproc_priv; 45 46 /* ==================== Parameters ===================== */ 47 48 int flow_debug_logging; 49 module_param(flow_debug_logging, int, 0644); 50 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging"); 51 52 int packet_debug_logging; 53 module_param(packet_debug_logging, int, 0644); 54 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging"); 55 56 int debug_logging_sleep; 57 module_param(debug_logging_sleep, int, 0644); 58 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep"); 59 60 /* 61 * The value of these module parameters is used to set the priority for each 62 * algo type when this driver registers algos with the kernel crypto API. 63 * To use a priority other than the default, set the priority in the insmod or 64 * modprobe. Changing the module priority after init time has no effect. 65 * 66 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE 67 * algos, but more preferred than generic software algos. 68 */ 69 static int cipher_pri = 150; 70 module_param(cipher_pri, int, 0644); 71 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos"); 72 73 static int hash_pri = 100; 74 module_param(hash_pri, int, 0644); 75 MODULE_PARM_DESC(hash_pri, "Priority for hash algos"); 76 77 static int aead_pri = 150; 78 module_param(aead_pri, int, 0644); 79 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos"); 80 81 /* A type 3 BCM header, expected to precede the SPU header for SPU-M. 82 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset). 83 * 0x60 - ring 0 84 * 0x68 - ring 1 85 * 0x70 - ring 2 86 * 0x78 - ring 3 87 */ 88 static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 }; 89 /* 90 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN 91 * is set dynamically after reading SPU type from device tree. 92 */ 93 #define BCM_HDR_LEN iproc_priv.bcm_hdr_len 94 95 /* min and max time to sleep before retrying when mbox queue is full. usec */ 96 #define MBOX_SLEEP_MIN 800 97 #define MBOX_SLEEP_MAX 1000 98 99 /** 100 * select_channel() - Select a SPU channel to handle a crypto request. Selects 101 * channel in round robin order. 102 * 103 * Return: channel index 104 */ 105 static u8 select_channel(void) 106 { 107 u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan); 108 109 return chan_idx % iproc_priv.spu.num_chan; 110 } 111 112 /** 113 * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to 114 * receive a SPU response message for an skcipher request. Includes buffers to 115 * catch SPU message headers and the response data. 116 * @mssg: mailbox message containing the receive sg 117 * @rctx: crypto request context 118 * @rx_frag_num: number of scatterlist elements required to hold the 119 * SPU response message 120 * @chunksize: Number of bytes of response data expected 121 * @stat_pad_len: Number of bytes required to pad the STAT field to 122 * a 4-byte boundary 123 * 124 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 125 * when the request completes, whether the request is handled successfully or 126 * there is an error. 127 * 128 * Returns: 129 * 0 if successful 130 * < 0 if an error 131 */ 132 static int 133 spu_skcipher_rx_sg_create(struct brcm_message *mssg, 134 struct iproc_reqctx_s *rctx, 135 u8 rx_frag_num, 136 unsigned int chunksize, u32 stat_pad_len) 137 { 138 struct spu_hw *spu = &iproc_priv.spu; 139 struct scatterlist *sg; /* used to build sgs in mbox message */ 140 struct iproc_ctx_s *ctx = rctx->ctx; 141 u32 datalen; /* Number of bytes of response data expected */ 142 143 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), 144 rctx->gfp); 145 if (!mssg->spu.dst) 146 return -ENOMEM; 147 148 sg = mssg->spu.dst; 149 sg_init_table(sg, rx_frag_num); 150 /* Space for SPU message header */ 151 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); 152 153 /* If XTS tweak in payload, add buffer to receive encrypted tweak */ 154 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 155 spu->spu_xts_tweak_in_payload()) 156 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, 157 SPU_XTS_TWEAK_SIZE); 158 159 /* Copy in each dst sg entry from request, up to chunksize */ 160 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, 161 rctx->dst_nents, chunksize); 162 if (datalen < chunksize) { 163 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u", 164 __func__, chunksize, datalen); 165 return -EFAULT; 166 } 167 168 if (ctx->cipher.alg == CIPHER_ALG_RC4) 169 /* Add buffer to catch 260-byte SUPDT field for RC4 */ 170 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN); 171 172 if (stat_pad_len) 173 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); 174 175 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); 176 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); 177 178 return 0; 179 } 180 181 /** 182 * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to 183 * send a SPU request message for an skcipher request. Includes SPU message 184 * headers and the request data. 185 * @mssg: mailbox message containing the transmit sg 186 * @rctx: crypto request context 187 * @tx_frag_num: number of scatterlist elements required to construct the 188 * SPU request message 189 * @chunksize: Number of bytes of request data 190 * @pad_len: Number of pad bytes 191 * 192 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 193 * when the request completes, whether the request is handled successfully or 194 * there is an error. 195 * 196 * Returns: 197 * 0 if successful 198 * < 0 if an error 199 */ 200 static int 201 spu_skcipher_tx_sg_create(struct brcm_message *mssg, 202 struct iproc_reqctx_s *rctx, 203 u8 tx_frag_num, unsigned int chunksize, u32 pad_len) 204 { 205 struct spu_hw *spu = &iproc_priv.spu; 206 struct scatterlist *sg; /* used to build sgs in mbox message */ 207 struct iproc_ctx_s *ctx = rctx->ctx; 208 u32 datalen; /* Number of bytes of response data expected */ 209 u32 stat_len; 210 211 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), 212 rctx->gfp); 213 if (unlikely(!mssg->spu.src)) 214 return -ENOMEM; 215 216 sg = mssg->spu.src; 217 sg_init_table(sg, tx_frag_num); 218 219 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, 220 BCM_HDR_LEN + ctx->spu_req_hdr_len); 221 222 /* if XTS tweak in payload, copy from IV (where crypto API puts it) */ 223 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 224 spu->spu_xts_tweak_in_payload()) 225 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE); 226 227 /* Copy in each src sg entry from request, up to chunksize */ 228 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, 229 rctx->src_nents, chunksize); 230 if (unlikely(datalen < chunksize)) { 231 pr_err("%s(): failed to copy src sg to mbox msg", 232 __func__); 233 return -EFAULT; 234 } 235 236 if (pad_len) 237 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); 238 239 stat_len = spu->spu_tx_status_len(); 240 if (stat_len) { 241 memset(rctx->msg_buf.tx_stat, 0, stat_len); 242 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); 243 } 244 return 0; 245 } 246 247 static int mailbox_send_message(struct brcm_message *mssg, u32 flags, 248 u8 chan_idx) 249 { 250 int err; 251 int retry_cnt = 0; 252 struct device *dev = &(iproc_priv.pdev->dev); 253 254 err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg); 255 if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) { 256 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) { 257 /* 258 * Mailbox queue is full. Since MAY_SLEEP is set, assume 259 * not in atomic context and we can wait and try again. 260 */ 261 retry_cnt++; 262 usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX); 263 err = mbox_send_message(iproc_priv.mbox[chan_idx], 264 mssg); 265 atomic_inc(&iproc_priv.mb_no_spc); 266 } 267 } 268 if (err < 0) { 269 atomic_inc(&iproc_priv.mb_send_fail); 270 return err; 271 } 272 273 /* Check error returned by mailbox controller */ 274 err = mssg->error; 275 if (unlikely(err < 0)) { 276 dev_err(dev, "message error %d", err); 277 /* Signal txdone for mailbox channel */ 278 } 279 280 /* Signal txdone for mailbox channel */ 281 mbox_client_txdone(iproc_priv.mbox[chan_idx], err); 282 return err; 283 } 284 285 /** 286 * handle_skcipher_req() - Submit as much of a block cipher request as fits in 287 * a single SPU request message, starting at the current position in the request 288 * data. 289 * @rctx: Crypto request context 290 * 291 * This may be called on the crypto API thread, or, when a request is so large 292 * it must be broken into multiple SPU messages, on the thread used to invoke 293 * the response callback. When requests are broken into multiple SPU 294 * messages, we assume subsequent messages depend on previous results, and 295 * thus always wait for previous results before submitting the next message. 296 * Because requests are submitted in lock step like this, there is no need 297 * to synchronize access to request data structures. 298 * 299 * Return: -EINPROGRESS: request has been accepted and result will be returned 300 * asynchronously 301 * Any other value indicates an error 302 */ 303 static int handle_skcipher_req(struct iproc_reqctx_s *rctx) 304 { 305 struct spu_hw *spu = &iproc_priv.spu; 306 struct crypto_async_request *areq = rctx->parent; 307 struct skcipher_request *req = 308 container_of(areq, struct skcipher_request, base); 309 struct iproc_ctx_s *ctx = rctx->ctx; 310 struct spu_cipher_parms cipher_parms; 311 int err; 312 unsigned int chunksize; /* Num bytes of request to submit */ 313 int remaining; /* Bytes of request still to process */ 314 int chunk_start; /* Beginning of data for current SPU msg */ 315 316 /* IV or ctr value to use in this SPU msg */ 317 u8 local_iv_ctr[MAX_IV_SIZE]; 318 u32 stat_pad_len; /* num bytes to align status field */ 319 u32 pad_len; /* total length of all padding */ 320 bool update_key = false; 321 struct brcm_message *mssg; /* mailbox message */ 322 323 /* number of entries in src and dst sg in mailbox message. */ 324 u8 rx_frag_num = 2; /* response header and STATUS */ 325 u8 tx_frag_num = 1; /* request header */ 326 327 flow_log("%s\n", __func__); 328 329 cipher_parms.alg = ctx->cipher.alg; 330 cipher_parms.mode = ctx->cipher.mode; 331 cipher_parms.type = ctx->cipher_type; 332 cipher_parms.key_len = ctx->enckeylen; 333 cipher_parms.key_buf = ctx->enckey; 334 cipher_parms.iv_buf = local_iv_ctr; 335 cipher_parms.iv_len = rctx->iv_ctr_len; 336 337 mssg = &rctx->mb_mssg; 338 chunk_start = rctx->src_sent; 339 remaining = rctx->total_todo - chunk_start; 340 341 /* determine the chunk we are breaking off and update the indexes */ 342 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && 343 (remaining > ctx->max_payload)) 344 chunksize = ctx->max_payload; 345 else 346 chunksize = remaining; 347 348 rctx->src_sent += chunksize; 349 rctx->total_sent = rctx->src_sent; 350 351 /* Count number of sg entries to be included in this request */ 352 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); 353 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); 354 355 if ((ctx->cipher.mode == CIPHER_MODE_CBC) && 356 rctx->is_encrypt && chunk_start) 357 /* 358 * Encrypting non-first first chunk. Copy last block of 359 * previous result to IV for this chunk. 360 */ 361 sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr, 362 rctx->iv_ctr_len, 363 chunk_start - rctx->iv_ctr_len); 364 365 if (rctx->iv_ctr_len) { 366 /* get our local copy of the iv */ 367 __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr, 368 rctx->iv_ctr_len); 369 370 /* generate the next IV if possible */ 371 if ((ctx->cipher.mode == CIPHER_MODE_CBC) && 372 !rctx->is_encrypt) { 373 /* 374 * CBC Decrypt: next IV is the last ciphertext block in 375 * this chunk 376 */ 377 sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr, 378 rctx->iv_ctr_len, 379 rctx->src_sent - rctx->iv_ctr_len); 380 } else if (ctx->cipher.mode == CIPHER_MODE_CTR) { 381 /* 382 * The SPU hardware increments the counter once for 383 * each AES block of 16 bytes. So update the counter 384 * for the next chunk, if there is one. Note that for 385 * this chunk, the counter has already been copied to 386 * local_iv_ctr. We can assume a block size of 16, 387 * because we only support CTR mode for AES, not for 388 * any other cipher alg. 389 */ 390 add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4); 391 } 392 } 393 394 if (ctx->cipher.alg == CIPHER_ALG_RC4) { 395 rx_frag_num++; 396 if (chunk_start) { 397 /* 398 * for non-first RC4 chunks, use SUPDT from previous 399 * response as key for this chunk. 400 */ 401 cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak; 402 update_key = true; 403 cipher_parms.type = CIPHER_TYPE_UPDT; 404 } else if (!rctx->is_encrypt) { 405 /* 406 * First RC4 chunk. For decrypt, key in pre-built msg 407 * header may have been changed if encrypt required 408 * multiple chunks. So revert the key to the 409 * ctx->enckey value. 410 */ 411 update_key = true; 412 cipher_parms.type = CIPHER_TYPE_INIT; 413 } 414 } 415 416 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 417 flow_log("max_payload infinite\n"); 418 else 419 flow_log("max_payload %u\n", ctx->max_payload); 420 421 flow_log("sent:%u start:%u remains:%u size:%u\n", 422 rctx->src_sent, chunk_start, remaining, chunksize); 423 424 /* Copy SPU header template created at setkey time */ 425 memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr, 426 sizeof(rctx->msg_buf.bcm_spu_req_hdr)); 427 428 /* 429 * Pass SUPDT field as key. Key field in finish() call is only used 430 * when update_key has been set above for RC4. Will be ignored in 431 * all other cases. 432 */ 433 spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 434 ctx->spu_req_hdr_len, !(rctx->is_encrypt), 435 &cipher_parms, update_key, chunksize); 436 437 atomic64_add(chunksize, &iproc_priv.bytes_out); 438 439 stat_pad_len = spu->spu_wordalign_padlen(chunksize); 440 if (stat_pad_len) 441 rx_frag_num++; 442 pad_len = stat_pad_len; 443 if (pad_len) { 444 tx_frag_num++; 445 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0, 446 0, ctx->auth.alg, ctx->auth.mode, 447 rctx->total_sent, stat_pad_len); 448 } 449 450 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 451 ctx->spu_req_hdr_len); 452 packet_log("payload:\n"); 453 dump_sg(rctx->src_sg, rctx->src_skip, chunksize); 454 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); 455 456 /* 457 * Build mailbox message containing SPU request msg and rx buffers 458 * to catch response message 459 */ 460 memset(mssg, 0, sizeof(*mssg)); 461 mssg->type = BRCM_MESSAGE_SPU; 462 mssg->ctx = rctx; /* Will be returned in response */ 463 464 /* Create rx scatterlist to catch result */ 465 rx_frag_num += rctx->dst_nents; 466 467 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 468 spu->spu_xts_tweak_in_payload()) 469 rx_frag_num++; /* extra sg to insert tweak */ 470 471 err = spu_skcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize, 472 stat_pad_len); 473 if (err) 474 return err; 475 476 /* Create tx scatterlist containing SPU request message */ 477 tx_frag_num += rctx->src_nents; 478 if (spu->spu_tx_status_len()) 479 tx_frag_num++; 480 481 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 482 spu->spu_xts_tweak_in_payload()) 483 tx_frag_num++; /* extra sg to insert tweak */ 484 485 err = spu_skcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize, 486 pad_len); 487 if (err) 488 return err; 489 490 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); 491 if (unlikely(err < 0)) 492 return err; 493 494 return -EINPROGRESS; 495 } 496 497 /** 498 * handle_skcipher_resp() - Process a block cipher SPU response. Updates the 499 * total received count for the request and updates global stats. 500 * @rctx: Crypto request context 501 */ 502 static void handle_skcipher_resp(struct iproc_reqctx_s *rctx) 503 { 504 struct spu_hw *spu = &iproc_priv.spu; 505 #ifdef DEBUG 506 struct crypto_async_request *areq = rctx->parent; 507 struct skcipher_request *req = skcipher_request_cast(areq); 508 #endif 509 struct iproc_ctx_s *ctx = rctx->ctx; 510 u32 payload_len; 511 512 /* See how much data was returned */ 513 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); 514 515 /* 516 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the 517 * encrypted tweak ("i") value; we don't count those. 518 */ 519 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 520 spu->spu_xts_tweak_in_payload() && 521 (payload_len >= SPU_XTS_TWEAK_SIZE)) 522 payload_len -= SPU_XTS_TWEAK_SIZE; 523 524 atomic64_add(payload_len, &iproc_priv.bytes_in); 525 526 flow_log("%s() offset: %u, bd_len: %u BD:\n", 527 __func__, rctx->total_received, payload_len); 528 529 dump_sg(req->dst, rctx->total_received, payload_len); 530 if (ctx->cipher.alg == CIPHER_ALG_RC4) 531 packet_dump(" supdt ", rctx->msg_buf.c.supdt_tweak, 532 SPU_SUPDT_LEN); 533 534 rctx->total_received += payload_len; 535 if (rctx->total_received == rctx->total_todo) { 536 atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]); 537 atomic_inc( 538 &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]); 539 } 540 } 541 542 /** 543 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to 544 * receive a SPU response message for an ahash request. 545 * @mssg: mailbox message containing the receive sg 546 * @rctx: crypto request context 547 * @rx_frag_num: number of scatterlist elements required to hold the 548 * SPU response message 549 * @digestsize: length of hash digest, in bytes 550 * @stat_pad_len: Number of bytes required to pad the STAT field to 551 * a 4-byte boundary 552 * 553 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 554 * when the request completes, whether the request is handled successfully or 555 * there is an error. 556 * 557 * Return: 558 * 0 if successful 559 * < 0 if an error 560 */ 561 static int 562 spu_ahash_rx_sg_create(struct brcm_message *mssg, 563 struct iproc_reqctx_s *rctx, 564 u8 rx_frag_num, unsigned int digestsize, 565 u32 stat_pad_len) 566 { 567 struct spu_hw *spu = &iproc_priv.spu; 568 struct scatterlist *sg; /* used to build sgs in mbox message */ 569 struct iproc_ctx_s *ctx = rctx->ctx; 570 571 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), 572 rctx->gfp); 573 if (!mssg->spu.dst) 574 return -ENOMEM; 575 576 sg = mssg->spu.dst; 577 sg_init_table(sg, rx_frag_num); 578 /* Space for SPU message header */ 579 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); 580 581 /* Space for digest */ 582 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); 583 584 if (stat_pad_len) 585 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); 586 587 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); 588 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); 589 return 0; 590 } 591 592 /** 593 * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send 594 * a SPU request message for an ahash request. Includes SPU message headers and 595 * the request data. 596 * @mssg: mailbox message containing the transmit sg 597 * @rctx: crypto request context 598 * @tx_frag_num: number of scatterlist elements required to construct the 599 * SPU request message 600 * @spu_hdr_len: length in bytes of SPU message header 601 * @hash_carry_len: Number of bytes of data carried over from previous req 602 * @new_data_len: Number of bytes of new request data 603 * @pad_len: Number of pad bytes 604 * 605 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 606 * when the request completes, whether the request is handled successfully or 607 * there is an error. 608 * 609 * Return: 610 * 0 if successful 611 * < 0 if an error 612 */ 613 static int 614 spu_ahash_tx_sg_create(struct brcm_message *mssg, 615 struct iproc_reqctx_s *rctx, 616 u8 tx_frag_num, 617 u32 spu_hdr_len, 618 unsigned int hash_carry_len, 619 unsigned int new_data_len, u32 pad_len) 620 { 621 struct spu_hw *spu = &iproc_priv.spu; 622 struct scatterlist *sg; /* used to build sgs in mbox message */ 623 u32 datalen; /* Number of bytes of response data expected */ 624 u32 stat_len; 625 626 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), 627 rctx->gfp); 628 if (!mssg->spu.src) 629 return -ENOMEM; 630 631 sg = mssg->spu.src; 632 sg_init_table(sg, tx_frag_num); 633 634 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, 635 BCM_HDR_LEN + spu_hdr_len); 636 637 if (hash_carry_len) 638 sg_set_buf(sg++, rctx->hash_carry, hash_carry_len); 639 640 if (new_data_len) { 641 /* Copy in each src sg entry from request, up to chunksize */ 642 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, 643 rctx->src_nents, new_data_len); 644 if (datalen < new_data_len) { 645 pr_err("%s(): failed to copy src sg to mbox msg", 646 __func__); 647 return -EFAULT; 648 } 649 } 650 651 if (pad_len) 652 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); 653 654 stat_len = spu->spu_tx_status_len(); 655 if (stat_len) { 656 memset(rctx->msg_buf.tx_stat, 0, stat_len); 657 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); 658 } 659 660 return 0; 661 } 662 663 /** 664 * handle_ahash_req() - Process an asynchronous hash request from the crypto 665 * API. 666 * @rctx: Crypto request context 667 * 668 * Builds a SPU request message embedded in a mailbox message and submits the 669 * mailbox message on a selected mailbox channel. The SPU request message is 670 * constructed as a scatterlist, including entries from the crypto API's 671 * src scatterlist to avoid copying the data to be hashed. This function is 672 * called either on the thread from the crypto API, or, in the case that the 673 * crypto API request is too large to fit in a single SPU request message, 674 * on the thread that invokes the receive callback with a response message. 675 * Because some operations require the response from one chunk before the next 676 * chunk can be submitted, we always wait for the response for the previous 677 * chunk before submitting the next chunk. Because requests are submitted in 678 * lock step like this, there is no need to synchronize access to request data 679 * structures. 680 * 681 * Return: 682 * -EINPROGRESS: request has been submitted to SPU and response will be 683 * returned asynchronously 684 * -EAGAIN: non-final request included a small amount of data, which for 685 * efficiency we did not submit to the SPU, but instead stored 686 * to be submitted to the SPU with the next part of the request 687 * other: an error code 688 */ 689 static int handle_ahash_req(struct iproc_reqctx_s *rctx) 690 { 691 struct spu_hw *spu = &iproc_priv.spu; 692 struct crypto_async_request *areq = rctx->parent; 693 struct ahash_request *req = ahash_request_cast(areq); 694 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 695 struct crypto_tfm *tfm = crypto_ahash_tfm(ahash); 696 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); 697 struct iproc_ctx_s *ctx = rctx->ctx; 698 699 /* number of bytes still to be hashed in this req */ 700 unsigned int nbytes_to_hash = 0; 701 int err; 702 unsigned int chunksize = 0; /* length of hash carry + new data */ 703 /* 704 * length of new data, not from hash carry, to be submitted in 705 * this hw request 706 */ 707 unsigned int new_data_len; 708 709 unsigned int __maybe_unused chunk_start = 0; 710 u32 db_size; /* Length of data field, incl gcm and hash padding */ 711 int pad_len = 0; /* total pad len, including gcm, hash, stat padding */ 712 u32 data_pad_len = 0; /* length of GCM/CCM padding */ 713 u32 stat_pad_len = 0; /* length of padding to align STATUS word */ 714 struct brcm_message *mssg; /* mailbox message */ 715 struct spu_request_opts req_opts; 716 struct spu_cipher_parms cipher_parms; 717 struct spu_hash_parms hash_parms; 718 struct spu_aead_parms aead_parms; 719 unsigned int local_nbuf; 720 u32 spu_hdr_len; 721 unsigned int digestsize; 722 u16 rem = 0; 723 724 /* 725 * number of entries in src and dst sg. Always includes SPU msg header. 726 * rx always includes a buffer to catch digest and STATUS. 727 */ 728 u8 rx_frag_num = 3; 729 u8 tx_frag_num = 1; 730 731 flow_log("total_todo %u, total_sent %u\n", 732 rctx->total_todo, rctx->total_sent); 733 734 memset(&req_opts, 0, sizeof(req_opts)); 735 memset(&cipher_parms, 0, sizeof(cipher_parms)); 736 memset(&hash_parms, 0, sizeof(hash_parms)); 737 memset(&aead_parms, 0, sizeof(aead_parms)); 738 739 req_opts.bd_suppress = true; 740 hash_parms.alg = ctx->auth.alg; 741 hash_parms.mode = ctx->auth.mode; 742 hash_parms.type = HASH_TYPE_NONE; 743 hash_parms.key_buf = (u8 *)ctx->authkey; 744 hash_parms.key_len = ctx->authkeylen; 745 746 /* 747 * For hash algorithms below assignment looks bit odd but 748 * it's needed for AES-XCBC and AES-CMAC hash algorithms 749 * to differentiate between 128, 192, 256 bit key values. 750 * Based on the key values, hash algorithm is selected. 751 * For example for 128 bit key, hash algorithm is AES-128. 752 */ 753 cipher_parms.type = ctx->cipher_type; 754 755 mssg = &rctx->mb_mssg; 756 chunk_start = rctx->src_sent; 757 758 /* 759 * Compute the amount remaining to hash. This may include data 760 * carried over from previous requests. 761 */ 762 nbytes_to_hash = rctx->total_todo - rctx->total_sent; 763 chunksize = nbytes_to_hash; 764 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && 765 (chunksize > ctx->max_payload)) 766 chunksize = ctx->max_payload; 767 768 /* 769 * If this is not a final request and the request data is not a multiple 770 * of a full block, then simply park the extra data and prefix it to the 771 * data for the next request. 772 */ 773 if (!rctx->is_final) { 774 u8 *dest = rctx->hash_carry + rctx->hash_carry_len; 775 u16 new_len; /* len of data to add to hash carry */ 776 777 rem = chunksize % blocksize; /* remainder */ 778 if (rem) { 779 /* chunksize not a multiple of blocksize */ 780 chunksize -= rem; 781 if (chunksize == 0) { 782 /* Don't have a full block to submit to hw */ 783 new_len = rem - rctx->hash_carry_len; 784 sg_copy_part_to_buf(req->src, dest, new_len, 785 rctx->src_sent); 786 rctx->hash_carry_len = rem; 787 flow_log("Exiting with hash carry len: %u\n", 788 rctx->hash_carry_len); 789 packet_dump(" buf: ", 790 rctx->hash_carry, 791 rctx->hash_carry_len); 792 return -EAGAIN; 793 } 794 } 795 } 796 797 /* if we have hash carry, then prefix it to the data in this request */ 798 local_nbuf = rctx->hash_carry_len; 799 rctx->hash_carry_len = 0; 800 if (local_nbuf) 801 tx_frag_num++; 802 new_data_len = chunksize - local_nbuf; 803 804 /* Count number of sg entries to be used in this request */ 805 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, 806 new_data_len); 807 808 /* AES hashing keeps key size in type field, so need to copy it here */ 809 if (hash_parms.alg == HASH_ALG_AES) 810 hash_parms.type = (enum hash_type)cipher_parms.type; 811 else 812 hash_parms.type = spu->spu_hash_type(rctx->total_sent); 813 814 digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg, 815 hash_parms.type); 816 hash_parms.digestsize = digestsize; 817 818 /* update the indexes */ 819 rctx->total_sent += chunksize; 820 /* if you sent a prebuf then that wasn't from this req->src */ 821 rctx->src_sent += new_data_len; 822 823 if ((rctx->total_sent == rctx->total_todo) && rctx->is_final) 824 hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg, 825 hash_parms.mode, 826 chunksize, 827 blocksize); 828 829 /* 830 * If a non-first chunk, then include the digest returned from the 831 * previous chunk so that hw can add to it (except for AES types). 832 */ 833 if ((hash_parms.type == HASH_TYPE_UPDT) && 834 (hash_parms.alg != HASH_ALG_AES)) { 835 hash_parms.key_buf = rctx->incr_hash; 836 hash_parms.key_len = digestsize; 837 } 838 839 atomic64_add(chunksize, &iproc_priv.bytes_out); 840 841 flow_log("%s() final: %u nbuf: %u ", 842 __func__, rctx->is_final, local_nbuf); 843 844 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 845 flow_log("max_payload infinite\n"); 846 else 847 flow_log("max_payload %u\n", ctx->max_payload); 848 849 flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize); 850 851 /* Prepend SPU header with type 3 BCM header */ 852 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); 853 854 hash_parms.prebuf_len = local_nbuf; 855 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + 856 BCM_HDR_LEN, 857 &req_opts, &cipher_parms, 858 &hash_parms, &aead_parms, 859 new_data_len); 860 861 if (spu_hdr_len == 0) { 862 pr_err("Failed to create SPU request header\n"); 863 return -EFAULT; 864 } 865 866 /* 867 * Determine total length of padding required. Put all padding in one 868 * buffer. 869 */ 870 data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize); 871 db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len, 872 0, 0, hash_parms.pad_len); 873 if (spu->spu_tx_status_len()) 874 stat_pad_len = spu->spu_wordalign_padlen(db_size); 875 if (stat_pad_len) 876 rx_frag_num++; 877 pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len; 878 if (pad_len) { 879 tx_frag_num++; 880 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len, 881 hash_parms.pad_len, ctx->auth.alg, 882 ctx->auth.mode, rctx->total_sent, 883 stat_pad_len); 884 } 885 886 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 887 spu_hdr_len); 888 packet_dump(" prebuf: ", rctx->hash_carry, local_nbuf); 889 flow_log("Data:\n"); 890 dump_sg(rctx->src_sg, rctx->src_skip, new_data_len); 891 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); 892 893 /* 894 * Build mailbox message containing SPU request msg and rx buffers 895 * to catch response message 896 */ 897 memset(mssg, 0, sizeof(*mssg)); 898 mssg->type = BRCM_MESSAGE_SPU; 899 mssg->ctx = rctx; /* Will be returned in response */ 900 901 /* Create rx scatterlist to catch result */ 902 err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize, 903 stat_pad_len); 904 if (err) 905 return err; 906 907 /* Create tx scatterlist containing SPU request message */ 908 tx_frag_num += rctx->src_nents; 909 if (spu->spu_tx_status_len()) 910 tx_frag_num++; 911 err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, 912 local_nbuf, new_data_len, pad_len); 913 if (err) 914 return err; 915 916 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); 917 if (unlikely(err < 0)) 918 return err; 919 920 return -EINPROGRESS; 921 } 922 923 /** 924 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash 925 * for an HMAC request. 926 * @req: The HMAC request from the crypto API 927 * @ctx: The session context 928 * 929 * Return: 0 if synchronous hash operation successful 930 * -EINVAL if the hash algo is unrecognized 931 * any other value indicates an error 932 */ 933 static int spu_hmac_outer_hash(struct ahash_request *req, 934 struct iproc_ctx_s *ctx) 935 { 936 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 937 unsigned int blocksize = 938 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 939 int rc; 940 941 switch (ctx->auth.alg) { 942 case HASH_ALG_MD5: 943 rc = do_shash("md5", req->result, ctx->opad, blocksize, 944 req->result, ctx->digestsize, NULL, 0); 945 break; 946 case HASH_ALG_SHA1: 947 rc = do_shash("sha1", req->result, ctx->opad, blocksize, 948 req->result, ctx->digestsize, NULL, 0); 949 break; 950 case HASH_ALG_SHA224: 951 rc = do_shash("sha224", req->result, ctx->opad, blocksize, 952 req->result, ctx->digestsize, NULL, 0); 953 break; 954 case HASH_ALG_SHA256: 955 rc = do_shash("sha256", req->result, ctx->opad, blocksize, 956 req->result, ctx->digestsize, NULL, 0); 957 break; 958 case HASH_ALG_SHA384: 959 rc = do_shash("sha384", req->result, ctx->opad, blocksize, 960 req->result, ctx->digestsize, NULL, 0); 961 break; 962 case HASH_ALG_SHA512: 963 rc = do_shash("sha512", req->result, ctx->opad, blocksize, 964 req->result, ctx->digestsize, NULL, 0); 965 break; 966 default: 967 pr_err("%s() Error : unknown hmac type\n", __func__); 968 rc = -EINVAL; 969 } 970 return rc; 971 } 972 973 /** 974 * ahash_req_done() - Process a hash result from the SPU hardware. 975 * @rctx: Crypto request context 976 * 977 * Return: 0 if successful 978 * < 0 if an error 979 */ 980 static int ahash_req_done(struct iproc_reqctx_s *rctx) 981 { 982 struct spu_hw *spu = &iproc_priv.spu; 983 struct crypto_async_request *areq = rctx->parent; 984 struct ahash_request *req = ahash_request_cast(areq); 985 struct iproc_ctx_s *ctx = rctx->ctx; 986 int err; 987 988 memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize); 989 990 if (spu->spu_type == SPU_TYPE_SPUM) { 991 /* byte swap the output from the UPDT function to network byte 992 * order 993 */ 994 if (ctx->auth.alg == HASH_ALG_MD5) { 995 __swab32s((u32 *)req->result); 996 __swab32s(((u32 *)req->result) + 1); 997 __swab32s(((u32 *)req->result) + 2); 998 __swab32s(((u32 *)req->result) + 3); 999 __swab32s(((u32 *)req->result) + 4); 1000 } 1001 } 1002 1003 flow_dump(" digest ", req->result, ctx->digestsize); 1004 1005 /* if this an HMAC then do the outer hash */ 1006 if (rctx->is_sw_hmac) { 1007 err = spu_hmac_outer_hash(req, ctx); 1008 if (err < 0) 1009 return err; 1010 flow_dump(" hmac: ", req->result, ctx->digestsize); 1011 } 1012 1013 if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) { 1014 atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]); 1015 atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]); 1016 } else { 1017 atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]); 1018 atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]); 1019 } 1020 1021 return 0; 1022 } 1023 1024 /** 1025 * handle_ahash_resp() - Process a SPU response message for a hash request. 1026 * Checks if the entire crypto API request has been processed, and if so, 1027 * invokes post processing on the result. 1028 * @rctx: Crypto request context 1029 */ 1030 static void handle_ahash_resp(struct iproc_reqctx_s *rctx) 1031 { 1032 struct iproc_ctx_s *ctx = rctx->ctx; 1033 #ifdef DEBUG 1034 struct crypto_async_request *areq = rctx->parent; 1035 struct ahash_request *req = ahash_request_cast(areq); 1036 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1037 unsigned int blocksize = 1038 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 1039 #endif 1040 /* 1041 * Save hash to use as input to next op if incremental. Might be copying 1042 * too much, but that's easier than figuring out actual digest size here 1043 */ 1044 memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE); 1045 1046 flow_log("%s() blocksize:%u digestsize:%u\n", 1047 __func__, blocksize, ctx->digestsize); 1048 1049 atomic64_add(ctx->digestsize, &iproc_priv.bytes_in); 1050 1051 if (rctx->is_final && (rctx->total_sent == rctx->total_todo)) 1052 ahash_req_done(rctx); 1053 } 1054 1055 /** 1056 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive 1057 * a SPU response message for an AEAD request. Includes buffers to catch SPU 1058 * message headers and the response data. 1059 * @mssg: mailbox message containing the receive sg 1060 * @rctx: crypto request context 1061 * @rx_frag_num: number of scatterlist elements required to hold the 1062 * SPU response message 1063 * @assoc_len: Length of associated data included in the crypto request 1064 * @ret_iv_len: Length of IV returned in response 1065 * @resp_len: Number of bytes of response data expected to be written to 1066 * dst buffer from crypto API 1067 * @digestsize: Length of hash digest, in bytes 1068 * @stat_pad_len: Number of bytes required to pad the STAT field to 1069 * a 4-byte boundary 1070 * 1071 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 1072 * when the request completes, whether the request is handled successfully or 1073 * there is an error. 1074 * 1075 * Returns: 1076 * 0 if successful 1077 * < 0 if an error 1078 */ 1079 static int spu_aead_rx_sg_create(struct brcm_message *mssg, 1080 struct aead_request *req, 1081 struct iproc_reqctx_s *rctx, 1082 u8 rx_frag_num, 1083 unsigned int assoc_len, 1084 u32 ret_iv_len, unsigned int resp_len, 1085 unsigned int digestsize, u32 stat_pad_len) 1086 { 1087 struct spu_hw *spu = &iproc_priv.spu; 1088 struct scatterlist *sg; /* used to build sgs in mbox message */ 1089 struct iproc_ctx_s *ctx = rctx->ctx; 1090 u32 datalen; /* Number of bytes of response data expected */ 1091 u32 assoc_buf_len; 1092 u8 data_padlen = 0; 1093 1094 if (ctx->is_rfc4543) { 1095 /* RFC4543: only pad after data, not after AAD */ 1096 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1097 assoc_len + resp_len); 1098 assoc_buf_len = assoc_len; 1099 } else { 1100 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1101 resp_len); 1102 assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode, 1103 assoc_len, ret_iv_len, 1104 rctx->is_encrypt); 1105 } 1106 1107 if (ctx->cipher.mode == CIPHER_MODE_CCM) 1108 /* ICV (after data) must be in the next 32-bit word for CCM */ 1109 data_padlen += spu->spu_wordalign_padlen(assoc_buf_len + 1110 resp_len + 1111 data_padlen); 1112 1113 if (data_padlen) 1114 /* have to catch gcm pad in separate buffer */ 1115 rx_frag_num++; 1116 1117 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), 1118 rctx->gfp); 1119 if (!mssg->spu.dst) 1120 return -ENOMEM; 1121 1122 sg = mssg->spu.dst; 1123 sg_init_table(sg, rx_frag_num); 1124 1125 /* Space for SPU message header */ 1126 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); 1127 1128 if (assoc_buf_len) { 1129 /* 1130 * Don't write directly to req->dst, because SPU may pad the 1131 * assoc data in the response 1132 */ 1133 memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len); 1134 sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len); 1135 } 1136 1137 if (resp_len) { 1138 /* 1139 * Copy in each dst sg entry from request, up to chunksize. 1140 * dst sg catches just the data. digest caught in separate buf. 1141 */ 1142 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, 1143 rctx->dst_nents, resp_len); 1144 if (datalen < (resp_len)) { 1145 pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u", 1146 __func__, resp_len, datalen); 1147 return -EFAULT; 1148 } 1149 } 1150 1151 /* If GCM/CCM data is padded, catch padding in separate buffer */ 1152 if (data_padlen) { 1153 memset(rctx->msg_buf.a.gcmpad, 0, data_padlen); 1154 sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen); 1155 } 1156 1157 /* Always catch ICV in separate buffer */ 1158 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); 1159 1160 flow_log("stat_pad_len %u\n", stat_pad_len); 1161 if (stat_pad_len) { 1162 memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len); 1163 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); 1164 } 1165 1166 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); 1167 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); 1168 1169 return 0; 1170 } 1171 1172 /** 1173 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a 1174 * SPU request message for an AEAD request. Includes SPU message headers and the 1175 * request data. 1176 * @mssg: mailbox message containing the transmit sg 1177 * @rctx: crypto request context 1178 * @tx_frag_num: number of scatterlist elements required to construct the 1179 * SPU request message 1180 * @spu_hdr_len: length of SPU message header in bytes 1181 * @assoc: crypto API associated data scatterlist 1182 * @assoc_len: length of associated data 1183 * @assoc_nents: number of scatterlist entries containing assoc data 1184 * @aead_iv_len: length of AEAD IV, if included 1185 * @chunksize: Number of bytes of request data 1186 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM. 1187 * @pad_len: Number of pad bytes 1188 * @incl_icv: If true, write separate ICV buffer after data and 1189 * any padding 1190 * 1191 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 1192 * when the request completes, whether the request is handled successfully or 1193 * there is an error. 1194 * 1195 * Return: 1196 * 0 if successful 1197 * < 0 if an error 1198 */ 1199 static int spu_aead_tx_sg_create(struct brcm_message *mssg, 1200 struct iproc_reqctx_s *rctx, 1201 u8 tx_frag_num, 1202 u32 spu_hdr_len, 1203 struct scatterlist *assoc, 1204 unsigned int assoc_len, 1205 int assoc_nents, 1206 unsigned int aead_iv_len, 1207 unsigned int chunksize, 1208 u32 aad_pad_len, u32 pad_len, bool incl_icv) 1209 { 1210 struct spu_hw *spu = &iproc_priv.spu; 1211 struct scatterlist *sg; /* used to build sgs in mbox message */ 1212 struct scatterlist *assoc_sg = assoc; 1213 struct iproc_ctx_s *ctx = rctx->ctx; 1214 u32 datalen; /* Number of bytes of data to write */ 1215 u32 written; /* Number of bytes of data written */ 1216 u32 assoc_offset = 0; 1217 u32 stat_len; 1218 1219 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), 1220 rctx->gfp); 1221 if (!mssg->spu.src) 1222 return -ENOMEM; 1223 1224 sg = mssg->spu.src; 1225 sg_init_table(sg, tx_frag_num); 1226 1227 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, 1228 BCM_HDR_LEN + spu_hdr_len); 1229 1230 if (assoc_len) { 1231 /* Copy in each associated data sg entry from request */ 1232 written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset, 1233 assoc_nents, assoc_len); 1234 if (written < assoc_len) { 1235 pr_err("%s(): failed to copy assoc sg to mbox msg", 1236 __func__); 1237 return -EFAULT; 1238 } 1239 } 1240 1241 if (aead_iv_len) 1242 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len); 1243 1244 if (aad_pad_len) { 1245 memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len); 1246 sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len); 1247 } 1248 1249 datalen = chunksize; 1250 if ((chunksize > ctx->digestsize) && incl_icv) 1251 datalen -= ctx->digestsize; 1252 if (datalen) { 1253 /* For aead, a single msg should consume the entire src sg */ 1254 written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, 1255 rctx->src_nents, datalen); 1256 if (written < datalen) { 1257 pr_err("%s(): failed to copy src sg to mbox msg", 1258 __func__); 1259 return -EFAULT; 1260 } 1261 } 1262 1263 if (pad_len) { 1264 memset(rctx->msg_buf.spu_req_pad, 0, pad_len); 1265 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); 1266 } 1267 1268 if (incl_icv) 1269 sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize); 1270 1271 stat_len = spu->spu_tx_status_len(); 1272 if (stat_len) { 1273 memset(rctx->msg_buf.tx_stat, 0, stat_len); 1274 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); 1275 } 1276 return 0; 1277 } 1278 1279 /** 1280 * handle_aead_req() - Submit a SPU request message for the next chunk of the 1281 * current AEAD request. 1282 * @rctx: Crypto request context 1283 * 1284 * Unlike other operation types, we assume the length of the request fits in 1285 * a single SPU request message. aead_enqueue() makes sure this is true. 1286 * Comments for other op types regarding threads applies here as well. 1287 * 1288 * Unlike incremental hash ops, where the spu returns the entire hash for 1289 * truncated algs like sha-224, the SPU returns just the truncated hash in 1290 * response to aead requests. So digestsize is always ctx->digestsize here. 1291 * 1292 * Return: -EINPROGRESS: crypto request has been accepted and result will be 1293 * returned asynchronously 1294 * Any other value indicates an error 1295 */ 1296 static int handle_aead_req(struct iproc_reqctx_s *rctx) 1297 { 1298 struct spu_hw *spu = &iproc_priv.spu; 1299 struct crypto_async_request *areq = rctx->parent; 1300 struct aead_request *req = container_of(areq, 1301 struct aead_request, base); 1302 struct iproc_ctx_s *ctx = rctx->ctx; 1303 int err; 1304 unsigned int chunksize; 1305 unsigned int resp_len; 1306 u32 spu_hdr_len; 1307 u32 db_size; 1308 u32 stat_pad_len; 1309 u32 pad_len; 1310 struct brcm_message *mssg; /* mailbox message */ 1311 struct spu_request_opts req_opts; 1312 struct spu_cipher_parms cipher_parms; 1313 struct spu_hash_parms hash_parms; 1314 struct spu_aead_parms aead_parms; 1315 int assoc_nents = 0; 1316 bool incl_icv = false; 1317 unsigned int digestsize = ctx->digestsize; 1318 1319 /* number of entries in src and dst sg. Always includes SPU msg header. 1320 */ 1321 u8 rx_frag_num = 2; /* and STATUS */ 1322 u8 tx_frag_num = 1; 1323 1324 /* doing the whole thing at once */ 1325 chunksize = rctx->total_todo; 1326 1327 flow_log("%s: chunksize %u\n", __func__, chunksize); 1328 1329 memset(&req_opts, 0, sizeof(req_opts)); 1330 memset(&hash_parms, 0, sizeof(hash_parms)); 1331 memset(&aead_parms, 0, sizeof(aead_parms)); 1332 1333 req_opts.is_inbound = !(rctx->is_encrypt); 1334 req_opts.auth_first = ctx->auth_first; 1335 req_opts.is_aead = true; 1336 req_opts.is_esp = ctx->is_esp; 1337 1338 cipher_parms.alg = ctx->cipher.alg; 1339 cipher_parms.mode = ctx->cipher.mode; 1340 cipher_parms.type = ctx->cipher_type; 1341 cipher_parms.key_buf = ctx->enckey; 1342 cipher_parms.key_len = ctx->enckeylen; 1343 cipher_parms.iv_buf = rctx->msg_buf.iv_ctr; 1344 cipher_parms.iv_len = rctx->iv_ctr_len; 1345 1346 hash_parms.alg = ctx->auth.alg; 1347 hash_parms.mode = ctx->auth.mode; 1348 hash_parms.type = HASH_TYPE_NONE; 1349 hash_parms.key_buf = (u8 *)ctx->authkey; 1350 hash_parms.key_len = ctx->authkeylen; 1351 hash_parms.digestsize = digestsize; 1352 1353 if ((ctx->auth.alg == HASH_ALG_SHA224) && 1354 (ctx->authkeylen < SHA224_DIGEST_SIZE)) 1355 hash_parms.key_len = SHA224_DIGEST_SIZE; 1356 1357 aead_parms.assoc_size = req->assoclen; 1358 if (ctx->is_esp && !ctx->is_rfc4543) { 1359 /* 1360 * 8-byte IV is included assoc data in request. SPU2 1361 * expects AAD to include just SPI and seqno. So 1362 * subtract off the IV len. 1363 */ 1364 aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE; 1365 1366 if (rctx->is_encrypt) { 1367 aead_parms.return_iv = true; 1368 aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE; 1369 aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE; 1370 } 1371 } else { 1372 aead_parms.ret_iv_len = 0; 1373 } 1374 1375 /* 1376 * Count number of sg entries from the crypto API request that are to 1377 * be included in this mailbox message. For dst sg, don't count space 1378 * for digest. Digest gets caught in a separate buffer and copied back 1379 * to dst sg when processing response. 1380 */ 1381 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); 1382 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); 1383 if (aead_parms.assoc_size) 1384 assoc_nents = spu_sg_count(rctx->assoc, 0, 1385 aead_parms.assoc_size); 1386 1387 mssg = &rctx->mb_mssg; 1388 1389 rctx->total_sent = chunksize; 1390 rctx->src_sent = chunksize; 1391 if (spu->spu_assoc_resp_len(ctx->cipher.mode, 1392 aead_parms.assoc_size, 1393 aead_parms.ret_iv_len, 1394 rctx->is_encrypt)) 1395 rx_frag_num++; 1396 1397 aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode, 1398 rctx->iv_ctr_len); 1399 1400 if (ctx->auth.alg == HASH_ALG_AES) 1401 hash_parms.type = (enum hash_type)ctx->cipher_type; 1402 1403 /* General case AAD padding (CCM and RFC4543 special cases below) */ 1404 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1405 aead_parms.assoc_size); 1406 1407 /* General case data padding (CCM decrypt special case below) */ 1408 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1409 chunksize); 1410 1411 if (ctx->cipher.mode == CIPHER_MODE_CCM) { 1412 /* 1413 * for CCM, AAD len + 2 (rather than AAD len) needs to be 1414 * 128-bit aligned 1415 */ 1416 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len( 1417 ctx->cipher.mode, 1418 aead_parms.assoc_size + 2); 1419 1420 /* 1421 * And when decrypting CCM, need to pad without including 1422 * size of ICV which is tacked on to end of chunk 1423 */ 1424 if (!rctx->is_encrypt) 1425 aead_parms.data_pad_len = 1426 spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1427 chunksize - digestsize); 1428 1429 /* CCM also requires software to rewrite portions of IV: */ 1430 spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen, 1431 chunksize, rctx->is_encrypt, 1432 ctx->is_esp); 1433 } 1434 1435 if (ctx->is_rfc4543) { 1436 /* 1437 * RFC4543: data is included in AAD, so don't pad after AAD 1438 * and pad data based on both AAD + data size 1439 */ 1440 aead_parms.aad_pad_len = 0; 1441 if (!rctx->is_encrypt) 1442 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( 1443 ctx->cipher.mode, 1444 aead_parms.assoc_size + chunksize - 1445 digestsize); 1446 else 1447 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( 1448 ctx->cipher.mode, 1449 aead_parms.assoc_size + chunksize); 1450 1451 req_opts.is_rfc4543 = true; 1452 } 1453 1454 if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) { 1455 incl_icv = true; 1456 tx_frag_num++; 1457 /* Copy ICV from end of src scatterlist to digest buf */ 1458 sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize, 1459 req->assoclen + rctx->total_sent - 1460 digestsize); 1461 } 1462 1463 atomic64_add(chunksize, &iproc_priv.bytes_out); 1464 1465 flow_log("%s()-sent chunksize:%u\n", __func__, chunksize); 1466 1467 /* Prepend SPU header with type 3 BCM header */ 1468 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); 1469 1470 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + 1471 BCM_HDR_LEN, &req_opts, 1472 &cipher_parms, &hash_parms, 1473 &aead_parms, chunksize); 1474 1475 /* Determine total length of padding. Put all padding in one buffer. */ 1476 db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0, 1477 chunksize, aead_parms.aad_pad_len, 1478 aead_parms.data_pad_len, 0); 1479 1480 stat_pad_len = spu->spu_wordalign_padlen(db_size); 1481 1482 if (stat_pad_len) 1483 rx_frag_num++; 1484 pad_len = aead_parms.data_pad_len + stat_pad_len; 1485 if (pad_len) { 1486 tx_frag_num++; 1487 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 1488 aead_parms.data_pad_len, 0, 1489 ctx->auth.alg, ctx->auth.mode, 1490 rctx->total_sent, stat_pad_len); 1491 } 1492 1493 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 1494 spu_hdr_len); 1495 dump_sg(rctx->assoc, 0, aead_parms.assoc_size); 1496 packet_dump(" aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len); 1497 packet_log("BD:\n"); 1498 dump_sg(rctx->src_sg, rctx->src_skip, chunksize); 1499 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); 1500 1501 /* 1502 * Build mailbox message containing SPU request msg and rx buffers 1503 * to catch response message 1504 */ 1505 memset(mssg, 0, sizeof(*mssg)); 1506 mssg->type = BRCM_MESSAGE_SPU; 1507 mssg->ctx = rctx; /* Will be returned in response */ 1508 1509 /* Create rx scatterlist to catch result */ 1510 rx_frag_num += rctx->dst_nents; 1511 resp_len = chunksize; 1512 1513 /* 1514 * Always catch ICV in separate buffer. Have to for GCM/CCM because of 1515 * padding. Have to for SHA-224 and other truncated SHAs because SPU 1516 * sends entire digest back. 1517 */ 1518 rx_frag_num++; 1519 1520 if (((ctx->cipher.mode == CIPHER_MODE_GCM) || 1521 (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) { 1522 /* 1523 * Input is ciphertxt plus ICV, but ICV not incl 1524 * in output. 1525 */ 1526 resp_len -= ctx->digestsize; 1527 if (resp_len == 0) 1528 /* no rx frags to catch output data */ 1529 rx_frag_num -= rctx->dst_nents; 1530 } 1531 1532 err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num, 1533 aead_parms.assoc_size, 1534 aead_parms.ret_iv_len, resp_len, digestsize, 1535 stat_pad_len); 1536 if (err) 1537 return err; 1538 1539 /* Create tx scatterlist containing SPU request message */ 1540 tx_frag_num += rctx->src_nents; 1541 tx_frag_num += assoc_nents; 1542 if (aead_parms.aad_pad_len) 1543 tx_frag_num++; 1544 if (aead_parms.iv_len) 1545 tx_frag_num++; 1546 if (spu->spu_tx_status_len()) 1547 tx_frag_num++; 1548 err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, 1549 rctx->assoc, aead_parms.assoc_size, 1550 assoc_nents, aead_parms.iv_len, chunksize, 1551 aead_parms.aad_pad_len, pad_len, incl_icv); 1552 if (err) 1553 return err; 1554 1555 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); 1556 if (unlikely(err < 0)) 1557 return err; 1558 1559 return -EINPROGRESS; 1560 } 1561 1562 /** 1563 * handle_aead_resp() - Process a SPU response message for an AEAD request. 1564 * @rctx: Crypto request context 1565 */ 1566 static void handle_aead_resp(struct iproc_reqctx_s *rctx) 1567 { 1568 struct spu_hw *spu = &iproc_priv.spu; 1569 struct crypto_async_request *areq = rctx->parent; 1570 struct aead_request *req = container_of(areq, 1571 struct aead_request, base); 1572 struct iproc_ctx_s *ctx = rctx->ctx; 1573 u32 payload_len; 1574 unsigned int icv_offset; 1575 u32 result_len; 1576 1577 /* See how much data was returned */ 1578 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); 1579 flow_log("payload_len %u\n", payload_len); 1580 1581 /* only count payload */ 1582 atomic64_add(payload_len, &iproc_priv.bytes_in); 1583 1584 if (req->assoclen) 1585 packet_dump(" assoc_data ", rctx->msg_buf.a.resp_aad, 1586 req->assoclen); 1587 1588 /* 1589 * Copy the ICV back to the destination 1590 * buffer. In decrypt case, SPU gives us back the digest, but crypto 1591 * API doesn't expect ICV in dst buffer. 1592 */ 1593 result_len = req->cryptlen; 1594 if (rctx->is_encrypt) { 1595 icv_offset = req->assoclen + rctx->total_sent; 1596 packet_dump(" ICV: ", rctx->msg_buf.digest, ctx->digestsize); 1597 flow_log("copying ICV to dst sg at offset %u\n", icv_offset); 1598 sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest, 1599 ctx->digestsize, icv_offset); 1600 result_len += ctx->digestsize; 1601 } 1602 1603 packet_log("response data: "); 1604 dump_sg(req->dst, req->assoclen, result_len); 1605 1606 atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]); 1607 if (ctx->cipher.alg == CIPHER_ALG_AES) { 1608 if (ctx->cipher.mode == CIPHER_MODE_CCM) 1609 atomic_inc(&iproc_priv.aead_cnt[AES_CCM]); 1610 else if (ctx->cipher.mode == CIPHER_MODE_GCM) 1611 atomic_inc(&iproc_priv.aead_cnt[AES_GCM]); 1612 else 1613 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); 1614 } else { 1615 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); 1616 } 1617 } 1618 1619 /** 1620 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request 1621 * @rctx: request context 1622 * 1623 * Mailbox scatterlists are allocated for each chunk. So free them after 1624 * processing each chunk. 1625 */ 1626 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx) 1627 { 1628 /* mailbox message used to tx request */ 1629 struct brcm_message *mssg = &rctx->mb_mssg; 1630 1631 kfree(mssg->spu.src); 1632 kfree(mssg->spu.dst); 1633 memset(mssg, 0, sizeof(struct brcm_message)); 1634 } 1635 1636 /** 1637 * finish_req() - Used to invoke the complete callback from the requester when 1638 * a request has been handled asynchronously. 1639 * @rctx: Request context 1640 * @err: Indicates whether the request was successful or not 1641 * 1642 * Ensures that cleanup has been done for request 1643 */ 1644 static void finish_req(struct iproc_reqctx_s *rctx, int err) 1645 { 1646 struct crypto_async_request *areq = rctx->parent; 1647 1648 flow_log("%s() err:%d\n\n", __func__, err); 1649 1650 /* No harm done if already called */ 1651 spu_chunk_cleanup(rctx); 1652 1653 if (areq) 1654 areq->complete(areq, err); 1655 } 1656 1657 /** 1658 * spu_rx_callback() - Callback from mailbox framework with a SPU response. 1659 * @cl: mailbox client structure for SPU driver 1660 * @msg: mailbox message containing SPU response 1661 */ 1662 static void spu_rx_callback(struct mbox_client *cl, void *msg) 1663 { 1664 struct spu_hw *spu = &iproc_priv.spu; 1665 struct brcm_message *mssg = msg; 1666 struct iproc_reqctx_s *rctx; 1667 int err; 1668 1669 rctx = mssg->ctx; 1670 if (unlikely(!rctx)) { 1671 /* This is fatal */ 1672 pr_err("%s(): no request context", __func__); 1673 err = -EFAULT; 1674 goto cb_finish; 1675 } 1676 1677 /* process the SPU status */ 1678 err = spu->spu_status_process(rctx->msg_buf.rx_stat); 1679 if (err != 0) { 1680 if (err == SPU_INVALID_ICV) 1681 atomic_inc(&iproc_priv.bad_icv); 1682 err = -EBADMSG; 1683 goto cb_finish; 1684 } 1685 1686 /* Process the SPU response message */ 1687 switch (rctx->ctx->alg->type) { 1688 case CRYPTO_ALG_TYPE_SKCIPHER: 1689 handle_skcipher_resp(rctx); 1690 break; 1691 case CRYPTO_ALG_TYPE_AHASH: 1692 handle_ahash_resp(rctx); 1693 break; 1694 case CRYPTO_ALG_TYPE_AEAD: 1695 handle_aead_resp(rctx); 1696 break; 1697 default: 1698 err = -EINVAL; 1699 goto cb_finish; 1700 } 1701 1702 /* 1703 * If this response does not complete the request, then send the next 1704 * request chunk. 1705 */ 1706 if (rctx->total_sent < rctx->total_todo) { 1707 /* Deallocate anything specific to previous chunk */ 1708 spu_chunk_cleanup(rctx); 1709 1710 switch (rctx->ctx->alg->type) { 1711 case CRYPTO_ALG_TYPE_SKCIPHER: 1712 err = handle_skcipher_req(rctx); 1713 break; 1714 case CRYPTO_ALG_TYPE_AHASH: 1715 err = handle_ahash_req(rctx); 1716 if (err == -EAGAIN) 1717 /* 1718 * we saved data in hash carry, but tell crypto 1719 * API we successfully completed request. 1720 */ 1721 err = 0; 1722 break; 1723 case CRYPTO_ALG_TYPE_AEAD: 1724 err = handle_aead_req(rctx); 1725 break; 1726 default: 1727 err = -EINVAL; 1728 } 1729 1730 if (err == -EINPROGRESS) 1731 /* Successfully submitted request for next chunk */ 1732 return; 1733 } 1734 1735 cb_finish: 1736 finish_req(rctx, err); 1737 } 1738 1739 /* ==================== Kernel Cryptographic API ==================== */ 1740 1741 /** 1742 * skcipher_enqueue() - Handle skcipher encrypt or decrypt request. 1743 * @req: Crypto API request 1744 * @encrypt: true if encrypting; false if decrypting 1745 * 1746 * Return: -EINPROGRESS if request accepted and result will be returned 1747 * asynchronously 1748 * < 0 if an error 1749 */ 1750 static int skcipher_enqueue(struct skcipher_request *req, bool encrypt) 1751 { 1752 struct iproc_reqctx_s *rctx = skcipher_request_ctx(req); 1753 struct iproc_ctx_s *ctx = 1754 crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); 1755 int err; 1756 1757 flow_log("%s() enc:%u\n", __func__, encrypt); 1758 1759 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 1760 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 1761 rctx->parent = &req->base; 1762 rctx->is_encrypt = encrypt; 1763 rctx->bd_suppress = false; 1764 rctx->total_todo = req->cryptlen; 1765 rctx->src_sent = 0; 1766 rctx->total_sent = 0; 1767 rctx->total_received = 0; 1768 rctx->ctx = ctx; 1769 1770 /* Initialize current position in src and dst scatterlists */ 1771 rctx->src_sg = req->src; 1772 rctx->src_nents = 0; 1773 rctx->src_skip = 0; 1774 rctx->dst_sg = req->dst; 1775 rctx->dst_nents = 0; 1776 rctx->dst_skip = 0; 1777 1778 if (ctx->cipher.mode == CIPHER_MODE_CBC || 1779 ctx->cipher.mode == CIPHER_MODE_CTR || 1780 ctx->cipher.mode == CIPHER_MODE_OFB || 1781 ctx->cipher.mode == CIPHER_MODE_XTS || 1782 ctx->cipher.mode == CIPHER_MODE_GCM || 1783 ctx->cipher.mode == CIPHER_MODE_CCM) { 1784 rctx->iv_ctr_len = 1785 crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req)); 1786 memcpy(rctx->msg_buf.iv_ctr, req->iv, rctx->iv_ctr_len); 1787 } else { 1788 rctx->iv_ctr_len = 0; 1789 } 1790 1791 /* Choose a SPU to process this request */ 1792 rctx->chan_idx = select_channel(); 1793 err = handle_skcipher_req(rctx); 1794 if (err != -EINPROGRESS) 1795 /* synchronous result */ 1796 spu_chunk_cleanup(rctx); 1797 1798 return err; 1799 } 1800 1801 static int des_setkey(struct crypto_skcipher *cipher, const u8 *key, 1802 unsigned int keylen) 1803 { 1804 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher); 1805 int err; 1806 1807 err = verify_skcipher_des_key(cipher, key); 1808 if (err) 1809 return err; 1810 1811 ctx->cipher_type = CIPHER_TYPE_DES; 1812 return 0; 1813 } 1814 1815 static int threedes_setkey(struct crypto_skcipher *cipher, const u8 *key, 1816 unsigned int keylen) 1817 { 1818 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher); 1819 int err; 1820 1821 err = verify_skcipher_des3_key(cipher, key); 1822 if (err) 1823 return err; 1824 1825 ctx->cipher_type = CIPHER_TYPE_3DES; 1826 return 0; 1827 } 1828 1829 static int aes_setkey(struct crypto_skcipher *cipher, const u8 *key, 1830 unsigned int keylen) 1831 { 1832 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher); 1833 1834 if (ctx->cipher.mode == CIPHER_MODE_XTS) 1835 /* XTS includes two keys of equal length */ 1836 keylen = keylen / 2; 1837 1838 switch (keylen) { 1839 case AES_KEYSIZE_128: 1840 ctx->cipher_type = CIPHER_TYPE_AES128; 1841 break; 1842 case AES_KEYSIZE_192: 1843 ctx->cipher_type = CIPHER_TYPE_AES192; 1844 break; 1845 case AES_KEYSIZE_256: 1846 ctx->cipher_type = CIPHER_TYPE_AES256; 1847 break; 1848 default: 1849 return -EINVAL; 1850 } 1851 WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && 1852 ((ctx->max_payload % AES_BLOCK_SIZE) != 0)); 1853 return 0; 1854 } 1855 1856 static int rc4_setkey(struct crypto_skcipher *cipher, const u8 *key, 1857 unsigned int keylen) 1858 { 1859 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher); 1860 int i; 1861 1862 ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE; 1863 1864 ctx->enckey[0] = 0x00; /* 0x00 */ 1865 ctx->enckey[1] = 0x00; /* i */ 1866 ctx->enckey[2] = 0x00; /* 0x00 */ 1867 ctx->enckey[3] = 0x00; /* j */ 1868 for (i = 0; i < ARC4_MAX_KEY_SIZE; i++) 1869 ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen]; 1870 1871 ctx->cipher_type = CIPHER_TYPE_INIT; 1872 1873 return 0; 1874 } 1875 1876 static int skcipher_setkey(struct crypto_skcipher *cipher, const u8 *key, 1877 unsigned int keylen) 1878 { 1879 struct spu_hw *spu = &iproc_priv.spu; 1880 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher); 1881 struct spu_cipher_parms cipher_parms; 1882 u32 alloc_len = 0; 1883 int err; 1884 1885 flow_log("skcipher_setkey() keylen: %d\n", keylen); 1886 flow_dump(" key: ", key, keylen); 1887 1888 switch (ctx->cipher.alg) { 1889 case CIPHER_ALG_DES: 1890 err = des_setkey(cipher, key, keylen); 1891 break; 1892 case CIPHER_ALG_3DES: 1893 err = threedes_setkey(cipher, key, keylen); 1894 break; 1895 case CIPHER_ALG_AES: 1896 err = aes_setkey(cipher, key, keylen); 1897 break; 1898 case CIPHER_ALG_RC4: 1899 err = rc4_setkey(cipher, key, keylen); 1900 break; 1901 default: 1902 pr_err("%s() Error: unknown cipher alg\n", __func__); 1903 err = -EINVAL; 1904 } 1905 if (err) 1906 return err; 1907 1908 /* RC4 already populated ctx->enkey */ 1909 if (ctx->cipher.alg != CIPHER_ALG_RC4) { 1910 memcpy(ctx->enckey, key, keylen); 1911 ctx->enckeylen = keylen; 1912 } 1913 /* SPU needs XTS keys in the reverse order the crypto API presents */ 1914 if ((ctx->cipher.alg == CIPHER_ALG_AES) && 1915 (ctx->cipher.mode == CIPHER_MODE_XTS)) { 1916 unsigned int xts_keylen = keylen / 2; 1917 1918 memcpy(ctx->enckey, key + xts_keylen, xts_keylen); 1919 memcpy(ctx->enckey + xts_keylen, key, xts_keylen); 1920 } 1921 1922 if (spu->spu_type == SPU_TYPE_SPUM) 1923 alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN; 1924 else if (spu->spu_type == SPU_TYPE_SPU2) 1925 alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN; 1926 memset(ctx->bcm_spu_req_hdr, 0, alloc_len); 1927 cipher_parms.iv_buf = NULL; 1928 cipher_parms.iv_len = crypto_skcipher_ivsize(cipher); 1929 flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len); 1930 1931 cipher_parms.alg = ctx->cipher.alg; 1932 cipher_parms.mode = ctx->cipher.mode; 1933 cipher_parms.type = ctx->cipher_type; 1934 cipher_parms.key_buf = ctx->enckey; 1935 cipher_parms.key_len = ctx->enckeylen; 1936 1937 /* Prepend SPU request message with BCM header */ 1938 memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); 1939 ctx->spu_req_hdr_len = 1940 spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN, 1941 &cipher_parms); 1942 1943 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 1944 ctx->enckeylen, 1945 false); 1946 1947 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]); 1948 1949 return 0; 1950 } 1951 1952 static int skcipher_encrypt(struct skcipher_request *req) 1953 { 1954 flow_log("skcipher_encrypt() nbytes:%u\n", req->cryptlen); 1955 1956 return skcipher_enqueue(req, true); 1957 } 1958 1959 static int skcipher_decrypt(struct skcipher_request *req) 1960 { 1961 flow_log("skcipher_decrypt() nbytes:%u\n", req->cryptlen); 1962 return skcipher_enqueue(req, false); 1963 } 1964 1965 static int ahash_enqueue(struct ahash_request *req) 1966 { 1967 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 1968 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1969 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 1970 int err; 1971 const char *alg_name; 1972 1973 flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes); 1974 1975 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 1976 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 1977 rctx->parent = &req->base; 1978 rctx->ctx = ctx; 1979 rctx->bd_suppress = true; 1980 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); 1981 1982 /* Initialize position in src scatterlist */ 1983 rctx->src_sg = req->src; 1984 rctx->src_skip = 0; 1985 rctx->src_nents = 0; 1986 rctx->dst_sg = NULL; 1987 rctx->dst_skip = 0; 1988 rctx->dst_nents = 0; 1989 1990 /* SPU2 hardware does not compute hash of zero length data */ 1991 if ((rctx->is_final == 1) && (rctx->total_todo == 0) && 1992 (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) { 1993 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); 1994 flow_log("Doing %sfinal %s zero-len hash request in software\n", 1995 rctx->is_final ? "" : "non-", alg_name); 1996 err = do_shash((unsigned char *)alg_name, req->result, 1997 NULL, 0, NULL, 0, ctx->authkey, 1998 ctx->authkeylen); 1999 if (err < 0) 2000 flow_log("Hash request failed with error %d\n", err); 2001 return err; 2002 } 2003 /* Choose a SPU to process this request */ 2004 rctx->chan_idx = select_channel(); 2005 2006 err = handle_ahash_req(rctx); 2007 if (err != -EINPROGRESS) 2008 /* synchronous result */ 2009 spu_chunk_cleanup(rctx); 2010 2011 if (err == -EAGAIN) 2012 /* 2013 * we saved data in hash carry, but tell crypto API 2014 * we successfully completed request. 2015 */ 2016 err = 0; 2017 2018 return err; 2019 } 2020 2021 static int __ahash_init(struct ahash_request *req) 2022 { 2023 struct spu_hw *spu = &iproc_priv.spu; 2024 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2025 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2026 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2027 2028 flow_log("%s()\n", __func__); 2029 2030 /* Initialize the context */ 2031 rctx->hash_carry_len = 0; 2032 rctx->is_final = 0; 2033 2034 rctx->total_todo = 0; 2035 rctx->src_sent = 0; 2036 rctx->total_sent = 0; 2037 rctx->total_received = 0; 2038 2039 ctx->digestsize = crypto_ahash_digestsize(tfm); 2040 /* If we add a hash whose digest is larger, catch it here. */ 2041 WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE); 2042 2043 rctx->is_sw_hmac = false; 2044 2045 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0, 2046 true); 2047 2048 return 0; 2049 } 2050 2051 /** 2052 * spu_no_incr_hash() - Determine whether incremental hashing is supported. 2053 * @ctx: Crypto session context 2054 * 2055 * SPU-2 does not support incremental hashing (we'll have to revisit and 2056 * condition based on chip revision or device tree entry if future versions do 2057 * support incremental hash) 2058 * 2059 * SPU-M also doesn't support incremental hashing of AES-XCBC 2060 * 2061 * Return: true if incremental hashing is not supported 2062 * false otherwise 2063 */ 2064 static bool spu_no_incr_hash(struct iproc_ctx_s *ctx) 2065 { 2066 struct spu_hw *spu = &iproc_priv.spu; 2067 2068 if (spu->spu_type == SPU_TYPE_SPU2) 2069 return true; 2070 2071 if ((ctx->auth.alg == HASH_ALG_AES) && 2072 (ctx->auth.mode == HASH_MODE_XCBC)) 2073 return true; 2074 2075 /* Otherwise, incremental hashing is supported */ 2076 return false; 2077 } 2078 2079 static int ahash_init(struct ahash_request *req) 2080 { 2081 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2082 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2083 const char *alg_name; 2084 struct crypto_shash *hash; 2085 int ret; 2086 gfp_t gfp; 2087 2088 if (spu_no_incr_hash(ctx)) { 2089 /* 2090 * If we get an incremental hashing request and it's not 2091 * supported by the hardware, we need to handle it in software 2092 * by calling synchronous hash functions. 2093 */ 2094 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); 2095 hash = crypto_alloc_shash(alg_name, 0, 0); 2096 if (IS_ERR(hash)) { 2097 ret = PTR_ERR(hash); 2098 goto err; 2099 } 2100 2101 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2102 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2103 ctx->shash = kmalloc(sizeof(*ctx->shash) + 2104 crypto_shash_descsize(hash), gfp); 2105 if (!ctx->shash) { 2106 ret = -ENOMEM; 2107 goto err_hash; 2108 } 2109 ctx->shash->tfm = hash; 2110 2111 /* Set the key using data we already have from setkey */ 2112 if (ctx->authkeylen > 0) { 2113 ret = crypto_shash_setkey(hash, ctx->authkey, 2114 ctx->authkeylen); 2115 if (ret) 2116 goto err_shash; 2117 } 2118 2119 /* Initialize hash w/ this key and other params */ 2120 ret = crypto_shash_init(ctx->shash); 2121 if (ret) 2122 goto err_shash; 2123 } else { 2124 /* Otherwise call the internal function which uses SPU hw */ 2125 ret = __ahash_init(req); 2126 } 2127 2128 return ret; 2129 2130 err_shash: 2131 kfree(ctx->shash); 2132 err_hash: 2133 crypto_free_shash(hash); 2134 err: 2135 return ret; 2136 } 2137 2138 static int __ahash_update(struct ahash_request *req) 2139 { 2140 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2141 2142 flow_log("ahash_update() nbytes:%u\n", req->nbytes); 2143 2144 if (!req->nbytes) 2145 return 0; 2146 rctx->total_todo += req->nbytes; 2147 rctx->src_sent = 0; 2148 2149 return ahash_enqueue(req); 2150 } 2151 2152 static int ahash_update(struct ahash_request *req) 2153 { 2154 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2155 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2156 u8 *tmpbuf; 2157 int ret; 2158 int nents; 2159 gfp_t gfp; 2160 2161 if (spu_no_incr_hash(ctx)) { 2162 /* 2163 * If we get an incremental hashing request and it's not 2164 * supported by the hardware, we need to handle it in software 2165 * by calling synchronous hash functions. 2166 */ 2167 if (req->src) 2168 nents = sg_nents(req->src); 2169 else 2170 return -EINVAL; 2171 2172 /* Copy data from req scatterlist to tmp buffer */ 2173 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2174 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2175 tmpbuf = kmalloc(req->nbytes, gfp); 2176 if (!tmpbuf) 2177 return -ENOMEM; 2178 2179 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != 2180 req->nbytes) { 2181 kfree(tmpbuf); 2182 return -EINVAL; 2183 } 2184 2185 /* Call synchronous update */ 2186 ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes); 2187 kfree(tmpbuf); 2188 } else { 2189 /* Otherwise call the internal function which uses SPU hw */ 2190 ret = __ahash_update(req); 2191 } 2192 2193 return ret; 2194 } 2195 2196 static int __ahash_final(struct ahash_request *req) 2197 { 2198 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2199 2200 flow_log("ahash_final() nbytes:%u\n", req->nbytes); 2201 2202 rctx->is_final = 1; 2203 2204 return ahash_enqueue(req); 2205 } 2206 2207 static int ahash_final(struct ahash_request *req) 2208 { 2209 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2210 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2211 int ret; 2212 2213 if (spu_no_incr_hash(ctx)) { 2214 /* 2215 * If we get an incremental hashing request and it's not 2216 * supported by the hardware, we need to handle it in software 2217 * by calling synchronous hash functions. 2218 */ 2219 ret = crypto_shash_final(ctx->shash, req->result); 2220 2221 /* Done with hash, can deallocate it now */ 2222 crypto_free_shash(ctx->shash->tfm); 2223 kfree(ctx->shash); 2224 2225 } else { 2226 /* Otherwise call the internal function which uses SPU hw */ 2227 ret = __ahash_final(req); 2228 } 2229 2230 return ret; 2231 } 2232 2233 static int __ahash_finup(struct ahash_request *req) 2234 { 2235 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2236 2237 flow_log("ahash_finup() nbytes:%u\n", req->nbytes); 2238 2239 rctx->total_todo += req->nbytes; 2240 rctx->src_sent = 0; 2241 rctx->is_final = 1; 2242 2243 return ahash_enqueue(req); 2244 } 2245 2246 static int ahash_finup(struct ahash_request *req) 2247 { 2248 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2249 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2250 u8 *tmpbuf; 2251 int ret; 2252 int nents; 2253 gfp_t gfp; 2254 2255 if (spu_no_incr_hash(ctx)) { 2256 /* 2257 * If we get an incremental hashing request and it's not 2258 * supported by the hardware, we need to handle it in software 2259 * by calling synchronous hash functions. 2260 */ 2261 if (req->src) { 2262 nents = sg_nents(req->src); 2263 } else { 2264 ret = -EINVAL; 2265 goto ahash_finup_exit; 2266 } 2267 2268 /* Copy data from req scatterlist to tmp buffer */ 2269 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2270 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2271 tmpbuf = kmalloc(req->nbytes, gfp); 2272 if (!tmpbuf) { 2273 ret = -ENOMEM; 2274 goto ahash_finup_exit; 2275 } 2276 2277 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != 2278 req->nbytes) { 2279 ret = -EINVAL; 2280 goto ahash_finup_free; 2281 } 2282 2283 /* Call synchronous update */ 2284 ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes, 2285 req->result); 2286 } else { 2287 /* Otherwise call the internal function which uses SPU hw */ 2288 return __ahash_finup(req); 2289 } 2290 ahash_finup_free: 2291 kfree(tmpbuf); 2292 2293 ahash_finup_exit: 2294 /* Done with hash, can deallocate it now */ 2295 crypto_free_shash(ctx->shash->tfm); 2296 kfree(ctx->shash); 2297 return ret; 2298 } 2299 2300 static int ahash_digest(struct ahash_request *req) 2301 { 2302 int err; 2303 2304 flow_log("ahash_digest() nbytes:%u\n", req->nbytes); 2305 2306 /* whole thing at once */ 2307 err = __ahash_init(req); 2308 if (!err) 2309 err = __ahash_finup(req); 2310 2311 return err; 2312 } 2313 2314 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key, 2315 unsigned int keylen) 2316 { 2317 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); 2318 2319 flow_log("%s() ahash:%p key:%p keylen:%u\n", 2320 __func__, ahash, key, keylen); 2321 flow_dump(" key: ", key, keylen); 2322 2323 if (ctx->auth.alg == HASH_ALG_AES) { 2324 switch (keylen) { 2325 case AES_KEYSIZE_128: 2326 ctx->cipher_type = CIPHER_TYPE_AES128; 2327 break; 2328 case AES_KEYSIZE_192: 2329 ctx->cipher_type = CIPHER_TYPE_AES192; 2330 break; 2331 case AES_KEYSIZE_256: 2332 ctx->cipher_type = CIPHER_TYPE_AES256; 2333 break; 2334 default: 2335 pr_err("%s() Error: Invalid key length\n", __func__); 2336 return -EINVAL; 2337 } 2338 } else { 2339 pr_err("%s() Error: unknown hash alg\n", __func__); 2340 return -EINVAL; 2341 } 2342 memcpy(ctx->authkey, key, keylen); 2343 ctx->authkeylen = keylen; 2344 2345 return 0; 2346 } 2347 2348 static int ahash_export(struct ahash_request *req, void *out) 2349 { 2350 const struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2351 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out; 2352 2353 spu_exp->total_todo = rctx->total_todo; 2354 spu_exp->total_sent = rctx->total_sent; 2355 spu_exp->is_sw_hmac = rctx->is_sw_hmac; 2356 memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry)); 2357 spu_exp->hash_carry_len = rctx->hash_carry_len; 2358 memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash)); 2359 2360 return 0; 2361 } 2362 2363 static int ahash_import(struct ahash_request *req, const void *in) 2364 { 2365 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2366 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in; 2367 2368 rctx->total_todo = spu_exp->total_todo; 2369 rctx->total_sent = spu_exp->total_sent; 2370 rctx->is_sw_hmac = spu_exp->is_sw_hmac; 2371 memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry)); 2372 rctx->hash_carry_len = spu_exp->hash_carry_len; 2373 memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash)); 2374 2375 return 0; 2376 } 2377 2378 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key, 2379 unsigned int keylen) 2380 { 2381 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); 2382 unsigned int blocksize = 2383 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 2384 unsigned int digestsize = crypto_ahash_digestsize(ahash); 2385 unsigned int index; 2386 int rc; 2387 2388 flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n", 2389 __func__, ahash, key, keylen, blocksize, digestsize); 2390 flow_dump(" key: ", key, keylen); 2391 2392 if (keylen > blocksize) { 2393 switch (ctx->auth.alg) { 2394 case HASH_ALG_MD5: 2395 rc = do_shash("md5", ctx->authkey, key, keylen, NULL, 2396 0, NULL, 0); 2397 break; 2398 case HASH_ALG_SHA1: 2399 rc = do_shash("sha1", ctx->authkey, key, keylen, NULL, 2400 0, NULL, 0); 2401 break; 2402 case HASH_ALG_SHA224: 2403 rc = do_shash("sha224", ctx->authkey, key, keylen, NULL, 2404 0, NULL, 0); 2405 break; 2406 case HASH_ALG_SHA256: 2407 rc = do_shash("sha256", ctx->authkey, key, keylen, NULL, 2408 0, NULL, 0); 2409 break; 2410 case HASH_ALG_SHA384: 2411 rc = do_shash("sha384", ctx->authkey, key, keylen, NULL, 2412 0, NULL, 0); 2413 break; 2414 case HASH_ALG_SHA512: 2415 rc = do_shash("sha512", ctx->authkey, key, keylen, NULL, 2416 0, NULL, 0); 2417 break; 2418 case HASH_ALG_SHA3_224: 2419 rc = do_shash("sha3-224", ctx->authkey, key, keylen, 2420 NULL, 0, NULL, 0); 2421 break; 2422 case HASH_ALG_SHA3_256: 2423 rc = do_shash("sha3-256", ctx->authkey, key, keylen, 2424 NULL, 0, NULL, 0); 2425 break; 2426 case HASH_ALG_SHA3_384: 2427 rc = do_shash("sha3-384", ctx->authkey, key, keylen, 2428 NULL, 0, NULL, 0); 2429 break; 2430 case HASH_ALG_SHA3_512: 2431 rc = do_shash("sha3-512", ctx->authkey, key, keylen, 2432 NULL, 0, NULL, 0); 2433 break; 2434 default: 2435 pr_err("%s() Error: unknown hash alg\n", __func__); 2436 return -EINVAL; 2437 } 2438 if (rc < 0) { 2439 pr_err("%s() Error %d computing shash for %s\n", 2440 __func__, rc, hash_alg_name[ctx->auth.alg]); 2441 return rc; 2442 } 2443 ctx->authkeylen = digestsize; 2444 2445 flow_log(" keylen > digestsize... hashed\n"); 2446 flow_dump(" newkey: ", ctx->authkey, ctx->authkeylen); 2447 } else { 2448 memcpy(ctx->authkey, key, keylen); 2449 ctx->authkeylen = keylen; 2450 } 2451 2452 /* 2453 * Full HMAC operation in SPUM is not verified, 2454 * So keeping the generation of IPAD, OPAD and 2455 * outer hashing in software. 2456 */ 2457 if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) { 2458 memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen); 2459 memset(ctx->ipad + ctx->authkeylen, 0, 2460 blocksize - ctx->authkeylen); 2461 ctx->authkeylen = 0; 2462 memcpy(ctx->opad, ctx->ipad, blocksize); 2463 2464 for (index = 0; index < blocksize; index++) { 2465 ctx->ipad[index] ^= HMAC_IPAD_VALUE; 2466 ctx->opad[index] ^= HMAC_OPAD_VALUE; 2467 } 2468 2469 flow_dump(" ipad: ", ctx->ipad, blocksize); 2470 flow_dump(" opad: ", ctx->opad, blocksize); 2471 } 2472 ctx->digestsize = digestsize; 2473 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]); 2474 2475 return 0; 2476 } 2477 2478 static int ahash_hmac_init(struct ahash_request *req) 2479 { 2480 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2481 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2482 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2483 unsigned int blocksize = 2484 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 2485 2486 flow_log("ahash_hmac_init()\n"); 2487 2488 /* init the context as a hash */ 2489 ahash_init(req); 2490 2491 if (!spu_no_incr_hash(ctx)) { 2492 /* SPU-M can do incr hashing but needs sw for outer HMAC */ 2493 rctx->is_sw_hmac = true; 2494 ctx->auth.mode = HASH_MODE_HASH; 2495 /* start with a prepended ipad */ 2496 memcpy(rctx->hash_carry, ctx->ipad, blocksize); 2497 rctx->hash_carry_len = blocksize; 2498 rctx->total_todo += blocksize; 2499 } 2500 2501 return 0; 2502 } 2503 2504 static int ahash_hmac_update(struct ahash_request *req) 2505 { 2506 flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes); 2507 2508 if (!req->nbytes) 2509 return 0; 2510 2511 return ahash_update(req); 2512 } 2513 2514 static int ahash_hmac_final(struct ahash_request *req) 2515 { 2516 flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes); 2517 2518 return ahash_final(req); 2519 } 2520 2521 static int ahash_hmac_finup(struct ahash_request *req) 2522 { 2523 flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes); 2524 2525 return ahash_finup(req); 2526 } 2527 2528 static int ahash_hmac_digest(struct ahash_request *req) 2529 { 2530 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2531 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2532 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2533 unsigned int blocksize = 2534 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 2535 2536 flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes); 2537 2538 /* Perform initialization and then call finup */ 2539 __ahash_init(req); 2540 2541 if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) { 2542 /* 2543 * SPU2 supports full HMAC implementation in the 2544 * hardware, need not to generate IPAD, OPAD and 2545 * outer hash in software. 2546 * Only for hash key len > hash block size, SPU2 2547 * expects to perform hashing on the key, shorten 2548 * it to digest size and feed it as hash key. 2549 */ 2550 rctx->is_sw_hmac = false; 2551 ctx->auth.mode = HASH_MODE_HMAC; 2552 } else { 2553 rctx->is_sw_hmac = true; 2554 ctx->auth.mode = HASH_MODE_HASH; 2555 /* start with a prepended ipad */ 2556 memcpy(rctx->hash_carry, ctx->ipad, blocksize); 2557 rctx->hash_carry_len = blocksize; 2558 rctx->total_todo += blocksize; 2559 } 2560 2561 return __ahash_finup(req); 2562 } 2563 2564 /* aead helpers */ 2565 2566 static int aead_need_fallback(struct aead_request *req) 2567 { 2568 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2569 struct spu_hw *spu = &iproc_priv.spu; 2570 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2571 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); 2572 u32 payload_len; 2573 2574 /* 2575 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext 2576 * and AAD are both 0 bytes long. So use fallback in this case. 2577 */ 2578 if (((ctx->cipher.mode == CIPHER_MODE_GCM) || 2579 (ctx->cipher.mode == CIPHER_MODE_CCM)) && 2580 (req->assoclen == 0)) { 2581 if ((rctx->is_encrypt && (req->cryptlen == 0)) || 2582 (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) { 2583 flow_log("AES GCM/CCM needs fallback for 0 len req\n"); 2584 return 1; 2585 } 2586 } 2587 2588 /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */ 2589 if ((ctx->cipher.mode == CIPHER_MODE_CCM) && 2590 (spu->spu_type == SPU_TYPE_SPUM) && 2591 (ctx->digestsize != 8) && (ctx->digestsize != 12) && 2592 (ctx->digestsize != 16)) { 2593 flow_log("%s() AES CCM needs fallback for digest size %d\n", 2594 __func__, ctx->digestsize); 2595 return 1; 2596 } 2597 2598 /* 2599 * SPU-M on NSP has an issue where AES-CCM hash is not correct 2600 * when AAD size is 0 2601 */ 2602 if ((ctx->cipher.mode == CIPHER_MODE_CCM) && 2603 (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) && 2604 (req->assoclen == 0)) { 2605 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n", 2606 __func__); 2607 return 1; 2608 } 2609 2610 /* 2611 * RFC4106 and RFC4543 cannot handle the case where AAD is other than 2612 * 16 or 20 bytes long. So use fallback in this case. 2613 */ 2614 if (ctx->cipher.mode == CIPHER_MODE_GCM && 2615 ctx->cipher.alg == CIPHER_ALG_AES && 2616 rctx->iv_ctr_len == GCM_RFC4106_IV_SIZE && 2617 req->assoclen != 16 && req->assoclen != 20) { 2618 flow_log("RFC4106/RFC4543 needs fallback for assoclen" 2619 " other than 16 or 20 bytes\n"); 2620 return 1; 2621 } 2622 2623 payload_len = req->cryptlen; 2624 if (spu->spu_type == SPU_TYPE_SPUM) 2625 payload_len += req->assoclen; 2626 2627 flow_log("%s() payload len: %u\n", __func__, payload_len); 2628 2629 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 2630 return 0; 2631 else 2632 return payload_len > ctx->max_payload; 2633 } 2634 2635 static void aead_complete(struct crypto_async_request *areq, int err) 2636 { 2637 struct aead_request *req = 2638 container_of(areq, struct aead_request, base); 2639 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2640 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2641 2642 flow_log("%s() err:%d\n", __func__, err); 2643 2644 areq->tfm = crypto_aead_tfm(aead); 2645 2646 areq->complete = rctx->old_complete; 2647 areq->data = rctx->old_data; 2648 2649 areq->complete(areq, err); 2650 } 2651 2652 static int aead_do_fallback(struct aead_request *req, bool is_encrypt) 2653 { 2654 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2655 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 2656 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2657 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 2658 int err; 2659 u32 req_flags; 2660 2661 flow_log("%s() enc:%u\n", __func__, is_encrypt); 2662 2663 if (ctx->fallback_cipher) { 2664 /* Store the cipher tfm and then use the fallback tfm */ 2665 rctx->old_tfm = tfm; 2666 aead_request_set_tfm(req, ctx->fallback_cipher); 2667 /* 2668 * Save the callback and chain ourselves in, so we can restore 2669 * the tfm 2670 */ 2671 rctx->old_complete = req->base.complete; 2672 rctx->old_data = req->base.data; 2673 req_flags = aead_request_flags(req); 2674 aead_request_set_callback(req, req_flags, aead_complete, req); 2675 err = is_encrypt ? crypto_aead_encrypt(req) : 2676 crypto_aead_decrypt(req); 2677 2678 if (err == 0) { 2679 /* 2680 * fallback was synchronous (did not return 2681 * -EINPROGRESS). So restore request state here. 2682 */ 2683 aead_request_set_callback(req, req_flags, 2684 rctx->old_complete, req); 2685 req->base.data = rctx->old_data; 2686 aead_request_set_tfm(req, aead); 2687 flow_log("%s() fallback completed successfully\n\n", 2688 __func__); 2689 } 2690 } else { 2691 err = -EINVAL; 2692 } 2693 2694 return err; 2695 } 2696 2697 static int aead_enqueue(struct aead_request *req, bool is_encrypt) 2698 { 2699 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2700 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2701 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); 2702 int err; 2703 2704 flow_log("%s() enc:%u\n", __func__, is_encrypt); 2705 2706 if (req->assoclen > MAX_ASSOC_SIZE) { 2707 pr_err 2708 ("%s() Error: associated data too long. (%u > %u bytes)\n", 2709 __func__, req->assoclen, MAX_ASSOC_SIZE); 2710 return -EINVAL; 2711 } 2712 2713 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2714 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2715 rctx->parent = &req->base; 2716 rctx->is_encrypt = is_encrypt; 2717 rctx->bd_suppress = false; 2718 rctx->total_todo = req->cryptlen; 2719 rctx->src_sent = 0; 2720 rctx->total_sent = 0; 2721 rctx->total_received = 0; 2722 rctx->is_sw_hmac = false; 2723 rctx->ctx = ctx; 2724 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); 2725 2726 /* assoc data is at start of src sg */ 2727 rctx->assoc = req->src; 2728 2729 /* 2730 * Init current position in src scatterlist to be after assoc data. 2731 * src_skip set to buffer offset where data begins. (Assoc data could 2732 * end in the middle of a buffer.) 2733 */ 2734 if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg, 2735 &rctx->src_skip) < 0) { 2736 pr_err("%s() Error: Unable to find start of src data\n", 2737 __func__); 2738 return -EINVAL; 2739 } 2740 2741 rctx->src_nents = 0; 2742 rctx->dst_nents = 0; 2743 if (req->dst == req->src) { 2744 rctx->dst_sg = rctx->src_sg; 2745 rctx->dst_skip = rctx->src_skip; 2746 } else { 2747 /* 2748 * Expect req->dst to have room for assoc data followed by 2749 * output data and ICV, if encrypt. So initialize dst_sg 2750 * to point beyond assoc len offset. 2751 */ 2752 if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg, 2753 &rctx->dst_skip) < 0) { 2754 pr_err("%s() Error: Unable to find start of dst data\n", 2755 __func__); 2756 return -EINVAL; 2757 } 2758 } 2759 2760 if (ctx->cipher.mode == CIPHER_MODE_CBC || 2761 ctx->cipher.mode == CIPHER_MODE_CTR || 2762 ctx->cipher.mode == CIPHER_MODE_OFB || 2763 ctx->cipher.mode == CIPHER_MODE_XTS || 2764 ctx->cipher.mode == CIPHER_MODE_GCM) { 2765 rctx->iv_ctr_len = 2766 ctx->salt_len + 2767 crypto_aead_ivsize(crypto_aead_reqtfm(req)); 2768 } else if (ctx->cipher.mode == CIPHER_MODE_CCM) { 2769 rctx->iv_ctr_len = CCM_AES_IV_SIZE; 2770 } else { 2771 rctx->iv_ctr_len = 0; 2772 } 2773 2774 rctx->hash_carry_len = 0; 2775 2776 flow_log(" src sg: %p\n", req->src); 2777 flow_log(" rctx->src_sg: %p, src_skip %u\n", 2778 rctx->src_sg, rctx->src_skip); 2779 flow_log(" assoc: %p, assoclen %u\n", rctx->assoc, req->assoclen); 2780 flow_log(" dst sg: %p\n", req->dst); 2781 flow_log(" rctx->dst_sg: %p, dst_skip %u\n", 2782 rctx->dst_sg, rctx->dst_skip); 2783 flow_log(" iv_ctr_len:%u\n", rctx->iv_ctr_len); 2784 flow_dump(" iv: ", req->iv, rctx->iv_ctr_len); 2785 flow_log(" authkeylen:%u\n", ctx->authkeylen); 2786 flow_log(" is_esp: %s\n", ctx->is_esp ? "yes" : "no"); 2787 2788 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 2789 flow_log(" max_payload infinite"); 2790 else 2791 flow_log(" max_payload: %u\n", ctx->max_payload); 2792 2793 if (unlikely(aead_need_fallback(req))) 2794 return aead_do_fallback(req, is_encrypt); 2795 2796 /* 2797 * Do memory allocations for request after fallback check, because if we 2798 * do fallback, we won't call finish_req() to dealloc. 2799 */ 2800 if (rctx->iv_ctr_len) { 2801 if (ctx->salt_len) 2802 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset, 2803 ctx->salt, ctx->salt_len); 2804 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len, 2805 req->iv, 2806 rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset); 2807 } 2808 2809 rctx->chan_idx = select_channel(); 2810 err = handle_aead_req(rctx); 2811 if (err != -EINPROGRESS) 2812 /* synchronous result */ 2813 spu_chunk_cleanup(rctx); 2814 2815 return err; 2816 } 2817 2818 static int aead_authenc_setkey(struct crypto_aead *cipher, 2819 const u8 *key, unsigned int keylen) 2820 { 2821 struct spu_hw *spu = &iproc_priv.spu; 2822 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2823 struct crypto_tfm *tfm = crypto_aead_tfm(cipher); 2824 struct crypto_authenc_keys keys; 2825 int ret; 2826 2827 flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key, 2828 keylen); 2829 flow_dump(" key: ", key, keylen); 2830 2831 ret = crypto_authenc_extractkeys(&keys, key, keylen); 2832 if (ret) 2833 goto badkey; 2834 2835 if (keys.enckeylen > MAX_KEY_SIZE || 2836 keys.authkeylen > MAX_KEY_SIZE) 2837 goto badkey; 2838 2839 ctx->enckeylen = keys.enckeylen; 2840 ctx->authkeylen = keys.authkeylen; 2841 2842 memcpy(ctx->enckey, keys.enckey, keys.enckeylen); 2843 /* May end up padding auth key. So make sure it's zeroed. */ 2844 memset(ctx->authkey, 0, sizeof(ctx->authkey)); 2845 memcpy(ctx->authkey, keys.authkey, keys.authkeylen); 2846 2847 switch (ctx->alg->cipher_info.alg) { 2848 case CIPHER_ALG_DES: 2849 if (verify_aead_des_key(cipher, keys.enckey, keys.enckeylen)) 2850 return -EINVAL; 2851 2852 ctx->cipher_type = CIPHER_TYPE_DES; 2853 break; 2854 case CIPHER_ALG_3DES: 2855 if (verify_aead_des3_key(cipher, keys.enckey, keys.enckeylen)) 2856 return -EINVAL; 2857 2858 ctx->cipher_type = CIPHER_TYPE_3DES; 2859 break; 2860 case CIPHER_ALG_AES: 2861 switch (ctx->enckeylen) { 2862 case AES_KEYSIZE_128: 2863 ctx->cipher_type = CIPHER_TYPE_AES128; 2864 break; 2865 case AES_KEYSIZE_192: 2866 ctx->cipher_type = CIPHER_TYPE_AES192; 2867 break; 2868 case AES_KEYSIZE_256: 2869 ctx->cipher_type = CIPHER_TYPE_AES256; 2870 break; 2871 default: 2872 goto badkey; 2873 } 2874 break; 2875 case CIPHER_ALG_RC4: 2876 ctx->cipher_type = CIPHER_TYPE_INIT; 2877 break; 2878 default: 2879 pr_err("%s() Error: Unknown cipher alg\n", __func__); 2880 return -EINVAL; 2881 } 2882 2883 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, 2884 ctx->authkeylen); 2885 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen); 2886 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen); 2887 2888 /* setkey the fallback just in case we needto use it */ 2889 if (ctx->fallback_cipher) { 2890 flow_log(" running fallback setkey()\n"); 2891 2892 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; 2893 ctx->fallback_cipher->base.crt_flags |= 2894 tfm->crt_flags & CRYPTO_TFM_REQ_MASK; 2895 ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen); 2896 if (ret) 2897 flow_log(" fallback setkey() returned:%d\n", ret); 2898 } 2899 2900 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 2901 ctx->enckeylen, 2902 false); 2903 2904 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); 2905 2906 return ret; 2907 2908 badkey: 2909 ctx->enckeylen = 0; 2910 ctx->authkeylen = 0; 2911 ctx->digestsize = 0; 2912 2913 return -EINVAL; 2914 } 2915 2916 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher, 2917 const u8 *key, unsigned int keylen) 2918 { 2919 struct spu_hw *spu = &iproc_priv.spu; 2920 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2921 struct crypto_tfm *tfm = crypto_aead_tfm(cipher); 2922 2923 int ret = 0; 2924 2925 flow_log("%s() keylen:%u\n", __func__, keylen); 2926 flow_dump(" key: ", key, keylen); 2927 2928 if (!ctx->is_esp) 2929 ctx->digestsize = keylen; 2930 2931 ctx->enckeylen = keylen; 2932 ctx->authkeylen = 0; 2933 memcpy(ctx->enckey, key, ctx->enckeylen); 2934 2935 switch (ctx->enckeylen) { 2936 case AES_KEYSIZE_128: 2937 ctx->cipher_type = CIPHER_TYPE_AES128; 2938 break; 2939 case AES_KEYSIZE_192: 2940 ctx->cipher_type = CIPHER_TYPE_AES192; 2941 break; 2942 case AES_KEYSIZE_256: 2943 ctx->cipher_type = CIPHER_TYPE_AES256; 2944 break; 2945 default: 2946 goto badkey; 2947 } 2948 2949 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, 2950 ctx->authkeylen); 2951 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen); 2952 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen); 2953 2954 /* setkey the fallback just in case we need to use it */ 2955 if (ctx->fallback_cipher) { 2956 flow_log(" running fallback setkey()\n"); 2957 2958 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; 2959 ctx->fallback_cipher->base.crt_flags |= 2960 tfm->crt_flags & CRYPTO_TFM_REQ_MASK; 2961 ret = crypto_aead_setkey(ctx->fallback_cipher, key, 2962 keylen + ctx->salt_len); 2963 if (ret) 2964 flow_log(" fallback setkey() returned:%d\n", ret); 2965 } 2966 2967 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 2968 ctx->enckeylen, 2969 false); 2970 2971 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); 2972 2973 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, 2974 ctx->authkeylen); 2975 2976 return ret; 2977 2978 badkey: 2979 ctx->enckeylen = 0; 2980 ctx->authkeylen = 0; 2981 ctx->digestsize = 0; 2982 2983 return -EINVAL; 2984 } 2985 2986 /** 2987 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES. 2988 * @cipher: AEAD structure 2989 * @key: Key followed by 4 bytes of salt 2990 * @keylen: Length of key plus salt, in bytes 2991 * 2992 * Extracts salt from key and stores it to be prepended to IV on each request. 2993 * Digest is always 16 bytes 2994 * 2995 * Return: Value from generic gcm setkey. 2996 */ 2997 static int aead_gcm_esp_setkey(struct crypto_aead *cipher, 2998 const u8 *key, unsigned int keylen) 2999 { 3000 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 3001 3002 flow_log("%s\n", __func__); 3003 ctx->salt_len = GCM_ESP_SALT_SIZE; 3004 ctx->salt_offset = GCM_ESP_SALT_OFFSET; 3005 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); 3006 keylen -= GCM_ESP_SALT_SIZE; 3007 ctx->digestsize = GCM_ESP_DIGESTSIZE; 3008 ctx->is_esp = true; 3009 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); 3010 3011 return aead_gcm_ccm_setkey(cipher, key, keylen); 3012 } 3013 3014 /** 3015 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC. 3016 * cipher: AEAD structure 3017 * key: Key followed by 4 bytes of salt 3018 * keylen: Length of key plus salt, in bytes 3019 * 3020 * Extracts salt from key and stores it to be prepended to IV on each request. 3021 * Digest is always 16 bytes 3022 * 3023 * Return: Value from generic gcm setkey. 3024 */ 3025 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher, 3026 const u8 *key, unsigned int keylen) 3027 { 3028 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 3029 3030 flow_log("%s\n", __func__); 3031 ctx->salt_len = GCM_ESP_SALT_SIZE; 3032 ctx->salt_offset = GCM_ESP_SALT_OFFSET; 3033 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); 3034 keylen -= GCM_ESP_SALT_SIZE; 3035 ctx->digestsize = GCM_ESP_DIGESTSIZE; 3036 ctx->is_esp = true; 3037 ctx->is_rfc4543 = true; 3038 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); 3039 3040 return aead_gcm_ccm_setkey(cipher, key, keylen); 3041 } 3042 3043 /** 3044 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES. 3045 * @cipher: AEAD structure 3046 * @key: Key followed by 4 bytes of salt 3047 * @keylen: Length of key plus salt, in bytes 3048 * 3049 * Extracts salt from key and stores it to be prepended to IV on each request. 3050 * Digest is always 16 bytes 3051 * 3052 * Return: Value from generic ccm setkey. 3053 */ 3054 static int aead_ccm_esp_setkey(struct crypto_aead *cipher, 3055 const u8 *key, unsigned int keylen) 3056 { 3057 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 3058 3059 flow_log("%s\n", __func__); 3060 ctx->salt_len = CCM_ESP_SALT_SIZE; 3061 ctx->salt_offset = CCM_ESP_SALT_OFFSET; 3062 memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE); 3063 keylen -= CCM_ESP_SALT_SIZE; 3064 ctx->is_esp = true; 3065 flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE); 3066 3067 return aead_gcm_ccm_setkey(cipher, key, keylen); 3068 } 3069 3070 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize) 3071 { 3072 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 3073 int ret = 0; 3074 3075 flow_log("%s() authkeylen:%u authsize:%u\n", 3076 __func__, ctx->authkeylen, authsize); 3077 3078 ctx->digestsize = authsize; 3079 3080 /* setkey the fallback just in case we needto use it */ 3081 if (ctx->fallback_cipher) { 3082 flow_log(" running fallback setauth()\n"); 3083 3084 ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize); 3085 if (ret) 3086 flow_log(" fallback setauth() returned:%d\n", ret); 3087 } 3088 3089 return ret; 3090 } 3091 3092 static int aead_encrypt(struct aead_request *req) 3093 { 3094 flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen, 3095 req->cryptlen); 3096 dump_sg(req->src, 0, req->cryptlen + req->assoclen); 3097 flow_log(" assoc_len:%u\n", req->assoclen); 3098 3099 return aead_enqueue(req, true); 3100 } 3101 3102 static int aead_decrypt(struct aead_request *req) 3103 { 3104 flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen); 3105 dump_sg(req->src, 0, req->cryptlen + req->assoclen); 3106 flow_log(" assoc_len:%u\n", req->assoclen); 3107 3108 return aead_enqueue(req, false); 3109 } 3110 3111 /* ==================== Supported Cipher Algorithms ==================== */ 3112 3113 static struct iproc_alg_s driver_algs[] = { 3114 { 3115 .type = CRYPTO_ALG_TYPE_AEAD, 3116 .alg.aead = { 3117 .base = { 3118 .cra_name = "gcm(aes)", 3119 .cra_driver_name = "gcm-aes-iproc", 3120 .cra_blocksize = AES_BLOCK_SIZE, 3121 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3122 }, 3123 .setkey = aead_gcm_ccm_setkey, 3124 .ivsize = GCM_AES_IV_SIZE, 3125 .maxauthsize = AES_BLOCK_SIZE, 3126 }, 3127 .cipher_info = { 3128 .alg = CIPHER_ALG_AES, 3129 .mode = CIPHER_MODE_GCM, 3130 }, 3131 .auth_info = { 3132 .alg = HASH_ALG_AES, 3133 .mode = HASH_MODE_GCM, 3134 }, 3135 .auth_first = 0, 3136 }, 3137 { 3138 .type = CRYPTO_ALG_TYPE_AEAD, 3139 .alg.aead = { 3140 .base = { 3141 .cra_name = "ccm(aes)", 3142 .cra_driver_name = "ccm-aes-iproc", 3143 .cra_blocksize = AES_BLOCK_SIZE, 3144 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3145 }, 3146 .setkey = aead_gcm_ccm_setkey, 3147 .ivsize = CCM_AES_IV_SIZE, 3148 .maxauthsize = AES_BLOCK_SIZE, 3149 }, 3150 .cipher_info = { 3151 .alg = CIPHER_ALG_AES, 3152 .mode = CIPHER_MODE_CCM, 3153 }, 3154 .auth_info = { 3155 .alg = HASH_ALG_AES, 3156 .mode = HASH_MODE_CCM, 3157 }, 3158 .auth_first = 0, 3159 }, 3160 { 3161 .type = CRYPTO_ALG_TYPE_AEAD, 3162 .alg.aead = { 3163 .base = { 3164 .cra_name = "rfc4106(gcm(aes))", 3165 .cra_driver_name = "gcm-aes-esp-iproc", 3166 .cra_blocksize = AES_BLOCK_SIZE, 3167 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3168 }, 3169 .setkey = aead_gcm_esp_setkey, 3170 .ivsize = GCM_RFC4106_IV_SIZE, 3171 .maxauthsize = AES_BLOCK_SIZE, 3172 }, 3173 .cipher_info = { 3174 .alg = CIPHER_ALG_AES, 3175 .mode = CIPHER_MODE_GCM, 3176 }, 3177 .auth_info = { 3178 .alg = HASH_ALG_AES, 3179 .mode = HASH_MODE_GCM, 3180 }, 3181 .auth_first = 0, 3182 }, 3183 { 3184 .type = CRYPTO_ALG_TYPE_AEAD, 3185 .alg.aead = { 3186 .base = { 3187 .cra_name = "rfc4309(ccm(aes))", 3188 .cra_driver_name = "ccm-aes-esp-iproc", 3189 .cra_blocksize = AES_BLOCK_SIZE, 3190 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3191 }, 3192 .setkey = aead_ccm_esp_setkey, 3193 .ivsize = CCM_AES_IV_SIZE, 3194 .maxauthsize = AES_BLOCK_SIZE, 3195 }, 3196 .cipher_info = { 3197 .alg = CIPHER_ALG_AES, 3198 .mode = CIPHER_MODE_CCM, 3199 }, 3200 .auth_info = { 3201 .alg = HASH_ALG_AES, 3202 .mode = HASH_MODE_CCM, 3203 }, 3204 .auth_first = 0, 3205 }, 3206 { 3207 .type = CRYPTO_ALG_TYPE_AEAD, 3208 .alg.aead = { 3209 .base = { 3210 .cra_name = "rfc4543(gcm(aes))", 3211 .cra_driver_name = "gmac-aes-esp-iproc", 3212 .cra_blocksize = AES_BLOCK_SIZE, 3213 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3214 }, 3215 .setkey = rfc4543_gcm_esp_setkey, 3216 .ivsize = GCM_RFC4106_IV_SIZE, 3217 .maxauthsize = AES_BLOCK_SIZE, 3218 }, 3219 .cipher_info = { 3220 .alg = CIPHER_ALG_AES, 3221 .mode = CIPHER_MODE_GCM, 3222 }, 3223 .auth_info = { 3224 .alg = HASH_ALG_AES, 3225 .mode = HASH_MODE_GCM, 3226 }, 3227 .auth_first = 0, 3228 }, 3229 { 3230 .type = CRYPTO_ALG_TYPE_AEAD, 3231 .alg.aead = { 3232 .base = { 3233 .cra_name = "authenc(hmac(md5),cbc(aes))", 3234 .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc", 3235 .cra_blocksize = AES_BLOCK_SIZE, 3236 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3237 CRYPTO_ALG_ASYNC | 3238 CRYPTO_ALG_ALLOCATES_MEMORY 3239 }, 3240 .setkey = aead_authenc_setkey, 3241 .ivsize = AES_BLOCK_SIZE, 3242 .maxauthsize = MD5_DIGEST_SIZE, 3243 }, 3244 .cipher_info = { 3245 .alg = CIPHER_ALG_AES, 3246 .mode = CIPHER_MODE_CBC, 3247 }, 3248 .auth_info = { 3249 .alg = HASH_ALG_MD5, 3250 .mode = HASH_MODE_HMAC, 3251 }, 3252 .auth_first = 0, 3253 }, 3254 { 3255 .type = CRYPTO_ALG_TYPE_AEAD, 3256 .alg.aead = { 3257 .base = { 3258 .cra_name = "authenc(hmac(sha1),cbc(aes))", 3259 .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc", 3260 .cra_blocksize = AES_BLOCK_SIZE, 3261 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3262 CRYPTO_ALG_ASYNC | 3263 CRYPTO_ALG_ALLOCATES_MEMORY 3264 }, 3265 .setkey = aead_authenc_setkey, 3266 .ivsize = AES_BLOCK_SIZE, 3267 .maxauthsize = SHA1_DIGEST_SIZE, 3268 }, 3269 .cipher_info = { 3270 .alg = CIPHER_ALG_AES, 3271 .mode = CIPHER_MODE_CBC, 3272 }, 3273 .auth_info = { 3274 .alg = HASH_ALG_SHA1, 3275 .mode = HASH_MODE_HMAC, 3276 }, 3277 .auth_first = 0, 3278 }, 3279 { 3280 .type = CRYPTO_ALG_TYPE_AEAD, 3281 .alg.aead = { 3282 .base = { 3283 .cra_name = "authenc(hmac(sha256),cbc(aes))", 3284 .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc", 3285 .cra_blocksize = AES_BLOCK_SIZE, 3286 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3287 CRYPTO_ALG_ASYNC | 3288 CRYPTO_ALG_ALLOCATES_MEMORY 3289 }, 3290 .setkey = aead_authenc_setkey, 3291 .ivsize = AES_BLOCK_SIZE, 3292 .maxauthsize = SHA256_DIGEST_SIZE, 3293 }, 3294 .cipher_info = { 3295 .alg = CIPHER_ALG_AES, 3296 .mode = CIPHER_MODE_CBC, 3297 }, 3298 .auth_info = { 3299 .alg = HASH_ALG_SHA256, 3300 .mode = HASH_MODE_HMAC, 3301 }, 3302 .auth_first = 0, 3303 }, 3304 { 3305 .type = CRYPTO_ALG_TYPE_AEAD, 3306 .alg.aead = { 3307 .base = { 3308 .cra_name = "authenc(hmac(md5),cbc(des))", 3309 .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc", 3310 .cra_blocksize = DES_BLOCK_SIZE, 3311 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3312 CRYPTO_ALG_ASYNC | 3313 CRYPTO_ALG_ALLOCATES_MEMORY 3314 }, 3315 .setkey = aead_authenc_setkey, 3316 .ivsize = DES_BLOCK_SIZE, 3317 .maxauthsize = MD5_DIGEST_SIZE, 3318 }, 3319 .cipher_info = { 3320 .alg = CIPHER_ALG_DES, 3321 .mode = CIPHER_MODE_CBC, 3322 }, 3323 .auth_info = { 3324 .alg = HASH_ALG_MD5, 3325 .mode = HASH_MODE_HMAC, 3326 }, 3327 .auth_first = 0, 3328 }, 3329 { 3330 .type = CRYPTO_ALG_TYPE_AEAD, 3331 .alg.aead = { 3332 .base = { 3333 .cra_name = "authenc(hmac(sha1),cbc(des))", 3334 .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc", 3335 .cra_blocksize = DES_BLOCK_SIZE, 3336 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3337 CRYPTO_ALG_ASYNC | 3338 CRYPTO_ALG_ALLOCATES_MEMORY 3339 }, 3340 .setkey = aead_authenc_setkey, 3341 .ivsize = DES_BLOCK_SIZE, 3342 .maxauthsize = SHA1_DIGEST_SIZE, 3343 }, 3344 .cipher_info = { 3345 .alg = CIPHER_ALG_DES, 3346 .mode = CIPHER_MODE_CBC, 3347 }, 3348 .auth_info = { 3349 .alg = HASH_ALG_SHA1, 3350 .mode = HASH_MODE_HMAC, 3351 }, 3352 .auth_first = 0, 3353 }, 3354 { 3355 .type = CRYPTO_ALG_TYPE_AEAD, 3356 .alg.aead = { 3357 .base = { 3358 .cra_name = "authenc(hmac(sha224),cbc(des))", 3359 .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc", 3360 .cra_blocksize = DES_BLOCK_SIZE, 3361 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3362 CRYPTO_ALG_ASYNC | 3363 CRYPTO_ALG_ALLOCATES_MEMORY 3364 }, 3365 .setkey = aead_authenc_setkey, 3366 .ivsize = DES_BLOCK_SIZE, 3367 .maxauthsize = SHA224_DIGEST_SIZE, 3368 }, 3369 .cipher_info = { 3370 .alg = CIPHER_ALG_DES, 3371 .mode = CIPHER_MODE_CBC, 3372 }, 3373 .auth_info = { 3374 .alg = HASH_ALG_SHA224, 3375 .mode = HASH_MODE_HMAC, 3376 }, 3377 .auth_first = 0, 3378 }, 3379 { 3380 .type = CRYPTO_ALG_TYPE_AEAD, 3381 .alg.aead = { 3382 .base = { 3383 .cra_name = "authenc(hmac(sha256),cbc(des))", 3384 .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc", 3385 .cra_blocksize = DES_BLOCK_SIZE, 3386 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3387 CRYPTO_ALG_ASYNC | 3388 CRYPTO_ALG_ALLOCATES_MEMORY 3389 }, 3390 .setkey = aead_authenc_setkey, 3391 .ivsize = DES_BLOCK_SIZE, 3392 .maxauthsize = SHA256_DIGEST_SIZE, 3393 }, 3394 .cipher_info = { 3395 .alg = CIPHER_ALG_DES, 3396 .mode = CIPHER_MODE_CBC, 3397 }, 3398 .auth_info = { 3399 .alg = HASH_ALG_SHA256, 3400 .mode = HASH_MODE_HMAC, 3401 }, 3402 .auth_first = 0, 3403 }, 3404 { 3405 .type = CRYPTO_ALG_TYPE_AEAD, 3406 .alg.aead = { 3407 .base = { 3408 .cra_name = "authenc(hmac(sha384),cbc(des))", 3409 .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc", 3410 .cra_blocksize = DES_BLOCK_SIZE, 3411 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3412 CRYPTO_ALG_ASYNC | 3413 CRYPTO_ALG_ALLOCATES_MEMORY 3414 }, 3415 .setkey = aead_authenc_setkey, 3416 .ivsize = DES_BLOCK_SIZE, 3417 .maxauthsize = SHA384_DIGEST_SIZE, 3418 }, 3419 .cipher_info = { 3420 .alg = CIPHER_ALG_DES, 3421 .mode = CIPHER_MODE_CBC, 3422 }, 3423 .auth_info = { 3424 .alg = HASH_ALG_SHA384, 3425 .mode = HASH_MODE_HMAC, 3426 }, 3427 .auth_first = 0, 3428 }, 3429 { 3430 .type = CRYPTO_ALG_TYPE_AEAD, 3431 .alg.aead = { 3432 .base = { 3433 .cra_name = "authenc(hmac(sha512),cbc(des))", 3434 .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc", 3435 .cra_blocksize = DES_BLOCK_SIZE, 3436 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3437 CRYPTO_ALG_ASYNC | 3438 CRYPTO_ALG_ALLOCATES_MEMORY 3439 }, 3440 .setkey = aead_authenc_setkey, 3441 .ivsize = DES_BLOCK_SIZE, 3442 .maxauthsize = SHA512_DIGEST_SIZE, 3443 }, 3444 .cipher_info = { 3445 .alg = CIPHER_ALG_DES, 3446 .mode = CIPHER_MODE_CBC, 3447 }, 3448 .auth_info = { 3449 .alg = HASH_ALG_SHA512, 3450 .mode = HASH_MODE_HMAC, 3451 }, 3452 .auth_first = 0, 3453 }, 3454 { 3455 .type = CRYPTO_ALG_TYPE_AEAD, 3456 .alg.aead = { 3457 .base = { 3458 .cra_name = "authenc(hmac(md5),cbc(des3_ede))", 3459 .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc", 3460 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3461 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3462 CRYPTO_ALG_ASYNC | 3463 CRYPTO_ALG_ALLOCATES_MEMORY 3464 }, 3465 .setkey = aead_authenc_setkey, 3466 .ivsize = DES3_EDE_BLOCK_SIZE, 3467 .maxauthsize = MD5_DIGEST_SIZE, 3468 }, 3469 .cipher_info = { 3470 .alg = CIPHER_ALG_3DES, 3471 .mode = CIPHER_MODE_CBC, 3472 }, 3473 .auth_info = { 3474 .alg = HASH_ALG_MD5, 3475 .mode = HASH_MODE_HMAC, 3476 }, 3477 .auth_first = 0, 3478 }, 3479 { 3480 .type = CRYPTO_ALG_TYPE_AEAD, 3481 .alg.aead = { 3482 .base = { 3483 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", 3484 .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc", 3485 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3486 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3487 CRYPTO_ALG_ASYNC | 3488 CRYPTO_ALG_ALLOCATES_MEMORY 3489 }, 3490 .setkey = aead_authenc_setkey, 3491 .ivsize = DES3_EDE_BLOCK_SIZE, 3492 .maxauthsize = SHA1_DIGEST_SIZE, 3493 }, 3494 .cipher_info = { 3495 .alg = CIPHER_ALG_3DES, 3496 .mode = CIPHER_MODE_CBC, 3497 }, 3498 .auth_info = { 3499 .alg = HASH_ALG_SHA1, 3500 .mode = HASH_MODE_HMAC, 3501 }, 3502 .auth_first = 0, 3503 }, 3504 { 3505 .type = CRYPTO_ALG_TYPE_AEAD, 3506 .alg.aead = { 3507 .base = { 3508 .cra_name = "authenc(hmac(sha224),cbc(des3_ede))", 3509 .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc", 3510 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3511 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3512 CRYPTO_ALG_ASYNC | 3513 CRYPTO_ALG_ALLOCATES_MEMORY 3514 }, 3515 .setkey = aead_authenc_setkey, 3516 .ivsize = DES3_EDE_BLOCK_SIZE, 3517 .maxauthsize = SHA224_DIGEST_SIZE, 3518 }, 3519 .cipher_info = { 3520 .alg = CIPHER_ALG_3DES, 3521 .mode = CIPHER_MODE_CBC, 3522 }, 3523 .auth_info = { 3524 .alg = HASH_ALG_SHA224, 3525 .mode = HASH_MODE_HMAC, 3526 }, 3527 .auth_first = 0, 3528 }, 3529 { 3530 .type = CRYPTO_ALG_TYPE_AEAD, 3531 .alg.aead = { 3532 .base = { 3533 .cra_name = "authenc(hmac(sha256),cbc(des3_ede))", 3534 .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc", 3535 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3536 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3537 CRYPTO_ALG_ASYNC | 3538 CRYPTO_ALG_ALLOCATES_MEMORY 3539 }, 3540 .setkey = aead_authenc_setkey, 3541 .ivsize = DES3_EDE_BLOCK_SIZE, 3542 .maxauthsize = SHA256_DIGEST_SIZE, 3543 }, 3544 .cipher_info = { 3545 .alg = CIPHER_ALG_3DES, 3546 .mode = CIPHER_MODE_CBC, 3547 }, 3548 .auth_info = { 3549 .alg = HASH_ALG_SHA256, 3550 .mode = HASH_MODE_HMAC, 3551 }, 3552 .auth_first = 0, 3553 }, 3554 { 3555 .type = CRYPTO_ALG_TYPE_AEAD, 3556 .alg.aead = { 3557 .base = { 3558 .cra_name = "authenc(hmac(sha384),cbc(des3_ede))", 3559 .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc", 3560 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3561 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3562 CRYPTO_ALG_ASYNC | 3563 CRYPTO_ALG_ALLOCATES_MEMORY 3564 }, 3565 .setkey = aead_authenc_setkey, 3566 .ivsize = DES3_EDE_BLOCK_SIZE, 3567 .maxauthsize = SHA384_DIGEST_SIZE, 3568 }, 3569 .cipher_info = { 3570 .alg = CIPHER_ALG_3DES, 3571 .mode = CIPHER_MODE_CBC, 3572 }, 3573 .auth_info = { 3574 .alg = HASH_ALG_SHA384, 3575 .mode = HASH_MODE_HMAC, 3576 }, 3577 .auth_first = 0, 3578 }, 3579 { 3580 .type = CRYPTO_ALG_TYPE_AEAD, 3581 .alg.aead = { 3582 .base = { 3583 .cra_name = "authenc(hmac(sha512),cbc(des3_ede))", 3584 .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc", 3585 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3586 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3587 CRYPTO_ALG_ASYNC | 3588 CRYPTO_ALG_ALLOCATES_MEMORY 3589 }, 3590 .setkey = aead_authenc_setkey, 3591 .ivsize = DES3_EDE_BLOCK_SIZE, 3592 .maxauthsize = SHA512_DIGEST_SIZE, 3593 }, 3594 .cipher_info = { 3595 .alg = CIPHER_ALG_3DES, 3596 .mode = CIPHER_MODE_CBC, 3597 }, 3598 .auth_info = { 3599 .alg = HASH_ALG_SHA512, 3600 .mode = HASH_MODE_HMAC, 3601 }, 3602 .auth_first = 0, 3603 }, 3604 3605 /* SKCIPHER algorithms. */ 3606 { 3607 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3608 .alg.skcipher = { 3609 .base.cra_name = "ecb(arc4)", 3610 .base.cra_driver_name = "ecb-arc4-iproc", 3611 .base.cra_blocksize = ARC4_BLOCK_SIZE, 3612 .min_keysize = ARC4_MIN_KEY_SIZE, 3613 .max_keysize = ARC4_MAX_KEY_SIZE, 3614 .ivsize = 0, 3615 }, 3616 .cipher_info = { 3617 .alg = CIPHER_ALG_RC4, 3618 .mode = CIPHER_MODE_NONE, 3619 }, 3620 .auth_info = { 3621 .alg = HASH_ALG_NONE, 3622 .mode = HASH_MODE_NONE, 3623 }, 3624 }, 3625 { 3626 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3627 .alg.skcipher = { 3628 .base.cra_name = "ofb(des)", 3629 .base.cra_driver_name = "ofb-des-iproc", 3630 .base.cra_blocksize = DES_BLOCK_SIZE, 3631 .min_keysize = DES_KEY_SIZE, 3632 .max_keysize = DES_KEY_SIZE, 3633 .ivsize = DES_BLOCK_SIZE, 3634 }, 3635 .cipher_info = { 3636 .alg = CIPHER_ALG_DES, 3637 .mode = CIPHER_MODE_OFB, 3638 }, 3639 .auth_info = { 3640 .alg = HASH_ALG_NONE, 3641 .mode = HASH_MODE_NONE, 3642 }, 3643 }, 3644 { 3645 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3646 .alg.skcipher = { 3647 .base.cra_name = "cbc(des)", 3648 .base.cra_driver_name = "cbc-des-iproc", 3649 .base.cra_blocksize = DES_BLOCK_SIZE, 3650 .min_keysize = DES_KEY_SIZE, 3651 .max_keysize = DES_KEY_SIZE, 3652 .ivsize = DES_BLOCK_SIZE, 3653 }, 3654 .cipher_info = { 3655 .alg = CIPHER_ALG_DES, 3656 .mode = CIPHER_MODE_CBC, 3657 }, 3658 .auth_info = { 3659 .alg = HASH_ALG_NONE, 3660 .mode = HASH_MODE_NONE, 3661 }, 3662 }, 3663 { 3664 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3665 .alg.skcipher = { 3666 .base.cra_name = "ecb(des)", 3667 .base.cra_driver_name = "ecb-des-iproc", 3668 .base.cra_blocksize = DES_BLOCK_SIZE, 3669 .min_keysize = DES_KEY_SIZE, 3670 .max_keysize = DES_KEY_SIZE, 3671 .ivsize = 0, 3672 }, 3673 .cipher_info = { 3674 .alg = CIPHER_ALG_DES, 3675 .mode = CIPHER_MODE_ECB, 3676 }, 3677 .auth_info = { 3678 .alg = HASH_ALG_NONE, 3679 .mode = HASH_MODE_NONE, 3680 }, 3681 }, 3682 { 3683 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3684 .alg.skcipher = { 3685 .base.cra_name = "ofb(des3_ede)", 3686 .base.cra_driver_name = "ofb-des3-iproc", 3687 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, 3688 .min_keysize = DES3_EDE_KEY_SIZE, 3689 .max_keysize = DES3_EDE_KEY_SIZE, 3690 .ivsize = DES3_EDE_BLOCK_SIZE, 3691 }, 3692 .cipher_info = { 3693 .alg = CIPHER_ALG_3DES, 3694 .mode = CIPHER_MODE_OFB, 3695 }, 3696 .auth_info = { 3697 .alg = HASH_ALG_NONE, 3698 .mode = HASH_MODE_NONE, 3699 }, 3700 }, 3701 { 3702 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3703 .alg.skcipher = { 3704 .base.cra_name = "cbc(des3_ede)", 3705 .base.cra_driver_name = "cbc-des3-iproc", 3706 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, 3707 .min_keysize = DES3_EDE_KEY_SIZE, 3708 .max_keysize = DES3_EDE_KEY_SIZE, 3709 .ivsize = DES3_EDE_BLOCK_SIZE, 3710 }, 3711 .cipher_info = { 3712 .alg = CIPHER_ALG_3DES, 3713 .mode = CIPHER_MODE_CBC, 3714 }, 3715 .auth_info = { 3716 .alg = HASH_ALG_NONE, 3717 .mode = HASH_MODE_NONE, 3718 }, 3719 }, 3720 { 3721 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3722 .alg.skcipher = { 3723 .base.cra_name = "ecb(des3_ede)", 3724 .base.cra_driver_name = "ecb-des3-iproc", 3725 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, 3726 .min_keysize = DES3_EDE_KEY_SIZE, 3727 .max_keysize = DES3_EDE_KEY_SIZE, 3728 .ivsize = 0, 3729 }, 3730 .cipher_info = { 3731 .alg = CIPHER_ALG_3DES, 3732 .mode = CIPHER_MODE_ECB, 3733 }, 3734 .auth_info = { 3735 .alg = HASH_ALG_NONE, 3736 .mode = HASH_MODE_NONE, 3737 }, 3738 }, 3739 { 3740 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3741 .alg.skcipher = { 3742 .base.cra_name = "ofb(aes)", 3743 .base.cra_driver_name = "ofb-aes-iproc", 3744 .base.cra_blocksize = AES_BLOCK_SIZE, 3745 .min_keysize = AES_MIN_KEY_SIZE, 3746 .max_keysize = AES_MAX_KEY_SIZE, 3747 .ivsize = AES_BLOCK_SIZE, 3748 }, 3749 .cipher_info = { 3750 .alg = CIPHER_ALG_AES, 3751 .mode = CIPHER_MODE_OFB, 3752 }, 3753 .auth_info = { 3754 .alg = HASH_ALG_NONE, 3755 .mode = HASH_MODE_NONE, 3756 }, 3757 }, 3758 { 3759 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3760 .alg.skcipher = { 3761 .base.cra_name = "cbc(aes)", 3762 .base.cra_driver_name = "cbc-aes-iproc", 3763 .base.cra_blocksize = AES_BLOCK_SIZE, 3764 .min_keysize = AES_MIN_KEY_SIZE, 3765 .max_keysize = AES_MAX_KEY_SIZE, 3766 .ivsize = AES_BLOCK_SIZE, 3767 }, 3768 .cipher_info = { 3769 .alg = CIPHER_ALG_AES, 3770 .mode = CIPHER_MODE_CBC, 3771 }, 3772 .auth_info = { 3773 .alg = HASH_ALG_NONE, 3774 .mode = HASH_MODE_NONE, 3775 }, 3776 }, 3777 { 3778 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3779 .alg.skcipher = { 3780 .base.cra_name = "ecb(aes)", 3781 .base.cra_driver_name = "ecb-aes-iproc", 3782 .base.cra_blocksize = AES_BLOCK_SIZE, 3783 .min_keysize = AES_MIN_KEY_SIZE, 3784 .max_keysize = AES_MAX_KEY_SIZE, 3785 .ivsize = 0, 3786 }, 3787 .cipher_info = { 3788 .alg = CIPHER_ALG_AES, 3789 .mode = CIPHER_MODE_ECB, 3790 }, 3791 .auth_info = { 3792 .alg = HASH_ALG_NONE, 3793 .mode = HASH_MODE_NONE, 3794 }, 3795 }, 3796 { 3797 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3798 .alg.skcipher = { 3799 .base.cra_name = "ctr(aes)", 3800 .base.cra_driver_name = "ctr-aes-iproc", 3801 .base.cra_blocksize = AES_BLOCK_SIZE, 3802 .min_keysize = AES_MIN_KEY_SIZE, 3803 .max_keysize = AES_MAX_KEY_SIZE, 3804 .ivsize = AES_BLOCK_SIZE, 3805 }, 3806 .cipher_info = { 3807 .alg = CIPHER_ALG_AES, 3808 .mode = CIPHER_MODE_CTR, 3809 }, 3810 .auth_info = { 3811 .alg = HASH_ALG_NONE, 3812 .mode = HASH_MODE_NONE, 3813 }, 3814 }, 3815 { 3816 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3817 .alg.skcipher = { 3818 .base.cra_name = "xts(aes)", 3819 .base.cra_driver_name = "xts-aes-iproc", 3820 .base.cra_blocksize = AES_BLOCK_SIZE, 3821 .min_keysize = 2 * AES_MIN_KEY_SIZE, 3822 .max_keysize = 2 * AES_MAX_KEY_SIZE, 3823 .ivsize = AES_BLOCK_SIZE, 3824 }, 3825 .cipher_info = { 3826 .alg = CIPHER_ALG_AES, 3827 .mode = CIPHER_MODE_XTS, 3828 }, 3829 .auth_info = { 3830 .alg = HASH_ALG_NONE, 3831 .mode = HASH_MODE_NONE, 3832 }, 3833 }, 3834 3835 /* AHASH algorithms. */ 3836 { 3837 .type = CRYPTO_ALG_TYPE_AHASH, 3838 .alg.hash = { 3839 .halg.digestsize = MD5_DIGEST_SIZE, 3840 .halg.base = { 3841 .cra_name = "md5", 3842 .cra_driver_name = "md5-iproc", 3843 .cra_blocksize = MD5_BLOCK_WORDS * 4, 3844 .cra_flags = CRYPTO_ALG_ASYNC | 3845 CRYPTO_ALG_ALLOCATES_MEMORY, 3846 } 3847 }, 3848 .cipher_info = { 3849 .alg = CIPHER_ALG_NONE, 3850 .mode = CIPHER_MODE_NONE, 3851 }, 3852 .auth_info = { 3853 .alg = HASH_ALG_MD5, 3854 .mode = HASH_MODE_HASH, 3855 }, 3856 }, 3857 { 3858 .type = CRYPTO_ALG_TYPE_AHASH, 3859 .alg.hash = { 3860 .halg.digestsize = MD5_DIGEST_SIZE, 3861 .halg.base = { 3862 .cra_name = "hmac(md5)", 3863 .cra_driver_name = "hmac-md5-iproc", 3864 .cra_blocksize = MD5_BLOCK_WORDS * 4, 3865 } 3866 }, 3867 .cipher_info = { 3868 .alg = CIPHER_ALG_NONE, 3869 .mode = CIPHER_MODE_NONE, 3870 }, 3871 .auth_info = { 3872 .alg = HASH_ALG_MD5, 3873 .mode = HASH_MODE_HMAC, 3874 }, 3875 }, 3876 {.type = CRYPTO_ALG_TYPE_AHASH, 3877 .alg.hash = { 3878 .halg.digestsize = SHA1_DIGEST_SIZE, 3879 .halg.base = { 3880 .cra_name = "sha1", 3881 .cra_driver_name = "sha1-iproc", 3882 .cra_blocksize = SHA1_BLOCK_SIZE, 3883 } 3884 }, 3885 .cipher_info = { 3886 .alg = CIPHER_ALG_NONE, 3887 .mode = CIPHER_MODE_NONE, 3888 }, 3889 .auth_info = { 3890 .alg = HASH_ALG_SHA1, 3891 .mode = HASH_MODE_HASH, 3892 }, 3893 }, 3894 {.type = CRYPTO_ALG_TYPE_AHASH, 3895 .alg.hash = { 3896 .halg.digestsize = SHA1_DIGEST_SIZE, 3897 .halg.base = { 3898 .cra_name = "hmac(sha1)", 3899 .cra_driver_name = "hmac-sha1-iproc", 3900 .cra_blocksize = SHA1_BLOCK_SIZE, 3901 } 3902 }, 3903 .cipher_info = { 3904 .alg = CIPHER_ALG_NONE, 3905 .mode = CIPHER_MODE_NONE, 3906 }, 3907 .auth_info = { 3908 .alg = HASH_ALG_SHA1, 3909 .mode = HASH_MODE_HMAC, 3910 }, 3911 }, 3912 {.type = CRYPTO_ALG_TYPE_AHASH, 3913 .alg.hash = { 3914 .halg.digestsize = SHA224_DIGEST_SIZE, 3915 .halg.base = { 3916 .cra_name = "sha224", 3917 .cra_driver_name = "sha224-iproc", 3918 .cra_blocksize = SHA224_BLOCK_SIZE, 3919 } 3920 }, 3921 .cipher_info = { 3922 .alg = CIPHER_ALG_NONE, 3923 .mode = CIPHER_MODE_NONE, 3924 }, 3925 .auth_info = { 3926 .alg = HASH_ALG_SHA224, 3927 .mode = HASH_MODE_HASH, 3928 }, 3929 }, 3930 {.type = CRYPTO_ALG_TYPE_AHASH, 3931 .alg.hash = { 3932 .halg.digestsize = SHA224_DIGEST_SIZE, 3933 .halg.base = { 3934 .cra_name = "hmac(sha224)", 3935 .cra_driver_name = "hmac-sha224-iproc", 3936 .cra_blocksize = SHA224_BLOCK_SIZE, 3937 } 3938 }, 3939 .cipher_info = { 3940 .alg = CIPHER_ALG_NONE, 3941 .mode = CIPHER_MODE_NONE, 3942 }, 3943 .auth_info = { 3944 .alg = HASH_ALG_SHA224, 3945 .mode = HASH_MODE_HMAC, 3946 }, 3947 }, 3948 {.type = CRYPTO_ALG_TYPE_AHASH, 3949 .alg.hash = { 3950 .halg.digestsize = SHA256_DIGEST_SIZE, 3951 .halg.base = { 3952 .cra_name = "sha256", 3953 .cra_driver_name = "sha256-iproc", 3954 .cra_blocksize = SHA256_BLOCK_SIZE, 3955 } 3956 }, 3957 .cipher_info = { 3958 .alg = CIPHER_ALG_NONE, 3959 .mode = CIPHER_MODE_NONE, 3960 }, 3961 .auth_info = { 3962 .alg = HASH_ALG_SHA256, 3963 .mode = HASH_MODE_HASH, 3964 }, 3965 }, 3966 {.type = CRYPTO_ALG_TYPE_AHASH, 3967 .alg.hash = { 3968 .halg.digestsize = SHA256_DIGEST_SIZE, 3969 .halg.base = { 3970 .cra_name = "hmac(sha256)", 3971 .cra_driver_name = "hmac-sha256-iproc", 3972 .cra_blocksize = SHA256_BLOCK_SIZE, 3973 } 3974 }, 3975 .cipher_info = { 3976 .alg = CIPHER_ALG_NONE, 3977 .mode = CIPHER_MODE_NONE, 3978 }, 3979 .auth_info = { 3980 .alg = HASH_ALG_SHA256, 3981 .mode = HASH_MODE_HMAC, 3982 }, 3983 }, 3984 { 3985 .type = CRYPTO_ALG_TYPE_AHASH, 3986 .alg.hash = { 3987 .halg.digestsize = SHA384_DIGEST_SIZE, 3988 .halg.base = { 3989 .cra_name = "sha384", 3990 .cra_driver_name = "sha384-iproc", 3991 .cra_blocksize = SHA384_BLOCK_SIZE, 3992 } 3993 }, 3994 .cipher_info = { 3995 .alg = CIPHER_ALG_NONE, 3996 .mode = CIPHER_MODE_NONE, 3997 }, 3998 .auth_info = { 3999 .alg = HASH_ALG_SHA384, 4000 .mode = HASH_MODE_HASH, 4001 }, 4002 }, 4003 { 4004 .type = CRYPTO_ALG_TYPE_AHASH, 4005 .alg.hash = { 4006 .halg.digestsize = SHA384_DIGEST_SIZE, 4007 .halg.base = { 4008 .cra_name = "hmac(sha384)", 4009 .cra_driver_name = "hmac-sha384-iproc", 4010 .cra_blocksize = SHA384_BLOCK_SIZE, 4011 } 4012 }, 4013 .cipher_info = { 4014 .alg = CIPHER_ALG_NONE, 4015 .mode = CIPHER_MODE_NONE, 4016 }, 4017 .auth_info = { 4018 .alg = HASH_ALG_SHA384, 4019 .mode = HASH_MODE_HMAC, 4020 }, 4021 }, 4022 { 4023 .type = CRYPTO_ALG_TYPE_AHASH, 4024 .alg.hash = { 4025 .halg.digestsize = SHA512_DIGEST_SIZE, 4026 .halg.base = { 4027 .cra_name = "sha512", 4028 .cra_driver_name = "sha512-iproc", 4029 .cra_blocksize = SHA512_BLOCK_SIZE, 4030 } 4031 }, 4032 .cipher_info = { 4033 .alg = CIPHER_ALG_NONE, 4034 .mode = CIPHER_MODE_NONE, 4035 }, 4036 .auth_info = { 4037 .alg = HASH_ALG_SHA512, 4038 .mode = HASH_MODE_HASH, 4039 }, 4040 }, 4041 { 4042 .type = CRYPTO_ALG_TYPE_AHASH, 4043 .alg.hash = { 4044 .halg.digestsize = SHA512_DIGEST_SIZE, 4045 .halg.base = { 4046 .cra_name = "hmac(sha512)", 4047 .cra_driver_name = "hmac-sha512-iproc", 4048 .cra_blocksize = SHA512_BLOCK_SIZE, 4049 } 4050 }, 4051 .cipher_info = { 4052 .alg = CIPHER_ALG_NONE, 4053 .mode = CIPHER_MODE_NONE, 4054 }, 4055 .auth_info = { 4056 .alg = HASH_ALG_SHA512, 4057 .mode = HASH_MODE_HMAC, 4058 }, 4059 }, 4060 { 4061 .type = CRYPTO_ALG_TYPE_AHASH, 4062 .alg.hash = { 4063 .halg.digestsize = SHA3_224_DIGEST_SIZE, 4064 .halg.base = { 4065 .cra_name = "sha3-224", 4066 .cra_driver_name = "sha3-224-iproc", 4067 .cra_blocksize = SHA3_224_BLOCK_SIZE, 4068 } 4069 }, 4070 .cipher_info = { 4071 .alg = CIPHER_ALG_NONE, 4072 .mode = CIPHER_MODE_NONE, 4073 }, 4074 .auth_info = { 4075 .alg = HASH_ALG_SHA3_224, 4076 .mode = HASH_MODE_HASH, 4077 }, 4078 }, 4079 { 4080 .type = CRYPTO_ALG_TYPE_AHASH, 4081 .alg.hash = { 4082 .halg.digestsize = SHA3_224_DIGEST_SIZE, 4083 .halg.base = { 4084 .cra_name = "hmac(sha3-224)", 4085 .cra_driver_name = "hmac-sha3-224-iproc", 4086 .cra_blocksize = SHA3_224_BLOCK_SIZE, 4087 } 4088 }, 4089 .cipher_info = { 4090 .alg = CIPHER_ALG_NONE, 4091 .mode = CIPHER_MODE_NONE, 4092 }, 4093 .auth_info = { 4094 .alg = HASH_ALG_SHA3_224, 4095 .mode = HASH_MODE_HMAC 4096 }, 4097 }, 4098 { 4099 .type = CRYPTO_ALG_TYPE_AHASH, 4100 .alg.hash = { 4101 .halg.digestsize = SHA3_256_DIGEST_SIZE, 4102 .halg.base = { 4103 .cra_name = "sha3-256", 4104 .cra_driver_name = "sha3-256-iproc", 4105 .cra_blocksize = SHA3_256_BLOCK_SIZE, 4106 } 4107 }, 4108 .cipher_info = { 4109 .alg = CIPHER_ALG_NONE, 4110 .mode = CIPHER_MODE_NONE, 4111 }, 4112 .auth_info = { 4113 .alg = HASH_ALG_SHA3_256, 4114 .mode = HASH_MODE_HASH, 4115 }, 4116 }, 4117 { 4118 .type = CRYPTO_ALG_TYPE_AHASH, 4119 .alg.hash = { 4120 .halg.digestsize = SHA3_256_DIGEST_SIZE, 4121 .halg.base = { 4122 .cra_name = "hmac(sha3-256)", 4123 .cra_driver_name = "hmac-sha3-256-iproc", 4124 .cra_blocksize = SHA3_256_BLOCK_SIZE, 4125 } 4126 }, 4127 .cipher_info = { 4128 .alg = CIPHER_ALG_NONE, 4129 .mode = CIPHER_MODE_NONE, 4130 }, 4131 .auth_info = { 4132 .alg = HASH_ALG_SHA3_256, 4133 .mode = HASH_MODE_HMAC, 4134 }, 4135 }, 4136 { 4137 .type = CRYPTO_ALG_TYPE_AHASH, 4138 .alg.hash = { 4139 .halg.digestsize = SHA3_384_DIGEST_SIZE, 4140 .halg.base = { 4141 .cra_name = "sha3-384", 4142 .cra_driver_name = "sha3-384-iproc", 4143 .cra_blocksize = SHA3_224_BLOCK_SIZE, 4144 } 4145 }, 4146 .cipher_info = { 4147 .alg = CIPHER_ALG_NONE, 4148 .mode = CIPHER_MODE_NONE, 4149 }, 4150 .auth_info = { 4151 .alg = HASH_ALG_SHA3_384, 4152 .mode = HASH_MODE_HASH, 4153 }, 4154 }, 4155 { 4156 .type = CRYPTO_ALG_TYPE_AHASH, 4157 .alg.hash = { 4158 .halg.digestsize = SHA3_384_DIGEST_SIZE, 4159 .halg.base = { 4160 .cra_name = "hmac(sha3-384)", 4161 .cra_driver_name = "hmac-sha3-384-iproc", 4162 .cra_blocksize = SHA3_384_BLOCK_SIZE, 4163 } 4164 }, 4165 .cipher_info = { 4166 .alg = CIPHER_ALG_NONE, 4167 .mode = CIPHER_MODE_NONE, 4168 }, 4169 .auth_info = { 4170 .alg = HASH_ALG_SHA3_384, 4171 .mode = HASH_MODE_HMAC, 4172 }, 4173 }, 4174 { 4175 .type = CRYPTO_ALG_TYPE_AHASH, 4176 .alg.hash = { 4177 .halg.digestsize = SHA3_512_DIGEST_SIZE, 4178 .halg.base = { 4179 .cra_name = "sha3-512", 4180 .cra_driver_name = "sha3-512-iproc", 4181 .cra_blocksize = SHA3_512_BLOCK_SIZE, 4182 } 4183 }, 4184 .cipher_info = { 4185 .alg = CIPHER_ALG_NONE, 4186 .mode = CIPHER_MODE_NONE, 4187 }, 4188 .auth_info = { 4189 .alg = HASH_ALG_SHA3_512, 4190 .mode = HASH_MODE_HASH, 4191 }, 4192 }, 4193 { 4194 .type = CRYPTO_ALG_TYPE_AHASH, 4195 .alg.hash = { 4196 .halg.digestsize = SHA3_512_DIGEST_SIZE, 4197 .halg.base = { 4198 .cra_name = "hmac(sha3-512)", 4199 .cra_driver_name = "hmac-sha3-512-iproc", 4200 .cra_blocksize = SHA3_512_BLOCK_SIZE, 4201 } 4202 }, 4203 .cipher_info = { 4204 .alg = CIPHER_ALG_NONE, 4205 .mode = CIPHER_MODE_NONE, 4206 }, 4207 .auth_info = { 4208 .alg = HASH_ALG_SHA3_512, 4209 .mode = HASH_MODE_HMAC, 4210 }, 4211 }, 4212 { 4213 .type = CRYPTO_ALG_TYPE_AHASH, 4214 .alg.hash = { 4215 .halg.digestsize = AES_BLOCK_SIZE, 4216 .halg.base = { 4217 .cra_name = "xcbc(aes)", 4218 .cra_driver_name = "xcbc-aes-iproc", 4219 .cra_blocksize = AES_BLOCK_SIZE, 4220 } 4221 }, 4222 .cipher_info = { 4223 .alg = CIPHER_ALG_NONE, 4224 .mode = CIPHER_MODE_NONE, 4225 }, 4226 .auth_info = { 4227 .alg = HASH_ALG_AES, 4228 .mode = HASH_MODE_XCBC, 4229 }, 4230 }, 4231 { 4232 .type = CRYPTO_ALG_TYPE_AHASH, 4233 .alg.hash = { 4234 .halg.digestsize = AES_BLOCK_SIZE, 4235 .halg.base = { 4236 .cra_name = "cmac(aes)", 4237 .cra_driver_name = "cmac-aes-iproc", 4238 .cra_blocksize = AES_BLOCK_SIZE, 4239 } 4240 }, 4241 .cipher_info = { 4242 .alg = CIPHER_ALG_NONE, 4243 .mode = CIPHER_MODE_NONE, 4244 }, 4245 .auth_info = { 4246 .alg = HASH_ALG_AES, 4247 .mode = HASH_MODE_CMAC, 4248 }, 4249 }, 4250 }; 4251 4252 static int generic_cra_init(struct crypto_tfm *tfm, 4253 struct iproc_alg_s *cipher_alg) 4254 { 4255 struct spu_hw *spu = &iproc_priv.spu; 4256 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 4257 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); 4258 4259 flow_log("%s()\n", __func__); 4260 4261 ctx->alg = cipher_alg; 4262 ctx->cipher = cipher_alg->cipher_info; 4263 ctx->auth = cipher_alg->auth_info; 4264 ctx->auth_first = cipher_alg->auth_first; 4265 ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg, 4266 ctx->cipher.mode, 4267 blocksize); 4268 ctx->fallback_cipher = NULL; 4269 4270 ctx->enckeylen = 0; 4271 ctx->authkeylen = 0; 4272 4273 atomic_inc(&iproc_priv.stream_count); 4274 atomic_inc(&iproc_priv.session_count); 4275 4276 return 0; 4277 } 4278 4279 static int skcipher_init_tfm(struct crypto_skcipher *skcipher) 4280 { 4281 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 4282 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher); 4283 struct iproc_alg_s *cipher_alg; 4284 4285 flow_log("%s()\n", __func__); 4286 4287 crypto_skcipher_set_reqsize(skcipher, sizeof(struct iproc_reqctx_s)); 4288 4289 cipher_alg = container_of(alg, struct iproc_alg_s, alg.skcipher); 4290 return generic_cra_init(tfm, cipher_alg); 4291 } 4292 4293 static int ahash_cra_init(struct crypto_tfm *tfm) 4294 { 4295 int err; 4296 struct crypto_alg *alg = tfm->__crt_alg; 4297 struct iproc_alg_s *cipher_alg; 4298 4299 cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s, 4300 alg.hash); 4301 4302 err = generic_cra_init(tfm, cipher_alg); 4303 flow_log("%s()\n", __func__); 4304 4305 /* 4306 * export state size has to be < 512 bytes. So don't include msg bufs 4307 * in state size. 4308 */ 4309 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 4310 sizeof(struct iproc_reqctx_s)); 4311 4312 return err; 4313 } 4314 4315 static int aead_cra_init(struct crypto_aead *aead) 4316 { 4317 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 4318 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 4319 struct crypto_alg *alg = tfm->__crt_alg; 4320 struct aead_alg *aalg = container_of(alg, struct aead_alg, base); 4321 struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s, 4322 alg.aead); 4323 4324 int err = generic_cra_init(tfm, cipher_alg); 4325 4326 flow_log("%s()\n", __func__); 4327 4328 crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s)); 4329 ctx->is_esp = false; 4330 ctx->salt_len = 0; 4331 ctx->salt_offset = 0; 4332 4333 /* random first IV */ 4334 get_random_bytes(ctx->iv, MAX_IV_SIZE); 4335 flow_dump(" iv: ", ctx->iv, MAX_IV_SIZE); 4336 4337 if (!err) { 4338 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) { 4339 flow_log("%s() creating fallback cipher\n", __func__); 4340 4341 ctx->fallback_cipher = 4342 crypto_alloc_aead(alg->cra_name, 0, 4343 CRYPTO_ALG_ASYNC | 4344 CRYPTO_ALG_NEED_FALLBACK); 4345 if (IS_ERR(ctx->fallback_cipher)) { 4346 pr_err("%s() Error: failed to allocate fallback for %s\n", 4347 __func__, alg->cra_name); 4348 return PTR_ERR(ctx->fallback_cipher); 4349 } 4350 } 4351 } 4352 4353 return err; 4354 } 4355 4356 static void generic_cra_exit(struct crypto_tfm *tfm) 4357 { 4358 atomic_dec(&iproc_priv.session_count); 4359 } 4360 4361 static void skcipher_exit_tfm(struct crypto_skcipher *tfm) 4362 { 4363 generic_cra_exit(crypto_skcipher_tfm(tfm)); 4364 } 4365 4366 static void aead_cra_exit(struct crypto_aead *aead) 4367 { 4368 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 4369 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 4370 4371 generic_cra_exit(tfm); 4372 4373 if (ctx->fallback_cipher) { 4374 crypto_free_aead(ctx->fallback_cipher); 4375 ctx->fallback_cipher = NULL; 4376 } 4377 } 4378 4379 /** 4380 * spu_functions_register() - Specify hardware-specific SPU functions based on 4381 * SPU type read from device tree. 4382 * @dev: device structure 4383 * @spu_type: SPU hardware generation 4384 * @spu_subtype: SPU hardware version 4385 */ 4386 static void spu_functions_register(struct device *dev, 4387 enum spu_spu_type spu_type, 4388 enum spu_spu_subtype spu_subtype) 4389 { 4390 struct spu_hw *spu = &iproc_priv.spu; 4391 4392 if (spu_type == SPU_TYPE_SPUM) { 4393 dev_dbg(dev, "Registering SPUM functions"); 4394 spu->spu_dump_msg_hdr = spum_dump_msg_hdr; 4395 spu->spu_payload_length = spum_payload_length; 4396 spu->spu_response_hdr_len = spum_response_hdr_len; 4397 spu->spu_hash_pad_len = spum_hash_pad_len; 4398 spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len; 4399 spu->spu_assoc_resp_len = spum_assoc_resp_len; 4400 spu->spu_aead_ivlen = spum_aead_ivlen; 4401 spu->spu_hash_type = spum_hash_type; 4402 spu->spu_digest_size = spum_digest_size; 4403 spu->spu_create_request = spum_create_request; 4404 spu->spu_cipher_req_init = spum_cipher_req_init; 4405 spu->spu_cipher_req_finish = spum_cipher_req_finish; 4406 spu->spu_request_pad = spum_request_pad; 4407 spu->spu_tx_status_len = spum_tx_status_len; 4408 spu->spu_rx_status_len = spum_rx_status_len; 4409 spu->spu_status_process = spum_status_process; 4410 spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload; 4411 spu->spu_ccm_update_iv = spum_ccm_update_iv; 4412 spu->spu_wordalign_padlen = spum_wordalign_padlen; 4413 if (spu_subtype == SPU_SUBTYPE_SPUM_NS2) 4414 spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload; 4415 else 4416 spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload; 4417 } else { 4418 dev_dbg(dev, "Registering SPU2 functions"); 4419 spu->spu_dump_msg_hdr = spu2_dump_msg_hdr; 4420 spu->spu_ctx_max_payload = spu2_ctx_max_payload; 4421 spu->spu_payload_length = spu2_payload_length; 4422 spu->spu_response_hdr_len = spu2_response_hdr_len; 4423 spu->spu_hash_pad_len = spu2_hash_pad_len; 4424 spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len; 4425 spu->spu_assoc_resp_len = spu2_assoc_resp_len; 4426 spu->spu_aead_ivlen = spu2_aead_ivlen; 4427 spu->spu_hash_type = spu2_hash_type; 4428 spu->spu_digest_size = spu2_digest_size; 4429 spu->spu_create_request = spu2_create_request; 4430 spu->spu_cipher_req_init = spu2_cipher_req_init; 4431 spu->spu_cipher_req_finish = spu2_cipher_req_finish; 4432 spu->spu_request_pad = spu2_request_pad; 4433 spu->spu_tx_status_len = spu2_tx_status_len; 4434 spu->spu_rx_status_len = spu2_rx_status_len; 4435 spu->spu_status_process = spu2_status_process; 4436 spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload; 4437 spu->spu_ccm_update_iv = spu2_ccm_update_iv; 4438 spu->spu_wordalign_padlen = spu2_wordalign_padlen; 4439 } 4440 } 4441 4442 /** 4443 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox 4444 * channel for the SPU being probed. 4445 * @dev: SPU driver device structure 4446 * 4447 * Return: 0 if successful 4448 * < 0 otherwise 4449 */ 4450 static int spu_mb_init(struct device *dev) 4451 { 4452 struct mbox_client *mcl = &iproc_priv.mcl; 4453 int err, i; 4454 4455 iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan, 4456 sizeof(struct mbox_chan *), GFP_KERNEL); 4457 if (!iproc_priv.mbox) 4458 return -ENOMEM; 4459 4460 mcl->dev = dev; 4461 mcl->tx_block = false; 4462 mcl->tx_tout = 0; 4463 mcl->knows_txdone = true; 4464 mcl->rx_callback = spu_rx_callback; 4465 mcl->tx_done = NULL; 4466 4467 for (i = 0; i < iproc_priv.spu.num_chan; i++) { 4468 iproc_priv.mbox[i] = mbox_request_channel(mcl, i); 4469 if (IS_ERR(iproc_priv.mbox[i])) { 4470 err = PTR_ERR(iproc_priv.mbox[i]); 4471 dev_err(dev, 4472 "Mbox channel %d request failed with err %d", 4473 i, err); 4474 iproc_priv.mbox[i] = NULL; 4475 goto free_channels; 4476 } 4477 } 4478 4479 return 0; 4480 free_channels: 4481 for (i = 0; i < iproc_priv.spu.num_chan; i++) { 4482 if (iproc_priv.mbox[i]) 4483 mbox_free_channel(iproc_priv.mbox[i]); 4484 } 4485 4486 return err; 4487 } 4488 4489 static void spu_mb_release(struct platform_device *pdev) 4490 { 4491 int i; 4492 4493 for (i = 0; i < iproc_priv.spu.num_chan; i++) 4494 mbox_free_channel(iproc_priv.mbox[i]); 4495 } 4496 4497 static void spu_counters_init(void) 4498 { 4499 int i; 4500 int j; 4501 4502 atomic_set(&iproc_priv.session_count, 0); 4503 atomic_set(&iproc_priv.stream_count, 0); 4504 atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan); 4505 atomic64_set(&iproc_priv.bytes_in, 0); 4506 atomic64_set(&iproc_priv.bytes_out, 0); 4507 for (i = 0; i < SPU_OP_NUM; i++) { 4508 atomic_set(&iproc_priv.op_counts[i], 0); 4509 atomic_set(&iproc_priv.setkey_cnt[i], 0); 4510 } 4511 for (i = 0; i < CIPHER_ALG_LAST; i++) 4512 for (j = 0; j < CIPHER_MODE_LAST; j++) 4513 atomic_set(&iproc_priv.cipher_cnt[i][j], 0); 4514 4515 for (i = 0; i < HASH_ALG_LAST; i++) { 4516 atomic_set(&iproc_priv.hash_cnt[i], 0); 4517 atomic_set(&iproc_priv.hmac_cnt[i], 0); 4518 } 4519 for (i = 0; i < AEAD_TYPE_LAST; i++) 4520 atomic_set(&iproc_priv.aead_cnt[i], 0); 4521 4522 atomic_set(&iproc_priv.mb_no_spc, 0); 4523 atomic_set(&iproc_priv.mb_send_fail, 0); 4524 atomic_set(&iproc_priv.bad_icv, 0); 4525 } 4526 4527 static int spu_register_skcipher(struct iproc_alg_s *driver_alg) 4528 { 4529 struct spu_hw *spu = &iproc_priv.spu; 4530 struct skcipher_alg *crypto = &driver_alg->alg.skcipher; 4531 int err; 4532 4533 /* SPU2 does not support RC4 */ 4534 if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) && 4535 (spu->spu_type == SPU_TYPE_SPU2)) 4536 return 0; 4537 4538 crypto->base.cra_module = THIS_MODULE; 4539 crypto->base.cra_priority = cipher_pri; 4540 crypto->base.cra_alignmask = 0; 4541 crypto->base.cra_ctxsize = sizeof(struct iproc_ctx_s); 4542 crypto->base.cra_flags = CRYPTO_ALG_ASYNC | 4543 CRYPTO_ALG_ALLOCATES_MEMORY | 4544 CRYPTO_ALG_KERN_DRIVER_ONLY; 4545 4546 crypto->init = skcipher_init_tfm; 4547 crypto->exit = skcipher_exit_tfm; 4548 crypto->setkey = skcipher_setkey; 4549 crypto->encrypt = skcipher_encrypt; 4550 crypto->decrypt = skcipher_decrypt; 4551 4552 err = crypto_register_skcipher(crypto); 4553 /* Mark alg as having been registered, if successful */ 4554 if (err == 0) 4555 driver_alg->registered = true; 4556 pr_debug(" registered skcipher %s\n", crypto->base.cra_driver_name); 4557 return err; 4558 } 4559 4560 static int spu_register_ahash(struct iproc_alg_s *driver_alg) 4561 { 4562 struct spu_hw *spu = &iproc_priv.spu; 4563 struct ahash_alg *hash = &driver_alg->alg.hash; 4564 int err; 4565 4566 /* AES-XCBC is the only AES hash type currently supported on SPU-M */ 4567 if ((driver_alg->auth_info.alg == HASH_ALG_AES) && 4568 (driver_alg->auth_info.mode != HASH_MODE_XCBC) && 4569 (spu->spu_type == SPU_TYPE_SPUM)) 4570 return 0; 4571 4572 /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */ 4573 if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) && 4574 (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2)) 4575 return 0; 4576 4577 hash->halg.base.cra_module = THIS_MODULE; 4578 hash->halg.base.cra_priority = hash_pri; 4579 hash->halg.base.cra_alignmask = 0; 4580 hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s); 4581 hash->halg.base.cra_init = ahash_cra_init; 4582 hash->halg.base.cra_exit = generic_cra_exit; 4583 hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC | 4584 CRYPTO_ALG_ALLOCATES_MEMORY; 4585 hash->halg.statesize = sizeof(struct spu_hash_export_s); 4586 4587 if (driver_alg->auth_info.mode != HASH_MODE_HMAC) { 4588 hash->init = ahash_init; 4589 hash->update = ahash_update; 4590 hash->final = ahash_final; 4591 hash->finup = ahash_finup; 4592 hash->digest = ahash_digest; 4593 if ((driver_alg->auth_info.alg == HASH_ALG_AES) && 4594 ((driver_alg->auth_info.mode == HASH_MODE_XCBC) || 4595 (driver_alg->auth_info.mode == HASH_MODE_CMAC))) { 4596 hash->setkey = ahash_setkey; 4597 } 4598 } else { 4599 hash->setkey = ahash_hmac_setkey; 4600 hash->init = ahash_hmac_init; 4601 hash->update = ahash_hmac_update; 4602 hash->final = ahash_hmac_final; 4603 hash->finup = ahash_hmac_finup; 4604 hash->digest = ahash_hmac_digest; 4605 } 4606 hash->export = ahash_export; 4607 hash->import = ahash_import; 4608 4609 err = crypto_register_ahash(hash); 4610 /* Mark alg as having been registered, if successful */ 4611 if (err == 0) 4612 driver_alg->registered = true; 4613 pr_debug(" registered ahash %s\n", 4614 hash->halg.base.cra_driver_name); 4615 return err; 4616 } 4617 4618 static int spu_register_aead(struct iproc_alg_s *driver_alg) 4619 { 4620 struct aead_alg *aead = &driver_alg->alg.aead; 4621 int err; 4622 4623 aead->base.cra_module = THIS_MODULE; 4624 aead->base.cra_priority = aead_pri; 4625 aead->base.cra_alignmask = 0; 4626 aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s); 4627 4628 aead->base.cra_flags |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY; 4629 /* setkey set in alg initialization */ 4630 aead->setauthsize = aead_setauthsize; 4631 aead->encrypt = aead_encrypt; 4632 aead->decrypt = aead_decrypt; 4633 aead->init = aead_cra_init; 4634 aead->exit = aead_cra_exit; 4635 4636 err = crypto_register_aead(aead); 4637 /* Mark alg as having been registered, if successful */ 4638 if (err == 0) 4639 driver_alg->registered = true; 4640 pr_debug(" registered aead %s\n", aead->base.cra_driver_name); 4641 return err; 4642 } 4643 4644 /* register crypto algorithms the device supports */ 4645 static int spu_algs_register(struct device *dev) 4646 { 4647 int i, j; 4648 int err; 4649 4650 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { 4651 switch (driver_algs[i].type) { 4652 case CRYPTO_ALG_TYPE_SKCIPHER: 4653 err = spu_register_skcipher(&driver_algs[i]); 4654 break; 4655 case CRYPTO_ALG_TYPE_AHASH: 4656 err = spu_register_ahash(&driver_algs[i]); 4657 break; 4658 case CRYPTO_ALG_TYPE_AEAD: 4659 err = spu_register_aead(&driver_algs[i]); 4660 break; 4661 default: 4662 dev_err(dev, 4663 "iproc-crypto: unknown alg type: %d", 4664 driver_algs[i].type); 4665 err = -EINVAL; 4666 } 4667 4668 if (err) { 4669 dev_err(dev, "alg registration failed with error %d\n", 4670 err); 4671 goto err_algs; 4672 } 4673 } 4674 4675 return 0; 4676 4677 err_algs: 4678 for (j = 0; j < i; j++) { 4679 /* Skip any algorithm not registered */ 4680 if (!driver_algs[j].registered) 4681 continue; 4682 switch (driver_algs[j].type) { 4683 case CRYPTO_ALG_TYPE_SKCIPHER: 4684 crypto_unregister_skcipher(&driver_algs[j].alg.skcipher); 4685 driver_algs[j].registered = false; 4686 break; 4687 case CRYPTO_ALG_TYPE_AHASH: 4688 crypto_unregister_ahash(&driver_algs[j].alg.hash); 4689 driver_algs[j].registered = false; 4690 break; 4691 case CRYPTO_ALG_TYPE_AEAD: 4692 crypto_unregister_aead(&driver_algs[j].alg.aead); 4693 driver_algs[j].registered = false; 4694 break; 4695 } 4696 } 4697 return err; 4698 } 4699 4700 /* ==================== Kernel Platform API ==================== */ 4701 4702 static struct spu_type_subtype spum_ns2_types = { 4703 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2 4704 }; 4705 4706 static struct spu_type_subtype spum_nsp_types = { 4707 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP 4708 }; 4709 4710 static struct spu_type_subtype spu2_types = { 4711 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1 4712 }; 4713 4714 static struct spu_type_subtype spu2_v2_types = { 4715 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2 4716 }; 4717 4718 static const struct of_device_id bcm_spu_dt_ids[] = { 4719 { 4720 .compatible = "brcm,spum-crypto", 4721 .data = &spum_ns2_types, 4722 }, 4723 { 4724 .compatible = "brcm,spum-nsp-crypto", 4725 .data = &spum_nsp_types, 4726 }, 4727 { 4728 .compatible = "brcm,spu2-crypto", 4729 .data = &spu2_types, 4730 }, 4731 { 4732 .compatible = "brcm,spu2-v2-crypto", 4733 .data = &spu2_v2_types, 4734 }, 4735 { /* sentinel */ } 4736 }; 4737 4738 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids); 4739 4740 static int spu_dt_read(struct platform_device *pdev) 4741 { 4742 struct device *dev = &pdev->dev; 4743 struct spu_hw *spu = &iproc_priv.spu; 4744 struct resource *spu_ctrl_regs; 4745 const struct spu_type_subtype *matched_spu_type; 4746 struct device_node *dn = pdev->dev.of_node; 4747 int err, i; 4748 4749 /* Count number of mailbox channels */ 4750 spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells"); 4751 4752 matched_spu_type = of_device_get_match_data(dev); 4753 if (!matched_spu_type) { 4754 dev_err(dev, "Failed to match device\n"); 4755 return -ENODEV; 4756 } 4757 4758 spu->spu_type = matched_spu_type->type; 4759 spu->spu_subtype = matched_spu_type->subtype; 4760 4761 for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs = 4762 platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) { 4763 4764 spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs); 4765 if (IS_ERR(spu->reg_vbase[i])) { 4766 err = PTR_ERR(spu->reg_vbase[i]); 4767 dev_err(dev, "Failed to map registers: %d\n", 4768 err); 4769 spu->reg_vbase[i] = NULL; 4770 return err; 4771 } 4772 } 4773 spu->num_spu = i; 4774 dev_dbg(dev, "Device has %d SPUs", spu->num_spu); 4775 4776 return 0; 4777 } 4778 4779 static int bcm_spu_probe(struct platform_device *pdev) 4780 { 4781 struct device *dev = &pdev->dev; 4782 struct spu_hw *spu = &iproc_priv.spu; 4783 int err; 4784 4785 iproc_priv.pdev = pdev; 4786 platform_set_drvdata(iproc_priv.pdev, 4787 &iproc_priv); 4788 4789 err = spu_dt_read(pdev); 4790 if (err < 0) 4791 goto failure; 4792 4793 err = spu_mb_init(dev); 4794 if (err < 0) 4795 goto failure; 4796 4797 if (spu->spu_type == SPU_TYPE_SPUM) 4798 iproc_priv.bcm_hdr_len = 8; 4799 else if (spu->spu_type == SPU_TYPE_SPU2) 4800 iproc_priv.bcm_hdr_len = 0; 4801 4802 spu_functions_register(dev, spu->spu_type, spu->spu_subtype); 4803 4804 spu_counters_init(); 4805 4806 spu_setup_debugfs(); 4807 4808 err = spu_algs_register(dev); 4809 if (err < 0) 4810 goto fail_reg; 4811 4812 return 0; 4813 4814 fail_reg: 4815 spu_free_debugfs(); 4816 failure: 4817 spu_mb_release(pdev); 4818 dev_err(dev, "%s failed with error %d.\n", __func__, err); 4819 4820 return err; 4821 } 4822 4823 static int bcm_spu_remove(struct platform_device *pdev) 4824 { 4825 int i; 4826 struct device *dev = &pdev->dev; 4827 char *cdn; 4828 4829 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { 4830 /* 4831 * Not all algorithms were registered, depending on whether 4832 * hardware is SPU or SPU2. So here we make sure to skip 4833 * those algorithms that were not previously registered. 4834 */ 4835 if (!driver_algs[i].registered) 4836 continue; 4837 4838 switch (driver_algs[i].type) { 4839 case CRYPTO_ALG_TYPE_SKCIPHER: 4840 crypto_unregister_skcipher(&driver_algs[i].alg.skcipher); 4841 dev_dbg(dev, " unregistered cipher %s\n", 4842 driver_algs[i].alg.skcipher.base.cra_driver_name); 4843 driver_algs[i].registered = false; 4844 break; 4845 case CRYPTO_ALG_TYPE_AHASH: 4846 crypto_unregister_ahash(&driver_algs[i].alg.hash); 4847 cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name; 4848 dev_dbg(dev, " unregistered hash %s\n", cdn); 4849 driver_algs[i].registered = false; 4850 break; 4851 case CRYPTO_ALG_TYPE_AEAD: 4852 crypto_unregister_aead(&driver_algs[i].alg.aead); 4853 dev_dbg(dev, " unregistered aead %s\n", 4854 driver_algs[i].alg.aead.base.cra_driver_name); 4855 driver_algs[i].registered = false; 4856 break; 4857 } 4858 } 4859 spu_free_debugfs(); 4860 spu_mb_release(pdev); 4861 return 0; 4862 } 4863 4864 /* ===== Kernel Module API ===== */ 4865 4866 static struct platform_driver bcm_spu_pdriver = { 4867 .driver = { 4868 .name = "brcm-spu-crypto", 4869 .of_match_table = of_match_ptr(bcm_spu_dt_ids), 4870 }, 4871 .probe = bcm_spu_probe, 4872 .remove = bcm_spu_remove, 4873 }; 4874 module_platform_driver(bcm_spu_pdriver); 4875 4876 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>"); 4877 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver"); 4878 MODULE_LICENSE("GPL v2"); 4879