1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2016 Broadcom 4 */ 5 6 #include <linux/err.h> 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/errno.h> 10 #include <linux/kernel.h> 11 #include <linux/interrupt.h> 12 #include <linux/platform_device.h> 13 #include <linux/scatterlist.h> 14 #include <linux/crypto.h> 15 #include <linux/kthread.h> 16 #include <linux/rtnetlink.h> 17 #include <linux/sched.h> 18 #include <linux/of_address.h> 19 #include <linux/of_device.h> 20 #include <linux/io.h> 21 #include <linux/bitops.h> 22 23 #include <crypto/algapi.h> 24 #include <crypto/aead.h> 25 #include <crypto/internal/aead.h> 26 #include <crypto/aes.h> 27 #include <crypto/des.h> 28 #include <crypto/hmac.h> 29 #include <crypto/sha.h> 30 #include <crypto/md5.h> 31 #include <crypto/authenc.h> 32 #include <crypto/skcipher.h> 33 #include <crypto/hash.h> 34 #include <crypto/sha3.h> 35 36 #include "util.h" 37 #include "cipher.h" 38 #include "spu.h" 39 #include "spum.h" 40 #include "spu2.h" 41 42 /* ================= Device Structure ================== */ 43 44 struct device_private iproc_priv; 45 46 /* ==================== Parameters ===================== */ 47 48 int flow_debug_logging; 49 module_param(flow_debug_logging, int, 0644); 50 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging"); 51 52 int packet_debug_logging; 53 module_param(packet_debug_logging, int, 0644); 54 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging"); 55 56 int debug_logging_sleep; 57 module_param(debug_logging_sleep, int, 0644); 58 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep"); 59 60 /* 61 * The value of these module parameters is used to set the priority for each 62 * algo type when this driver registers algos with the kernel crypto API. 63 * To use a priority other than the default, set the priority in the insmod or 64 * modprobe. Changing the module priority after init time has no effect. 65 * 66 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE 67 * algos, but more preferred than generic software algos. 68 */ 69 static int cipher_pri = 150; 70 module_param(cipher_pri, int, 0644); 71 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos"); 72 73 static int hash_pri = 100; 74 module_param(hash_pri, int, 0644); 75 MODULE_PARM_DESC(hash_pri, "Priority for hash algos"); 76 77 static int aead_pri = 150; 78 module_param(aead_pri, int, 0644); 79 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos"); 80 81 /* A type 3 BCM header, expected to precede the SPU header for SPU-M. 82 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset). 83 * 0x60 - ring 0 84 * 0x68 - ring 1 85 * 0x70 - ring 2 86 * 0x78 - ring 3 87 */ 88 static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 }; 89 /* 90 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN 91 * is set dynamically after reading SPU type from device tree. 92 */ 93 #define BCM_HDR_LEN iproc_priv.bcm_hdr_len 94 95 /* min and max time to sleep before retrying when mbox queue is full. usec */ 96 #define MBOX_SLEEP_MIN 800 97 #define MBOX_SLEEP_MAX 1000 98 99 /** 100 * select_channel() - Select a SPU channel to handle a crypto request. Selects 101 * channel in round robin order. 102 * 103 * Return: channel index 104 */ 105 static u8 select_channel(void) 106 { 107 u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan); 108 109 return chan_idx % iproc_priv.spu.num_chan; 110 } 111 112 /** 113 * spu_ablkcipher_rx_sg_create() - Build up the scatterlist of buffers used to 114 * receive a SPU response message for an ablkcipher request. Includes buffers to 115 * catch SPU message headers and the response data. 116 * @mssg: mailbox message containing the receive sg 117 * @rctx: crypto request context 118 * @rx_frag_num: number of scatterlist elements required to hold the 119 * SPU response message 120 * @chunksize: Number of bytes of response data expected 121 * @stat_pad_len: Number of bytes required to pad the STAT field to 122 * a 4-byte boundary 123 * 124 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 125 * when the request completes, whether the request is handled successfully or 126 * there is an error. 127 * 128 * Returns: 129 * 0 if successful 130 * < 0 if an error 131 */ 132 static int 133 spu_ablkcipher_rx_sg_create(struct brcm_message *mssg, 134 struct iproc_reqctx_s *rctx, 135 u8 rx_frag_num, 136 unsigned int chunksize, u32 stat_pad_len) 137 { 138 struct spu_hw *spu = &iproc_priv.spu; 139 struct scatterlist *sg; /* used to build sgs in mbox message */ 140 struct iproc_ctx_s *ctx = rctx->ctx; 141 u32 datalen; /* Number of bytes of response data expected */ 142 143 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), 144 rctx->gfp); 145 if (!mssg->spu.dst) 146 return -ENOMEM; 147 148 sg = mssg->spu.dst; 149 sg_init_table(sg, rx_frag_num); 150 /* Space for SPU message header */ 151 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); 152 153 /* If XTS tweak in payload, add buffer to receive encrypted tweak */ 154 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 155 spu->spu_xts_tweak_in_payload()) 156 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, 157 SPU_XTS_TWEAK_SIZE); 158 159 /* Copy in each dst sg entry from request, up to chunksize */ 160 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, 161 rctx->dst_nents, chunksize); 162 if (datalen < chunksize) { 163 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u", 164 __func__, chunksize, datalen); 165 return -EFAULT; 166 } 167 168 if (ctx->cipher.alg == CIPHER_ALG_RC4) 169 /* Add buffer to catch 260-byte SUPDT field for RC4 */ 170 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN); 171 172 if (stat_pad_len) 173 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); 174 175 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); 176 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); 177 178 return 0; 179 } 180 181 /** 182 * spu_ablkcipher_tx_sg_create() - Build up the scatterlist of buffers used to 183 * send a SPU request message for an ablkcipher request. Includes SPU message 184 * headers and the request data. 185 * @mssg: mailbox message containing the transmit sg 186 * @rctx: crypto request context 187 * @tx_frag_num: number of scatterlist elements required to construct the 188 * SPU request message 189 * @chunksize: Number of bytes of request data 190 * @pad_len: Number of pad bytes 191 * 192 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 193 * when the request completes, whether the request is handled successfully or 194 * there is an error. 195 * 196 * Returns: 197 * 0 if successful 198 * < 0 if an error 199 */ 200 static int 201 spu_ablkcipher_tx_sg_create(struct brcm_message *mssg, 202 struct iproc_reqctx_s *rctx, 203 u8 tx_frag_num, unsigned int chunksize, u32 pad_len) 204 { 205 struct spu_hw *spu = &iproc_priv.spu; 206 struct scatterlist *sg; /* used to build sgs in mbox message */ 207 struct iproc_ctx_s *ctx = rctx->ctx; 208 u32 datalen; /* Number of bytes of response data expected */ 209 u32 stat_len; 210 211 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), 212 rctx->gfp); 213 if (unlikely(!mssg->spu.src)) 214 return -ENOMEM; 215 216 sg = mssg->spu.src; 217 sg_init_table(sg, tx_frag_num); 218 219 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, 220 BCM_HDR_LEN + ctx->spu_req_hdr_len); 221 222 /* if XTS tweak in payload, copy from IV (where crypto API puts it) */ 223 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 224 spu->spu_xts_tweak_in_payload()) 225 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE); 226 227 /* Copy in each src sg entry from request, up to chunksize */ 228 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, 229 rctx->src_nents, chunksize); 230 if (unlikely(datalen < chunksize)) { 231 pr_err("%s(): failed to copy src sg to mbox msg", 232 __func__); 233 return -EFAULT; 234 } 235 236 if (pad_len) 237 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); 238 239 stat_len = spu->spu_tx_status_len(); 240 if (stat_len) { 241 memset(rctx->msg_buf.tx_stat, 0, stat_len); 242 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); 243 } 244 return 0; 245 } 246 247 static int mailbox_send_message(struct brcm_message *mssg, u32 flags, 248 u8 chan_idx) 249 { 250 int err; 251 int retry_cnt = 0; 252 struct device *dev = &(iproc_priv.pdev->dev); 253 254 err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg); 255 if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) { 256 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) { 257 /* 258 * Mailbox queue is full. Since MAY_SLEEP is set, assume 259 * not in atomic context and we can wait and try again. 260 */ 261 retry_cnt++; 262 usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX); 263 err = mbox_send_message(iproc_priv.mbox[chan_idx], 264 mssg); 265 atomic_inc(&iproc_priv.mb_no_spc); 266 } 267 } 268 if (err < 0) { 269 atomic_inc(&iproc_priv.mb_send_fail); 270 return err; 271 } 272 273 /* Check error returned by mailbox controller */ 274 err = mssg->error; 275 if (unlikely(err < 0)) { 276 dev_err(dev, "message error %d", err); 277 /* Signal txdone for mailbox channel */ 278 } 279 280 /* Signal txdone for mailbox channel */ 281 mbox_client_txdone(iproc_priv.mbox[chan_idx], err); 282 return err; 283 } 284 285 /** 286 * handle_ablkcipher_req() - Submit as much of a block cipher request as fits in 287 * a single SPU request message, starting at the current position in the request 288 * data. 289 * @rctx: Crypto request context 290 * 291 * This may be called on the crypto API thread, or, when a request is so large 292 * it must be broken into multiple SPU messages, on the thread used to invoke 293 * the response callback. When requests are broken into multiple SPU 294 * messages, we assume subsequent messages depend on previous results, and 295 * thus always wait for previous results before submitting the next message. 296 * Because requests are submitted in lock step like this, there is no need 297 * to synchronize access to request data structures. 298 * 299 * Return: -EINPROGRESS: request has been accepted and result will be returned 300 * asynchronously 301 * Any other value indicates an error 302 */ 303 static int handle_ablkcipher_req(struct iproc_reqctx_s *rctx) 304 { 305 struct spu_hw *spu = &iproc_priv.spu; 306 struct crypto_async_request *areq = rctx->parent; 307 struct ablkcipher_request *req = 308 container_of(areq, struct ablkcipher_request, base); 309 struct iproc_ctx_s *ctx = rctx->ctx; 310 struct spu_cipher_parms cipher_parms; 311 int err = 0; 312 unsigned int chunksize = 0; /* Num bytes of request to submit */ 313 int remaining = 0; /* Bytes of request still to process */ 314 int chunk_start; /* Beginning of data for current SPU msg */ 315 316 /* IV or ctr value to use in this SPU msg */ 317 u8 local_iv_ctr[MAX_IV_SIZE]; 318 u32 stat_pad_len; /* num bytes to align status field */ 319 u32 pad_len; /* total length of all padding */ 320 bool update_key = false; 321 struct brcm_message *mssg; /* mailbox message */ 322 323 /* number of entries in src and dst sg in mailbox message. */ 324 u8 rx_frag_num = 2; /* response header and STATUS */ 325 u8 tx_frag_num = 1; /* request header */ 326 327 flow_log("%s\n", __func__); 328 329 cipher_parms.alg = ctx->cipher.alg; 330 cipher_parms.mode = ctx->cipher.mode; 331 cipher_parms.type = ctx->cipher_type; 332 cipher_parms.key_len = ctx->enckeylen; 333 cipher_parms.key_buf = ctx->enckey; 334 cipher_parms.iv_buf = local_iv_ctr; 335 cipher_parms.iv_len = rctx->iv_ctr_len; 336 337 mssg = &rctx->mb_mssg; 338 chunk_start = rctx->src_sent; 339 remaining = rctx->total_todo - chunk_start; 340 341 /* determine the chunk we are breaking off and update the indexes */ 342 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && 343 (remaining > ctx->max_payload)) 344 chunksize = ctx->max_payload; 345 else 346 chunksize = remaining; 347 348 rctx->src_sent += chunksize; 349 rctx->total_sent = rctx->src_sent; 350 351 /* Count number of sg entries to be included in this request */ 352 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); 353 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); 354 355 if ((ctx->cipher.mode == CIPHER_MODE_CBC) && 356 rctx->is_encrypt && chunk_start) 357 /* 358 * Encrypting non-first first chunk. Copy last block of 359 * previous result to IV for this chunk. 360 */ 361 sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr, 362 rctx->iv_ctr_len, 363 chunk_start - rctx->iv_ctr_len); 364 365 if (rctx->iv_ctr_len) { 366 /* get our local copy of the iv */ 367 __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr, 368 rctx->iv_ctr_len); 369 370 /* generate the next IV if possible */ 371 if ((ctx->cipher.mode == CIPHER_MODE_CBC) && 372 !rctx->is_encrypt) { 373 /* 374 * CBC Decrypt: next IV is the last ciphertext block in 375 * this chunk 376 */ 377 sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr, 378 rctx->iv_ctr_len, 379 rctx->src_sent - rctx->iv_ctr_len); 380 } else if (ctx->cipher.mode == CIPHER_MODE_CTR) { 381 /* 382 * The SPU hardware increments the counter once for 383 * each AES block of 16 bytes. So update the counter 384 * for the next chunk, if there is one. Note that for 385 * this chunk, the counter has already been copied to 386 * local_iv_ctr. We can assume a block size of 16, 387 * because we only support CTR mode for AES, not for 388 * any other cipher alg. 389 */ 390 add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4); 391 } 392 } 393 394 if (ctx->cipher.alg == CIPHER_ALG_RC4) { 395 rx_frag_num++; 396 if (chunk_start) { 397 /* 398 * for non-first RC4 chunks, use SUPDT from previous 399 * response as key for this chunk. 400 */ 401 cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak; 402 update_key = true; 403 cipher_parms.type = CIPHER_TYPE_UPDT; 404 } else if (!rctx->is_encrypt) { 405 /* 406 * First RC4 chunk. For decrypt, key in pre-built msg 407 * header may have been changed if encrypt required 408 * multiple chunks. So revert the key to the 409 * ctx->enckey value. 410 */ 411 update_key = true; 412 cipher_parms.type = CIPHER_TYPE_INIT; 413 } 414 } 415 416 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 417 flow_log("max_payload infinite\n"); 418 else 419 flow_log("max_payload %u\n", ctx->max_payload); 420 421 flow_log("sent:%u start:%u remains:%u size:%u\n", 422 rctx->src_sent, chunk_start, remaining, chunksize); 423 424 /* Copy SPU header template created at setkey time */ 425 memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr, 426 sizeof(rctx->msg_buf.bcm_spu_req_hdr)); 427 428 /* 429 * Pass SUPDT field as key. Key field in finish() call is only used 430 * when update_key has been set above for RC4. Will be ignored in 431 * all other cases. 432 */ 433 spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 434 ctx->spu_req_hdr_len, !(rctx->is_encrypt), 435 &cipher_parms, update_key, chunksize); 436 437 atomic64_add(chunksize, &iproc_priv.bytes_out); 438 439 stat_pad_len = spu->spu_wordalign_padlen(chunksize); 440 if (stat_pad_len) 441 rx_frag_num++; 442 pad_len = stat_pad_len; 443 if (pad_len) { 444 tx_frag_num++; 445 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0, 446 0, ctx->auth.alg, ctx->auth.mode, 447 rctx->total_sent, stat_pad_len); 448 } 449 450 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 451 ctx->spu_req_hdr_len); 452 packet_log("payload:\n"); 453 dump_sg(rctx->src_sg, rctx->src_skip, chunksize); 454 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); 455 456 /* 457 * Build mailbox message containing SPU request msg and rx buffers 458 * to catch response message 459 */ 460 memset(mssg, 0, sizeof(*mssg)); 461 mssg->type = BRCM_MESSAGE_SPU; 462 mssg->ctx = rctx; /* Will be returned in response */ 463 464 /* Create rx scatterlist to catch result */ 465 rx_frag_num += rctx->dst_nents; 466 467 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 468 spu->spu_xts_tweak_in_payload()) 469 rx_frag_num++; /* extra sg to insert tweak */ 470 471 err = spu_ablkcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize, 472 stat_pad_len); 473 if (err) 474 return err; 475 476 /* Create tx scatterlist containing SPU request message */ 477 tx_frag_num += rctx->src_nents; 478 if (spu->spu_tx_status_len()) 479 tx_frag_num++; 480 481 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 482 spu->spu_xts_tweak_in_payload()) 483 tx_frag_num++; /* extra sg to insert tweak */ 484 485 err = spu_ablkcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize, 486 pad_len); 487 if (err) 488 return err; 489 490 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); 491 if (unlikely(err < 0)) 492 return err; 493 494 return -EINPROGRESS; 495 } 496 497 /** 498 * handle_ablkcipher_resp() - Process a block cipher SPU response. Updates the 499 * total received count for the request and updates global stats. 500 * @rctx: Crypto request context 501 */ 502 static void handle_ablkcipher_resp(struct iproc_reqctx_s *rctx) 503 { 504 struct spu_hw *spu = &iproc_priv.spu; 505 #ifdef DEBUG 506 struct crypto_async_request *areq = rctx->parent; 507 struct ablkcipher_request *req = ablkcipher_request_cast(areq); 508 #endif 509 struct iproc_ctx_s *ctx = rctx->ctx; 510 u32 payload_len; 511 512 /* See how much data was returned */ 513 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); 514 515 /* 516 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the 517 * encrypted tweak ("i") value; we don't count those. 518 */ 519 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 520 spu->spu_xts_tweak_in_payload() && 521 (payload_len >= SPU_XTS_TWEAK_SIZE)) 522 payload_len -= SPU_XTS_TWEAK_SIZE; 523 524 atomic64_add(payload_len, &iproc_priv.bytes_in); 525 526 flow_log("%s() offset: %u, bd_len: %u BD:\n", 527 __func__, rctx->total_received, payload_len); 528 529 dump_sg(req->dst, rctx->total_received, payload_len); 530 if (ctx->cipher.alg == CIPHER_ALG_RC4) 531 packet_dump(" supdt ", rctx->msg_buf.c.supdt_tweak, 532 SPU_SUPDT_LEN); 533 534 rctx->total_received += payload_len; 535 if (rctx->total_received == rctx->total_todo) { 536 atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]); 537 atomic_inc( 538 &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]); 539 } 540 } 541 542 /** 543 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to 544 * receive a SPU response message for an ahash request. 545 * @mssg: mailbox message containing the receive sg 546 * @rctx: crypto request context 547 * @rx_frag_num: number of scatterlist elements required to hold the 548 * SPU response message 549 * @digestsize: length of hash digest, in bytes 550 * @stat_pad_len: Number of bytes required to pad the STAT field to 551 * a 4-byte boundary 552 * 553 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 554 * when the request completes, whether the request is handled successfully or 555 * there is an error. 556 * 557 * Return: 558 * 0 if successful 559 * < 0 if an error 560 */ 561 static int 562 spu_ahash_rx_sg_create(struct brcm_message *mssg, 563 struct iproc_reqctx_s *rctx, 564 u8 rx_frag_num, unsigned int digestsize, 565 u32 stat_pad_len) 566 { 567 struct spu_hw *spu = &iproc_priv.spu; 568 struct scatterlist *sg; /* used to build sgs in mbox message */ 569 struct iproc_ctx_s *ctx = rctx->ctx; 570 571 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), 572 rctx->gfp); 573 if (!mssg->spu.dst) 574 return -ENOMEM; 575 576 sg = mssg->spu.dst; 577 sg_init_table(sg, rx_frag_num); 578 /* Space for SPU message header */ 579 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); 580 581 /* Space for digest */ 582 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); 583 584 if (stat_pad_len) 585 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); 586 587 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); 588 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); 589 return 0; 590 } 591 592 /** 593 * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send 594 * a SPU request message for an ahash request. Includes SPU message headers and 595 * the request data. 596 * @mssg: mailbox message containing the transmit sg 597 * @rctx: crypto request context 598 * @tx_frag_num: number of scatterlist elements required to construct the 599 * SPU request message 600 * @spu_hdr_len: length in bytes of SPU message header 601 * @hash_carry_len: Number of bytes of data carried over from previous req 602 * @new_data_len: Number of bytes of new request data 603 * @pad_len: Number of pad bytes 604 * 605 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 606 * when the request completes, whether the request is handled successfully or 607 * there is an error. 608 * 609 * Return: 610 * 0 if successful 611 * < 0 if an error 612 */ 613 static int 614 spu_ahash_tx_sg_create(struct brcm_message *mssg, 615 struct iproc_reqctx_s *rctx, 616 u8 tx_frag_num, 617 u32 spu_hdr_len, 618 unsigned int hash_carry_len, 619 unsigned int new_data_len, u32 pad_len) 620 { 621 struct spu_hw *spu = &iproc_priv.spu; 622 struct scatterlist *sg; /* used to build sgs in mbox message */ 623 u32 datalen; /* Number of bytes of response data expected */ 624 u32 stat_len; 625 626 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), 627 rctx->gfp); 628 if (!mssg->spu.src) 629 return -ENOMEM; 630 631 sg = mssg->spu.src; 632 sg_init_table(sg, tx_frag_num); 633 634 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, 635 BCM_HDR_LEN + spu_hdr_len); 636 637 if (hash_carry_len) 638 sg_set_buf(sg++, rctx->hash_carry, hash_carry_len); 639 640 if (new_data_len) { 641 /* Copy in each src sg entry from request, up to chunksize */ 642 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, 643 rctx->src_nents, new_data_len); 644 if (datalen < new_data_len) { 645 pr_err("%s(): failed to copy src sg to mbox msg", 646 __func__); 647 return -EFAULT; 648 } 649 } 650 651 if (pad_len) 652 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); 653 654 stat_len = spu->spu_tx_status_len(); 655 if (stat_len) { 656 memset(rctx->msg_buf.tx_stat, 0, stat_len); 657 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); 658 } 659 660 return 0; 661 } 662 663 /** 664 * handle_ahash_req() - Process an asynchronous hash request from the crypto 665 * API. 666 * @rctx: Crypto request context 667 * 668 * Builds a SPU request message embedded in a mailbox message and submits the 669 * mailbox message on a selected mailbox channel. The SPU request message is 670 * constructed as a scatterlist, including entries from the crypto API's 671 * src scatterlist to avoid copying the data to be hashed. This function is 672 * called either on the thread from the crypto API, or, in the case that the 673 * crypto API request is too large to fit in a single SPU request message, 674 * on the thread that invokes the receive callback with a response message. 675 * Because some operations require the response from one chunk before the next 676 * chunk can be submitted, we always wait for the response for the previous 677 * chunk before submitting the next chunk. Because requests are submitted in 678 * lock step like this, there is no need to synchronize access to request data 679 * structures. 680 * 681 * Return: 682 * -EINPROGRESS: request has been submitted to SPU and response will be 683 * returned asynchronously 684 * -EAGAIN: non-final request included a small amount of data, which for 685 * efficiency we did not submit to the SPU, but instead stored 686 * to be submitted to the SPU with the next part of the request 687 * other: an error code 688 */ 689 static int handle_ahash_req(struct iproc_reqctx_s *rctx) 690 { 691 struct spu_hw *spu = &iproc_priv.spu; 692 struct crypto_async_request *areq = rctx->parent; 693 struct ahash_request *req = ahash_request_cast(areq); 694 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 695 struct crypto_tfm *tfm = crypto_ahash_tfm(ahash); 696 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); 697 struct iproc_ctx_s *ctx = rctx->ctx; 698 699 /* number of bytes still to be hashed in this req */ 700 unsigned int nbytes_to_hash = 0; 701 int err = 0; 702 unsigned int chunksize = 0; /* length of hash carry + new data */ 703 /* 704 * length of new data, not from hash carry, to be submitted in 705 * this hw request 706 */ 707 unsigned int new_data_len; 708 709 unsigned int __maybe_unused chunk_start = 0; 710 u32 db_size; /* Length of data field, incl gcm and hash padding */ 711 int pad_len = 0; /* total pad len, including gcm, hash, stat padding */ 712 u32 data_pad_len = 0; /* length of GCM/CCM padding */ 713 u32 stat_pad_len = 0; /* length of padding to align STATUS word */ 714 struct brcm_message *mssg; /* mailbox message */ 715 struct spu_request_opts req_opts; 716 struct spu_cipher_parms cipher_parms; 717 struct spu_hash_parms hash_parms; 718 struct spu_aead_parms aead_parms; 719 unsigned int local_nbuf; 720 u32 spu_hdr_len; 721 unsigned int digestsize; 722 u16 rem = 0; 723 724 /* 725 * number of entries in src and dst sg. Always includes SPU msg header. 726 * rx always includes a buffer to catch digest and STATUS. 727 */ 728 u8 rx_frag_num = 3; 729 u8 tx_frag_num = 1; 730 731 flow_log("total_todo %u, total_sent %u\n", 732 rctx->total_todo, rctx->total_sent); 733 734 memset(&req_opts, 0, sizeof(req_opts)); 735 memset(&cipher_parms, 0, sizeof(cipher_parms)); 736 memset(&hash_parms, 0, sizeof(hash_parms)); 737 memset(&aead_parms, 0, sizeof(aead_parms)); 738 739 req_opts.bd_suppress = true; 740 hash_parms.alg = ctx->auth.alg; 741 hash_parms.mode = ctx->auth.mode; 742 hash_parms.type = HASH_TYPE_NONE; 743 hash_parms.key_buf = (u8 *)ctx->authkey; 744 hash_parms.key_len = ctx->authkeylen; 745 746 /* 747 * For hash algorithms below assignment looks bit odd but 748 * it's needed for AES-XCBC and AES-CMAC hash algorithms 749 * to differentiate between 128, 192, 256 bit key values. 750 * Based on the key values, hash algorithm is selected. 751 * For example for 128 bit key, hash algorithm is AES-128. 752 */ 753 cipher_parms.type = ctx->cipher_type; 754 755 mssg = &rctx->mb_mssg; 756 chunk_start = rctx->src_sent; 757 758 /* 759 * Compute the amount remaining to hash. This may include data 760 * carried over from previous requests. 761 */ 762 nbytes_to_hash = rctx->total_todo - rctx->total_sent; 763 chunksize = nbytes_to_hash; 764 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && 765 (chunksize > ctx->max_payload)) 766 chunksize = ctx->max_payload; 767 768 /* 769 * If this is not a final request and the request data is not a multiple 770 * of a full block, then simply park the extra data and prefix it to the 771 * data for the next request. 772 */ 773 if (!rctx->is_final) { 774 u8 *dest = rctx->hash_carry + rctx->hash_carry_len; 775 u16 new_len; /* len of data to add to hash carry */ 776 777 rem = chunksize % blocksize; /* remainder */ 778 if (rem) { 779 /* chunksize not a multiple of blocksize */ 780 chunksize -= rem; 781 if (chunksize == 0) { 782 /* Don't have a full block to submit to hw */ 783 new_len = rem - rctx->hash_carry_len; 784 sg_copy_part_to_buf(req->src, dest, new_len, 785 rctx->src_sent); 786 rctx->hash_carry_len = rem; 787 flow_log("Exiting with hash carry len: %u\n", 788 rctx->hash_carry_len); 789 packet_dump(" buf: ", 790 rctx->hash_carry, 791 rctx->hash_carry_len); 792 return -EAGAIN; 793 } 794 } 795 } 796 797 /* if we have hash carry, then prefix it to the data in this request */ 798 local_nbuf = rctx->hash_carry_len; 799 rctx->hash_carry_len = 0; 800 if (local_nbuf) 801 tx_frag_num++; 802 new_data_len = chunksize - local_nbuf; 803 804 /* Count number of sg entries to be used in this request */ 805 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, 806 new_data_len); 807 808 /* AES hashing keeps key size in type field, so need to copy it here */ 809 if (hash_parms.alg == HASH_ALG_AES) 810 hash_parms.type = (enum hash_type)cipher_parms.type; 811 else 812 hash_parms.type = spu->spu_hash_type(rctx->total_sent); 813 814 digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg, 815 hash_parms.type); 816 hash_parms.digestsize = digestsize; 817 818 /* update the indexes */ 819 rctx->total_sent += chunksize; 820 /* if you sent a prebuf then that wasn't from this req->src */ 821 rctx->src_sent += new_data_len; 822 823 if ((rctx->total_sent == rctx->total_todo) && rctx->is_final) 824 hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg, 825 hash_parms.mode, 826 chunksize, 827 blocksize); 828 829 /* 830 * If a non-first chunk, then include the digest returned from the 831 * previous chunk so that hw can add to it (except for AES types). 832 */ 833 if ((hash_parms.type == HASH_TYPE_UPDT) && 834 (hash_parms.alg != HASH_ALG_AES)) { 835 hash_parms.key_buf = rctx->incr_hash; 836 hash_parms.key_len = digestsize; 837 } 838 839 atomic64_add(chunksize, &iproc_priv.bytes_out); 840 841 flow_log("%s() final: %u nbuf: %u ", 842 __func__, rctx->is_final, local_nbuf); 843 844 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 845 flow_log("max_payload infinite\n"); 846 else 847 flow_log("max_payload %u\n", ctx->max_payload); 848 849 flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize); 850 851 /* Prepend SPU header with type 3 BCM header */ 852 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); 853 854 hash_parms.prebuf_len = local_nbuf; 855 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + 856 BCM_HDR_LEN, 857 &req_opts, &cipher_parms, 858 &hash_parms, &aead_parms, 859 new_data_len); 860 861 if (spu_hdr_len == 0) { 862 pr_err("Failed to create SPU request header\n"); 863 return -EFAULT; 864 } 865 866 /* 867 * Determine total length of padding required. Put all padding in one 868 * buffer. 869 */ 870 data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize); 871 db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len, 872 0, 0, hash_parms.pad_len); 873 if (spu->spu_tx_status_len()) 874 stat_pad_len = spu->spu_wordalign_padlen(db_size); 875 if (stat_pad_len) 876 rx_frag_num++; 877 pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len; 878 if (pad_len) { 879 tx_frag_num++; 880 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len, 881 hash_parms.pad_len, ctx->auth.alg, 882 ctx->auth.mode, rctx->total_sent, 883 stat_pad_len); 884 } 885 886 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 887 spu_hdr_len); 888 packet_dump(" prebuf: ", rctx->hash_carry, local_nbuf); 889 flow_log("Data:\n"); 890 dump_sg(rctx->src_sg, rctx->src_skip, new_data_len); 891 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); 892 893 /* 894 * Build mailbox message containing SPU request msg and rx buffers 895 * to catch response message 896 */ 897 memset(mssg, 0, sizeof(*mssg)); 898 mssg->type = BRCM_MESSAGE_SPU; 899 mssg->ctx = rctx; /* Will be returned in response */ 900 901 /* Create rx scatterlist to catch result */ 902 err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize, 903 stat_pad_len); 904 if (err) 905 return err; 906 907 /* Create tx scatterlist containing SPU request message */ 908 tx_frag_num += rctx->src_nents; 909 if (spu->spu_tx_status_len()) 910 tx_frag_num++; 911 err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, 912 local_nbuf, new_data_len, pad_len); 913 if (err) 914 return err; 915 916 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); 917 if (unlikely(err < 0)) 918 return err; 919 920 return -EINPROGRESS; 921 } 922 923 /** 924 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash 925 * for an HMAC request. 926 * @req: The HMAC request from the crypto API 927 * @ctx: The session context 928 * 929 * Return: 0 if synchronous hash operation successful 930 * -EINVAL if the hash algo is unrecognized 931 * any other value indicates an error 932 */ 933 static int spu_hmac_outer_hash(struct ahash_request *req, 934 struct iproc_ctx_s *ctx) 935 { 936 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 937 unsigned int blocksize = 938 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 939 int rc; 940 941 switch (ctx->auth.alg) { 942 case HASH_ALG_MD5: 943 rc = do_shash("md5", req->result, ctx->opad, blocksize, 944 req->result, ctx->digestsize, NULL, 0); 945 break; 946 case HASH_ALG_SHA1: 947 rc = do_shash("sha1", req->result, ctx->opad, blocksize, 948 req->result, ctx->digestsize, NULL, 0); 949 break; 950 case HASH_ALG_SHA224: 951 rc = do_shash("sha224", req->result, ctx->opad, blocksize, 952 req->result, ctx->digestsize, NULL, 0); 953 break; 954 case HASH_ALG_SHA256: 955 rc = do_shash("sha256", req->result, ctx->opad, blocksize, 956 req->result, ctx->digestsize, NULL, 0); 957 break; 958 case HASH_ALG_SHA384: 959 rc = do_shash("sha384", req->result, ctx->opad, blocksize, 960 req->result, ctx->digestsize, NULL, 0); 961 break; 962 case HASH_ALG_SHA512: 963 rc = do_shash("sha512", req->result, ctx->opad, blocksize, 964 req->result, ctx->digestsize, NULL, 0); 965 break; 966 default: 967 pr_err("%s() Error : unknown hmac type\n", __func__); 968 rc = -EINVAL; 969 } 970 return rc; 971 } 972 973 /** 974 * ahash_req_done() - Process a hash result from the SPU hardware. 975 * @rctx: Crypto request context 976 * 977 * Return: 0 if successful 978 * < 0 if an error 979 */ 980 static int ahash_req_done(struct iproc_reqctx_s *rctx) 981 { 982 struct spu_hw *spu = &iproc_priv.spu; 983 struct crypto_async_request *areq = rctx->parent; 984 struct ahash_request *req = ahash_request_cast(areq); 985 struct iproc_ctx_s *ctx = rctx->ctx; 986 int err; 987 988 memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize); 989 990 if (spu->spu_type == SPU_TYPE_SPUM) { 991 /* byte swap the output from the UPDT function to network byte 992 * order 993 */ 994 if (ctx->auth.alg == HASH_ALG_MD5) { 995 __swab32s((u32 *)req->result); 996 __swab32s(((u32 *)req->result) + 1); 997 __swab32s(((u32 *)req->result) + 2); 998 __swab32s(((u32 *)req->result) + 3); 999 __swab32s(((u32 *)req->result) + 4); 1000 } 1001 } 1002 1003 flow_dump(" digest ", req->result, ctx->digestsize); 1004 1005 /* if this an HMAC then do the outer hash */ 1006 if (rctx->is_sw_hmac) { 1007 err = spu_hmac_outer_hash(req, ctx); 1008 if (err < 0) 1009 return err; 1010 flow_dump(" hmac: ", req->result, ctx->digestsize); 1011 } 1012 1013 if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) { 1014 atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]); 1015 atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]); 1016 } else { 1017 atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]); 1018 atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]); 1019 } 1020 1021 return 0; 1022 } 1023 1024 /** 1025 * handle_ahash_resp() - Process a SPU response message for a hash request. 1026 * Checks if the entire crypto API request has been processed, and if so, 1027 * invokes post processing on the result. 1028 * @rctx: Crypto request context 1029 */ 1030 static void handle_ahash_resp(struct iproc_reqctx_s *rctx) 1031 { 1032 struct iproc_ctx_s *ctx = rctx->ctx; 1033 #ifdef DEBUG 1034 struct crypto_async_request *areq = rctx->parent; 1035 struct ahash_request *req = ahash_request_cast(areq); 1036 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1037 unsigned int blocksize = 1038 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 1039 #endif 1040 /* 1041 * Save hash to use as input to next op if incremental. Might be copying 1042 * too much, but that's easier than figuring out actual digest size here 1043 */ 1044 memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE); 1045 1046 flow_log("%s() blocksize:%u digestsize:%u\n", 1047 __func__, blocksize, ctx->digestsize); 1048 1049 atomic64_add(ctx->digestsize, &iproc_priv.bytes_in); 1050 1051 if (rctx->is_final && (rctx->total_sent == rctx->total_todo)) 1052 ahash_req_done(rctx); 1053 } 1054 1055 /** 1056 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive 1057 * a SPU response message for an AEAD request. Includes buffers to catch SPU 1058 * message headers and the response data. 1059 * @mssg: mailbox message containing the receive sg 1060 * @rctx: crypto request context 1061 * @rx_frag_num: number of scatterlist elements required to hold the 1062 * SPU response message 1063 * @assoc_len: Length of associated data included in the crypto request 1064 * @ret_iv_len: Length of IV returned in response 1065 * @resp_len: Number of bytes of response data expected to be written to 1066 * dst buffer from crypto API 1067 * @digestsize: Length of hash digest, in bytes 1068 * @stat_pad_len: Number of bytes required to pad the STAT field to 1069 * a 4-byte boundary 1070 * 1071 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 1072 * when the request completes, whether the request is handled successfully or 1073 * there is an error. 1074 * 1075 * Returns: 1076 * 0 if successful 1077 * < 0 if an error 1078 */ 1079 static int spu_aead_rx_sg_create(struct brcm_message *mssg, 1080 struct aead_request *req, 1081 struct iproc_reqctx_s *rctx, 1082 u8 rx_frag_num, 1083 unsigned int assoc_len, 1084 u32 ret_iv_len, unsigned int resp_len, 1085 unsigned int digestsize, u32 stat_pad_len) 1086 { 1087 struct spu_hw *spu = &iproc_priv.spu; 1088 struct scatterlist *sg; /* used to build sgs in mbox message */ 1089 struct iproc_ctx_s *ctx = rctx->ctx; 1090 u32 datalen; /* Number of bytes of response data expected */ 1091 u32 assoc_buf_len; 1092 u8 data_padlen = 0; 1093 1094 if (ctx->is_rfc4543) { 1095 /* RFC4543: only pad after data, not after AAD */ 1096 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1097 assoc_len + resp_len); 1098 assoc_buf_len = assoc_len; 1099 } else { 1100 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1101 resp_len); 1102 assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode, 1103 assoc_len, ret_iv_len, 1104 rctx->is_encrypt); 1105 } 1106 1107 if (ctx->cipher.mode == CIPHER_MODE_CCM) 1108 /* ICV (after data) must be in the next 32-bit word for CCM */ 1109 data_padlen += spu->spu_wordalign_padlen(assoc_buf_len + 1110 resp_len + 1111 data_padlen); 1112 1113 if (data_padlen) 1114 /* have to catch gcm pad in separate buffer */ 1115 rx_frag_num++; 1116 1117 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), 1118 rctx->gfp); 1119 if (!mssg->spu.dst) 1120 return -ENOMEM; 1121 1122 sg = mssg->spu.dst; 1123 sg_init_table(sg, rx_frag_num); 1124 1125 /* Space for SPU message header */ 1126 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); 1127 1128 if (assoc_buf_len) { 1129 /* 1130 * Don't write directly to req->dst, because SPU may pad the 1131 * assoc data in the response 1132 */ 1133 memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len); 1134 sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len); 1135 } 1136 1137 if (resp_len) { 1138 /* 1139 * Copy in each dst sg entry from request, up to chunksize. 1140 * dst sg catches just the data. digest caught in separate buf. 1141 */ 1142 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, 1143 rctx->dst_nents, resp_len); 1144 if (datalen < (resp_len)) { 1145 pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u", 1146 __func__, resp_len, datalen); 1147 return -EFAULT; 1148 } 1149 } 1150 1151 /* If GCM/CCM data is padded, catch padding in separate buffer */ 1152 if (data_padlen) { 1153 memset(rctx->msg_buf.a.gcmpad, 0, data_padlen); 1154 sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen); 1155 } 1156 1157 /* Always catch ICV in separate buffer */ 1158 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); 1159 1160 flow_log("stat_pad_len %u\n", stat_pad_len); 1161 if (stat_pad_len) { 1162 memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len); 1163 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); 1164 } 1165 1166 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); 1167 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); 1168 1169 return 0; 1170 } 1171 1172 /** 1173 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a 1174 * SPU request message for an AEAD request. Includes SPU message headers and the 1175 * request data. 1176 * @mssg: mailbox message containing the transmit sg 1177 * @rctx: crypto request context 1178 * @tx_frag_num: number of scatterlist elements required to construct the 1179 * SPU request message 1180 * @spu_hdr_len: length of SPU message header in bytes 1181 * @assoc: crypto API associated data scatterlist 1182 * @assoc_len: length of associated data 1183 * @assoc_nents: number of scatterlist entries containing assoc data 1184 * @aead_iv_len: length of AEAD IV, if included 1185 * @chunksize: Number of bytes of request data 1186 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM. 1187 * @pad_len: Number of pad bytes 1188 * @incl_icv: If true, write separate ICV buffer after data and 1189 * any padding 1190 * 1191 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 1192 * when the request completes, whether the request is handled successfully or 1193 * there is an error. 1194 * 1195 * Return: 1196 * 0 if successful 1197 * < 0 if an error 1198 */ 1199 static int spu_aead_tx_sg_create(struct brcm_message *mssg, 1200 struct iproc_reqctx_s *rctx, 1201 u8 tx_frag_num, 1202 u32 spu_hdr_len, 1203 struct scatterlist *assoc, 1204 unsigned int assoc_len, 1205 int assoc_nents, 1206 unsigned int aead_iv_len, 1207 unsigned int chunksize, 1208 u32 aad_pad_len, u32 pad_len, bool incl_icv) 1209 { 1210 struct spu_hw *spu = &iproc_priv.spu; 1211 struct scatterlist *sg; /* used to build sgs in mbox message */ 1212 struct scatterlist *assoc_sg = assoc; 1213 struct iproc_ctx_s *ctx = rctx->ctx; 1214 u32 datalen; /* Number of bytes of data to write */ 1215 u32 written; /* Number of bytes of data written */ 1216 u32 assoc_offset = 0; 1217 u32 stat_len; 1218 1219 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), 1220 rctx->gfp); 1221 if (!mssg->spu.src) 1222 return -ENOMEM; 1223 1224 sg = mssg->spu.src; 1225 sg_init_table(sg, tx_frag_num); 1226 1227 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, 1228 BCM_HDR_LEN + spu_hdr_len); 1229 1230 if (assoc_len) { 1231 /* Copy in each associated data sg entry from request */ 1232 written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset, 1233 assoc_nents, assoc_len); 1234 if (written < assoc_len) { 1235 pr_err("%s(): failed to copy assoc sg to mbox msg", 1236 __func__); 1237 return -EFAULT; 1238 } 1239 } 1240 1241 if (aead_iv_len) 1242 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len); 1243 1244 if (aad_pad_len) { 1245 memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len); 1246 sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len); 1247 } 1248 1249 datalen = chunksize; 1250 if ((chunksize > ctx->digestsize) && incl_icv) 1251 datalen -= ctx->digestsize; 1252 if (datalen) { 1253 /* For aead, a single msg should consume the entire src sg */ 1254 written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, 1255 rctx->src_nents, datalen); 1256 if (written < datalen) { 1257 pr_err("%s(): failed to copy src sg to mbox msg", 1258 __func__); 1259 return -EFAULT; 1260 } 1261 } 1262 1263 if (pad_len) { 1264 memset(rctx->msg_buf.spu_req_pad, 0, pad_len); 1265 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); 1266 } 1267 1268 if (incl_icv) 1269 sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize); 1270 1271 stat_len = spu->spu_tx_status_len(); 1272 if (stat_len) { 1273 memset(rctx->msg_buf.tx_stat, 0, stat_len); 1274 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); 1275 } 1276 return 0; 1277 } 1278 1279 /** 1280 * handle_aead_req() - Submit a SPU request message for the next chunk of the 1281 * current AEAD request. 1282 * @rctx: Crypto request context 1283 * 1284 * Unlike other operation types, we assume the length of the request fits in 1285 * a single SPU request message. aead_enqueue() makes sure this is true. 1286 * Comments for other op types regarding threads applies here as well. 1287 * 1288 * Unlike incremental hash ops, where the spu returns the entire hash for 1289 * truncated algs like sha-224, the SPU returns just the truncated hash in 1290 * response to aead requests. So digestsize is always ctx->digestsize here. 1291 * 1292 * Return: -EINPROGRESS: crypto request has been accepted and result will be 1293 * returned asynchronously 1294 * Any other value indicates an error 1295 */ 1296 static int handle_aead_req(struct iproc_reqctx_s *rctx) 1297 { 1298 struct spu_hw *spu = &iproc_priv.spu; 1299 struct crypto_async_request *areq = rctx->parent; 1300 struct aead_request *req = container_of(areq, 1301 struct aead_request, base); 1302 struct iproc_ctx_s *ctx = rctx->ctx; 1303 int err; 1304 unsigned int chunksize; 1305 unsigned int resp_len; 1306 u32 spu_hdr_len; 1307 u32 db_size; 1308 u32 stat_pad_len; 1309 u32 pad_len; 1310 struct brcm_message *mssg; /* mailbox message */ 1311 struct spu_request_opts req_opts; 1312 struct spu_cipher_parms cipher_parms; 1313 struct spu_hash_parms hash_parms; 1314 struct spu_aead_parms aead_parms; 1315 int assoc_nents = 0; 1316 bool incl_icv = false; 1317 unsigned int digestsize = ctx->digestsize; 1318 1319 /* number of entries in src and dst sg. Always includes SPU msg header. 1320 */ 1321 u8 rx_frag_num = 2; /* and STATUS */ 1322 u8 tx_frag_num = 1; 1323 1324 /* doing the whole thing at once */ 1325 chunksize = rctx->total_todo; 1326 1327 flow_log("%s: chunksize %u\n", __func__, chunksize); 1328 1329 memset(&req_opts, 0, sizeof(req_opts)); 1330 memset(&hash_parms, 0, sizeof(hash_parms)); 1331 memset(&aead_parms, 0, sizeof(aead_parms)); 1332 1333 req_opts.is_inbound = !(rctx->is_encrypt); 1334 req_opts.auth_first = ctx->auth_first; 1335 req_opts.is_aead = true; 1336 req_opts.is_esp = ctx->is_esp; 1337 1338 cipher_parms.alg = ctx->cipher.alg; 1339 cipher_parms.mode = ctx->cipher.mode; 1340 cipher_parms.type = ctx->cipher_type; 1341 cipher_parms.key_buf = ctx->enckey; 1342 cipher_parms.key_len = ctx->enckeylen; 1343 cipher_parms.iv_buf = rctx->msg_buf.iv_ctr; 1344 cipher_parms.iv_len = rctx->iv_ctr_len; 1345 1346 hash_parms.alg = ctx->auth.alg; 1347 hash_parms.mode = ctx->auth.mode; 1348 hash_parms.type = HASH_TYPE_NONE; 1349 hash_parms.key_buf = (u8 *)ctx->authkey; 1350 hash_parms.key_len = ctx->authkeylen; 1351 hash_parms.digestsize = digestsize; 1352 1353 if ((ctx->auth.alg == HASH_ALG_SHA224) && 1354 (ctx->authkeylen < SHA224_DIGEST_SIZE)) 1355 hash_parms.key_len = SHA224_DIGEST_SIZE; 1356 1357 aead_parms.assoc_size = req->assoclen; 1358 if (ctx->is_esp && !ctx->is_rfc4543) { 1359 /* 1360 * 8-byte IV is included assoc data in request. SPU2 1361 * expects AAD to include just SPI and seqno. So 1362 * subtract off the IV len. 1363 */ 1364 aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE; 1365 1366 if (rctx->is_encrypt) { 1367 aead_parms.return_iv = true; 1368 aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE; 1369 aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE; 1370 } 1371 } else { 1372 aead_parms.ret_iv_len = 0; 1373 } 1374 1375 /* 1376 * Count number of sg entries from the crypto API request that are to 1377 * be included in this mailbox message. For dst sg, don't count space 1378 * for digest. Digest gets caught in a separate buffer and copied back 1379 * to dst sg when processing response. 1380 */ 1381 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); 1382 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); 1383 if (aead_parms.assoc_size) 1384 assoc_nents = spu_sg_count(rctx->assoc, 0, 1385 aead_parms.assoc_size); 1386 1387 mssg = &rctx->mb_mssg; 1388 1389 rctx->total_sent = chunksize; 1390 rctx->src_sent = chunksize; 1391 if (spu->spu_assoc_resp_len(ctx->cipher.mode, 1392 aead_parms.assoc_size, 1393 aead_parms.ret_iv_len, 1394 rctx->is_encrypt)) 1395 rx_frag_num++; 1396 1397 aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode, 1398 rctx->iv_ctr_len); 1399 1400 if (ctx->auth.alg == HASH_ALG_AES) 1401 hash_parms.type = (enum hash_type)ctx->cipher_type; 1402 1403 /* General case AAD padding (CCM and RFC4543 special cases below) */ 1404 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1405 aead_parms.assoc_size); 1406 1407 /* General case data padding (CCM decrypt special case below) */ 1408 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1409 chunksize); 1410 1411 if (ctx->cipher.mode == CIPHER_MODE_CCM) { 1412 /* 1413 * for CCM, AAD len + 2 (rather than AAD len) needs to be 1414 * 128-bit aligned 1415 */ 1416 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len( 1417 ctx->cipher.mode, 1418 aead_parms.assoc_size + 2); 1419 1420 /* 1421 * And when decrypting CCM, need to pad without including 1422 * size of ICV which is tacked on to end of chunk 1423 */ 1424 if (!rctx->is_encrypt) 1425 aead_parms.data_pad_len = 1426 spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1427 chunksize - digestsize); 1428 1429 /* CCM also requires software to rewrite portions of IV: */ 1430 spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen, 1431 chunksize, rctx->is_encrypt, 1432 ctx->is_esp); 1433 } 1434 1435 if (ctx->is_rfc4543) { 1436 /* 1437 * RFC4543: data is included in AAD, so don't pad after AAD 1438 * and pad data based on both AAD + data size 1439 */ 1440 aead_parms.aad_pad_len = 0; 1441 if (!rctx->is_encrypt) 1442 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( 1443 ctx->cipher.mode, 1444 aead_parms.assoc_size + chunksize - 1445 digestsize); 1446 else 1447 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( 1448 ctx->cipher.mode, 1449 aead_parms.assoc_size + chunksize); 1450 1451 req_opts.is_rfc4543 = true; 1452 } 1453 1454 if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) { 1455 incl_icv = true; 1456 tx_frag_num++; 1457 /* Copy ICV from end of src scatterlist to digest buf */ 1458 sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize, 1459 req->assoclen + rctx->total_sent - 1460 digestsize); 1461 } 1462 1463 atomic64_add(chunksize, &iproc_priv.bytes_out); 1464 1465 flow_log("%s()-sent chunksize:%u\n", __func__, chunksize); 1466 1467 /* Prepend SPU header with type 3 BCM header */ 1468 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); 1469 1470 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + 1471 BCM_HDR_LEN, &req_opts, 1472 &cipher_parms, &hash_parms, 1473 &aead_parms, chunksize); 1474 1475 /* Determine total length of padding. Put all padding in one buffer. */ 1476 db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0, 1477 chunksize, aead_parms.aad_pad_len, 1478 aead_parms.data_pad_len, 0); 1479 1480 stat_pad_len = spu->spu_wordalign_padlen(db_size); 1481 1482 if (stat_pad_len) 1483 rx_frag_num++; 1484 pad_len = aead_parms.data_pad_len + stat_pad_len; 1485 if (pad_len) { 1486 tx_frag_num++; 1487 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 1488 aead_parms.data_pad_len, 0, 1489 ctx->auth.alg, ctx->auth.mode, 1490 rctx->total_sent, stat_pad_len); 1491 } 1492 1493 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 1494 spu_hdr_len); 1495 dump_sg(rctx->assoc, 0, aead_parms.assoc_size); 1496 packet_dump(" aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len); 1497 packet_log("BD:\n"); 1498 dump_sg(rctx->src_sg, rctx->src_skip, chunksize); 1499 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); 1500 1501 /* 1502 * Build mailbox message containing SPU request msg and rx buffers 1503 * to catch response message 1504 */ 1505 memset(mssg, 0, sizeof(*mssg)); 1506 mssg->type = BRCM_MESSAGE_SPU; 1507 mssg->ctx = rctx; /* Will be returned in response */ 1508 1509 /* Create rx scatterlist to catch result */ 1510 rx_frag_num += rctx->dst_nents; 1511 resp_len = chunksize; 1512 1513 /* 1514 * Always catch ICV in separate buffer. Have to for GCM/CCM because of 1515 * padding. Have to for SHA-224 and other truncated SHAs because SPU 1516 * sends entire digest back. 1517 */ 1518 rx_frag_num++; 1519 1520 if (((ctx->cipher.mode == CIPHER_MODE_GCM) || 1521 (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) { 1522 /* 1523 * Input is ciphertxt plus ICV, but ICV not incl 1524 * in output. 1525 */ 1526 resp_len -= ctx->digestsize; 1527 if (resp_len == 0) 1528 /* no rx frags to catch output data */ 1529 rx_frag_num -= rctx->dst_nents; 1530 } 1531 1532 err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num, 1533 aead_parms.assoc_size, 1534 aead_parms.ret_iv_len, resp_len, digestsize, 1535 stat_pad_len); 1536 if (err) 1537 return err; 1538 1539 /* Create tx scatterlist containing SPU request message */ 1540 tx_frag_num += rctx->src_nents; 1541 tx_frag_num += assoc_nents; 1542 if (aead_parms.aad_pad_len) 1543 tx_frag_num++; 1544 if (aead_parms.iv_len) 1545 tx_frag_num++; 1546 if (spu->spu_tx_status_len()) 1547 tx_frag_num++; 1548 err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, 1549 rctx->assoc, aead_parms.assoc_size, 1550 assoc_nents, aead_parms.iv_len, chunksize, 1551 aead_parms.aad_pad_len, pad_len, incl_icv); 1552 if (err) 1553 return err; 1554 1555 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); 1556 if (unlikely(err < 0)) 1557 return err; 1558 1559 return -EINPROGRESS; 1560 } 1561 1562 /** 1563 * handle_aead_resp() - Process a SPU response message for an AEAD request. 1564 * @rctx: Crypto request context 1565 */ 1566 static void handle_aead_resp(struct iproc_reqctx_s *rctx) 1567 { 1568 struct spu_hw *spu = &iproc_priv.spu; 1569 struct crypto_async_request *areq = rctx->parent; 1570 struct aead_request *req = container_of(areq, 1571 struct aead_request, base); 1572 struct iproc_ctx_s *ctx = rctx->ctx; 1573 u32 payload_len; 1574 unsigned int icv_offset; 1575 u32 result_len; 1576 1577 /* See how much data was returned */ 1578 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); 1579 flow_log("payload_len %u\n", payload_len); 1580 1581 /* only count payload */ 1582 atomic64_add(payload_len, &iproc_priv.bytes_in); 1583 1584 if (req->assoclen) 1585 packet_dump(" assoc_data ", rctx->msg_buf.a.resp_aad, 1586 req->assoclen); 1587 1588 /* 1589 * Copy the ICV back to the destination 1590 * buffer. In decrypt case, SPU gives us back the digest, but crypto 1591 * API doesn't expect ICV in dst buffer. 1592 */ 1593 result_len = req->cryptlen; 1594 if (rctx->is_encrypt) { 1595 icv_offset = req->assoclen + rctx->total_sent; 1596 packet_dump(" ICV: ", rctx->msg_buf.digest, ctx->digestsize); 1597 flow_log("copying ICV to dst sg at offset %u\n", icv_offset); 1598 sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest, 1599 ctx->digestsize, icv_offset); 1600 result_len += ctx->digestsize; 1601 } 1602 1603 packet_log("response data: "); 1604 dump_sg(req->dst, req->assoclen, result_len); 1605 1606 atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]); 1607 if (ctx->cipher.alg == CIPHER_ALG_AES) { 1608 if (ctx->cipher.mode == CIPHER_MODE_CCM) 1609 atomic_inc(&iproc_priv.aead_cnt[AES_CCM]); 1610 else if (ctx->cipher.mode == CIPHER_MODE_GCM) 1611 atomic_inc(&iproc_priv.aead_cnt[AES_GCM]); 1612 else 1613 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); 1614 } else { 1615 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); 1616 } 1617 } 1618 1619 /** 1620 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request 1621 * @rctx: request context 1622 * 1623 * Mailbox scatterlists are allocated for each chunk. So free them after 1624 * processing each chunk. 1625 */ 1626 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx) 1627 { 1628 /* mailbox message used to tx request */ 1629 struct brcm_message *mssg = &rctx->mb_mssg; 1630 1631 kfree(mssg->spu.src); 1632 kfree(mssg->spu.dst); 1633 memset(mssg, 0, sizeof(struct brcm_message)); 1634 } 1635 1636 /** 1637 * finish_req() - Used to invoke the complete callback from the requester when 1638 * a request has been handled asynchronously. 1639 * @rctx: Request context 1640 * @err: Indicates whether the request was successful or not 1641 * 1642 * Ensures that cleanup has been done for request 1643 */ 1644 static void finish_req(struct iproc_reqctx_s *rctx, int err) 1645 { 1646 struct crypto_async_request *areq = rctx->parent; 1647 1648 flow_log("%s() err:%d\n\n", __func__, err); 1649 1650 /* No harm done if already called */ 1651 spu_chunk_cleanup(rctx); 1652 1653 if (areq) 1654 areq->complete(areq, err); 1655 } 1656 1657 /** 1658 * spu_rx_callback() - Callback from mailbox framework with a SPU response. 1659 * @cl: mailbox client structure for SPU driver 1660 * @msg: mailbox message containing SPU response 1661 */ 1662 static void spu_rx_callback(struct mbox_client *cl, void *msg) 1663 { 1664 struct spu_hw *spu = &iproc_priv.spu; 1665 struct brcm_message *mssg = msg; 1666 struct iproc_reqctx_s *rctx; 1667 int err = 0; 1668 1669 rctx = mssg->ctx; 1670 if (unlikely(!rctx)) { 1671 /* This is fatal */ 1672 pr_err("%s(): no request context", __func__); 1673 err = -EFAULT; 1674 goto cb_finish; 1675 } 1676 1677 /* process the SPU status */ 1678 err = spu->spu_status_process(rctx->msg_buf.rx_stat); 1679 if (err != 0) { 1680 if (err == SPU_INVALID_ICV) 1681 atomic_inc(&iproc_priv.bad_icv); 1682 err = -EBADMSG; 1683 goto cb_finish; 1684 } 1685 1686 /* Process the SPU response message */ 1687 switch (rctx->ctx->alg->type) { 1688 case CRYPTO_ALG_TYPE_ABLKCIPHER: 1689 handle_ablkcipher_resp(rctx); 1690 break; 1691 case CRYPTO_ALG_TYPE_AHASH: 1692 handle_ahash_resp(rctx); 1693 break; 1694 case CRYPTO_ALG_TYPE_AEAD: 1695 handle_aead_resp(rctx); 1696 break; 1697 default: 1698 err = -EINVAL; 1699 goto cb_finish; 1700 } 1701 1702 /* 1703 * If this response does not complete the request, then send the next 1704 * request chunk. 1705 */ 1706 if (rctx->total_sent < rctx->total_todo) { 1707 /* Deallocate anything specific to previous chunk */ 1708 spu_chunk_cleanup(rctx); 1709 1710 switch (rctx->ctx->alg->type) { 1711 case CRYPTO_ALG_TYPE_ABLKCIPHER: 1712 err = handle_ablkcipher_req(rctx); 1713 break; 1714 case CRYPTO_ALG_TYPE_AHASH: 1715 err = handle_ahash_req(rctx); 1716 if (err == -EAGAIN) 1717 /* 1718 * we saved data in hash carry, but tell crypto 1719 * API we successfully completed request. 1720 */ 1721 err = 0; 1722 break; 1723 case CRYPTO_ALG_TYPE_AEAD: 1724 err = handle_aead_req(rctx); 1725 break; 1726 default: 1727 err = -EINVAL; 1728 } 1729 1730 if (err == -EINPROGRESS) 1731 /* Successfully submitted request for next chunk */ 1732 return; 1733 } 1734 1735 cb_finish: 1736 finish_req(rctx, err); 1737 } 1738 1739 /* ==================== Kernel Cryptographic API ==================== */ 1740 1741 /** 1742 * ablkcipher_enqueue() - Handle ablkcipher encrypt or decrypt request. 1743 * @req: Crypto API request 1744 * @encrypt: true if encrypting; false if decrypting 1745 * 1746 * Return: -EINPROGRESS if request accepted and result will be returned 1747 * asynchronously 1748 * < 0 if an error 1749 */ 1750 static int ablkcipher_enqueue(struct ablkcipher_request *req, bool encrypt) 1751 { 1752 struct iproc_reqctx_s *rctx = ablkcipher_request_ctx(req); 1753 struct iproc_ctx_s *ctx = 1754 crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)); 1755 int err; 1756 1757 flow_log("%s() enc:%u\n", __func__, encrypt); 1758 1759 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 1760 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 1761 rctx->parent = &req->base; 1762 rctx->is_encrypt = encrypt; 1763 rctx->bd_suppress = false; 1764 rctx->total_todo = req->nbytes; 1765 rctx->src_sent = 0; 1766 rctx->total_sent = 0; 1767 rctx->total_received = 0; 1768 rctx->ctx = ctx; 1769 1770 /* Initialize current position in src and dst scatterlists */ 1771 rctx->src_sg = req->src; 1772 rctx->src_nents = 0; 1773 rctx->src_skip = 0; 1774 rctx->dst_sg = req->dst; 1775 rctx->dst_nents = 0; 1776 rctx->dst_skip = 0; 1777 1778 if (ctx->cipher.mode == CIPHER_MODE_CBC || 1779 ctx->cipher.mode == CIPHER_MODE_CTR || 1780 ctx->cipher.mode == CIPHER_MODE_OFB || 1781 ctx->cipher.mode == CIPHER_MODE_XTS || 1782 ctx->cipher.mode == CIPHER_MODE_GCM || 1783 ctx->cipher.mode == CIPHER_MODE_CCM) { 1784 rctx->iv_ctr_len = 1785 crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req)); 1786 memcpy(rctx->msg_buf.iv_ctr, req->info, rctx->iv_ctr_len); 1787 } else { 1788 rctx->iv_ctr_len = 0; 1789 } 1790 1791 /* Choose a SPU to process this request */ 1792 rctx->chan_idx = select_channel(); 1793 err = handle_ablkcipher_req(rctx); 1794 if (err != -EINPROGRESS) 1795 /* synchronous result */ 1796 spu_chunk_cleanup(rctx); 1797 1798 return err; 1799 } 1800 1801 static int des_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 1802 unsigned int keylen) 1803 { 1804 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); 1805 u32 tmp[DES_EXPKEY_WORDS]; 1806 1807 if (keylen == DES_KEY_SIZE) { 1808 if (des_ekey(tmp, key) == 0) { 1809 if (crypto_ablkcipher_get_flags(cipher) & 1810 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) { 1811 u32 flags = CRYPTO_TFM_RES_WEAK_KEY; 1812 1813 crypto_ablkcipher_set_flags(cipher, flags); 1814 return -EINVAL; 1815 } 1816 } 1817 1818 ctx->cipher_type = CIPHER_TYPE_DES; 1819 } else { 1820 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 1821 return -EINVAL; 1822 } 1823 return 0; 1824 } 1825 1826 static int threedes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 1827 unsigned int keylen) 1828 { 1829 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); 1830 1831 if (keylen == (DES_KEY_SIZE * 3)) { 1832 u32 flags; 1833 int ret; 1834 1835 flags = crypto_ablkcipher_get_flags(cipher); 1836 ret = __des3_verify_key(&flags, key); 1837 if (unlikely(ret)) { 1838 crypto_ablkcipher_set_flags(cipher, flags); 1839 return ret; 1840 } 1841 1842 ctx->cipher_type = CIPHER_TYPE_3DES; 1843 } else { 1844 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 1845 return -EINVAL; 1846 } 1847 return 0; 1848 } 1849 1850 static int aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 1851 unsigned int keylen) 1852 { 1853 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); 1854 1855 if (ctx->cipher.mode == CIPHER_MODE_XTS) 1856 /* XTS includes two keys of equal length */ 1857 keylen = keylen / 2; 1858 1859 switch (keylen) { 1860 case AES_KEYSIZE_128: 1861 ctx->cipher_type = CIPHER_TYPE_AES128; 1862 break; 1863 case AES_KEYSIZE_192: 1864 ctx->cipher_type = CIPHER_TYPE_AES192; 1865 break; 1866 case AES_KEYSIZE_256: 1867 ctx->cipher_type = CIPHER_TYPE_AES256; 1868 break; 1869 default: 1870 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 1871 return -EINVAL; 1872 } 1873 WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && 1874 ((ctx->max_payload % AES_BLOCK_SIZE) != 0)); 1875 return 0; 1876 } 1877 1878 static int rc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 1879 unsigned int keylen) 1880 { 1881 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); 1882 int i; 1883 1884 ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE; 1885 1886 ctx->enckey[0] = 0x00; /* 0x00 */ 1887 ctx->enckey[1] = 0x00; /* i */ 1888 ctx->enckey[2] = 0x00; /* 0x00 */ 1889 ctx->enckey[3] = 0x00; /* j */ 1890 for (i = 0; i < ARC4_MAX_KEY_SIZE; i++) 1891 ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen]; 1892 1893 ctx->cipher_type = CIPHER_TYPE_INIT; 1894 1895 return 0; 1896 } 1897 1898 static int ablkcipher_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 1899 unsigned int keylen) 1900 { 1901 struct spu_hw *spu = &iproc_priv.spu; 1902 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); 1903 struct spu_cipher_parms cipher_parms; 1904 u32 alloc_len = 0; 1905 int err; 1906 1907 flow_log("ablkcipher_setkey() keylen: %d\n", keylen); 1908 flow_dump(" key: ", key, keylen); 1909 1910 switch (ctx->cipher.alg) { 1911 case CIPHER_ALG_DES: 1912 err = des_setkey(cipher, key, keylen); 1913 break; 1914 case CIPHER_ALG_3DES: 1915 err = threedes_setkey(cipher, key, keylen); 1916 break; 1917 case CIPHER_ALG_AES: 1918 err = aes_setkey(cipher, key, keylen); 1919 break; 1920 case CIPHER_ALG_RC4: 1921 err = rc4_setkey(cipher, key, keylen); 1922 break; 1923 default: 1924 pr_err("%s() Error: unknown cipher alg\n", __func__); 1925 err = -EINVAL; 1926 } 1927 if (err) 1928 return err; 1929 1930 /* RC4 already populated ctx->enkey */ 1931 if (ctx->cipher.alg != CIPHER_ALG_RC4) { 1932 memcpy(ctx->enckey, key, keylen); 1933 ctx->enckeylen = keylen; 1934 } 1935 /* SPU needs XTS keys in the reverse order the crypto API presents */ 1936 if ((ctx->cipher.alg == CIPHER_ALG_AES) && 1937 (ctx->cipher.mode == CIPHER_MODE_XTS)) { 1938 unsigned int xts_keylen = keylen / 2; 1939 1940 memcpy(ctx->enckey, key + xts_keylen, xts_keylen); 1941 memcpy(ctx->enckey + xts_keylen, key, xts_keylen); 1942 } 1943 1944 if (spu->spu_type == SPU_TYPE_SPUM) 1945 alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN; 1946 else if (spu->spu_type == SPU_TYPE_SPU2) 1947 alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN; 1948 memset(ctx->bcm_spu_req_hdr, 0, alloc_len); 1949 cipher_parms.iv_buf = NULL; 1950 cipher_parms.iv_len = crypto_ablkcipher_ivsize(cipher); 1951 flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len); 1952 1953 cipher_parms.alg = ctx->cipher.alg; 1954 cipher_parms.mode = ctx->cipher.mode; 1955 cipher_parms.type = ctx->cipher_type; 1956 cipher_parms.key_buf = ctx->enckey; 1957 cipher_parms.key_len = ctx->enckeylen; 1958 1959 /* Prepend SPU request message with BCM header */ 1960 memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); 1961 ctx->spu_req_hdr_len = 1962 spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN, 1963 &cipher_parms); 1964 1965 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 1966 ctx->enckeylen, 1967 false); 1968 1969 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]); 1970 1971 return 0; 1972 } 1973 1974 static int ablkcipher_encrypt(struct ablkcipher_request *req) 1975 { 1976 flow_log("ablkcipher_encrypt() nbytes:%u\n", req->nbytes); 1977 1978 return ablkcipher_enqueue(req, true); 1979 } 1980 1981 static int ablkcipher_decrypt(struct ablkcipher_request *req) 1982 { 1983 flow_log("ablkcipher_decrypt() nbytes:%u\n", req->nbytes); 1984 return ablkcipher_enqueue(req, false); 1985 } 1986 1987 static int ahash_enqueue(struct ahash_request *req) 1988 { 1989 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 1990 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1991 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 1992 int err = 0; 1993 const char *alg_name; 1994 1995 flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes); 1996 1997 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 1998 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 1999 rctx->parent = &req->base; 2000 rctx->ctx = ctx; 2001 rctx->bd_suppress = true; 2002 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); 2003 2004 /* Initialize position in src scatterlist */ 2005 rctx->src_sg = req->src; 2006 rctx->src_skip = 0; 2007 rctx->src_nents = 0; 2008 rctx->dst_sg = NULL; 2009 rctx->dst_skip = 0; 2010 rctx->dst_nents = 0; 2011 2012 /* SPU2 hardware does not compute hash of zero length data */ 2013 if ((rctx->is_final == 1) && (rctx->total_todo == 0) && 2014 (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) { 2015 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); 2016 flow_log("Doing %sfinal %s zero-len hash request in software\n", 2017 rctx->is_final ? "" : "non-", alg_name); 2018 err = do_shash((unsigned char *)alg_name, req->result, 2019 NULL, 0, NULL, 0, ctx->authkey, 2020 ctx->authkeylen); 2021 if (err < 0) 2022 flow_log("Hash request failed with error %d\n", err); 2023 return err; 2024 } 2025 /* Choose a SPU to process this request */ 2026 rctx->chan_idx = select_channel(); 2027 2028 err = handle_ahash_req(rctx); 2029 if (err != -EINPROGRESS) 2030 /* synchronous result */ 2031 spu_chunk_cleanup(rctx); 2032 2033 if (err == -EAGAIN) 2034 /* 2035 * we saved data in hash carry, but tell crypto API 2036 * we successfully completed request. 2037 */ 2038 err = 0; 2039 2040 return err; 2041 } 2042 2043 static int __ahash_init(struct ahash_request *req) 2044 { 2045 struct spu_hw *spu = &iproc_priv.spu; 2046 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2047 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2048 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2049 2050 flow_log("%s()\n", __func__); 2051 2052 /* Initialize the context */ 2053 rctx->hash_carry_len = 0; 2054 rctx->is_final = 0; 2055 2056 rctx->total_todo = 0; 2057 rctx->src_sent = 0; 2058 rctx->total_sent = 0; 2059 rctx->total_received = 0; 2060 2061 ctx->digestsize = crypto_ahash_digestsize(tfm); 2062 /* If we add a hash whose digest is larger, catch it here. */ 2063 WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE); 2064 2065 rctx->is_sw_hmac = false; 2066 2067 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0, 2068 true); 2069 2070 return 0; 2071 } 2072 2073 /** 2074 * spu_no_incr_hash() - Determine whether incremental hashing is supported. 2075 * @ctx: Crypto session context 2076 * 2077 * SPU-2 does not support incremental hashing (we'll have to revisit and 2078 * condition based on chip revision or device tree entry if future versions do 2079 * support incremental hash) 2080 * 2081 * SPU-M also doesn't support incremental hashing of AES-XCBC 2082 * 2083 * Return: true if incremental hashing is not supported 2084 * false otherwise 2085 */ 2086 static bool spu_no_incr_hash(struct iproc_ctx_s *ctx) 2087 { 2088 struct spu_hw *spu = &iproc_priv.spu; 2089 2090 if (spu->spu_type == SPU_TYPE_SPU2) 2091 return true; 2092 2093 if ((ctx->auth.alg == HASH_ALG_AES) && 2094 (ctx->auth.mode == HASH_MODE_XCBC)) 2095 return true; 2096 2097 /* Otherwise, incremental hashing is supported */ 2098 return false; 2099 } 2100 2101 static int ahash_init(struct ahash_request *req) 2102 { 2103 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2104 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2105 const char *alg_name; 2106 struct crypto_shash *hash; 2107 int ret; 2108 gfp_t gfp; 2109 2110 if (spu_no_incr_hash(ctx)) { 2111 /* 2112 * If we get an incremental hashing request and it's not 2113 * supported by the hardware, we need to handle it in software 2114 * by calling synchronous hash functions. 2115 */ 2116 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); 2117 hash = crypto_alloc_shash(alg_name, 0, 0); 2118 if (IS_ERR(hash)) { 2119 ret = PTR_ERR(hash); 2120 goto err; 2121 } 2122 2123 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2124 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2125 ctx->shash = kmalloc(sizeof(*ctx->shash) + 2126 crypto_shash_descsize(hash), gfp); 2127 if (!ctx->shash) { 2128 ret = -ENOMEM; 2129 goto err_hash; 2130 } 2131 ctx->shash->tfm = hash; 2132 2133 /* Set the key using data we already have from setkey */ 2134 if (ctx->authkeylen > 0) { 2135 ret = crypto_shash_setkey(hash, ctx->authkey, 2136 ctx->authkeylen); 2137 if (ret) 2138 goto err_shash; 2139 } 2140 2141 /* Initialize hash w/ this key and other params */ 2142 ret = crypto_shash_init(ctx->shash); 2143 if (ret) 2144 goto err_shash; 2145 } else { 2146 /* Otherwise call the internal function which uses SPU hw */ 2147 ret = __ahash_init(req); 2148 } 2149 2150 return ret; 2151 2152 err_shash: 2153 kfree(ctx->shash); 2154 err_hash: 2155 crypto_free_shash(hash); 2156 err: 2157 return ret; 2158 } 2159 2160 static int __ahash_update(struct ahash_request *req) 2161 { 2162 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2163 2164 flow_log("ahash_update() nbytes:%u\n", req->nbytes); 2165 2166 if (!req->nbytes) 2167 return 0; 2168 rctx->total_todo += req->nbytes; 2169 rctx->src_sent = 0; 2170 2171 return ahash_enqueue(req); 2172 } 2173 2174 static int ahash_update(struct ahash_request *req) 2175 { 2176 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2177 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2178 u8 *tmpbuf; 2179 int ret; 2180 int nents; 2181 gfp_t gfp; 2182 2183 if (spu_no_incr_hash(ctx)) { 2184 /* 2185 * If we get an incremental hashing request and it's not 2186 * supported by the hardware, we need to handle it in software 2187 * by calling synchronous hash functions. 2188 */ 2189 if (req->src) 2190 nents = sg_nents(req->src); 2191 else 2192 return -EINVAL; 2193 2194 /* Copy data from req scatterlist to tmp buffer */ 2195 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2196 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2197 tmpbuf = kmalloc(req->nbytes, gfp); 2198 if (!tmpbuf) 2199 return -ENOMEM; 2200 2201 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != 2202 req->nbytes) { 2203 kfree(tmpbuf); 2204 return -EINVAL; 2205 } 2206 2207 /* Call synchronous update */ 2208 ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes); 2209 kfree(tmpbuf); 2210 } else { 2211 /* Otherwise call the internal function which uses SPU hw */ 2212 ret = __ahash_update(req); 2213 } 2214 2215 return ret; 2216 } 2217 2218 static int __ahash_final(struct ahash_request *req) 2219 { 2220 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2221 2222 flow_log("ahash_final() nbytes:%u\n", req->nbytes); 2223 2224 rctx->is_final = 1; 2225 2226 return ahash_enqueue(req); 2227 } 2228 2229 static int ahash_final(struct ahash_request *req) 2230 { 2231 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2232 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2233 int ret; 2234 2235 if (spu_no_incr_hash(ctx)) { 2236 /* 2237 * If we get an incremental hashing request and it's not 2238 * supported by the hardware, we need to handle it in software 2239 * by calling synchronous hash functions. 2240 */ 2241 ret = crypto_shash_final(ctx->shash, req->result); 2242 2243 /* Done with hash, can deallocate it now */ 2244 crypto_free_shash(ctx->shash->tfm); 2245 kfree(ctx->shash); 2246 2247 } else { 2248 /* Otherwise call the internal function which uses SPU hw */ 2249 ret = __ahash_final(req); 2250 } 2251 2252 return ret; 2253 } 2254 2255 static int __ahash_finup(struct ahash_request *req) 2256 { 2257 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2258 2259 flow_log("ahash_finup() nbytes:%u\n", req->nbytes); 2260 2261 rctx->total_todo += req->nbytes; 2262 rctx->src_sent = 0; 2263 rctx->is_final = 1; 2264 2265 return ahash_enqueue(req); 2266 } 2267 2268 static int ahash_finup(struct ahash_request *req) 2269 { 2270 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2271 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2272 u8 *tmpbuf; 2273 int ret; 2274 int nents; 2275 gfp_t gfp; 2276 2277 if (spu_no_incr_hash(ctx)) { 2278 /* 2279 * If we get an incremental hashing request and it's not 2280 * supported by the hardware, we need to handle it in software 2281 * by calling synchronous hash functions. 2282 */ 2283 if (req->src) { 2284 nents = sg_nents(req->src); 2285 } else { 2286 ret = -EINVAL; 2287 goto ahash_finup_exit; 2288 } 2289 2290 /* Copy data from req scatterlist to tmp buffer */ 2291 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2292 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2293 tmpbuf = kmalloc(req->nbytes, gfp); 2294 if (!tmpbuf) { 2295 ret = -ENOMEM; 2296 goto ahash_finup_exit; 2297 } 2298 2299 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != 2300 req->nbytes) { 2301 ret = -EINVAL; 2302 goto ahash_finup_free; 2303 } 2304 2305 /* Call synchronous update */ 2306 ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes, 2307 req->result); 2308 } else { 2309 /* Otherwise call the internal function which uses SPU hw */ 2310 return __ahash_finup(req); 2311 } 2312 ahash_finup_free: 2313 kfree(tmpbuf); 2314 2315 ahash_finup_exit: 2316 /* Done with hash, can deallocate it now */ 2317 crypto_free_shash(ctx->shash->tfm); 2318 kfree(ctx->shash); 2319 return ret; 2320 } 2321 2322 static int ahash_digest(struct ahash_request *req) 2323 { 2324 int err = 0; 2325 2326 flow_log("ahash_digest() nbytes:%u\n", req->nbytes); 2327 2328 /* whole thing at once */ 2329 err = __ahash_init(req); 2330 if (!err) 2331 err = __ahash_finup(req); 2332 2333 return err; 2334 } 2335 2336 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key, 2337 unsigned int keylen) 2338 { 2339 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); 2340 2341 flow_log("%s() ahash:%p key:%p keylen:%u\n", 2342 __func__, ahash, key, keylen); 2343 flow_dump(" key: ", key, keylen); 2344 2345 if (ctx->auth.alg == HASH_ALG_AES) { 2346 switch (keylen) { 2347 case AES_KEYSIZE_128: 2348 ctx->cipher_type = CIPHER_TYPE_AES128; 2349 break; 2350 case AES_KEYSIZE_192: 2351 ctx->cipher_type = CIPHER_TYPE_AES192; 2352 break; 2353 case AES_KEYSIZE_256: 2354 ctx->cipher_type = CIPHER_TYPE_AES256; 2355 break; 2356 default: 2357 pr_err("%s() Error: Invalid key length\n", __func__); 2358 return -EINVAL; 2359 } 2360 } else { 2361 pr_err("%s() Error: unknown hash alg\n", __func__); 2362 return -EINVAL; 2363 } 2364 memcpy(ctx->authkey, key, keylen); 2365 ctx->authkeylen = keylen; 2366 2367 return 0; 2368 } 2369 2370 static int ahash_export(struct ahash_request *req, void *out) 2371 { 2372 const struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2373 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out; 2374 2375 spu_exp->total_todo = rctx->total_todo; 2376 spu_exp->total_sent = rctx->total_sent; 2377 spu_exp->is_sw_hmac = rctx->is_sw_hmac; 2378 memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry)); 2379 spu_exp->hash_carry_len = rctx->hash_carry_len; 2380 memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash)); 2381 2382 return 0; 2383 } 2384 2385 static int ahash_import(struct ahash_request *req, const void *in) 2386 { 2387 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2388 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in; 2389 2390 rctx->total_todo = spu_exp->total_todo; 2391 rctx->total_sent = spu_exp->total_sent; 2392 rctx->is_sw_hmac = spu_exp->is_sw_hmac; 2393 memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry)); 2394 rctx->hash_carry_len = spu_exp->hash_carry_len; 2395 memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash)); 2396 2397 return 0; 2398 } 2399 2400 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key, 2401 unsigned int keylen) 2402 { 2403 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); 2404 unsigned int blocksize = 2405 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 2406 unsigned int digestsize = crypto_ahash_digestsize(ahash); 2407 unsigned int index; 2408 int rc; 2409 2410 flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n", 2411 __func__, ahash, key, keylen, blocksize, digestsize); 2412 flow_dump(" key: ", key, keylen); 2413 2414 if (keylen > blocksize) { 2415 switch (ctx->auth.alg) { 2416 case HASH_ALG_MD5: 2417 rc = do_shash("md5", ctx->authkey, key, keylen, NULL, 2418 0, NULL, 0); 2419 break; 2420 case HASH_ALG_SHA1: 2421 rc = do_shash("sha1", ctx->authkey, key, keylen, NULL, 2422 0, NULL, 0); 2423 break; 2424 case HASH_ALG_SHA224: 2425 rc = do_shash("sha224", ctx->authkey, key, keylen, NULL, 2426 0, NULL, 0); 2427 break; 2428 case HASH_ALG_SHA256: 2429 rc = do_shash("sha256", ctx->authkey, key, keylen, NULL, 2430 0, NULL, 0); 2431 break; 2432 case HASH_ALG_SHA384: 2433 rc = do_shash("sha384", ctx->authkey, key, keylen, NULL, 2434 0, NULL, 0); 2435 break; 2436 case HASH_ALG_SHA512: 2437 rc = do_shash("sha512", ctx->authkey, key, keylen, NULL, 2438 0, NULL, 0); 2439 break; 2440 case HASH_ALG_SHA3_224: 2441 rc = do_shash("sha3-224", ctx->authkey, key, keylen, 2442 NULL, 0, NULL, 0); 2443 break; 2444 case HASH_ALG_SHA3_256: 2445 rc = do_shash("sha3-256", ctx->authkey, key, keylen, 2446 NULL, 0, NULL, 0); 2447 break; 2448 case HASH_ALG_SHA3_384: 2449 rc = do_shash("sha3-384", ctx->authkey, key, keylen, 2450 NULL, 0, NULL, 0); 2451 break; 2452 case HASH_ALG_SHA3_512: 2453 rc = do_shash("sha3-512", ctx->authkey, key, keylen, 2454 NULL, 0, NULL, 0); 2455 break; 2456 default: 2457 pr_err("%s() Error: unknown hash alg\n", __func__); 2458 return -EINVAL; 2459 } 2460 if (rc < 0) { 2461 pr_err("%s() Error %d computing shash for %s\n", 2462 __func__, rc, hash_alg_name[ctx->auth.alg]); 2463 return rc; 2464 } 2465 ctx->authkeylen = digestsize; 2466 2467 flow_log(" keylen > digestsize... hashed\n"); 2468 flow_dump(" newkey: ", ctx->authkey, ctx->authkeylen); 2469 } else { 2470 memcpy(ctx->authkey, key, keylen); 2471 ctx->authkeylen = keylen; 2472 } 2473 2474 /* 2475 * Full HMAC operation in SPUM is not verified, 2476 * So keeping the generation of IPAD, OPAD and 2477 * outer hashing in software. 2478 */ 2479 if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) { 2480 memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen); 2481 memset(ctx->ipad + ctx->authkeylen, 0, 2482 blocksize - ctx->authkeylen); 2483 ctx->authkeylen = 0; 2484 memcpy(ctx->opad, ctx->ipad, blocksize); 2485 2486 for (index = 0; index < blocksize; index++) { 2487 ctx->ipad[index] ^= HMAC_IPAD_VALUE; 2488 ctx->opad[index] ^= HMAC_OPAD_VALUE; 2489 } 2490 2491 flow_dump(" ipad: ", ctx->ipad, blocksize); 2492 flow_dump(" opad: ", ctx->opad, blocksize); 2493 } 2494 ctx->digestsize = digestsize; 2495 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]); 2496 2497 return 0; 2498 } 2499 2500 static int ahash_hmac_init(struct ahash_request *req) 2501 { 2502 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2503 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2504 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2505 unsigned int blocksize = 2506 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 2507 2508 flow_log("ahash_hmac_init()\n"); 2509 2510 /* init the context as a hash */ 2511 ahash_init(req); 2512 2513 if (!spu_no_incr_hash(ctx)) { 2514 /* SPU-M can do incr hashing but needs sw for outer HMAC */ 2515 rctx->is_sw_hmac = true; 2516 ctx->auth.mode = HASH_MODE_HASH; 2517 /* start with a prepended ipad */ 2518 memcpy(rctx->hash_carry, ctx->ipad, blocksize); 2519 rctx->hash_carry_len = blocksize; 2520 rctx->total_todo += blocksize; 2521 } 2522 2523 return 0; 2524 } 2525 2526 static int ahash_hmac_update(struct ahash_request *req) 2527 { 2528 flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes); 2529 2530 if (!req->nbytes) 2531 return 0; 2532 2533 return ahash_update(req); 2534 } 2535 2536 static int ahash_hmac_final(struct ahash_request *req) 2537 { 2538 flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes); 2539 2540 return ahash_final(req); 2541 } 2542 2543 static int ahash_hmac_finup(struct ahash_request *req) 2544 { 2545 flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes); 2546 2547 return ahash_finup(req); 2548 } 2549 2550 static int ahash_hmac_digest(struct ahash_request *req) 2551 { 2552 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2553 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2554 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2555 unsigned int blocksize = 2556 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 2557 2558 flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes); 2559 2560 /* Perform initialization and then call finup */ 2561 __ahash_init(req); 2562 2563 if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) { 2564 /* 2565 * SPU2 supports full HMAC implementation in the 2566 * hardware, need not to generate IPAD, OPAD and 2567 * outer hash in software. 2568 * Only for hash key len > hash block size, SPU2 2569 * expects to perform hashing on the key, shorten 2570 * it to digest size and feed it as hash key. 2571 */ 2572 rctx->is_sw_hmac = false; 2573 ctx->auth.mode = HASH_MODE_HMAC; 2574 } else { 2575 rctx->is_sw_hmac = true; 2576 ctx->auth.mode = HASH_MODE_HASH; 2577 /* start with a prepended ipad */ 2578 memcpy(rctx->hash_carry, ctx->ipad, blocksize); 2579 rctx->hash_carry_len = blocksize; 2580 rctx->total_todo += blocksize; 2581 } 2582 2583 return __ahash_finup(req); 2584 } 2585 2586 /* aead helpers */ 2587 2588 static int aead_need_fallback(struct aead_request *req) 2589 { 2590 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2591 struct spu_hw *spu = &iproc_priv.spu; 2592 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2593 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); 2594 u32 payload_len; 2595 2596 /* 2597 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext 2598 * and AAD are both 0 bytes long. So use fallback in this case. 2599 */ 2600 if (((ctx->cipher.mode == CIPHER_MODE_GCM) || 2601 (ctx->cipher.mode == CIPHER_MODE_CCM)) && 2602 (req->assoclen == 0)) { 2603 if ((rctx->is_encrypt && (req->cryptlen == 0)) || 2604 (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) { 2605 flow_log("AES GCM/CCM needs fallback for 0 len req\n"); 2606 return 1; 2607 } 2608 } 2609 2610 /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */ 2611 if ((ctx->cipher.mode == CIPHER_MODE_CCM) && 2612 (spu->spu_type == SPU_TYPE_SPUM) && 2613 (ctx->digestsize != 8) && (ctx->digestsize != 12) && 2614 (ctx->digestsize != 16)) { 2615 flow_log("%s() AES CCM needs fallback for digest size %d\n", 2616 __func__, ctx->digestsize); 2617 return 1; 2618 } 2619 2620 /* 2621 * SPU-M on NSP has an issue where AES-CCM hash is not correct 2622 * when AAD size is 0 2623 */ 2624 if ((ctx->cipher.mode == CIPHER_MODE_CCM) && 2625 (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) && 2626 (req->assoclen == 0)) { 2627 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n", 2628 __func__); 2629 return 1; 2630 } 2631 2632 payload_len = req->cryptlen; 2633 if (spu->spu_type == SPU_TYPE_SPUM) 2634 payload_len += req->assoclen; 2635 2636 flow_log("%s() payload len: %u\n", __func__, payload_len); 2637 2638 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 2639 return 0; 2640 else 2641 return payload_len > ctx->max_payload; 2642 } 2643 2644 static void aead_complete(struct crypto_async_request *areq, int err) 2645 { 2646 struct aead_request *req = 2647 container_of(areq, struct aead_request, base); 2648 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2649 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2650 2651 flow_log("%s() err:%d\n", __func__, err); 2652 2653 areq->tfm = crypto_aead_tfm(aead); 2654 2655 areq->complete = rctx->old_complete; 2656 areq->data = rctx->old_data; 2657 2658 areq->complete(areq, err); 2659 } 2660 2661 static int aead_do_fallback(struct aead_request *req, bool is_encrypt) 2662 { 2663 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2664 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 2665 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2666 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 2667 int err; 2668 u32 req_flags; 2669 2670 flow_log("%s() enc:%u\n", __func__, is_encrypt); 2671 2672 if (ctx->fallback_cipher) { 2673 /* Store the cipher tfm and then use the fallback tfm */ 2674 rctx->old_tfm = tfm; 2675 aead_request_set_tfm(req, ctx->fallback_cipher); 2676 /* 2677 * Save the callback and chain ourselves in, so we can restore 2678 * the tfm 2679 */ 2680 rctx->old_complete = req->base.complete; 2681 rctx->old_data = req->base.data; 2682 req_flags = aead_request_flags(req); 2683 aead_request_set_callback(req, req_flags, aead_complete, req); 2684 err = is_encrypt ? crypto_aead_encrypt(req) : 2685 crypto_aead_decrypt(req); 2686 2687 if (err == 0) { 2688 /* 2689 * fallback was synchronous (did not return 2690 * -EINPROGRESS). So restore request state here. 2691 */ 2692 aead_request_set_callback(req, req_flags, 2693 rctx->old_complete, req); 2694 req->base.data = rctx->old_data; 2695 aead_request_set_tfm(req, aead); 2696 flow_log("%s() fallback completed successfully\n\n", 2697 __func__); 2698 } 2699 } else { 2700 err = -EINVAL; 2701 } 2702 2703 return err; 2704 } 2705 2706 static int aead_enqueue(struct aead_request *req, bool is_encrypt) 2707 { 2708 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2709 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2710 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); 2711 int err; 2712 2713 flow_log("%s() enc:%u\n", __func__, is_encrypt); 2714 2715 if (req->assoclen > MAX_ASSOC_SIZE) { 2716 pr_err 2717 ("%s() Error: associated data too long. (%u > %u bytes)\n", 2718 __func__, req->assoclen, MAX_ASSOC_SIZE); 2719 return -EINVAL; 2720 } 2721 2722 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2723 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2724 rctx->parent = &req->base; 2725 rctx->is_encrypt = is_encrypt; 2726 rctx->bd_suppress = false; 2727 rctx->total_todo = req->cryptlen; 2728 rctx->src_sent = 0; 2729 rctx->total_sent = 0; 2730 rctx->total_received = 0; 2731 rctx->is_sw_hmac = false; 2732 rctx->ctx = ctx; 2733 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); 2734 2735 /* assoc data is at start of src sg */ 2736 rctx->assoc = req->src; 2737 2738 /* 2739 * Init current position in src scatterlist to be after assoc data. 2740 * src_skip set to buffer offset where data begins. (Assoc data could 2741 * end in the middle of a buffer.) 2742 */ 2743 if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg, 2744 &rctx->src_skip) < 0) { 2745 pr_err("%s() Error: Unable to find start of src data\n", 2746 __func__); 2747 return -EINVAL; 2748 } 2749 2750 rctx->src_nents = 0; 2751 rctx->dst_nents = 0; 2752 if (req->dst == req->src) { 2753 rctx->dst_sg = rctx->src_sg; 2754 rctx->dst_skip = rctx->src_skip; 2755 } else { 2756 /* 2757 * Expect req->dst to have room for assoc data followed by 2758 * output data and ICV, if encrypt. So initialize dst_sg 2759 * to point beyond assoc len offset. 2760 */ 2761 if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg, 2762 &rctx->dst_skip) < 0) { 2763 pr_err("%s() Error: Unable to find start of dst data\n", 2764 __func__); 2765 return -EINVAL; 2766 } 2767 } 2768 2769 if (ctx->cipher.mode == CIPHER_MODE_CBC || 2770 ctx->cipher.mode == CIPHER_MODE_CTR || 2771 ctx->cipher.mode == CIPHER_MODE_OFB || 2772 ctx->cipher.mode == CIPHER_MODE_XTS || 2773 ctx->cipher.mode == CIPHER_MODE_GCM) { 2774 rctx->iv_ctr_len = 2775 ctx->salt_len + 2776 crypto_aead_ivsize(crypto_aead_reqtfm(req)); 2777 } else if (ctx->cipher.mode == CIPHER_MODE_CCM) { 2778 rctx->iv_ctr_len = CCM_AES_IV_SIZE; 2779 } else { 2780 rctx->iv_ctr_len = 0; 2781 } 2782 2783 rctx->hash_carry_len = 0; 2784 2785 flow_log(" src sg: %p\n", req->src); 2786 flow_log(" rctx->src_sg: %p, src_skip %u\n", 2787 rctx->src_sg, rctx->src_skip); 2788 flow_log(" assoc: %p, assoclen %u\n", rctx->assoc, req->assoclen); 2789 flow_log(" dst sg: %p\n", req->dst); 2790 flow_log(" rctx->dst_sg: %p, dst_skip %u\n", 2791 rctx->dst_sg, rctx->dst_skip); 2792 flow_log(" iv_ctr_len:%u\n", rctx->iv_ctr_len); 2793 flow_dump(" iv: ", req->iv, rctx->iv_ctr_len); 2794 flow_log(" authkeylen:%u\n", ctx->authkeylen); 2795 flow_log(" is_esp: %s\n", ctx->is_esp ? "yes" : "no"); 2796 2797 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 2798 flow_log(" max_payload infinite"); 2799 else 2800 flow_log(" max_payload: %u\n", ctx->max_payload); 2801 2802 if (unlikely(aead_need_fallback(req))) 2803 return aead_do_fallback(req, is_encrypt); 2804 2805 /* 2806 * Do memory allocations for request after fallback check, because if we 2807 * do fallback, we won't call finish_req() to dealloc. 2808 */ 2809 if (rctx->iv_ctr_len) { 2810 if (ctx->salt_len) 2811 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset, 2812 ctx->salt, ctx->salt_len); 2813 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len, 2814 req->iv, 2815 rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset); 2816 } 2817 2818 rctx->chan_idx = select_channel(); 2819 err = handle_aead_req(rctx); 2820 if (err != -EINPROGRESS) 2821 /* synchronous result */ 2822 spu_chunk_cleanup(rctx); 2823 2824 return err; 2825 } 2826 2827 static int aead_authenc_setkey(struct crypto_aead *cipher, 2828 const u8 *key, unsigned int keylen) 2829 { 2830 struct spu_hw *spu = &iproc_priv.spu; 2831 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2832 struct crypto_tfm *tfm = crypto_aead_tfm(cipher); 2833 struct crypto_authenc_keys keys; 2834 int ret; 2835 2836 flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key, 2837 keylen); 2838 flow_dump(" key: ", key, keylen); 2839 2840 ret = crypto_authenc_extractkeys(&keys, key, keylen); 2841 if (ret) 2842 goto badkey; 2843 2844 if (keys.enckeylen > MAX_KEY_SIZE || 2845 keys.authkeylen > MAX_KEY_SIZE) 2846 goto badkey; 2847 2848 ctx->enckeylen = keys.enckeylen; 2849 ctx->authkeylen = keys.authkeylen; 2850 2851 memcpy(ctx->enckey, keys.enckey, keys.enckeylen); 2852 /* May end up padding auth key. So make sure it's zeroed. */ 2853 memset(ctx->authkey, 0, sizeof(ctx->authkey)); 2854 memcpy(ctx->authkey, keys.authkey, keys.authkeylen); 2855 2856 switch (ctx->alg->cipher_info.alg) { 2857 case CIPHER_ALG_DES: 2858 if (ctx->enckeylen == DES_KEY_SIZE) { 2859 u32 tmp[DES_EXPKEY_WORDS]; 2860 u32 flags = CRYPTO_TFM_RES_WEAK_KEY; 2861 2862 if (des_ekey(tmp, keys.enckey) == 0) { 2863 if (crypto_aead_get_flags(cipher) & 2864 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) { 2865 crypto_aead_set_flags(cipher, flags); 2866 return -EINVAL; 2867 } 2868 } 2869 2870 ctx->cipher_type = CIPHER_TYPE_DES; 2871 } else { 2872 goto badkey; 2873 } 2874 break; 2875 case CIPHER_ALG_3DES: 2876 if (ctx->enckeylen == (DES_KEY_SIZE * 3)) { 2877 u32 flags; 2878 2879 flags = crypto_aead_get_flags(cipher); 2880 ret = __des3_verify_key(&flags, keys.enckey); 2881 if (unlikely(ret)) { 2882 crypto_aead_set_flags(cipher, flags); 2883 return ret; 2884 } 2885 2886 ctx->cipher_type = CIPHER_TYPE_3DES; 2887 } else { 2888 crypto_aead_set_flags(cipher, 2889 CRYPTO_TFM_RES_BAD_KEY_LEN); 2890 return -EINVAL; 2891 } 2892 break; 2893 case CIPHER_ALG_AES: 2894 switch (ctx->enckeylen) { 2895 case AES_KEYSIZE_128: 2896 ctx->cipher_type = CIPHER_TYPE_AES128; 2897 break; 2898 case AES_KEYSIZE_192: 2899 ctx->cipher_type = CIPHER_TYPE_AES192; 2900 break; 2901 case AES_KEYSIZE_256: 2902 ctx->cipher_type = CIPHER_TYPE_AES256; 2903 break; 2904 default: 2905 goto badkey; 2906 } 2907 break; 2908 case CIPHER_ALG_RC4: 2909 ctx->cipher_type = CIPHER_TYPE_INIT; 2910 break; 2911 default: 2912 pr_err("%s() Error: Unknown cipher alg\n", __func__); 2913 return -EINVAL; 2914 } 2915 2916 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, 2917 ctx->authkeylen); 2918 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen); 2919 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen); 2920 2921 /* setkey the fallback just in case we needto use it */ 2922 if (ctx->fallback_cipher) { 2923 flow_log(" running fallback setkey()\n"); 2924 2925 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; 2926 ctx->fallback_cipher->base.crt_flags |= 2927 tfm->crt_flags & CRYPTO_TFM_REQ_MASK; 2928 ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen); 2929 if (ret) { 2930 flow_log(" fallback setkey() returned:%d\n", ret); 2931 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK; 2932 tfm->crt_flags |= 2933 (ctx->fallback_cipher->base.crt_flags & 2934 CRYPTO_TFM_RES_MASK); 2935 } 2936 } 2937 2938 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 2939 ctx->enckeylen, 2940 false); 2941 2942 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); 2943 2944 return ret; 2945 2946 badkey: 2947 ctx->enckeylen = 0; 2948 ctx->authkeylen = 0; 2949 ctx->digestsize = 0; 2950 2951 crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 2952 return -EINVAL; 2953 } 2954 2955 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher, 2956 const u8 *key, unsigned int keylen) 2957 { 2958 struct spu_hw *spu = &iproc_priv.spu; 2959 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2960 struct crypto_tfm *tfm = crypto_aead_tfm(cipher); 2961 2962 int ret = 0; 2963 2964 flow_log("%s() keylen:%u\n", __func__, keylen); 2965 flow_dump(" key: ", key, keylen); 2966 2967 if (!ctx->is_esp) 2968 ctx->digestsize = keylen; 2969 2970 ctx->enckeylen = keylen; 2971 ctx->authkeylen = 0; 2972 memcpy(ctx->enckey, key, ctx->enckeylen); 2973 2974 switch (ctx->enckeylen) { 2975 case AES_KEYSIZE_128: 2976 ctx->cipher_type = CIPHER_TYPE_AES128; 2977 break; 2978 case AES_KEYSIZE_192: 2979 ctx->cipher_type = CIPHER_TYPE_AES192; 2980 break; 2981 case AES_KEYSIZE_256: 2982 ctx->cipher_type = CIPHER_TYPE_AES256; 2983 break; 2984 default: 2985 goto badkey; 2986 } 2987 2988 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, 2989 ctx->authkeylen); 2990 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen); 2991 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen); 2992 2993 /* setkey the fallback just in case we need to use it */ 2994 if (ctx->fallback_cipher) { 2995 flow_log(" running fallback setkey()\n"); 2996 2997 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; 2998 ctx->fallback_cipher->base.crt_flags |= 2999 tfm->crt_flags & CRYPTO_TFM_REQ_MASK; 3000 ret = crypto_aead_setkey(ctx->fallback_cipher, key, 3001 keylen + ctx->salt_len); 3002 if (ret) { 3003 flow_log(" fallback setkey() returned:%d\n", ret); 3004 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK; 3005 tfm->crt_flags |= 3006 (ctx->fallback_cipher->base.crt_flags & 3007 CRYPTO_TFM_RES_MASK); 3008 } 3009 } 3010 3011 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 3012 ctx->enckeylen, 3013 false); 3014 3015 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); 3016 3017 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, 3018 ctx->authkeylen); 3019 3020 return ret; 3021 3022 badkey: 3023 ctx->enckeylen = 0; 3024 ctx->authkeylen = 0; 3025 ctx->digestsize = 0; 3026 3027 crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 3028 return -EINVAL; 3029 } 3030 3031 /** 3032 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES. 3033 * @cipher: AEAD structure 3034 * @key: Key followed by 4 bytes of salt 3035 * @keylen: Length of key plus salt, in bytes 3036 * 3037 * Extracts salt from key and stores it to be prepended to IV on each request. 3038 * Digest is always 16 bytes 3039 * 3040 * Return: Value from generic gcm setkey. 3041 */ 3042 static int aead_gcm_esp_setkey(struct crypto_aead *cipher, 3043 const u8 *key, unsigned int keylen) 3044 { 3045 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 3046 3047 flow_log("%s\n", __func__); 3048 ctx->salt_len = GCM_ESP_SALT_SIZE; 3049 ctx->salt_offset = GCM_ESP_SALT_OFFSET; 3050 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); 3051 keylen -= GCM_ESP_SALT_SIZE; 3052 ctx->digestsize = GCM_ESP_DIGESTSIZE; 3053 ctx->is_esp = true; 3054 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); 3055 3056 return aead_gcm_ccm_setkey(cipher, key, keylen); 3057 } 3058 3059 /** 3060 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC. 3061 * cipher: AEAD structure 3062 * key: Key followed by 4 bytes of salt 3063 * keylen: Length of key plus salt, in bytes 3064 * 3065 * Extracts salt from key and stores it to be prepended to IV on each request. 3066 * Digest is always 16 bytes 3067 * 3068 * Return: Value from generic gcm setkey. 3069 */ 3070 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher, 3071 const u8 *key, unsigned int keylen) 3072 { 3073 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 3074 3075 flow_log("%s\n", __func__); 3076 ctx->salt_len = GCM_ESP_SALT_SIZE; 3077 ctx->salt_offset = GCM_ESP_SALT_OFFSET; 3078 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); 3079 keylen -= GCM_ESP_SALT_SIZE; 3080 ctx->digestsize = GCM_ESP_DIGESTSIZE; 3081 ctx->is_esp = true; 3082 ctx->is_rfc4543 = true; 3083 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); 3084 3085 return aead_gcm_ccm_setkey(cipher, key, keylen); 3086 } 3087 3088 /** 3089 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES. 3090 * @cipher: AEAD structure 3091 * @key: Key followed by 4 bytes of salt 3092 * @keylen: Length of key plus salt, in bytes 3093 * 3094 * Extracts salt from key and stores it to be prepended to IV on each request. 3095 * Digest is always 16 bytes 3096 * 3097 * Return: Value from generic ccm setkey. 3098 */ 3099 static int aead_ccm_esp_setkey(struct crypto_aead *cipher, 3100 const u8 *key, unsigned int keylen) 3101 { 3102 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 3103 3104 flow_log("%s\n", __func__); 3105 ctx->salt_len = CCM_ESP_SALT_SIZE; 3106 ctx->salt_offset = CCM_ESP_SALT_OFFSET; 3107 memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE); 3108 keylen -= CCM_ESP_SALT_SIZE; 3109 ctx->is_esp = true; 3110 flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE); 3111 3112 return aead_gcm_ccm_setkey(cipher, key, keylen); 3113 } 3114 3115 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize) 3116 { 3117 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 3118 int ret = 0; 3119 3120 flow_log("%s() authkeylen:%u authsize:%u\n", 3121 __func__, ctx->authkeylen, authsize); 3122 3123 ctx->digestsize = authsize; 3124 3125 /* setkey the fallback just in case we needto use it */ 3126 if (ctx->fallback_cipher) { 3127 flow_log(" running fallback setauth()\n"); 3128 3129 ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize); 3130 if (ret) 3131 flow_log(" fallback setauth() returned:%d\n", ret); 3132 } 3133 3134 return ret; 3135 } 3136 3137 static int aead_encrypt(struct aead_request *req) 3138 { 3139 flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen, 3140 req->cryptlen); 3141 dump_sg(req->src, 0, req->cryptlen + req->assoclen); 3142 flow_log(" assoc_len:%u\n", req->assoclen); 3143 3144 return aead_enqueue(req, true); 3145 } 3146 3147 static int aead_decrypt(struct aead_request *req) 3148 { 3149 flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen); 3150 dump_sg(req->src, 0, req->cryptlen + req->assoclen); 3151 flow_log(" assoc_len:%u\n", req->assoclen); 3152 3153 return aead_enqueue(req, false); 3154 } 3155 3156 /* ==================== Supported Cipher Algorithms ==================== */ 3157 3158 static struct iproc_alg_s driver_algs[] = { 3159 { 3160 .type = CRYPTO_ALG_TYPE_AEAD, 3161 .alg.aead = { 3162 .base = { 3163 .cra_name = "gcm(aes)", 3164 .cra_driver_name = "gcm-aes-iproc", 3165 .cra_blocksize = AES_BLOCK_SIZE, 3166 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3167 }, 3168 .setkey = aead_gcm_ccm_setkey, 3169 .ivsize = GCM_AES_IV_SIZE, 3170 .maxauthsize = AES_BLOCK_SIZE, 3171 }, 3172 .cipher_info = { 3173 .alg = CIPHER_ALG_AES, 3174 .mode = CIPHER_MODE_GCM, 3175 }, 3176 .auth_info = { 3177 .alg = HASH_ALG_AES, 3178 .mode = HASH_MODE_GCM, 3179 }, 3180 .auth_first = 0, 3181 }, 3182 { 3183 .type = CRYPTO_ALG_TYPE_AEAD, 3184 .alg.aead = { 3185 .base = { 3186 .cra_name = "ccm(aes)", 3187 .cra_driver_name = "ccm-aes-iproc", 3188 .cra_blocksize = AES_BLOCK_SIZE, 3189 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3190 }, 3191 .setkey = aead_gcm_ccm_setkey, 3192 .ivsize = CCM_AES_IV_SIZE, 3193 .maxauthsize = AES_BLOCK_SIZE, 3194 }, 3195 .cipher_info = { 3196 .alg = CIPHER_ALG_AES, 3197 .mode = CIPHER_MODE_CCM, 3198 }, 3199 .auth_info = { 3200 .alg = HASH_ALG_AES, 3201 .mode = HASH_MODE_CCM, 3202 }, 3203 .auth_first = 0, 3204 }, 3205 { 3206 .type = CRYPTO_ALG_TYPE_AEAD, 3207 .alg.aead = { 3208 .base = { 3209 .cra_name = "rfc4106(gcm(aes))", 3210 .cra_driver_name = "gcm-aes-esp-iproc", 3211 .cra_blocksize = AES_BLOCK_SIZE, 3212 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3213 }, 3214 .setkey = aead_gcm_esp_setkey, 3215 .ivsize = GCM_RFC4106_IV_SIZE, 3216 .maxauthsize = AES_BLOCK_SIZE, 3217 }, 3218 .cipher_info = { 3219 .alg = CIPHER_ALG_AES, 3220 .mode = CIPHER_MODE_GCM, 3221 }, 3222 .auth_info = { 3223 .alg = HASH_ALG_AES, 3224 .mode = HASH_MODE_GCM, 3225 }, 3226 .auth_first = 0, 3227 }, 3228 { 3229 .type = CRYPTO_ALG_TYPE_AEAD, 3230 .alg.aead = { 3231 .base = { 3232 .cra_name = "rfc4309(ccm(aes))", 3233 .cra_driver_name = "ccm-aes-esp-iproc", 3234 .cra_blocksize = AES_BLOCK_SIZE, 3235 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3236 }, 3237 .setkey = aead_ccm_esp_setkey, 3238 .ivsize = CCM_AES_IV_SIZE, 3239 .maxauthsize = AES_BLOCK_SIZE, 3240 }, 3241 .cipher_info = { 3242 .alg = CIPHER_ALG_AES, 3243 .mode = CIPHER_MODE_CCM, 3244 }, 3245 .auth_info = { 3246 .alg = HASH_ALG_AES, 3247 .mode = HASH_MODE_CCM, 3248 }, 3249 .auth_first = 0, 3250 }, 3251 { 3252 .type = CRYPTO_ALG_TYPE_AEAD, 3253 .alg.aead = { 3254 .base = { 3255 .cra_name = "rfc4543(gcm(aes))", 3256 .cra_driver_name = "gmac-aes-esp-iproc", 3257 .cra_blocksize = AES_BLOCK_SIZE, 3258 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3259 }, 3260 .setkey = rfc4543_gcm_esp_setkey, 3261 .ivsize = GCM_RFC4106_IV_SIZE, 3262 .maxauthsize = AES_BLOCK_SIZE, 3263 }, 3264 .cipher_info = { 3265 .alg = CIPHER_ALG_AES, 3266 .mode = CIPHER_MODE_GCM, 3267 }, 3268 .auth_info = { 3269 .alg = HASH_ALG_AES, 3270 .mode = HASH_MODE_GCM, 3271 }, 3272 .auth_first = 0, 3273 }, 3274 { 3275 .type = CRYPTO_ALG_TYPE_AEAD, 3276 .alg.aead = { 3277 .base = { 3278 .cra_name = "authenc(hmac(md5),cbc(aes))", 3279 .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc", 3280 .cra_blocksize = AES_BLOCK_SIZE, 3281 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3282 }, 3283 .setkey = aead_authenc_setkey, 3284 .ivsize = AES_BLOCK_SIZE, 3285 .maxauthsize = MD5_DIGEST_SIZE, 3286 }, 3287 .cipher_info = { 3288 .alg = CIPHER_ALG_AES, 3289 .mode = CIPHER_MODE_CBC, 3290 }, 3291 .auth_info = { 3292 .alg = HASH_ALG_MD5, 3293 .mode = HASH_MODE_HMAC, 3294 }, 3295 .auth_first = 0, 3296 }, 3297 { 3298 .type = CRYPTO_ALG_TYPE_AEAD, 3299 .alg.aead = { 3300 .base = { 3301 .cra_name = "authenc(hmac(sha1),cbc(aes))", 3302 .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc", 3303 .cra_blocksize = AES_BLOCK_SIZE, 3304 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3305 }, 3306 .setkey = aead_authenc_setkey, 3307 .ivsize = AES_BLOCK_SIZE, 3308 .maxauthsize = SHA1_DIGEST_SIZE, 3309 }, 3310 .cipher_info = { 3311 .alg = CIPHER_ALG_AES, 3312 .mode = CIPHER_MODE_CBC, 3313 }, 3314 .auth_info = { 3315 .alg = HASH_ALG_SHA1, 3316 .mode = HASH_MODE_HMAC, 3317 }, 3318 .auth_first = 0, 3319 }, 3320 { 3321 .type = CRYPTO_ALG_TYPE_AEAD, 3322 .alg.aead = { 3323 .base = { 3324 .cra_name = "authenc(hmac(sha256),cbc(aes))", 3325 .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc", 3326 .cra_blocksize = AES_BLOCK_SIZE, 3327 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3328 }, 3329 .setkey = aead_authenc_setkey, 3330 .ivsize = AES_BLOCK_SIZE, 3331 .maxauthsize = SHA256_DIGEST_SIZE, 3332 }, 3333 .cipher_info = { 3334 .alg = CIPHER_ALG_AES, 3335 .mode = CIPHER_MODE_CBC, 3336 }, 3337 .auth_info = { 3338 .alg = HASH_ALG_SHA256, 3339 .mode = HASH_MODE_HMAC, 3340 }, 3341 .auth_first = 0, 3342 }, 3343 { 3344 .type = CRYPTO_ALG_TYPE_AEAD, 3345 .alg.aead = { 3346 .base = { 3347 .cra_name = "authenc(hmac(md5),cbc(des))", 3348 .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc", 3349 .cra_blocksize = DES_BLOCK_SIZE, 3350 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3351 }, 3352 .setkey = aead_authenc_setkey, 3353 .ivsize = DES_BLOCK_SIZE, 3354 .maxauthsize = MD5_DIGEST_SIZE, 3355 }, 3356 .cipher_info = { 3357 .alg = CIPHER_ALG_DES, 3358 .mode = CIPHER_MODE_CBC, 3359 }, 3360 .auth_info = { 3361 .alg = HASH_ALG_MD5, 3362 .mode = HASH_MODE_HMAC, 3363 }, 3364 .auth_first = 0, 3365 }, 3366 { 3367 .type = CRYPTO_ALG_TYPE_AEAD, 3368 .alg.aead = { 3369 .base = { 3370 .cra_name = "authenc(hmac(sha1),cbc(des))", 3371 .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc", 3372 .cra_blocksize = DES_BLOCK_SIZE, 3373 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3374 }, 3375 .setkey = aead_authenc_setkey, 3376 .ivsize = DES_BLOCK_SIZE, 3377 .maxauthsize = SHA1_DIGEST_SIZE, 3378 }, 3379 .cipher_info = { 3380 .alg = CIPHER_ALG_DES, 3381 .mode = CIPHER_MODE_CBC, 3382 }, 3383 .auth_info = { 3384 .alg = HASH_ALG_SHA1, 3385 .mode = HASH_MODE_HMAC, 3386 }, 3387 .auth_first = 0, 3388 }, 3389 { 3390 .type = CRYPTO_ALG_TYPE_AEAD, 3391 .alg.aead = { 3392 .base = { 3393 .cra_name = "authenc(hmac(sha224),cbc(des))", 3394 .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc", 3395 .cra_blocksize = DES_BLOCK_SIZE, 3396 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3397 }, 3398 .setkey = aead_authenc_setkey, 3399 .ivsize = DES_BLOCK_SIZE, 3400 .maxauthsize = SHA224_DIGEST_SIZE, 3401 }, 3402 .cipher_info = { 3403 .alg = CIPHER_ALG_DES, 3404 .mode = CIPHER_MODE_CBC, 3405 }, 3406 .auth_info = { 3407 .alg = HASH_ALG_SHA224, 3408 .mode = HASH_MODE_HMAC, 3409 }, 3410 .auth_first = 0, 3411 }, 3412 { 3413 .type = CRYPTO_ALG_TYPE_AEAD, 3414 .alg.aead = { 3415 .base = { 3416 .cra_name = "authenc(hmac(sha256),cbc(des))", 3417 .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc", 3418 .cra_blocksize = DES_BLOCK_SIZE, 3419 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3420 }, 3421 .setkey = aead_authenc_setkey, 3422 .ivsize = DES_BLOCK_SIZE, 3423 .maxauthsize = SHA256_DIGEST_SIZE, 3424 }, 3425 .cipher_info = { 3426 .alg = CIPHER_ALG_DES, 3427 .mode = CIPHER_MODE_CBC, 3428 }, 3429 .auth_info = { 3430 .alg = HASH_ALG_SHA256, 3431 .mode = HASH_MODE_HMAC, 3432 }, 3433 .auth_first = 0, 3434 }, 3435 { 3436 .type = CRYPTO_ALG_TYPE_AEAD, 3437 .alg.aead = { 3438 .base = { 3439 .cra_name = "authenc(hmac(sha384),cbc(des))", 3440 .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc", 3441 .cra_blocksize = DES_BLOCK_SIZE, 3442 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3443 }, 3444 .setkey = aead_authenc_setkey, 3445 .ivsize = DES_BLOCK_SIZE, 3446 .maxauthsize = SHA384_DIGEST_SIZE, 3447 }, 3448 .cipher_info = { 3449 .alg = CIPHER_ALG_DES, 3450 .mode = CIPHER_MODE_CBC, 3451 }, 3452 .auth_info = { 3453 .alg = HASH_ALG_SHA384, 3454 .mode = HASH_MODE_HMAC, 3455 }, 3456 .auth_first = 0, 3457 }, 3458 { 3459 .type = CRYPTO_ALG_TYPE_AEAD, 3460 .alg.aead = { 3461 .base = { 3462 .cra_name = "authenc(hmac(sha512),cbc(des))", 3463 .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc", 3464 .cra_blocksize = DES_BLOCK_SIZE, 3465 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3466 }, 3467 .setkey = aead_authenc_setkey, 3468 .ivsize = DES_BLOCK_SIZE, 3469 .maxauthsize = SHA512_DIGEST_SIZE, 3470 }, 3471 .cipher_info = { 3472 .alg = CIPHER_ALG_DES, 3473 .mode = CIPHER_MODE_CBC, 3474 }, 3475 .auth_info = { 3476 .alg = HASH_ALG_SHA512, 3477 .mode = HASH_MODE_HMAC, 3478 }, 3479 .auth_first = 0, 3480 }, 3481 { 3482 .type = CRYPTO_ALG_TYPE_AEAD, 3483 .alg.aead = { 3484 .base = { 3485 .cra_name = "authenc(hmac(md5),cbc(des3_ede))", 3486 .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc", 3487 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3488 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3489 }, 3490 .setkey = aead_authenc_setkey, 3491 .ivsize = DES3_EDE_BLOCK_SIZE, 3492 .maxauthsize = MD5_DIGEST_SIZE, 3493 }, 3494 .cipher_info = { 3495 .alg = CIPHER_ALG_3DES, 3496 .mode = CIPHER_MODE_CBC, 3497 }, 3498 .auth_info = { 3499 .alg = HASH_ALG_MD5, 3500 .mode = HASH_MODE_HMAC, 3501 }, 3502 .auth_first = 0, 3503 }, 3504 { 3505 .type = CRYPTO_ALG_TYPE_AEAD, 3506 .alg.aead = { 3507 .base = { 3508 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", 3509 .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc", 3510 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3511 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3512 }, 3513 .setkey = aead_authenc_setkey, 3514 .ivsize = DES3_EDE_BLOCK_SIZE, 3515 .maxauthsize = SHA1_DIGEST_SIZE, 3516 }, 3517 .cipher_info = { 3518 .alg = CIPHER_ALG_3DES, 3519 .mode = CIPHER_MODE_CBC, 3520 }, 3521 .auth_info = { 3522 .alg = HASH_ALG_SHA1, 3523 .mode = HASH_MODE_HMAC, 3524 }, 3525 .auth_first = 0, 3526 }, 3527 { 3528 .type = CRYPTO_ALG_TYPE_AEAD, 3529 .alg.aead = { 3530 .base = { 3531 .cra_name = "authenc(hmac(sha224),cbc(des3_ede))", 3532 .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc", 3533 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3534 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3535 }, 3536 .setkey = aead_authenc_setkey, 3537 .ivsize = DES3_EDE_BLOCK_SIZE, 3538 .maxauthsize = SHA224_DIGEST_SIZE, 3539 }, 3540 .cipher_info = { 3541 .alg = CIPHER_ALG_3DES, 3542 .mode = CIPHER_MODE_CBC, 3543 }, 3544 .auth_info = { 3545 .alg = HASH_ALG_SHA224, 3546 .mode = HASH_MODE_HMAC, 3547 }, 3548 .auth_first = 0, 3549 }, 3550 { 3551 .type = CRYPTO_ALG_TYPE_AEAD, 3552 .alg.aead = { 3553 .base = { 3554 .cra_name = "authenc(hmac(sha256),cbc(des3_ede))", 3555 .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc", 3556 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3557 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3558 }, 3559 .setkey = aead_authenc_setkey, 3560 .ivsize = DES3_EDE_BLOCK_SIZE, 3561 .maxauthsize = SHA256_DIGEST_SIZE, 3562 }, 3563 .cipher_info = { 3564 .alg = CIPHER_ALG_3DES, 3565 .mode = CIPHER_MODE_CBC, 3566 }, 3567 .auth_info = { 3568 .alg = HASH_ALG_SHA256, 3569 .mode = HASH_MODE_HMAC, 3570 }, 3571 .auth_first = 0, 3572 }, 3573 { 3574 .type = CRYPTO_ALG_TYPE_AEAD, 3575 .alg.aead = { 3576 .base = { 3577 .cra_name = "authenc(hmac(sha384),cbc(des3_ede))", 3578 .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc", 3579 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3580 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3581 }, 3582 .setkey = aead_authenc_setkey, 3583 .ivsize = DES3_EDE_BLOCK_SIZE, 3584 .maxauthsize = SHA384_DIGEST_SIZE, 3585 }, 3586 .cipher_info = { 3587 .alg = CIPHER_ALG_3DES, 3588 .mode = CIPHER_MODE_CBC, 3589 }, 3590 .auth_info = { 3591 .alg = HASH_ALG_SHA384, 3592 .mode = HASH_MODE_HMAC, 3593 }, 3594 .auth_first = 0, 3595 }, 3596 { 3597 .type = CRYPTO_ALG_TYPE_AEAD, 3598 .alg.aead = { 3599 .base = { 3600 .cra_name = "authenc(hmac(sha512),cbc(des3_ede))", 3601 .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc", 3602 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3603 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3604 }, 3605 .setkey = aead_authenc_setkey, 3606 .ivsize = DES3_EDE_BLOCK_SIZE, 3607 .maxauthsize = SHA512_DIGEST_SIZE, 3608 }, 3609 .cipher_info = { 3610 .alg = CIPHER_ALG_3DES, 3611 .mode = CIPHER_MODE_CBC, 3612 }, 3613 .auth_info = { 3614 .alg = HASH_ALG_SHA512, 3615 .mode = HASH_MODE_HMAC, 3616 }, 3617 .auth_first = 0, 3618 }, 3619 3620 /* ABLKCIPHER algorithms. */ 3621 { 3622 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3623 .alg.crypto = { 3624 .cra_name = "ecb(arc4)", 3625 .cra_driver_name = "ecb-arc4-iproc", 3626 .cra_blocksize = ARC4_BLOCK_SIZE, 3627 .cra_ablkcipher = { 3628 .min_keysize = ARC4_MIN_KEY_SIZE, 3629 .max_keysize = ARC4_MAX_KEY_SIZE, 3630 .ivsize = 0, 3631 } 3632 }, 3633 .cipher_info = { 3634 .alg = CIPHER_ALG_RC4, 3635 .mode = CIPHER_MODE_NONE, 3636 }, 3637 .auth_info = { 3638 .alg = HASH_ALG_NONE, 3639 .mode = HASH_MODE_NONE, 3640 }, 3641 }, 3642 { 3643 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3644 .alg.crypto = { 3645 .cra_name = "ofb(des)", 3646 .cra_driver_name = "ofb-des-iproc", 3647 .cra_blocksize = DES_BLOCK_SIZE, 3648 .cra_ablkcipher = { 3649 .min_keysize = DES_KEY_SIZE, 3650 .max_keysize = DES_KEY_SIZE, 3651 .ivsize = DES_BLOCK_SIZE, 3652 } 3653 }, 3654 .cipher_info = { 3655 .alg = CIPHER_ALG_DES, 3656 .mode = CIPHER_MODE_OFB, 3657 }, 3658 .auth_info = { 3659 .alg = HASH_ALG_NONE, 3660 .mode = HASH_MODE_NONE, 3661 }, 3662 }, 3663 { 3664 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3665 .alg.crypto = { 3666 .cra_name = "cbc(des)", 3667 .cra_driver_name = "cbc-des-iproc", 3668 .cra_blocksize = DES_BLOCK_SIZE, 3669 .cra_ablkcipher = { 3670 .min_keysize = DES_KEY_SIZE, 3671 .max_keysize = DES_KEY_SIZE, 3672 .ivsize = DES_BLOCK_SIZE, 3673 } 3674 }, 3675 .cipher_info = { 3676 .alg = CIPHER_ALG_DES, 3677 .mode = CIPHER_MODE_CBC, 3678 }, 3679 .auth_info = { 3680 .alg = HASH_ALG_NONE, 3681 .mode = HASH_MODE_NONE, 3682 }, 3683 }, 3684 { 3685 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3686 .alg.crypto = { 3687 .cra_name = "ecb(des)", 3688 .cra_driver_name = "ecb-des-iproc", 3689 .cra_blocksize = DES_BLOCK_SIZE, 3690 .cra_ablkcipher = { 3691 .min_keysize = DES_KEY_SIZE, 3692 .max_keysize = DES_KEY_SIZE, 3693 .ivsize = 0, 3694 } 3695 }, 3696 .cipher_info = { 3697 .alg = CIPHER_ALG_DES, 3698 .mode = CIPHER_MODE_ECB, 3699 }, 3700 .auth_info = { 3701 .alg = HASH_ALG_NONE, 3702 .mode = HASH_MODE_NONE, 3703 }, 3704 }, 3705 { 3706 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3707 .alg.crypto = { 3708 .cra_name = "ofb(des3_ede)", 3709 .cra_driver_name = "ofb-des3-iproc", 3710 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3711 .cra_ablkcipher = { 3712 .min_keysize = DES3_EDE_KEY_SIZE, 3713 .max_keysize = DES3_EDE_KEY_SIZE, 3714 .ivsize = DES3_EDE_BLOCK_SIZE, 3715 } 3716 }, 3717 .cipher_info = { 3718 .alg = CIPHER_ALG_3DES, 3719 .mode = CIPHER_MODE_OFB, 3720 }, 3721 .auth_info = { 3722 .alg = HASH_ALG_NONE, 3723 .mode = HASH_MODE_NONE, 3724 }, 3725 }, 3726 { 3727 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3728 .alg.crypto = { 3729 .cra_name = "cbc(des3_ede)", 3730 .cra_driver_name = "cbc-des3-iproc", 3731 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3732 .cra_ablkcipher = { 3733 .min_keysize = DES3_EDE_KEY_SIZE, 3734 .max_keysize = DES3_EDE_KEY_SIZE, 3735 .ivsize = DES3_EDE_BLOCK_SIZE, 3736 } 3737 }, 3738 .cipher_info = { 3739 .alg = CIPHER_ALG_3DES, 3740 .mode = CIPHER_MODE_CBC, 3741 }, 3742 .auth_info = { 3743 .alg = HASH_ALG_NONE, 3744 .mode = HASH_MODE_NONE, 3745 }, 3746 }, 3747 { 3748 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3749 .alg.crypto = { 3750 .cra_name = "ecb(des3_ede)", 3751 .cra_driver_name = "ecb-des3-iproc", 3752 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3753 .cra_ablkcipher = { 3754 .min_keysize = DES3_EDE_KEY_SIZE, 3755 .max_keysize = DES3_EDE_KEY_SIZE, 3756 .ivsize = 0, 3757 } 3758 }, 3759 .cipher_info = { 3760 .alg = CIPHER_ALG_3DES, 3761 .mode = CIPHER_MODE_ECB, 3762 }, 3763 .auth_info = { 3764 .alg = HASH_ALG_NONE, 3765 .mode = HASH_MODE_NONE, 3766 }, 3767 }, 3768 { 3769 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3770 .alg.crypto = { 3771 .cra_name = "ofb(aes)", 3772 .cra_driver_name = "ofb-aes-iproc", 3773 .cra_blocksize = AES_BLOCK_SIZE, 3774 .cra_ablkcipher = { 3775 .min_keysize = AES_MIN_KEY_SIZE, 3776 .max_keysize = AES_MAX_KEY_SIZE, 3777 .ivsize = AES_BLOCK_SIZE, 3778 } 3779 }, 3780 .cipher_info = { 3781 .alg = CIPHER_ALG_AES, 3782 .mode = CIPHER_MODE_OFB, 3783 }, 3784 .auth_info = { 3785 .alg = HASH_ALG_NONE, 3786 .mode = HASH_MODE_NONE, 3787 }, 3788 }, 3789 { 3790 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3791 .alg.crypto = { 3792 .cra_name = "cbc(aes)", 3793 .cra_driver_name = "cbc-aes-iproc", 3794 .cra_blocksize = AES_BLOCK_SIZE, 3795 .cra_ablkcipher = { 3796 .min_keysize = AES_MIN_KEY_SIZE, 3797 .max_keysize = AES_MAX_KEY_SIZE, 3798 .ivsize = AES_BLOCK_SIZE, 3799 } 3800 }, 3801 .cipher_info = { 3802 .alg = CIPHER_ALG_AES, 3803 .mode = CIPHER_MODE_CBC, 3804 }, 3805 .auth_info = { 3806 .alg = HASH_ALG_NONE, 3807 .mode = HASH_MODE_NONE, 3808 }, 3809 }, 3810 { 3811 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3812 .alg.crypto = { 3813 .cra_name = "ecb(aes)", 3814 .cra_driver_name = "ecb-aes-iproc", 3815 .cra_blocksize = AES_BLOCK_SIZE, 3816 .cra_ablkcipher = { 3817 .min_keysize = AES_MIN_KEY_SIZE, 3818 .max_keysize = AES_MAX_KEY_SIZE, 3819 .ivsize = 0, 3820 } 3821 }, 3822 .cipher_info = { 3823 .alg = CIPHER_ALG_AES, 3824 .mode = CIPHER_MODE_ECB, 3825 }, 3826 .auth_info = { 3827 .alg = HASH_ALG_NONE, 3828 .mode = HASH_MODE_NONE, 3829 }, 3830 }, 3831 { 3832 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3833 .alg.crypto = { 3834 .cra_name = "ctr(aes)", 3835 .cra_driver_name = "ctr-aes-iproc", 3836 .cra_blocksize = AES_BLOCK_SIZE, 3837 .cra_ablkcipher = { 3838 .min_keysize = AES_MIN_KEY_SIZE, 3839 .max_keysize = AES_MAX_KEY_SIZE, 3840 .ivsize = AES_BLOCK_SIZE, 3841 } 3842 }, 3843 .cipher_info = { 3844 .alg = CIPHER_ALG_AES, 3845 .mode = CIPHER_MODE_CTR, 3846 }, 3847 .auth_info = { 3848 .alg = HASH_ALG_NONE, 3849 .mode = HASH_MODE_NONE, 3850 }, 3851 }, 3852 { 3853 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3854 .alg.crypto = { 3855 .cra_name = "xts(aes)", 3856 .cra_driver_name = "xts-aes-iproc", 3857 .cra_blocksize = AES_BLOCK_SIZE, 3858 .cra_ablkcipher = { 3859 .min_keysize = 2 * AES_MIN_KEY_SIZE, 3860 .max_keysize = 2 * AES_MAX_KEY_SIZE, 3861 .ivsize = AES_BLOCK_SIZE, 3862 } 3863 }, 3864 .cipher_info = { 3865 .alg = CIPHER_ALG_AES, 3866 .mode = CIPHER_MODE_XTS, 3867 }, 3868 .auth_info = { 3869 .alg = HASH_ALG_NONE, 3870 .mode = HASH_MODE_NONE, 3871 }, 3872 }, 3873 3874 /* AHASH algorithms. */ 3875 { 3876 .type = CRYPTO_ALG_TYPE_AHASH, 3877 .alg.hash = { 3878 .halg.digestsize = MD5_DIGEST_SIZE, 3879 .halg.base = { 3880 .cra_name = "md5", 3881 .cra_driver_name = "md5-iproc", 3882 .cra_blocksize = MD5_BLOCK_WORDS * 4, 3883 .cra_flags = CRYPTO_ALG_ASYNC, 3884 } 3885 }, 3886 .cipher_info = { 3887 .alg = CIPHER_ALG_NONE, 3888 .mode = CIPHER_MODE_NONE, 3889 }, 3890 .auth_info = { 3891 .alg = HASH_ALG_MD5, 3892 .mode = HASH_MODE_HASH, 3893 }, 3894 }, 3895 { 3896 .type = CRYPTO_ALG_TYPE_AHASH, 3897 .alg.hash = { 3898 .halg.digestsize = MD5_DIGEST_SIZE, 3899 .halg.base = { 3900 .cra_name = "hmac(md5)", 3901 .cra_driver_name = "hmac-md5-iproc", 3902 .cra_blocksize = MD5_BLOCK_WORDS * 4, 3903 } 3904 }, 3905 .cipher_info = { 3906 .alg = CIPHER_ALG_NONE, 3907 .mode = CIPHER_MODE_NONE, 3908 }, 3909 .auth_info = { 3910 .alg = HASH_ALG_MD5, 3911 .mode = HASH_MODE_HMAC, 3912 }, 3913 }, 3914 {.type = CRYPTO_ALG_TYPE_AHASH, 3915 .alg.hash = { 3916 .halg.digestsize = SHA1_DIGEST_SIZE, 3917 .halg.base = { 3918 .cra_name = "sha1", 3919 .cra_driver_name = "sha1-iproc", 3920 .cra_blocksize = SHA1_BLOCK_SIZE, 3921 } 3922 }, 3923 .cipher_info = { 3924 .alg = CIPHER_ALG_NONE, 3925 .mode = CIPHER_MODE_NONE, 3926 }, 3927 .auth_info = { 3928 .alg = HASH_ALG_SHA1, 3929 .mode = HASH_MODE_HASH, 3930 }, 3931 }, 3932 {.type = CRYPTO_ALG_TYPE_AHASH, 3933 .alg.hash = { 3934 .halg.digestsize = SHA1_DIGEST_SIZE, 3935 .halg.base = { 3936 .cra_name = "hmac(sha1)", 3937 .cra_driver_name = "hmac-sha1-iproc", 3938 .cra_blocksize = SHA1_BLOCK_SIZE, 3939 } 3940 }, 3941 .cipher_info = { 3942 .alg = CIPHER_ALG_NONE, 3943 .mode = CIPHER_MODE_NONE, 3944 }, 3945 .auth_info = { 3946 .alg = HASH_ALG_SHA1, 3947 .mode = HASH_MODE_HMAC, 3948 }, 3949 }, 3950 {.type = CRYPTO_ALG_TYPE_AHASH, 3951 .alg.hash = { 3952 .halg.digestsize = SHA224_DIGEST_SIZE, 3953 .halg.base = { 3954 .cra_name = "sha224", 3955 .cra_driver_name = "sha224-iproc", 3956 .cra_blocksize = SHA224_BLOCK_SIZE, 3957 } 3958 }, 3959 .cipher_info = { 3960 .alg = CIPHER_ALG_NONE, 3961 .mode = CIPHER_MODE_NONE, 3962 }, 3963 .auth_info = { 3964 .alg = HASH_ALG_SHA224, 3965 .mode = HASH_MODE_HASH, 3966 }, 3967 }, 3968 {.type = CRYPTO_ALG_TYPE_AHASH, 3969 .alg.hash = { 3970 .halg.digestsize = SHA224_DIGEST_SIZE, 3971 .halg.base = { 3972 .cra_name = "hmac(sha224)", 3973 .cra_driver_name = "hmac-sha224-iproc", 3974 .cra_blocksize = SHA224_BLOCK_SIZE, 3975 } 3976 }, 3977 .cipher_info = { 3978 .alg = CIPHER_ALG_NONE, 3979 .mode = CIPHER_MODE_NONE, 3980 }, 3981 .auth_info = { 3982 .alg = HASH_ALG_SHA224, 3983 .mode = HASH_MODE_HMAC, 3984 }, 3985 }, 3986 {.type = CRYPTO_ALG_TYPE_AHASH, 3987 .alg.hash = { 3988 .halg.digestsize = SHA256_DIGEST_SIZE, 3989 .halg.base = { 3990 .cra_name = "sha256", 3991 .cra_driver_name = "sha256-iproc", 3992 .cra_blocksize = SHA256_BLOCK_SIZE, 3993 } 3994 }, 3995 .cipher_info = { 3996 .alg = CIPHER_ALG_NONE, 3997 .mode = CIPHER_MODE_NONE, 3998 }, 3999 .auth_info = { 4000 .alg = HASH_ALG_SHA256, 4001 .mode = HASH_MODE_HASH, 4002 }, 4003 }, 4004 {.type = CRYPTO_ALG_TYPE_AHASH, 4005 .alg.hash = { 4006 .halg.digestsize = SHA256_DIGEST_SIZE, 4007 .halg.base = { 4008 .cra_name = "hmac(sha256)", 4009 .cra_driver_name = "hmac-sha256-iproc", 4010 .cra_blocksize = SHA256_BLOCK_SIZE, 4011 } 4012 }, 4013 .cipher_info = { 4014 .alg = CIPHER_ALG_NONE, 4015 .mode = CIPHER_MODE_NONE, 4016 }, 4017 .auth_info = { 4018 .alg = HASH_ALG_SHA256, 4019 .mode = HASH_MODE_HMAC, 4020 }, 4021 }, 4022 { 4023 .type = CRYPTO_ALG_TYPE_AHASH, 4024 .alg.hash = { 4025 .halg.digestsize = SHA384_DIGEST_SIZE, 4026 .halg.base = { 4027 .cra_name = "sha384", 4028 .cra_driver_name = "sha384-iproc", 4029 .cra_blocksize = SHA384_BLOCK_SIZE, 4030 } 4031 }, 4032 .cipher_info = { 4033 .alg = CIPHER_ALG_NONE, 4034 .mode = CIPHER_MODE_NONE, 4035 }, 4036 .auth_info = { 4037 .alg = HASH_ALG_SHA384, 4038 .mode = HASH_MODE_HASH, 4039 }, 4040 }, 4041 { 4042 .type = CRYPTO_ALG_TYPE_AHASH, 4043 .alg.hash = { 4044 .halg.digestsize = SHA384_DIGEST_SIZE, 4045 .halg.base = { 4046 .cra_name = "hmac(sha384)", 4047 .cra_driver_name = "hmac-sha384-iproc", 4048 .cra_blocksize = SHA384_BLOCK_SIZE, 4049 } 4050 }, 4051 .cipher_info = { 4052 .alg = CIPHER_ALG_NONE, 4053 .mode = CIPHER_MODE_NONE, 4054 }, 4055 .auth_info = { 4056 .alg = HASH_ALG_SHA384, 4057 .mode = HASH_MODE_HMAC, 4058 }, 4059 }, 4060 { 4061 .type = CRYPTO_ALG_TYPE_AHASH, 4062 .alg.hash = { 4063 .halg.digestsize = SHA512_DIGEST_SIZE, 4064 .halg.base = { 4065 .cra_name = "sha512", 4066 .cra_driver_name = "sha512-iproc", 4067 .cra_blocksize = SHA512_BLOCK_SIZE, 4068 } 4069 }, 4070 .cipher_info = { 4071 .alg = CIPHER_ALG_NONE, 4072 .mode = CIPHER_MODE_NONE, 4073 }, 4074 .auth_info = { 4075 .alg = HASH_ALG_SHA512, 4076 .mode = HASH_MODE_HASH, 4077 }, 4078 }, 4079 { 4080 .type = CRYPTO_ALG_TYPE_AHASH, 4081 .alg.hash = { 4082 .halg.digestsize = SHA512_DIGEST_SIZE, 4083 .halg.base = { 4084 .cra_name = "hmac(sha512)", 4085 .cra_driver_name = "hmac-sha512-iproc", 4086 .cra_blocksize = SHA512_BLOCK_SIZE, 4087 } 4088 }, 4089 .cipher_info = { 4090 .alg = CIPHER_ALG_NONE, 4091 .mode = CIPHER_MODE_NONE, 4092 }, 4093 .auth_info = { 4094 .alg = HASH_ALG_SHA512, 4095 .mode = HASH_MODE_HMAC, 4096 }, 4097 }, 4098 { 4099 .type = CRYPTO_ALG_TYPE_AHASH, 4100 .alg.hash = { 4101 .halg.digestsize = SHA3_224_DIGEST_SIZE, 4102 .halg.base = { 4103 .cra_name = "sha3-224", 4104 .cra_driver_name = "sha3-224-iproc", 4105 .cra_blocksize = SHA3_224_BLOCK_SIZE, 4106 } 4107 }, 4108 .cipher_info = { 4109 .alg = CIPHER_ALG_NONE, 4110 .mode = CIPHER_MODE_NONE, 4111 }, 4112 .auth_info = { 4113 .alg = HASH_ALG_SHA3_224, 4114 .mode = HASH_MODE_HASH, 4115 }, 4116 }, 4117 { 4118 .type = CRYPTO_ALG_TYPE_AHASH, 4119 .alg.hash = { 4120 .halg.digestsize = SHA3_224_DIGEST_SIZE, 4121 .halg.base = { 4122 .cra_name = "hmac(sha3-224)", 4123 .cra_driver_name = "hmac-sha3-224-iproc", 4124 .cra_blocksize = SHA3_224_BLOCK_SIZE, 4125 } 4126 }, 4127 .cipher_info = { 4128 .alg = CIPHER_ALG_NONE, 4129 .mode = CIPHER_MODE_NONE, 4130 }, 4131 .auth_info = { 4132 .alg = HASH_ALG_SHA3_224, 4133 .mode = HASH_MODE_HMAC 4134 }, 4135 }, 4136 { 4137 .type = CRYPTO_ALG_TYPE_AHASH, 4138 .alg.hash = { 4139 .halg.digestsize = SHA3_256_DIGEST_SIZE, 4140 .halg.base = { 4141 .cra_name = "sha3-256", 4142 .cra_driver_name = "sha3-256-iproc", 4143 .cra_blocksize = SHA3_256_BLOCK_SIZE, 4144 } 4145 }, 4146 .cipher_info = { 4147 .alg = CIPHER_ALG_NONE, 4148 .mode = CIPHER_MODE_NONE, 4149 }, 4150 .auth_info = { 4151 .alg = HASH_ALG_SHA3_256, 4152 .mode = HASH_MODE_HASH, 4153 }, 4154 }, 4155 { 4156 .type = CRYPTO_ALG_TYPE_AHASH, 4157 .alg.hash = { 4158 .halg.digestsize = SHA3_256_DIGEST_SIZE, 4159 .halg.base = { 4160 .cra_name = "hmac(sha3-256)", 4161 .cra_driver_name = "hmac-sha3-256-iproc", 4162 .cra_blocksize = SHA3_256_BLOCK_SIZE, 4163 } 4164 }, 4165 .cipher_info = { 4166 .alg = CIPHER_ALG_NONE, 4167 .mode = CIPHER_MODE_NONE, 4168 }, 4169 .auth_info = { 4170 .alg = HASH_ALG_SHA3_256, 4171 .mode = HASH_MODE_HMAC, 4172 }, 4173 }, 4174 { 4175 .type = CRYPTO_ALG_TYPE_AHASH, 4176 .alg.hash = { 4177 .halg.digestsize = SHA3_384_DIGEST_SIZE, 4178 .halg.base = { 4179 .cra_name = "sha3-384", 4180 .cra_driver_name = "sha3-384-iproc", 4181 .cra_blocksize = SHA3_224_BLOCK_SIZE, 4182 } 4183 }, 4184 .cipher_info = { 4185 .alg = CIPHER_ALG_NONE, 4186 .mode = CIPHER_MODE_NONE, 4187 }, 4188 .auth_info = { 4189 .alg = HASH_ALG_SHA3_384, 4190 .mode = HASH_MODE_HASH, 4191 }, 4192 }, 4193 { 4194 .type = CRYPTO_ALG_TYPE_AHASH, 4195 .alg.hash = { 4196 .halg.digestsize = SHA3_384_DIGEST_SIZE, 4197 .halg.base = { 4198 .cra_name = "hmac(sha3-384)", 4199 .cra_driver_name = "hmac-sha3-384-iproc", 4200 .cra_blocksize = SHA3_384_BLOCK_SIZE, 4201 } 4202 }, 4203 .cipher_info = { 4204 .alg = CIPHER_ALG_NONE, 4205 .mode = CIPHER_MODE_NONE, 4206 }, 4207 .auth_info = { 4208 .alg = HASH_ALG_SHA3_384, 4209 .mode = HASH_MODE_HMAC, 4210 }, 4211 }, 4212 { 4213 .type = CRYPTO_ALG_TYPE_AHASH, 4214 .alg.hash = { 4215 .halg.digestsize = SHA3_512_DIGEST_SIZE, 4216 .halg.base = { 4217 .cra_name = "sha3-512", 4218 .cra_driver_name = "sha3-512-iproc", 4219 .cra_blocksize = SHA3_512_BLOCK_SIZE, 4220 } 4221 }, 4222 .cipher_info = { 4223 .alg = CIPHER_ALG_NONE, 4224 .mode = CIPHER_MODE_NONE, 4225 }, 4226 .auth_info = { 4227 .alg = HASH_ALG_SHA3_512, 4228 .mode = HASH_MODE_HASH, 4229 }, 4230 }, 4231 { 4232 .type = CRYPTO_ALG_TYPE_AHASH, 4233 .alg.hash = { 4234 .halg.digestsize = SHA3_512_DIGEST_SIZE, 4235 .halg.base = { 4236 .cra_name = "hmac(sha3-512)", 4237 .cra_driver_name = "hmac-sha3-512-iproc", 4238 .cra_blocksize = SHA3_512_BLOCK_SIZE, 4239 } 4240 }, 4241 .cipher_info = { 4242 .alg = CIPHER_ALG_NONE, 4243 .mode = CIPHER_MODE_NONE, 4244 }, 4245 .auth_info = { 4246 .alg = HASH_ALG_SHA3_512, 4247 .mode = HASH_MODE_HMAC, 4248 }, 4249 }, 4250 { 4251 .type = CRYPTO_ALG_TYPE_AHASH, 4252 .alg.hash = { 4253 .halg.digestsize = AES_BLOCK_SIZE, 4254 .halg.base = { 4255 .cra_name = "xcbc(aes)", 4256 .cra_driver_name = "xcbc-aes-iproc", 4257 .cra_blocksize = AES_BLOCK_SIZE, 4258 } 4259 }, 4260 .cipher_info = { 4261 .alg = CIPHER_ALG_NONE, 4262 .mode = CIPHER_MODE_NONE, 4263 }, 4264 .auth_info = { 4265 .alg = HASH_ALG_AES, 4266 .mode = HASH_MODE_XCBC, 4267 }, 4268 }, 4269 { 4270 .type = CRYPTO_ALG_TYPE_AHASH, 4271 .alg.hash = { 4272 .halg.digestsize = AES_BLOCK_SIZE, 4273 .halg.base = { 4274 .cra_name = "cmac(aes)", 4275 .cra_driver_name = "cmac-aes-iproc", 4276 .cra_blocksize = AES_BLOCK_SIZE, 4277 } 4278 }, 4279 .cipher_info = { 4280 .alg = CIPHER_ALG_NONE, 4281 .mode = CIPHER_MODE_NONE, 4282 }, 4283 .auth_info = { 4284 .alg = HASH_ALG_AES, 4285 .mode = HASH_MODE_CMAC, 4286 }, 4287 }, 4288 }; 4289 4290 static int generic_cra_init(struct crypto_tfm *tfm, 4291 struct iproc_alg_s *cipher_alg) 4292 { 4293 struct spu_hw *spu = &iproc_priv.spu; 4294 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 4295 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); 4296 4297 flow_log("%s()\n", __func__); 4298 4299 ctx->alg = cipher_alg; 4300 ctx->cipher = cipher_alg->cipher_info; 4301 ctx->auth = cipher_alg->auth_info; 4302 ctx->auth_first = cipher_alg->auth_first; 4303 ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg, 4304 ctx->cipher.mode, 4305 blocksize); 4306 ctx->fallback_cipher = NULL; 4307 4308 ctx->enckeylen = 0; 4309 ctx->authkeylen = 0; 4310 4311 atomic_inc(&iproc_priv.stream_count); 4312 atomic_inc(&iproc_priv.session_count); 4313 4314 return 0; 4315 } 4316 4317 static int ablkcipher_cra_init(struct crypto_tfm *tfm) 4318 { 4319 struct crypto_alg *alg = tfm->__crt_alg; 4320 struct iproc_alg_s *cipher_alg; 4321 4322 flow_log("%s()\n", __func__); 4323 4324 tfm->crt_ablkcipher.reqsize = sizeof(struct iproc_reqctx_s); 4325 4326 cipher_alg = container_of(alg, struct iproc_alg_s, alg.crypto); 4327 return generic_cra_init(tfm, cipher_alg); 4328 } 4329 4330 static int ahash_cra_init(struct crypto_tfm *tfm) 4331 { 4332 int err; 4333 struct crypto_alg *alg = tfm->__crt_alg; 4334 struct iproc_alg_s *cipher_alg; 4335 4336 cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s, 4337 alg.hash); 4338 4339 err = generic_cra_init(tfm, cipher_alg); 4340 flow_log("%s()\n", __func__); 4341 4342 /* 4343 * export state size has to be < 512 bytes. So don't include msg bufs 4344 * in state size. 4345 */ 4346 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 4347 sizeof(struct iproc_reqctx_s)); 4348 4349 return err; 4350 } 4351 4352 static int aead_cra_init(struct crypto_aead *aead) 4353 { 4354 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 4355 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 4356 struct crypto_alg *alg = tfm->__crt_alg; 4357 struct aead_alg *aalg = container_of(alg, struct aead_alg, base); 4358 struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s, 4359 alg.aead); 4360 4361 int err = generic_cra_init(tfm, cipher_alg); 4362 4363 flow_log("%s()\n", __func__); 4364 4365 crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s)); 4366 ctx->is_esp = false; 4367 ctx->salt_len = 0; 4368 ctx->salt_offset = 0; 4369 4370 /* random first IV */ 4371 get_random_bytes(ctx->iv, MAX_IV_SIZE); 4372 flow_dump(" iv: ", ctx->iv, MAX_IV_SIZE); 4373 4374 if (!err) { 4375 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) { 4376 flow_log("%s() creating fallback cipher\n", __func__); 4377 4378 ctx->fallback_cipher = 4379 crypto_alloc_aead(alg->cra_name, 0, 4380 CRYPTO_ALG_ASYNC | 4381 CRYPTO_ALG_NEED_FALLBACK); 4382 if (IS_ERR(ctx->fallback_cipher)) { 4383 pr_err("%s() Error: failed to allocate fallback for %s\n", 4384 __func__, alg->cra_name); 4385 return PTR_ERR(ctx->fallback_cipher); 4386 } 4387 } 4388 } 4389 4390 return err; 4391 } 4392 4393 static void generic_cra_exit(struct crypto_tfm *tfm) 4394 { 4395 atomic_dec(&iproc_priv.session_count); 4396 } 4397 4398 static void aead_cra_exit(struct crypto_aead *aead) 4399 { 4400 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 4401 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 4402 4403 generic_cra_exit(tfm); 4404 4405 if (ctx->fallback_cipher) { 4406 crypto_free_aead(ctx->fallback_cipher); 4407 ctx->fallback_cipher = NULL; 4408 } 4409 } 4410 4411 /** 4412 * spu_functions_register() - Specify hardware-specific SPU functions based on 4413 * SPU type read from device tree. 4414 * @dev: device structure 4415 * @spu_type: SPU hardware generation 4416 * @spu_subtype: SPU hardware version 4417 */ 4418 static void spu_functions_register(struct device *dev, 4419 enum spu_spu_type spu_type, 4420 enum spu_spu_subtype spu_subtype) 4421 { 4422 struct spu_hw *spu = &iproc_priv.spu; 4423 4424 if (spu_type == SPU_TYPE_SPUM) { 4425 dev_dbg(dev, "Registering SPUM functions"); 4426 spu->spu_dump_msg_hdr = spum_dump_msg_hdr; 4427 spu->spu_payload_length = spum_payload_length; 4428 spu->spu_response_hdr_len = spum_response_hdr_len; 4429 spu->spu_hash_pad_len = spum_hash_pad_len; 4430 spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len; 4431 spu->spu_assoc_resp_len = spum_assoc_resp_len; 4432 spu->spu_aead_ivlen = spum_aead_ivlen; 4433 spu->spu_hash_type = spum_hash_type; 4434 spu->spu_digest_size = spum_digest_size; 4435 spu->spu_create_request = spum_create_request; 4436 spu->spu_cipher_req_init = spum_cipher_req_init; 4437 spu->spu_cipher_req_finish = spum_cipher_req_finish; 4438 spu->spu_request_pad = spum_request_pad; 4439 spu->spu_tx_status_len = spum_tx_status_len; 4440 spu->spu_rx_status_len = spum_rx_status_len; 4441 spu->spu_status_process = spum_status_process; 4442 spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload; 4443 spu->spu_ccm_update_iv = spum_ccm_update_iv; 4444 spu->spu_wordalign_padlen = spum_wordalign_padlen; 4445 if (spu_subtype == SPU_SUBTYPE_SPUM_NS2) 4446 spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload; 4447 else 4448 spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload; 4449 } else { 4450 dev_dbg(dev, "Registering SPU2 functions"); 4451 spu->spu_dump_msg_hdr = spu2_dump_msg_hdr; 4452 spu->spu_ctx_max_payload = spu2_ctx_max_payload; 4453 spu->spu_payload_length = spu2_payload_length; 4454 spu->spu_response_hdr_len = spu2_response_hdr_len; 4455 spu->spu_hash_pad_len = spu2_hash_pad_len; 4456 spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len; 4457 spu->spu_assoc_resp_len = spu2_assoc_resp_len; 4458 spu->spu_aead_ivlen = spu2_aead_ivlen; 4459 spu->spu_hash_type = spu2_hash_type; 4460 spu->spu_digest_size = spu2_digest_size; 4461 spu->spu_create_request = spu2_create_request; 4462 spu->spu_cipher_req_init = spu2_cipher_req_init; 4463 spu->spu_cipher_req_finish = spu2_cipher_req_finish; 4464 spu->spu_request_pad = spu2_request_pad; 4465 spu->spu_tx_status_len = spu2_tx_status_len; 4466 spu->spu_rx_status_len = spu2_rx_status_len; 4467 spu->spu_status_process = spu2_status_process; 4468 spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload; 4469 spu->spu_ccm_update_iv = spu2_ccm_update_iv; 4470 spu->spu_wordalign_padlen = spu2_wordalign_padlen; 4471 } 4472 } 4473 4474 /** 4475 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox 4476 * channel for the SPU being probed. 4477 * @dev: SPU driver device structure 4478 * 4479 * Return: 0 if successful 4480 * < 0 otherwise 4481 */ 4482 static int spu_mb_init(struct device *dev) 4483 { 4484 struct mbox_client *mcl = &iproc_priv.mcl; 4485 int err, i; 4486 4487 iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan, 4488 sizeof(struct mbox_chan *), GFP_KERNEL); 4489 if (!iproc_priv.mbox) 4490 return -ENOMEM; 4491 4492 mcl->dev = dev; 4493 mcl->tx_block = false; 4494 mcl->tx_tout = 0; 4495 mcl->knows_txdone = true; 4496 mcl->rx_callback = spu_rx_callback; 4497 mcl->tx_done = NULL; 4498 4499 for (i = 0; i < iproc_priv.spu.num_chan; i++) { 4500 iproc_priv.mbox[i] = mbox_request_channel(mcl, i); 4501 if (IS_ERR(iproc_priv.mbox[i])) { 4502 err = (int)PTR_ERR(iproc_priv.mbox[i]); 4503 dev_err(dev, 4504 "Mbox channel %d request failed with err %d", 4505 i, err); 4506 iproc_priv.mbox[i] = NULL; 4507 goto free_channels; 4508 } 4509 } 4510 4511 return 0; 4512 free_channels: 4513 for (i = 0; i < iproc_priv.spu.num_chan; i++) { 4514 if (iproc_priv.mbox[i]) 4515 mbox_free_channel(iproc_priv.mbox[i]); 4516 } 4517 4518 return err; 4519 } 4520 4521 static void spu_mb_release(struct platform_device *pdev) 4522 { 4523 int i; 4524 4525 for (i = 0; i < iproc_priv.spu.num_chan; i++) 4526 mbox_free_channel(iproc_priv.mbox[i]); 4527 } 4528 4529 static void spu_counters_init(void) 4530 { 4531 int i; 4532 int j; 4533 4534 atomic_set(&iproc_priv.session_count, 0); 4535 atomic_set(&iproc_priv.stream_count, 0); 4536 atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan); 4537 atomic64_set(&iproc_priv.bytes_in, 0); 4538 atomic64_set(&iproc_priv.bytes_out, 0); 4539 for (i = 0; i < SPU_OP_NUM; i++) { 4540 atomic_set(&iproc_priv.op_counts[i], 0); 4541 atomic_set(&iproc_priv.setkey_cnt[i], 0); 4542 } 4543 for (i = 0; i < CIPHER_ALG_LAST; i++) 4544 for (j = 0; j < CIPHER_MODE_LAST; j++) 4545 atomic_set(&iproc_priv.cipher_cnt[i][j], 0); 4546 4547 for (i = 0; i < HASH_ALG_LAST; i++) { 4548 atomic_set(&iproc_priv.hash_cnt[i], 0); 4549 atomic_set(&iproc_priv.hmac_cnt[i], 0); 4550 } 4551 for (i = 0; i < AEAD_TYPE_LAST; i++) 4552 atomic_set(&iproc_priv.aead_cnt[i], 0); 4553 4554 atomic_set(&iproc_priv.mb_no_spc, 0); 4555 atomic_set(&iproc_priv.mb_send_fail, 0); 4556 atomic_set(&iproc_priv.bad_icv, 0); 4557 } 4558 4559 static int spu_register_ablkcipher(struct iproc_alg_s *driver_alg) 4560 { 4561 struct spu_hw *spu = &iproc_priv.spu; 4562 struct crypto_alg *crypto = &driver_alg->alg.crypto; 4563 int err; 4564 4565 /* SPU2 does not support RC4 */ 4566 if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) && 4567 (spu->spu_type == SPU_TYPE_SPU2)) 4568 return 0; 4569 4570 crypto->cra_module = THIS_MODULE; 4571 crypto->cra_priority = cipher_pri; 4572 crypto->cra_alignmask = 0; 4573 crypto->cra_ctxsize = sizeof(struct iproc_ctx_s); 4574 4575 crypto->cra_init = ablkcipher_cra_init; 4576 crypto->cra_exit = generic_cra_exit; 4577 crypto->cra_type = &crypto_ablkcipher_type; 4578 crypto->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC | 4579 CRYPTO_ALG_KERN_DRIVER_ONLY; 4580 4581 crypto->cra_ablkcipher.setkey = ablkcipher_setkey; 4582 crypto->cra_ablkcipher.encrypt = ablkcipher_encrypt; 4583 crypto->cra_ablkcipher.decrypt = ablkcipher_decrypt; 4584 4585 err = crypto_register_alg(crypto); 4586 /* Mark alg as having been registered, if successful */ 4587 if (err == 0) 4588 driver_alg->registered = true; 4589 pr_debug(" registered ablkcipher %s\n", crypto->cra_driver_name); 4590 return err; 4591 } 4592 4593 static int spu_register_ahash(struct iproc_alg_s *driver_alg) 4594 { 4595 struct spu_hw *spu = &iproc_priv.spu; 4596 struct ahash_alg *hash = &driver_alg->alg.hash; 4597 int err; 4598 4599 /* AES-XCBC is the only AES hash type currently supported on SPU-M */ 4600 if ((driver_alg->auth_info.alg == HASH_ALG_AES) && 4601 (driver_alg->auth_info.mode != HASH_MODE_XCBC) && 4602 (spu->spu_type == SPU_TYPE_SPUM)) 4603 return 0; 4604 4605 /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */ 4606 if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) && 4607 (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2)) 4608 return 0; 4609 4610 hash->halg.base.cra_module = THIS_MODULE; 4611 hash->halg.base.cra_priority = hash_pri; 4612 hash->halg.base.cra_alignmask = 0; 4613 hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s); 4614 hash->halg.base.cra_init = ahash_cra_init; 4615 hash->halg.base.cra_exit = generic_cra_exit; 4616 hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC; 4617 hash->halg.statesize = sizeof(struct spu_hash_export_s); 4618 4619 if (driver_alg->auth_info.mode != HASH_MODE_HMAC) { 4620 hash->init = ahash_init; 4621 hash->update = ahash_update; 4622 hash->final = ahash_final; 4623 hash->finup = ahash_finup; 4624 hash->digest = ahash_digest; 4625 if ((driver_alg->auth_info.alg == HASH_ALG_AES) && 4626 ((driver_alg->auth_info.mode == HASH_MODE_XCBC) || 4627 (driver_alg->auth_info.mode == HASH_MODE_CMAC))) { 4628 hash->setkey = ahash_setkey; 4629 } 4630 } else { 4631 hash->setkey = ahash_hmac_setkey; 4632 hash->init = ahash_hmac_init; 4633 hash->update = ahash_hmac_update; 4634 hash->final = ahash_hmac_final; 4635 hash->finup = ahash_hmac_finup; 4636 hash->digest = ahash_hmac_digest; 4637 } 4638 hash->export = ahash_export; 4639 hash->import = ahash_import; 4640 4641 err = crypto_register_ahash(hash); 4642 /* Mark alg as having been registered, if successful */ 4643 if (err == 0) 4644 driver_alg->registered = true; 4645 pr_debug(" registered ahash %s\n", 4646 hash->halg.base.cra_driver_name); 4647 return err; 4648 } 4649 4650 static int spu_register_aead(struct iproc_alg_s *driver_alg) 4651 { 4652 struct aead_alg *aead = &driver_alg->alg.aead; 4653 int err; 4654 4655 aead->base.cra_module = THIS_MODULE; 4656 aead->base.cra_priority = aead_pri; 4657 aead->base.cra_alignmask = 0; 4658 aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s); 4659 4660 aead->base.cra_flags |= CRYPTO_ALG_ASYNC; 4661 /* setkey set in alg initialization */ 4662 aead->setauthsize = aead_setauthsize; 4663 aead->encrypt = aead_encrypt; 4664 aead->decrypt = aead_decrypt; 4665 aead->init = aead_cra_init; 4666 aead->exit = aead_cra_exit; 4667 4668 err = crypto_register_aead(aead); 4669 /* Mark alg as having been registered, if successful */ 4670 if (err == 0) 4671 driver_alg->registered = true; 4672 pr_debug(" registered aead %s\n", aead->base.cra_driver_name); 4673 return err; 4674 } 4675 4676 /* register crypto algorithms the device supports */ 4677 static int spu_algs_register(struct device *dev) 4678 { 4679 int i, j; 4680 int err; 4681 4682 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { 4683 switch (driver_algs[i].type) { 4684 case CRYPTO_ALG_TYPE_ABLKCIPHER: 4685 err = spu_register_ablkcipher(&driver_algs[i]); 4686 break; 4687 case CRYPTO_ALG_TYPE_AHASH: 4688 err = spu_register_ahash(&driver_algs[i]); 4689 break; 4690 case CRYPTO_ALG_TYPE_AEAD: 4691 err = spu_register_aead(&driver_algs[i]); 4692 break; 4693 default: 4694 dev_err(dev, 4695 "iproc-crypto: unknown alg type: %d", 4696 driver_algs[i].type); 4697 err = -EINVAL; 4698 } 4699 4700 if (err) { 4701 dev_err(dev, "alg registration failed with error %d\n", 4702 err); 4703 goto err_algs; 4704 } 4705 } 4706 4707 return 0; 4708 4709 err_algs: 4710 for (j = 0; j < i; j++) { 4711 /* Skip any algorithm not registered */ 4712 if (!driver_algs[j].registered) 4713 continue; 4714 switch (driver_algs[j].type) { 4715 case CRYPTO_ALG_TYPE_ABLKCIPHER: 4716 crypto_unregister_alg(&driver_algs[j].alg.crypto); 4717 driver_algs[j].registered = false; 4718 break; 4719 case CRYPTO_ALG_TYPE_AHASH: 4720 crypto_unregister_ahash(&driver_algs[j].alg.hash); 4721 driver_algs[j].registered = false; 4722 break; 4723 case CRYPTO_ALG_TYPE_AEAD: 4724 crypto_unregister_aead(&driver_algs[j].alg.aead); 4725 driver_algs[j].registered = false; 4726 break; 4727 } 4728 } 4729 return err; 4730 } 4731 4732 /* ==================== Kernel Platform API ==================== */ 4733 4734 static struct spu_type_subtype spum_ns2_types = { 4735 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2 4736 }; 4737 4738 static struct spu_type_subtype spum_nsp_types = { 4739 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP 4740 }; 4741 4742 static struct spu_type_subtype spu2_types = { 4743 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1 4744 }; 4745 4746 static struct spu_type_subtype spu2_v2_types = { 4747 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2 4748 }; 4749 4750 static const struct of_device_id bcm_spu_dt_ids[] = { 4751 { 4752 .compatible = "brcm,spum-crypto", 4753 .data = &spum_ns2_types, 4754 }, 4755 { 4756 .compatible = "brcm,spum-nsp-crypto", 4757 .data = &spum_nsp_types, 4758 }, 4759 { 4760 .compatible = "brcm,spu2-crypto", 4761 .data = &spu2_types, 4762 }, 4763 { 4764 .compatible = "brcm,spu2-v2-crypto", 4765 .data = &spu2_v2_types, 4766 }, 4767 { /* sentinel */ } 4768 }; 4769 4770 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids); 4771 4772 static int spu_dt_read(struct platform_device *pdev) 4773 { 4774 struct device *dev = &pdev->dev; 4775 struct spu_hw *spu = &iproc_priv.spu; 4776 struct resource *spu_ctrl_regs; 4777 const struct spu_type_subtype *matched_spu_type; 4778 struct device_node *dn = pdev->dev.of_node; 4779 int err, i; 4780 4781 /* Count number of mailbox channels */ 4782 spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells"); 4783 4784 matched_spu_type = of_device_get_match_data(dev); 4785 if (!matched_spu_type) { 4786 dev_err(&pdev->dev, "Failed to match device\n"); 4787 return -ENODEV; 4788 } 4789 4790 spu->spu_type = matched_spu_type->type; 4791 spu->spu_subtype = matched_spu_type->subtype; 4792 4793 i = 0; 4794 for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs = 4795 platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) { 4796 4797 spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs); 4798 if (IS_ERR(spu->reg_vbase[i])) { 4799 err = PTR_ERR(spu->reg_vbase[i]); 4800 dev_err(&pdev->dev, "Failed to map registers: %d\n", 4801 err); 4802 spu->reg_vbase[i] = NULL; 4803 return err; 4804 } 4805 } 4806 spu->num_spu = i; 4807 dev_dbg(dev, "Device has %d SPUs", spu->num_spu); 4808 4809 return 0; 4810 } 4811 4812 static int bcm_spu_probe(struct platform_device *pdev) 4813 { 4814 struct device *dev = &pdev->dev; 4815 struct spu_hw *spu = &iproc_priv.spu; 4816 int err = 0; 4817 4818 iproc_priv.pdev = pdev; 4819 platform_set_drvdata(iproc_priv.pdev, 4820 &iproc_priv); 4821 4822 err = spu_dt_read(pdev); 4823 if (err < 0) 4824 goto failure; 4825 4826 err = spu_mb_init(&pdev->dev); 4827 if (err < 0) 4828 goto failure; 4829 4830 if (spu->spu_type == SPU_TYPE_SPUM) 4831 iproc_priv.bcm_hdr_len = 8; 4832 else if (spu->spu_type == SPU_TYPE_SPU2) 4833 iproc_priv.bcm_hdr_len = 0; 4834 4835 spu_functions_register(&pdev->dev, spu->spu_type, spu->spu_subtype); 4836 4837 spu_counters_init(); 4838 4839 spu_setup_debugfs(); 4840 4841 err = spu_algs_register(dev); 4842 if (err < 0) 4843 goto fail_reg; 4844 4845 return 0; 4846 4847 fail_reg: 4848 spu_free_debugfs(); 4849 failure: 4850 spu_mb_release(pdev); 4851 dev_err(dev, "%s failed with error %d.\n", __func__, err); 4852 4853 return err; 4854 } 4855 4856 static int bcm_spu_remove(struct platform_device *pdev) 4857 { 4858 int i; 4859 struct device *dev = &pdev->dev; 4860 char *cdn; 4861 4862 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { 4863 /* 4864 * Not all algorithms were registered, depending on whether 4865 * hardware is SPU or SPU2. So here we make sure to skip 4866 * those algorithms that were not previously registered. 4867 */ 4868 if (!driver_algs[i].registered) 4869 continue; 4870 4871 switch (driver_algs[i].type) { 4872 case CRYPTO_ALG_TYPE_ABLKCIPHER: 4873 crypto_unregister_alg(&driver_algs[i].alg.crypto); 4874 dev_dbg(dev, " unregistered cipher %s\n", 4875 driver_algs[i].alg.crypto.cra_driver_name); 4876 driver_algs[i].registered = false; 4877 break; 4878 case CRYPTO_ALG_TYPE_AHASH: 4879 crypto_unregister_ahash(&driver_algs[i].alg.hash); 4880 cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name; 4881 dev_dbg(dev, " unregistered hash %s\n", cdn); 4882 driver_algs[i].registered = false; 4883 break; 4884 case CRYPTO_ALG_TYPE_AEAD: 4885 crypto_unregister_aead(&driver_algs[i].alg.aead); 4886 dev_dbg(dev, " unregistered aead %s\n", 4887 driver_algs[i].alg.aead.base.cra_driver_name); 4888 driver_algs[i].registered = false; 4889 break; 4890 } 4891 } 4892 spu_free_debugfs(); 4893 spu_mb_release(pdev); 4894 return 0; 4895 } 4896 4897 /* ===== Kernel Module API ===== */ 4898 4899 static struct platform_driver bcm_spu_pdriver = { 4900 .driver = { 4901 .name = "brcm-spu-crypto", 4902 .of_match_table = of_match_ptr(bcm_spu_dt_ids), 4903 }, 4904 .probe = bcm_spu_probe, 4905 .remove = bcm_spu_remove, 4906 }; 4907 module_platform_driver(bcm_spu_pdriver); 4908 4909 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>"); 4910 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver"); 4911 MODULE_LICENSE("GPL v2"); 4912