xref: /linux/drivers/crypto/axis/artpec6_crypto.c (revision ed4bc1890b4984d0af447ad3cc1f93541623f8f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *   Driver for ARTPEC-6 crypto block using the kernel asynchronous crypto api.
4  *
5  *    Copyright (C) 2014-2017  Axis Communications AB
6  */
7 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
8 
9 #include <linux/bitfield.h>
10 #include <linux/crypto.h>
11 #include <linux/debugfs.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/fault-inject.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24 
25 #include <crypto/aes.h>
26 #include <crypto/gcm.h>
27 #include <crypto/internal/aead.h>
28 #include <crypto/internal/hash.h>
29 #include <crypto/internal/skcipher.h>
30 #include <crypto/scatterwalk.h>
31 #include <crypto/sha.h>
32 #include <crypto/xts.h>
33 
34 /* Max length of a line in all cache levels for Artpec SoCs. */
35 #define ARTPEC_CACHE_LINE_MAX	32
36 
37 #define PDMA_OUT_CFG		0x0000
38 #define PDMA_OUT_BUF_CFG	0x0004
39 #define PDMA_OUT_CMD		0x0008
40 #define PDMA_OUT_DESCRQ_PUSH	0x0010
41 #define PDMA_OUT_DESCRQ_STAT	0x0014
42 
43 #define A6_PDMA_IN_CFG		0x0028
44 #define A6_PDMA_IN_BUF_CFG	0x002c
45 #define A6_PDMA_IN_CMD		0x0030
46 #define A6_PDMA_IN_STATQ_PUSH	0x0038
47 #define A6_PDMA_IN_DESCRQ_PUSH	0x0044
48 #define A6_PDMA_IN_DESCRQ_STAT	0x0048
49 #define A6_PDMA_INTR_MASK	0x0068
50 #define A6_PDMA_ACK_INTR	0x006c
51 #define A6_PDMA_MASKED_INTR	0x0074
52 
53 #define A7_PDMA_IN_CFG		0x002c
54 #define A7_PDMA_IN_BUF_CFG	0x0030
55 #define A7_PDMA_IN_CMD		0x0034
56 #define A7_PDMA_IN_STATQ_PUSH	0x003c
57 #define A7_PDMA_IN_DESCRQ_PUSH	0x0048
58 #define A7_PDMA_IN_DESCRQ_STAT	0x004C
59 #define A7_PDMA_INTR_MASK	0x006c
60 #define A7_PDMA_ACK_INTR	0x0070
61 #define A7_PDMA_MASKED_INTR	0x0078
62 
63 #define PDMA_OUT_CFG_EN				BIT(0)
64 
65 #define PDMA_OUT_BUF_CFG_DATA_BUF_SIZE		GENMASK(4, 0)
66 #define PDMA_OUT_BUF_CFG_DESCR_BUF_SIZE		GENMASK(9, 5)
67 
68 #define PDMA_OUT_CMD_START			BIT(0)
69 #define A6_PDMA_OUT_CMD_STOP			BIT(3)
70 #define A7_PDMA_OUT_CMD_STOP			BIT(2)
71 
72 #define PDMA_OUT_DESCRQ_PUSH_LEN		GENMASK(5, 0)
73 #define PDMA_OUT_DESCRQ_PUSH_ADDR		GENMASK(31, 6)
74 
75 #define PDMA_OUT_DESCRQ_STAT_LEVEL		GENMASK(3, 0)
76 #define PDMA_OUT_DESCRQ_STAT_SIZE		GENMASK(7, 4)
77 
78 #define PDMA_IN_CFG_EN				BIT(0)
79 
80 #define PDMA_IN_BUF_CFG_DATA_BUF_SIZE		GENMASK(4, 0)
81 #define PDMA_IN_BUF_CFG_DESCR_BUF_SIZE		GENMASK(9, 5)
82 #define PDMA_IN_BUF_CFG_STAT_BUF_SIZE		GENMASK(14, 10)
83 
84 #define PDMA_IN_CMD_START			BIT(0)
85 #define A6_PDMA_IN_CMD_FLUSH_STAT		BIT(2)
86 #define A6_PDMA_IN_CMD_STOP			BIT(3)
87 #define A7_PDMA_IN_CMD_FLUSH_STAT		BIT(1)
88 #define A7_PDMA_IN_CMD_STOP			BIT(2)
89 
90 #define PDMA_IN_STATQ_PUSH_LEN			GENMASK(5, 0)
91 #define PDMA_IN_STATQ_PUSH_ADDR			GENMASK(31, 6)
92 
93 #define PDMA_IN_DESCRQ_PUSH_LEN			GENMASK(5, 0)
94 #define PDMA_IN_DESCRQ_PUSH_ADDR		GENMASK(31, 6)
95 
96 #define PDMA_IN_DESCRQ_STAT_LEVEL		GENMASK(3, 0)
97 #define PDMA_IN_DESCRQ_STAT_SIZE		GENMASK(7, 4)
98 
99 #define A6_PDMA_INTR_MASK_IN_DATA		BIT(2)
100 #define A6_PDMA_INTR_MASK_IN_EOP		BIT(3)
101 #define A6_PDMA_INTR_MASK_IN_EOP_FLUSH		BIT(4)
102 
103 #define A7_PDMA_INTR_MASK_IN_DATA		BIT(3)
104 #define A7_PDMA_INTR_MASK_IN_EOP		BIT(4)
105 #define A7_PDMA_INTR_MASK_IN_EOP_FLUSH		BIT(5)
106 
107 #define A6_CRY_MD_OPER		GENMASK(19, 16)
108 
109 #define A6_CRY_MD_HASH_SEL_CTX	GENMASK(21, 20)
110 #define A6_CRY_MD_HASH_HMAC_FIN	BIT(23)
111 
112 #define A6_CRY_MD_CIPHER_LEN	GENMASK(21, 20)
113 #define A6_CRY_MD_CIPHER_DECR	BIT(22)
114 #define A6_CRY_MD_CIPHER_TWEAK	BIT(23)
115 #define A6_CRY_MD_CIPHER_DSEQ	BIT(24)
116 
117 #define A7_CRY_MD_OPER		GENMASK(11, 8)
118 
119 #define A7_CRY_MD_HASH_SEL_CTX	GENMASK(13, 12)
120 #define A7_CRY_MD_HASH_HMAC_FIN	BIT(15)
121 
122 #define A7_CRY_MD_CIPHER_LEN	GENMASK(13, 12)
123 #define A7_CRY_MD_CIPHER_DECR	BIT(14)
124 #define A7_CRY_MD_CIPHER_TWEAK	BIT(15)
125 #define A7_CRY_MD_CIPHER_DSEQ	BIT(16)
126 
127 /* DMA metadata constants */
128 #define regk_crypto_aes_cbc     0x00000002
129 #define regk_crypto_aes_ctr     0x00000003
130 #define regk_crypto_aes_ecb     0x00000001
131 #define regk_crypto_aes_gcm     0x00000004
132 #define regk_crypto_aes_xts     0x00000005
133 #define regk_crypto_cache       0x00000002
134 #define a6_regk_crypto_dlkey    0x0000000a
135 #define a7_regk_crypto_dlkey    0x0000000e
136 #define regk_crypto_ext         0x00000001
137 #define regk_crypto_hmac_sha1   0x00000007
138 #define regk_crypto_hmac_sha256 0x00000009
139 #define regk_crypto_init        0x00000000
140 #define regk_crypto_key_128     0x00000000
141 #define regk_crypto_key_192     0x00000001
142 #define regk_crypto_key_256     0x00000002
143 #define regk_crypto_null        0x00000000
144 #define regk_crypto_sha1        0x00000006
145 #define regk_crypto_sha256      0x00000008
146 
147 /* DMA descriptor structures */
148 struct pdma_descr_ctrl  {
149 	unsigned char short_descr : 1;
150 	unsigned char pad1        : 1;
151 	unsigned char eop         : 1;
152 	unsigned char intr        : 1;
153 	unsigned char short_len   : 3;
154 	unsigned char pad2        : 1;
155 } __packed;
156 
157 struct pdma_data_descr {
158 	unsigned int len : 24;
159 	unsigned int buf : 32;
160 } __packed;
161 
162 struct pdma_short_descr {
163 	unsigned char data[7];
164 } __packed;
165 
166 struct pdma_descr {
167 	struct pdma_descr_ctrl ctrl;
168 	union {
169 		struct pdma_data_descr   data;
170 		struct pdma_short_descr  shrt;
171 	};
172 };
173 
174 struct pdma_stat_descr {
175 	unsigned char pad1        : 1;
176 	unsigned char pad2        : 1;
177 	unsigned char eop         : 1;
178 	unsigned char pad3        : 5;
179 	unsigned int  len         : 24;
180 };
181 
182 /* Each descriptor array can hold max 64 entries */
183 #define PDMA_DESCR_COUNT	64
184 
185 #define MODULE_NAME   "Artpec-6 CA"
186 
187 /* Hash modes (including HMAC variants) */
188 #define ARTPEC6_CRYPTO_HASH_SHA1	1
189 #define ARTPEC6_CRYPTO_HASH_SHA256	2
190 
191 /* Crypto modes */
192 #define ARTPEC6_CRYPTO_CIPHER_AES_ECB	1
193 #define ARTPEC6_CRYPTO_CIPHER_AES_CBC	2
194 #define ARTPEC6_CRYPTO_CIPHER_AES_CTR	3
195 #define ARTPEC6_CRYPTO_CIPHER_AES_XTS	5
196 
197 /* The PDMA is a DMA-engine tightly coupled with a ciphering engine.
198  * It operates on a descriptor array with up to 64 descriptor entries.
199  * The arrays must be 64 byte aligned in memory.
200  *
201  * The ciphering unit has no registers and is completely controlled by
202  * a 4-byte metadata that is inserted at the beginning of each dma packet.
203  *
204  * A dma packet is a sequence of descriptors terminated by setting the .eop
205  * field in the final descriptor of the packet.
206  *
207  * Multiple packets are used for providing context data, key data and
208  * the plain/ciphertext.
209  *
210  *   PDMA Descriptors (Array)
211  *  +------+------+------+~~+-------+------+----
212  *  |  0   |  1   |  2   |~~| 11 EOP|  12  |  ....
213  *  +--+---+--+---+----+-+~~+-------+----+-+----
214  *     |      |        |       |         |
215  *     |      |        |       |         |
216  *   __|__  +-------++-------++-------+ +----+
217  *  | MD  | |Payload||Payload||Payload| | MD |
218  *  +-----+ +-------++-------++-------+ +----+
219  */
220 
221 struct artpec6_crypto_bounce_buffer {
222 	struct list_head list;
223 	size_t length;
224 	struct scatterlist *sg;
225 	size_t offset;
226 	/* buf is aligned to ARTPEC_CACHE_LINE_MAX and
227 	 * holds up to ARTPEC_CACHE_LINE_MAX bytes data.
228 	 */
229 	void *buf;
230 };
231 
232 struct artpec6_crypto_dma_map {
233 	dma_addr_t dma_addr;
234 	size_t size;
235 	enum dma_data_direction dir;
236 };
237 
238 struct artpec6_crypto_dma_descriptors {
239 	struct pdma_descr out[PDMA_DESCR_COUNT] __aligned(64);
240 	struct pdma_descr in[PDMA_DESCR_COUNT] __aligned(64);
241 	u32 stat[PDMA_DESCR_COUNT] __aligned(64);
242 	struct list_head bounce_buffers;
243 	/* Enough maps for all out/in buffers, and all three descr. arrays */
244 	struct artpec6_crypto_dma_map maps[PDMA_DESCR_COUNT * 2 + 2];
245 	dma_addr_t out_dma_addr;
246 	dma_addr_t in_dma_addr;
247 	dma_addr_t stat_dma_addr;
248 	size_t out_cnt;
249 	size_t in_cnt;
250 	size_t map_count;
251 };
252 
253 enum artpec6_crypto_variant {
254 	ARTPEC6_CRYPTO,
255 	ARTPEC7_CRYPTO,
256 };
257 
258 struct artpec6_crypto {
259 	void __iomem *base;
260 	spinlock_t queue_lock;
261 	struct list_head queue; /* waiting for pdma fifo space */
262 	struct list_head pending; /* submitted to pdma fifo */
263 	struct tasklet_struct task;
264 	struct kmem_cache *dma_cache;
265 	int pending_count;
266 	struct timer_list timer;
267 	enum artpec6_crypto_variant variant;
268 	void *pad_buffer; /* cache-aligned block padding buffer */
269 	void *zero_buffer;
270 };
271 
272 enum artpec6_crypto_hash_flags {
273 	HASH_FLAG_INIT_CTX = 2,
274 	HASH_FLAG_UPDATE = 4,
275 	HASH_FLAG_FINALIZE = 8,
276 	HASH_FLAG_HMAC = 16,
277 	HASH_FLAG_UPDATE_KEY = 32,
278 };
279 
280 struct artpec6_crypto_req_common {
281 	struct list_head list;
282 	struct list_head complete_in_progress;
283 	struct artpec6_crypto_dma_descriptors *dma;
284 	struct crypto_async_request *req;
285 	void (*complete)(struct crypto_async_request *req);
286 	gfp_t gfp_flags;
287 };
288 
289 struct artpec6_hash_request_context {
290 	char partial_buffer[SHA256_BLOCK_SIZE];
291 	char partial_buffer_out[SHA256_BLOCK_SIZE];
292 	char key_buffer[SHA256_BLOCK_SIZE];
293 	char pad_buffer[SHA256_BLOCK_SIZE + 32];
294 	unsigned char digeststate[SHA256_DIGEST_SIZE];
295 	size_t partial_bytes;
296 	u64 digcnt;
297 	u32 key_md;
298 	u32 hash_md;
299 	enum artpec6_crypto_hash_flags hash_flags;
300 	struct artpec6_crypto_req_common common;
301 };
302 
303 struct artpec6_hash_export_state {
304 	char partial_buffer[SHA256_BLOCK_SIZE];
305 	unsigned char digeststate[SHA256_DIGEST_SIZE];
306 	size_t partial_bytes;
307 	u64 digcnt;
308 	int oper;
309 	unsigned int hash_flags;
310 };
311 
312 struct artpec6_hashalg_context {
313 	char hmac_key[SHA256_BLOCK_SIZE];
314 	size_t hmac_key_length;
315 	struct crypto_shash *child_hash;
316 };
317 
318 struct artpec6_crypto_request_context {
319 	u32 cipher_md;
320 	bool decrypt;
321 	struct artpec6_crypto_req_common common;
322 };
323 
324 struct artpec6_cryptotfm_context {
325 	unsigned char aes_key[2*AES_MAX_KEY_SIZE];
326 	size_t key_length;
327 	u32 key_md;
328 	int crypto_type;
329 	struct crypto_sync_skcipher *fallback;
330 };
331 
332 struct artpec6_crypto_aead_hw_ctx {
333 	__be64	aad_length_bits;
334 	__be64  text_length_bits;
335 	__u8	J0[AES_BLOCK_SIZE];
336 };
337 
338 struct artpec6_crypto_aead_req_ctx {
339 	struct artpec6_crypto_aead_hw_ctx hw_ctx;
340 	u32 cipher_md;
341 	bool decrypt;
342 	struct artpec6_crypto_req_common common;
343 	__u8 decryption_tag[AES_BLOCK_SIZE] ____cacheline_aligned;
344 };
345 
346 /* The crypto framework makes it hard to avoid this global. */
347 static struct device *artpec6_crypto_dev;
348 
349 #ifdef CONFIG_FAULT_INJECTION
350 static DECLARE_FAULT_ATTR(artpec6_crypto_fail_status_read);
351 static DECLARE_FAULT_ATTR(artpec6_crypto_fail_dma_array_full);
352 #endif
353 
354 enum {
355 	ARTPEC6_CRYPTO_PREPARE_HASH_NO_START,
356 	ARTPEC6_CRYPTO_PREPARE_HASH_START,
357 };
358 
359 static int artpec6_crypto_prepare_aead(struct aead_request *areq);
360 static int artpec6_crypto_prepare_crypto(struct skcipher_request *areq);
361 static int artpec6_crypto_prepare_hash(struct ahash_request *areq);
362 
363 static void
364 artpec6_crypto_complete_crypto(struct crypto_async_request *req);
365 static void
366 artpec6_crypto_complete_cbc_encrypt(struct crypto_async_request *req);
367 static void
368 artpec6_crypto_complete_cbc_decrypt(struct crypto_async_request *req);
369 static void
370 artpec6_crypto_complete_aead(struct crypto_async_request *req);
371 static void
372 artpec6_crypto_complete_hash(struct crypto_async_request *req);
373 
374 static int
375 artpec6_crypto_common_destroy(struct artpec6_crypto_req_common *common);
376 
377 static void
378 artpec6_crypto_start_dma(struct artpec6_crypto_req_common *common);
379 
380 struct artpec6_crypto_walk {
381 	struct scatterlist *sg;
382 	size_t offset;
383 };
384 
385 static void artpec6_crypto_walk_init(struct artpec6_crypto_walk *awalk,
386 				     struct scatterlist *sg)
387 {
388 	awalk->sg = sg;
389 	awalk->offset = 0;
390 }
391 
392 static size_t artpec6_crypto_walk_advance(struct artpec6_crypto_walk *awalk,
393 					  size_t nbytes)
394 {
395 	while (nbytes && awalk->sg) {
396 		size_t piece;
397 
398 		WARN_ON(awalk->offset > awalk->sg->length);
399 
400 		piece = min(nbytes, (size_t)awalk->sg->length - awalk->offset);
401 		nbytes -= piece;
402 		awalk->offset += piece;
403 		if (awalk->offset == awalk->sg->length) {
404 			awalk->sg = sg_next(awalk->sg);
405 			awalk->offset = 0;
406 		}
407 
408 	}
409 
410 	return nbytes;
411 }
412 
413 static size_t
414 artpec6_crypto_walk_chunklen(const struct artpec6_crypto_walk *awalk)
415 {
416 	WARN_ON(awalk->sg->length == awalk->offset);
417 
418 	return awalk->sg->length - awalk->offset;
419 }
420 
421 static dma_addr_t
422 artpec6_crypto_walk_chunk_phys(const struct artpec6_crypto_walk *awalk)
423 {
424 	return sg_phys(awalk->sg) + awalk->offset;
425 }
426 
427 static void
428 artpec6_crypto_copy_bounce_buffers(struct artpec6_crypto_req_common *common)
429 {
430 	struct artpec6_crypto_dma_descriptors *dma = common->dma;
431 	struct artpec6_crypto_bounce_buffer *b;
432 	struct artpec6_crypto_bounce_buffer *next;
433 
434 	list_for_each_entry_safe(b, next, &dma->bounce_buffers, list) {
435 		pr_debug("bounce entry %p: %zu bytes @ %zu from %p\n",
436 			 b, b->length, b->offset, b->buf);
437 		sg_pcopy_from_buffer(b->sg,
438 				   1,
439 				   b->buf,
440 				   b->length,
441 				   b->offset);
442 
443 		list_del(&b->list);
444 		kfree(b);
445 	}
446 }
447 
448 static inline bool artpec6_crypto_busy(void)
449 {
450 	struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
451 	int fifo_count = ac->pending_count;
452 
453 	return fifo_count > 6;
454 }
455 
456 static int artpec6_crypto_submit(struct artpec6_crypto_req_common *req)
457 {
458 	struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
459 	int ret = -EBUSY;
460 
461 	spin_lock_bh(&ac->queue_lock);
462 
463 	if (!artpec6_crypto_busy()) {
464 		list_add_tail(&req->list, &ac->pending);
465 		artpec6_crypto_start_dma(req);
466 		ret = -EINPROGRESS;
467 	} else if (req->req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
468 		list_add_tail(&req->list, &ac->queue);
469 	} else {
470 		artpec6_crypto_common_destroy(req);
471 	}
472 
473 	spin_unlock_bh(&ac->queue_lock);
474 
475 	return ret;
476 }
477 
478 static void artpec6_crypto_start_dma(struct artpec6_crypto_req_common *common)
479 {
480 	struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
481 	enum artpec6_crypto_variant variant = ac->variant;
482 	void __iomem *base = ac->base;
483 	struct artpec6_crypto_dma_descriptors *dma = common->dma;
484 	u32 ind, statd, outd;
485 
486 	/* Make descriptor content visible to the DMA before starting it. */
487 	wmb();
488 
489 	ind = FIELD_PREP(PDMA_IN_DESCRQ_PUSH_LEN, dma->in_cnt - 1) |
490 	      FIELD_PREP(PDMA_IN_DESCRQ_PUSH_ADDR, dma->in_dma_addr >> 6);
491 
492 	statd = FIELD_PREP(PDMA_IN_STATQ_PUSH_LEN, dma->in_cnt - 1) |
493 		FIELD_PREP(PDMA_IN_STATQ_PUSH_ADDR, dma->stat_dma_addr >> 6);
494 
495 	outd = FIELD_PREP(PDMA_OUT_DESCRQ_PUSH_LEN, dma->out_cnt - 1) |
496 	       FIELD_PREP(PDMA_OUT_DESCRQ_PUSH_ADDR, dma->out_dma_addr >> 6);
497 
498 	if (variant == ARTPEC6_CRYPTO) {
499 		writel_relaxed(ind, base + A6_PDMA_IN_DESCRQ_PUSH);
500 		writel_relaxed(statd, base + A6_PDMA_IN_STATQ_PUSH);
501 		writel_relaxed(PDMA_IN_CMD_START, base + A6_PDMA_IN_CMD);
502 	} else {
503 		writel_relaxed(ind, base + A7_PDMA_IN_DESCRQ_PUSH);
504 		writel_relaxed(statd, base + A7_PDMA_IN_STATQ_PUSH);
505 		writel_relaxed(PDMA_IN_CMD_START, base + A7_PDMA_IN_CMD);
506 	}
507 
508 	writel_relaxed(outd, base + PDMA_OUT_DESCRQ_PUSH);
509 	writel_relaxed(PDMA_OUT_CMD_START, base + PDMA_OUT_CMD);
510 
511 	ac->pending_count++;
512 }
513 
514 static void
515 artpec6_crypto_init_dma_operation(struct artpec6_crypto_req_common *common)
516 {
517 	struct artpec6_crypto_dma_descriptors *dma = common->dma;
518 
519 	dma->out_cnt = 0;
520 	dma->in_cnt = 0;
521 	dma->map_count = 0;
522 	INIT_LIST_HEAD(&dma->bounce_buffers);
523 }
524 
525 static bool fault_inject_dma_descr(void)
526 {
527 #ifdef CONFIG_FAULT_INJECTION
528 	return should_fail(&artpec6_crypto_fail_dma_array_full, 1);
529 #else
530 	return false;
531 #endif
532 }
533 
534 /** artpec6_crypto_setup_out_descr_phys - Setup an out channel with a
535  *                                        physical address
536  *
537  * @addr: The physical address of the data buffer
538  * @len:  The length of the data buffer
539  * @eop:  True if this is the last buffer in the packet
540  *
541  * @return 0 on success or -ENOSPC if there are no more descriptors available
542  */
543 static int
544 artpec6_crypto_setup_out_descr_phys(struct artpec6_crypto_req_common *common,
545 				    dma_addr_t addr, size_t len, bool eop)
546 {
547 	struct artpec6_crypto_dma_descriptors *dma = common->dma;
548 	struct pdma_descr *d;
549 
550 	if (dma->out_cnt >= PDMA_DESCR_COUNT ||
551 	    fault_inject_dma_descr()) {
552 		pr_err("No free OUT DMA descriptors available!\n");
553 		return -ENOSPC;
554 	}
555 
556 	d = &dma->out[dma->out_cnt++];
557 	memset(d, 0, sizeof(*d));
558 
559 	d->ctrl.short_descr = 0;
560 	d->ctrl.eop = eop;
561 	d->data.len = len;
562 	d->data.buf = addr;
563 	return 0;
564 }
565 
566 /** artpec6_crypto_setup_out_descr_short - Setup a short out descriptor
567  *
568  * @dst: The virtual address of the data
569  * @len: The length of the data, must be between 1 to 7 bytes
570  * @eop: True if this is the last buffer in the packet
571  *
572  * @return 0 on success
573  *	-ENOSPC if no more descriptors are available
574  *	-EINVAL if the data length exceeds 7 bytes
575  */
576 static int
577 artpec6_crypto_setup_out_descr_short(struct artpec6_crypto_req_common *common,
578 				     void *dst, unsigned int len, bool eop)
579 {
580 	struct artpec6_crypto_dma_descriptors *dma = common->dma;
581 	struct pdma_descr *d;
582 
583 	if (dma->out_cnt >= PDMA_DESCR_COUNT ||
584 	    fault_inject_dma_descr()) {
585 		pr_err("No free OUT DMA descriptors available!\n");
586 		return -ENOSPC;
587 	} else if (len > 7 || len < 1) {
588 		return -EINVAL;
589 	}
590 	d = &dma->out[dma->out_cnt++];
591 	memset(d, 0, sizeof(*d));
592 
593 	d->ctrl.short_descr = 1;
594 	d->ctrl.short_len = len;
595 	d->ctrl.eop = eop;
596 	memcpy(d->shrt.data, dst, len);
597 	return 0;
598 }
599 
600 static int artpec6_crypto_dma_map_page(struct artpec6_crypto_req_common *common,
601 				      struct page *page, size_t offset,
602 				      size_t size,
603 				      enum dma_data_direction dir,
604 				      dma_addr_t *dma_addr_out)
605 {
606 	struct artpec6_crypto_dma_descriptors *dma = common->dma;
607 	struct device *dev = artpec6_crypto_dev;
608 	struct artpec6_crypto_dma_map *map;
609 	dma_addr_t dma_addr;
610 
611 	*dma_addr_out = 0;
612 
613 	if (dma->map_count >= ARRAY_SIZE(dma->maps))
614 		return -ENOMEM;
615 
616 	dma_addr = dma_map_page(dev, page, offset, size, dir);
617 	if (dma_mapping_error(dev, dma_addr))
618 		return -ENOMEM;
619 
620 	map = &dma->maps[dma->map_count++];
621 	map->size = size;
622 	map->dma_addr = dma_addr;
623 	map->dir = dir;
624 
625 	*dma_addr_out = dma_addr;
626 
627 	return 0;
628 }
629 
630 static int
631 artpec6_crypto_dma_map_single(struct artpec6_crypto_req_common *common,
632 			      void *ptr, size_t size,
633 			      enum dma_data_direction dir,
634 			      dma_addr_t *dma_addr_out)
635 {
636 	struct page *page = virt_to_page(ptr);
637 	size_t offset = (uintptr_t)ptr & ~PAGE_MASK;
638 
639 	return artpec6_crypto_dma_map_page(common, page, offset, size, dir,
640 					  dma_addr_out);
641 }
642 
643 static int
644 artpec6_crypto_dma_map_descs(struct artpec6_crypto_req_common *common)
645 {
646 	struct artpec6_crypto_dma_descriptors *dma = common->dma;
647 	int ret;
648 
649 	ret = artpec6_crypto_dma_map_single(common, dma->in,
650 				sizeof(dma->in[0]) * dma->in_cnt,
651 				DMA_TO_DEVICE, &dma->in_dma_addr);
652 	if (ret)
653 		return ret;
654 
655 	ret = artpec6_crypto_dma_map_single(common, dma->out,
656 				sizeof(dma->out[0]) * dma->out_cnt,
657 				DMA_TO_DEVICE, &dma->out_dma_addr);
658 	if (ret)
659 		return ret;
660 
661 	/* We only read one stat descriptor */
662 	dma->stat[dma->in_cnt - 1] = 0;
663 
664 	/*
665 	 * DMA_BIDIRECTIONAL since we need our zeroing of the stat descriptor
666 	 * to be written.
667 	 */
668 	return artpec6_crypto_dma_map_single(common,
669 				dma->stat,
670 				sizeof(dma->stat[0]) * dma->in_cnt,
671 				DMA_BIDIRECTIONAL,
672 				&dma->stat_dma_addr);
673 }
674 
675 static void
676 artpec6_crypto_dma_unmap_all(struct artpec6_crypto_req_common *common)
677 {
678 	struct artpec6_crypto_dma_descriptors *dma = common->dma;
679 	struct device *dev = artpec6_crypto_dev;
680 	int i;
681 
682 	for (i = 0; i < dma->map_count; i++) {
683 		struct artpec6_crypto_dma_map *map = &dma->maps[i];
684 
685 		dma_unmap_page(dev, map->dma_addr, map->size, map->dir);
686 	}
687 
688 	dma->map_count = 0;
689 }
690 
691 /** artpec6_crypto_setup_out_descr - Setup an out descriptor
692  *
693  * @dst: The virtual address of the data
694  * @len: The length of the data
695  * @eop: True if this is the last buffer in the packet
696  * @use_short: If this is true and the data length is 7 bytes or less then
697  *	a short descriptor will be used
698  *
699  * @return 0 on success
700  *	Any errors from artpec6_crypto_setup_out_descr_short() or
701  *	setup_out_descr_phys()
702  */
703 static int
704 artpec6_crypto_setup_out_descr(struct artpec6_crypto_req_common *common,
705 			       void *dst, unsigned int len, bool eop,
706 			       bool use_short)
707 {
708 	if (use_short && len < 7) {
709 		return artpec6_crypto_setup_out_descr_short(common, dst, len,
710 							    eop);
711 	} else {
712 		int ret;
713 		dma_addr_t dma_addr;
714 
715 		ret = artpec6_crypto_dma_map_single(common, dst, len,
716 						   DMA_TO_DEVICE,
717 						   &dma_addr);
718 		if (ret)
719 			return ret;
720 
721 		return artpec6_crypto_setup_out_descr_phys(common, dma_addr,
722 							   len, eop);
723 	}
724 }
725 
726 /** artpec6_crypto_setup_in_descr_phys - Setup an in channel with a
727  *                                       physical address
728  *
729  * @addr: The physical address of the data buffer
730  * @len:  The length of the data buffer
731  * @intr: True if an interrupt should be fired after HW processing of this
732  *	  descriptor
733  *
734  */
735 static int
736 artpec6_crypto_setup_in_descr_phys(struct artpec6_crypto_req_common *common,
737 			       dma_addr_t addr, unsigned int len, bool intr)
738 {
739 	struct artpec6_crypto_dma_descriptors *dma = common->dma;
740 	struct pdma_descr *d;
741 
742 	if (dma->in_cnt >= PDMA_DESCR_COUNT ||
743 	    fault_inject_dma_descr()) {
744 		pr_err("No free IN DMA descriptors available!\n");
745 		return -ENOSPC;
746 	}
747 	d = &dma->in[dma->in_cnt++];
748 	memset(d, 0, sizeof(*d));
749 
750 	d->ctrl.intr = intr;
751 	d->data.len = len;
752 	d->data.buf = addr;
753 	return 0;
754 }
755 
756 /** artpec6_crypto_setup_in_descr - Setup an in channel descriptor
757  *
758  * @buffer: The virtual address to of the data buffer
759  * @len:    The length of the data buffer
760  * @last:   If this is the last data buffer in the request (i.e. an interrupt
761  *	    is needed
762  *
763  * Short descriptors are not used for the in channel
764  */
765 static int
766 artpec6_crypto_setup_in_descr(struct artpec6_crypto_req_common *common,
767 			  void *buffer, unsigned int len, bool last)
768 {
769 	dma_addr_t dma_addr;
770 	int ret;
771 
772 	ret = artpec6_crypto_dma_map_single(common, buffer, len,
773 					   DMA_FROM_DEVICE, &dma_addr);
774 	if (ret)
775 		return ret;
776 
777 	return artpec6_crypto_setup_in_descr_phys(common, dma_addr, len, last);
778 }
779 
780 static struct artpec6_crypto_bounce_buffer *
781 artpec6_crypto_alloc_bounce(gfp_t flags)
782 {
783 	void *base;
784 	size_t alloc_size = sizeof(struct artpec6_crypto_bounce_buffer) +
785 			    2 * ARTPEC_CACHE_LINE_MAX;
786 	struct artpec6_crypto_bounce_buffer *bbuf = kzalloc(alloc_size, flags);
787 
788 	if (!bbuf)
789 		return NULL;
790 
791 	base = bbuf + 1;
792 	bbuf->buf = PTR_ALIGN(base, ARTPEC_CACHE_LINE_MAX);
793 	return bbuf;
794 }
795 
796 static int setup_bounce_buffer_in(struct artpec6_crypto_req_common *common,
797 				  struct artpec6_crypto_walk *walk, size_t size)
798 {
799 	struct artpec6_crypto_bounce_buffer *bbuf;
800 	int ret;
801 
802 	bbuf = artpec6_crypto_alloc_bounce(common->gfp_flags);
803 	if (!bbuf)
804 		return -ENOMEM;
805 
806 	bbuf->length = size;
807 	bbuf->sg = walk->sg;
808 	bbuf->offset = walk->offset;
809 
810 	ret =  artpec6_crypto_setup_in_descr(common, bbuf->buf, size, false);
811 	if (ret) {
812 		kfree(bbuf);
813 		return ret;
814 	}
815 
816 	pr_debug("BOUNCE %zu offset %zu\n", size, walk->offset);
817 	list_add_tail(&bbuf->list, &common->dma->bounce_buffers);
818 	return 0;
819 }
820 
821 static int
822 artpec6_crypto_setup_sg_descrs_in(struct artpec6_crypto_req_common *common,
823 				  struct artpec6_crypto_walk *walk,
824 				  size_t count)
825 {
826 	size_t chunk;
827 	int ret;
828 	dma_addr_t addr;
829 
830 	while (walk->sg && count) {
831 		chunk = min(count, artpec6_crypto_walk_chunklen(walk));
832 		addr = artpec6_crypto_walk_chunk_phys(walk);
833 
834 		/* When destination buffers are not aligned to the cache line
835 		 * size we need bounce buffers. The DMA-API requires that the
836 		 * entire line is owned by the DMA buffer and this holds also
837 		 * for the case when coherent DMA is used.
838 		 */
839 		if (!IS_ALIGNED(addr, ARTPEC_CACHE_LINE_MAX)) {
840 			chunk = min_t(dma_addr_t, chunk,
841 				      ALIGN(addr, ARTPEC_CACHE_LINE_MAX) -
842 				      addr);
843 
844 			pr_debug("CHUNK-b %pad:%zu\n", &addr, chunk);
845 			ret = setup_bounce_buffer_in(common, walk, chunk);
846 		} else if (chunk < ARTPEC_CACHE_LINE_MAX) {
847 			pr_debug("CHUNK-b %pad:%zu\n", &addr, chunk);
848 			ret = setup_bounce_buffer_in(common, walk, chunk);
849 		} else {
850 			dma_addr_t dma_addr;
851 
852 			chunk = chunk & ~(ARTPEC_CACHE_LINE_MAX-1);
853 
854 			pr_debug("CHUNK %pad:%zu\n", &addr, chunk);
855 
856 			ret = artpec6_crypto_dma_map_page(common,
857 							 sg_page(walk->sg),
858 							 walk->sg->offset +
859 							 walk->offset,
860 							 chunk,
861 							 DMA_FROM_DEVICE,
862 							 &dma_addr);
863 			if (ret)
864 				return ret;
865 
866 			ret = artpec6_crypto_setup_in_descr_phys(common,
867 								 dma_addr,
868 								 chunk, false);
869 		}
870 
871 		if (ret)
872 			return ret;
873 
874 		count = count - chunk;
875 		artpec6_crypto_walk_advance(walk, chunk);
876 	}
877 
878 	if (count)
879 		pr_err("EOL unexpected %zu bytes left\n", count);
880 
881 	return count ? -EINVAL : 0;
882 }
883 
884 static int
885 artpec6_crypto_setup_sg_descrs_out(struct artpec6_crypto_req_common *common,
886 				   struct artpec6_crypto_walk *walk,
887 				   size_t count)
888 {
889 	size_t chunk;
890 	int ret;
891 	dma_addr_t addr;
892 
893 	while (walk->sg && count) {
894 		chunk = min(count, artpec6_crypto_walk_chunklen(walk));
895 		addr = artpec6_crypto_walk_chunk_phys(walk);
896 
897 		pr_debug("OUT-CHUNK %pad:%zu\n", &addr, chunk);
898 
899 		if (addr & 3) {
900 			char buf[3];
901 
902 			chunk = min_t(size_t, chunk, (4-(addr&3)));
903 
904 			sg_pcopy_to_buffer(walk->sg, 1, buf, chunk,
905 					   walk->offset);
906 
907 			ret = artpec6_crypto_setup_out_descr_short(common, buf,
908 								   chunk,
909 								   false);
910 		} else {
911 			dma_addr_t dma_addr;
912 
913 			ret = artpec6_crypto_dma_map_page(common,
914 							 sg_page(walk->sg),
915 							 walk->sg->offset +
916 							 walk->offset,
917 							 chunk,
918 							 DMA_TO_DEVICE,
919 							 &dma_addr);
920 			if (ret)
921 				return ret;
922 
923 			ret = artpec6_crypto_setup_out_descr_phys(common,
924 								 dma_addr,
925 								 chunk, false);
926 		}
927 
928 		if (ret)
929 			return ret;
930 
931 		count = count - chunk;
932 		artpec6_crypto_walk_advance(walk, chunk);
933 	}
934 
935 	if (count)
936 		pr_err("EOL unexpected %zu bytes left\n", count);
937 
938 	return count ? -EINVAL : 0;
939 }
940 
941 
942 /** artpec6_crypto_terminate_out_descrs - Set the EOP on the last out descriptor
943  *
944  * If the out descriptor list is non-empty, then the eop flag on the
945  * last used out descriptor will be set.
946  *
947  * @return  0 on success
948  *	-EINVAL if the out descriptor is empty or has overflown
949  */
950 static int
951 artpec6_crypto_terminate_out_descrs(struct artpec6_crypto_req_common *common)
952 {
953 	struct artpec6_crypto_dma_descriptors *dma = common->dma;
954 	struct pdma_descr *d;
955 
956 	if (!dma->out_cnt || dma->out_cnt > PDMA_DESCR_COUNT) {
957 		pr_err("%s: OUT descriptor list is %s\n",
958 			MODULE_NAME, dma->out_cnt ? "empty" : "full");
959 		return -EINVAL;
960 
961 	}
962 
963 	d = &dma->out[dma->out_cnt-1];
964 	d->ctrl.eop = 1;
965 
966 	return 0;
967 }
968 
969 /** artpec6_crypto_terminate_in_descrs - Set the interrupt flag on the last
970  *                                       in descriptor
971  *
972  * See artpec6_crypto_terminate_out_descrs() for return values
973  */
974 static int
975 artpec6_crypto_terminate_in_descrs(struct artpec6_crypto_req_common *common)
976 {
977 	struct artpec6_crypto_dma_descriptors *dma = common->dma;
978 	struct pdma_descr *d;
979 
980 	if (!dma->in_cnt || dma->in_cnt > PDMA_DESCR_COUNT) {
981 		pr_err("%s: IN descriptor list is %s\n",
982 			MODULE_NAME, dma->in_cnt ? "empty" : "full");
983 		return -EINVAL;
984 	}
985 
986 	d = &dma->in[dma->in_cnt-1];
987 	d->ctrl.intr = 1;
988 	return 0;
989 }
990 
991 /** create_hash_pad - Create a Secure Hash conformant pad
992  *
993  * @dst:      The destination buffer to write the pad. Must be at least 64 bytes
994  * @dgstlen:  The total length of the hash digest in bytes
995  * @bitcount: The total length of the digest in bits
996  *
997  * @return The total number of padding bytes written to @dst
998  */
999 static size_t
1000 create_hash_pad(int oper, unsigned char *dst, u64 dgstlen, u64 bitcount)
1001 {
1002 	unsigned int mod, target, diff, pad_bytes, size_bytes;
1003 	__be64 bits = __cpu_to_be64(bitcount);
1004 
1005 	switch (oper) {
1006 	case regk_crypto_sha1:
1007 	case regk_crypto_sha256:
1008 	case regk_crypto_hmac_sha1:
1009 	case regk_crypto_hmac_sha256:
1010 		target = 448 / 8;
1011 		mod = 512 / 8;
1012 		size_bytes = 8;
1013 		break;
1014 	default:
1015 		target = 896 / 8;
1016 		mod = 1024 / 8;
1017 		size_bytes = 16;
1018 		break;
1019 	}
1020 
1021 	target -= 1;
1022 	diff = dgstlen & (mod - 1);
1023 	pad_bytes = diff > target ? target + mod - diff : target - diff;
1024 
1025 	memset(dst + 1, 0, pad_bytes);
1026 	dst[0] = 0x80;
1027 
1028 	if (size_bytes == 16) {
1029 		memset(dst + 1 + pad_bytes, 0, 8);
1030 		memcpy(dst + 1 + pad_bytes + 8, &bits, 8);
1031 	} else {
1032 		memcpy(dst + 1 + pad_bytes, &bits, 8);
1033 	}
1034 
1035 	return pad_bytes + size_bytes + 1;
1036 }
1037 
1038 static int artpec6_crypto_common_init(struct artpec6_crypto_req_common *common,
1039 		struct crypto_async_request *parent,
1040 		void (*complete)(struct crypto_async_request *req),
1041 		struct scatterlist *dstsg, unsigned int nbytes)
1042 {
1043 	gfp_t flags;
1044 	struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
1045 
1046 	flags = (parent->flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
1047 		 GFP_KERNEL : GFP_ATOMIC;
1048 
1049 	common->gfp_flags = flags;
1050 	common->dma = kmem_cache_alloc(ac->dma_cache, flags);
1051 	if (!common->dma)
1052 		return -ENOMEM;
1053 
1054 	common->req = parent;
1055 	common->complete = complete;
1056 	return 0;
1057 }
1058 
1059 static void
1060 artpec6_crypto_bounce_destroy(struct artpec6_crypto_dma_descriptors *dma)
1061 {
1062 	struct artpec6_crypto_bounce_buffer *b;
1063 	struct artpec6_crypto_bounce_buffer *next;
1064 
1065 	list_for_each_entry_safe(b, next, &dma->bounce_buffers, list) {
1066 		kfree(b);
1067 	}
1068 }
1069 
1070 static int
1071 artpec6_crypto_common_destroy(struct artpec6_crypto_req_common *common)
1072 {
1073 	struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
1074 
1075 	artpec6_crypto_dma_unmap_all(common);
1076 	artpec6_crypto_bounce_destroy(common->dma);
1077 	kmem_cache_free(ac->dma_cache, common->dma);
1078 	common->dma = NULL;
1079 	return 0;
1080 }
1081 
1082 /*
1083  * Ciphering functions.
1084  */
1085 static int artpec6_crypto_encrypt(struct skcipher_request *req)
1086 {
1087 	struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
1088 	struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(cipher);
1089 	struct artpec6_crypto_request_context *req_ctx = NULL;
1090 	void (*complete)(struct crypto_async_request *req);
1091 	int ret;
1092 
1093 	req_ctx = skcipher_request_ctx(req);
1094 
1095 	switch (ctx->crypto_type) {
1096 	case ARTPEC6_CRYPTO_CIPHER_AES_CBC:
1097 	case ARTPEC6_CRYPTO_CIPHER_AES_ECB:
1098 	case ARTPEC6_CRYPTO_CIPHER_AES_XTS:
1099 		req_ctx->decrypt = 0;
1100 		break;
1101 	default:
1102 		break;
1103 	}
1104 
1105 	switch (ctx->crypto_type) {
1106 	case ARTPEC6_CRYPTO_CIPHER_AES_CBC:
1107 		complete = artpec6_crypto_complete_cbc_encrypt;
1108 		break;
1109 	default:
1110 		complete = artpec6_crypto_complete_crypto;
1111 		break;
1112 	}
1113 
1114 	ret = artpec6_crypto_common_init(&req_ctx->common,
1115 				  &req->base,
1116 				  complete,
1117 				  req->dst, req->cryptlen);
1118 	if (ret)
1119 		return ret;
1120 
1121 	ret = artpec6_crypto_prepare_crypto(req);
1122 	if (ret) {
1123 		artpec6_crypto_common_destroy(&req_ctx->common);
1124 		return ret;
1125 	}
1126 
1127 	return artpec6_crypto_submit(&req_ctx->common);
1128 }
1129 
1130 static int artpec6_crypto_decrypt(struct skcipher_request *req)
1131 {
1132 	int ret;
1133 	struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
1134 	struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(cipher);
1135 	struct artpec6_crypto_request_context *req_ctx = NULL;
1136 	void (*complete)(struct crypto_async_request *req);
1137 
1138 	req_ctx = skcipher_request_ctx(req);
1139 
1140 	switch (ctx->crypto_type) {
1141 	case ARTPEC6_CRYPTO_CIPHER_AES_CBC:
1142 	case ARTPEC6_CRYPTO_CIPHER_AES_ECB:
1143 	case ARTPEC6_CRYPTO_CIPHER_AES_XTS:
1144 		req_ctx->decrypt = 1;
1145 		break;
1146 	default:
1147 		break;
1148 	}
1149 
1150 
1151 	switch (ctx->crypto_type) {
1152 	case ARTPEC6_CRYPTO_CIPHER_AES_CBC:
1153 		complete = artpec6_crypto_complete_cbc_decrypt;
1154 		break;
1155 	default:
1156 		complete = artpec6_crypto_complete_crypto;
1157 		break;
1158 	}
1159 
1160 	ret = artpec6_crypto_common_init(&req_ctx->common, &req->base,
1161 				  complete,
1162 				  req->dst, req->cryptlen);
1163 	if (ret)
1164 		return ret;
1165 
1166 	ret = artpec6_crypto_prepare_crypto(req);
1167 	if (ret) {
1168 		artpec6_crypto_common_destroy(&req_ctx->common);
1169 		return ret;
1170 	}
1171 
1172 	return artpec6_crypto_submit(&req_ctx->common);
1173 }
1174 
1175 static int
1176 artpec6_crypto_ctr_crypt(struct skcipher_request *req, bool encrypt)
1177 {
1178 	struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
1179 	struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(cipher);
1180 	size_t iv_len = crypto_skcipher_ivsize(cipher);
1181 	unsigned int counter = be32_to_cpup((__be32 *)
1182 					    (req->iv + iv_len - 4));
1183 	unsigned int nblks = ALIGN(req->cryptlen, AES_BLOCK_SIZE) /
1184 			     AES_BLOCK_SIZE;
1185 
1186 	/*
1187 	 * The hardware uses only the last 32-bits as the counter while the
1188 	 * kernel tests (aes_ctr_enc_tv_template[4] for example) expect that
1189 	 * the whole IV is a counter.  So fallback if the counter is going to
1190 	 * overlow.
1191 	 */
1192 	if (counter + nblks < counter) {
1193 		int ret;
1194 
1195 		pr_debug("counter %x will overflow (nblks %u), falling back\n",
1196 			 counter, counter + nblks);
1197 
1198 		ret = crypto_sync_skcipher_setkey(ctx->fallback, ctx->aes_key,
1199 						  ctx->key_length);
1200 		if (ret)
1201 			return ret;
1202 
1203 		{
1204 			SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback);
1205 
1206 			skcipher_request_set_sync_tfm(subreq, ctx->fallback);
1207 			skcipher_request_set_callback(subreq, req->base.flags,
1208 						      NULL, NULL);
1209 			skcipher_request_set_crypt(subreq, req->src, req->dst,
1210 						   req->cryptlen, req->iv);
1211 			ret = encrypt ? crypto_skcipher_encrypt(subreq)
1212 				      : crypto_skcipher_decrypt(subreq);
1213 			skcipher_request_zero(subreq);
1214 		}
1215 		return ret;
1216 	}
1217 
1218 	return encrypt ? artpec6_crypto_encrypt(req)
1219 		       : artpec6_crypto_decrypt(req);
1220 }
1221 
1222 static int artpec6_crypto_ctr_encrypt(struct skcipher_request *req)
1223 {
1224 	return artpec6_crypto_ctr_crypt(req, true);
1225 }
1226 
1227 static int artpec6_crypto_ctr_decrypt(struct skcipher_request *req)
1228 {
1229 	return artpec6_crypto_ctr_crypt(req, false);
1230 }
1231 
1232 /*
1233  * AEAD functions
1234  */
1235 static int artpec6_crypto_aead_init(struct crypto_aead *tfm)
1236 {
1237 	struct artpec6_cryptotfm_context *tfm_ctx = crypto_aead_ctx(tfm);
1238 
1239 	memset(tfm_ctx, 0, sizeof(*tfm_ctx));
1240 
1241 	crypto_aead_set_reqsize(tfm,
1242 				sizeof(struct artpec6_crypto_aead_req_ctx));
1243 
1244 	return 0;
1245 }
1246 
1247 static int artpec6_crypto_aead_set_key(struct crypto_aead *tfm, const u8 *key,
1248 			       unsigned int len)
1249 {
1250 	struct artpec6_cryptotfm_context *ctx = crypto_tfm_ctx(&tfm->base);
1251 
1252 	if (len != 16 && len != 24 && len != 32)
1253 		return -EINVAL;
1254 
1255 	ctx->key_length = len;
1256 
1257 	memcpy(ctx->aes_key, key, len);
1258 	return 0;
1259 }
1260 
1261 static int artpec6_crypto_aead_encrypt(struct aead_request *req)
1262 {
1263 	int ret;
1264 	struct artpec6_crypto_aead_req_ctx *req_ctx = aead_request_ctx(req);
1265 
1266 	req_ctx->decrypt = false;
1267 	ret = artpec6_crypto_common_init(&req_ctx->common, &req->base,
1268 				  artpec6_crypto_complete_aead,
1269 				  NULL, 0);
1270 	if (ret)
1271 		return ret;
1272 
1273 	ret = artpec6_crypto_prepare_aead(req);
1274 	if (ret) {
1275 		artpec6_crypto_common_destroy(&req_ctx->common);
1276 		return ret;
1277 	}
1278 
1279 	return artpec6_crypto_submit(&req_ctx->common);
1280 }
1281 
1282 static int artpec6_crypto_aead_decrypt(struct aead_request *req)
1283 {
1284 	int ret;
1285 	struct artpec6_crypto_aead_req_ctx *req_ctx = aead_request_ctx(req);
1286 
1287 	req_ctx->decrypt = true;
1288 	if (req->cryptlen < AES_BLOCK_SIZE)
1289 		return -EINVAL;
1290 
1291 	ret = artpec6_crypto_common_init(&req_ctx->common,
1292 				  &req->base,
1293 				  artpec6_crypto_complete_aead,
1294 				  NULL, 0);
1295 	if (ret)
1296 		return ret;
1297 
1298 	ret = artpec6_crypto_prepare_aead(req);
1299 	if (ret) {
1300 		artpec6_crypto_common_destroy(&req_ctx->common);
1301 		return ret;
1302 	}
1303 
1304 	return artpec6_crypto_submit(&req_ctx->common);
1305 }
1306 
1307 static int artpec6_crypto_prepare_hash(struct ahash_request *areq)
1308 {
1309 	struct artpec6_hashalg_context *ctx = crypto_tfm_ctx(areq->base.tfm);
1310 	struct artpec6_hash_request_context *req_ctx = ahash_request_ctx(areq);
1311 	size_t digestsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(areq));
1312 	size_t contextsize = digestsize;
1313 	size_t blocksize = crypto_tfm_alg_blocksize(
1314 		crypto_ahash_tfm(crypto_ahash_reqtfm(areq)));
1315 	struct artpec6_crypto_req_common *common = &req_ctx->common;
1316 	struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
1317 	enum artpec6_crypto_variant variant = ac->variant;
1318 	u32 sel_ctx;
1319 	bool ext_ctx = false;
1320 	bool run_hw = false;
1321 	int error = 0;
1322 
1323 	artpec6_crypto_init_dma_operation(common);
1324 
1325 	/* Upload HMAC key, must be first the first packet */
1326 	if (req_ctx->hash_flags & HASH_FLAG_HMAC) {
1327 		if (variant == ARTPEC6_CRYPTO) {
1328 			req_ctx->key_md = FIELD_PREP(A6_CRY_MD_OPER,
1329 						     a6_regk_crypto_dlkey);
1330 		} else {
1331 			req_ctx->key_md = FIELD_PREP(A7_CRY_MD_OPER,
1332 						     a7_regk_crypto_dlkey);
1333 		}
1334 
1335 		/* Copy and pad up the key */
1336 		memcpy(req_ctx->key_buffer, ctx->hmac_key,
1337 		       ctx->hmac_key_length);
1338 		memset(req_ctx->key_buffer + ctx->hmac_key_length, 0,
1339 		       blocksize - ctx->hmac_key_length);
1340 
1341 		error = artpec6_crypto_setup_out_descr(common,
1342 					(void *)&req_ctx->key_md,
1343 					sizeof(req_ctx->key_md), false, false);
1344 		if (error)
1345 			return error;
1346 
1347 		error = artpec6_crypto_setup_out_descr(common,
1348 					req_ctx->key_buffer, blocksize,
1349 					true, false);
1350 		if (error)
1351 			return error;
1352 	}
1353 
1354 	if (!(req_ctx->hash_flags & HASH_FLAG_INIT_CTX)) {
1355 		/* Restore context */
1356 		sel_ctx = regk_crypto_ext;
1357 		ext_ctx = true;
1358 	} else {
1359 		sel_ctx = regk_crypto_init;
1360 	}
1361 
1362 	if (variant == ARTPEC6_CRYPTO) {
1363 		req_ctx->hash_md &= ~A6_CRY_MD_HASH_SEL_CTX;
1364 		req_ctx->hash_md |= FIELD_PREP(A6_CRY_MD_HASH_SEL_CTX, sel_ctx);
1365 
1366 		/* If this is the final round, set the final flag */
1367 		if (req_ctx->hash_flags & HASH_FLAG_FINALIZE)
1368 			req_ctx->hash_md |= A6_CRY_MD_HASH_HMAC_FIN;
1369 	} else {
1370 		req_ctx->hash_md &= ~A7_CRY_MD_HASH_SEL_CTX;
1371 		req_ctx->hash_md |= FIELD_PREP(A7_CRY_MD_HASH_SEL_CTX, sel_ctx);
1372 
1373 		/* If this is the final round, set the final flag */
1374 		if (req_ctx->hash_flags & HASH_FLAG_FINALIZE)
1375 			req_ctx->hash_md |= A7_CRY_MD_HASH_HMAC_FIN;
1376 	}
1377 
1378 	/* Setup up metadata descriptors */
1379 	error = artpec6_crypto_setup_out_descr(common,
1380 				(void *)&req_ctx->hash_md,
1381 				sizeof(req_ctx->hash_md), false, false);
1382 	if (error)
1383 		return error;
1384 
1385 	error = artpec6_crypto_setup_in_descr(common, ac->pad_buffer, 4, false);
1386 	if (error)
1387 		return error;
1388 
1389 	if (ext_ctx) {
1390 		error = artpec6_crypto_setup_out_descr(common,
1391 					req_ctx->digeststate,
1392 					contextsize, false, false);
1393 
1394 		if (error)
1395 			return error;
1396 	}
1397 
1398 	if (req_ctx->hash_flags & HASH_FLAG_UPDATE) {
1399 		size_t done_bytes = 0;
1400 		size_t total_bytes = areq->nbytes + req_ctx->partial_bytes;
1401 		size_t ready_bytes = round_down(total_bytes, blocksize);
1402 		struct artpec6_crypto_walk walk;
1403 
1404 		run_hw = ready_bytes > 0;
1405 		if (req_ctx->partial_bytes && ready_bytes) {
1406 			/* We have a partial buffer and will at least some bytes
1407 			 * to the HW. Empty this partial buffer before tackling
1408 			 * the SG lists
1409 			 */
1410 			memcpy(req_ctx->partial_buffer_out,
1411 				req_ctx->partial_buffer,
1412 				req_ctx->partial_bytes);
1413 
1414 			error = artpec6_crypto_setup_out_descr(common,
1415 						req_ctx->partial_buffer_out,
1416 						req_ctx->partial_bytes,
1417 						false, true);
1418 			if (error)
1419 				return error;
1420 
1421 			/* Reset partial buffer */
1422 			done_bytes += req_ctx->partial_bytes;
1423 			req_ctx->partial_bytes = 0;
1424 		}
1425 
1426 		artpec6_crypto_walk_init(&walk, areq->src);
1427 
1428 		error = artpec6_crypto_setup_sg_descrs_out(common, &walk,
1429 							   ready_bytes -
1430 							   done_bytes);
1431 		if (error)
1432 			return error;
1433 
1434 		if (walk.sg) {
1435 			size_t sg_skip = ready_bytes - done_bytes;
1436 			size_t sg_rem = areq->nbytes - sg_skip;
1437 
1438 			sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
1439 					   req_ctx->partial_buffer +
1440 					   req_ctx->partial_bytes,
1441 					   sg_rem, sg_skip);
1442 
1443 			req_ctx->partial_bytes += sg_rem;
1444 		}
1445 
1446 		req_ctx->digcnt += ready_bytes;
1447 		req_ctx->hash_flags &= ~(HASH_FLAG_UPDATE);
1448 	}
1449 
1450 	/* Finalize */
1451 	if (req_ctx->hash_flags & HASH_FLAG_FINALIZE) {
1452 		size_t hash_pad_len;
1453 		u64 digest_bits;
1454 		u32 oper;
1455 
1456 		if (variant == ARTPEC6_CRYPTO)
1457 			oper = FIELD_GET(A6_CRY_MD_OPER, req_ctx->hash_md);
1458 		else
1459 			oper = FIELD_GET(A7_CRY_MD_OPER, req_ctx->hash_md);
1460 
1461 		/* Write out the partial buffer if present */
1462 		if (req_ctx->partial_bytes) {
1463 			memcpy(req_ctx->partial_buffer_out,
1464 			       req_ctx->partial_buffer,
1465 			       req_ctx->partial_bytes);
1466 			error = artpec6_crypto_setup_out_descr(common,
1467 						req_ctx->partial_buffer_out,
1468 						req_ctx->partial_bytes,
1469 						false, true);
1470 			if (error)
1471 				return error;
1472 
1473 			req_ctx->digcnt += req_ctx->partial_bytes;
1474 			req_ctx->partial_bytes = 0;
1475 		}
1476 
1477 		if (req_ctx->hash_flags & HASH_FLAG_HMAC)
1478 			digest_bits = 8 * (req_ctx->digcnt + blocksize);
1479 		else
1480 			digest_bits = 8 * req_ctx->digcnt;
1481 
1482 		/* Add the hash pad */
1483 		hash_pad_len = create_hash_pad(oper, req_ctx->pad_buffer,
1484 					       req_ctx->digcnt, digest_bits);
1485 		error = artpec6_crypto_setup_out_descr(common,
1486 						      req_ctx->pad_buffer,
1487 						      hash_pad_len, false,
1488 						      true);
1489 		req_ctx->digcnt = 0;
1490 
1491 		if (error)
1492 			return error;
1493 
1494 		/* Descriptor for the final result */
1495 		error = artpec6_crypto_setup_in_descr(common, areq->result,
1496 						      digestsize,
1497 						      true);
1498 		if (error)
1499 			return error;
1500 
1501 	} else { /* This is not the final operation for this request */
1502 		if (!run_hw)
1503 			return ARTPEC6_CRYPTO_PREPARE_HASH_NO_START;
1504 
1505 		/* Save the result to the context */
1506 		error = artpec6_crypto_setup_in_descr(common,
1507 						      req_ctx->digeststate,
1508 						      contextsize, false);
1509 		if (error)
1510 			return error;
1511 		/* fall through */
1512 	}
1513 
1514 	req_ctx->hash_flags &= ~(HASH_FLAG_INIT_CTX | HASH_FLAG_UPDATE |
1515 				 HASH_FLAG_FINALIZE);
1516 
1517 	error = artpec6_crypto_terminate_in_descrs(common);
1518 	if (error)
1519 		return error;
1520 
1521 	error = artpec6_crypto_terminate_out_descrs(common);
1522 	if (error)
1523 		return error;
1524 
1525 	error = artpec6_crypto_dma_map_descs(common);
1526 	if (error)
1527 		return error;
1528 
1529 	return ARTPEC6_CRYPTO_PREPARE_HASH_START;
1530 }
1531 
1532 
1533 static int artpec6_crypto_aes_ecb_init(struct crypto_skcipher *tfm)
1534 {
1535 	struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(tfm);
1536 
1537 	tfm->reqsize = sizeof(struct artpec6_crypto_request_context);
1538 	ctx->crypto_type = ARTPEC6_CRYPTO_CIPHER_AES_ECB;
1539 
1540 	return 0;
1541 }
1542 
1543 static int artpec6_crypto_aes_ctr_init(struct crypto_skcipher *tfm)
1544 {
1545 	struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(tfm);
1546 
1547 	ctx->fallback =
1548 		crypto_alloc_sync_skcipher(crypto_tfm_alg_name(&tfm->base),
1549 					   0, CRYPTO_ALG_NEED_FALLBACK);
1550 	if (IS_ERR(ctx->fallback))
1551 		return PTR_ERR(ctx->fallback);
1552 
1553 	tfm->reqsize = sizeof(struct artpec6_crypto_request_context);
1554 	ctx->crypto_type = ARTPEC6_CRYPTO_CIPHER_AES_CTR;
1555 
1556 	return 0;
1557 }
1558 
1559 static int artpec6_crypto_aes_cbc_init(struct crypto_skcipher *tfm)
1560 {
1561 	struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(tfm);
1562 
1563 	tfm->reqsize = sizeof(struct artpec6_crypto_request_context);
1564 	ctx->crypto_type = ARTPEC6_CRYPTO_CIPHER_AES_CBC;
1565 
1566 	return 0;
1567 }
1568 
1569 static int artpec6_crypto_aes_xts_init(struct crypto_skcipher *tfm)
1570 {
1571 	struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(tfm);
1572 
1573 	tfm->reqsize = sizeof(struct artpec6_crypto_request_context);
1574 	ctx->crypto_type = ARTPEC6_CRYPTO_CIPHER_AES_XTS;
1575 
1576 	return 0;
1577 }
1578 
1579 static void artpec6_crypto_aes_exit(struct crypto_skcipher *tfm)
1580 {
1581 	struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(tfm);
1582 
1583 	memset(ctx, 0, sizeof(*ctx));
1584 }
1585 
1586 static void artpec6_crypto_aes_ctr_exit(struct crypto_skcipher *tfm)
1587 {
1588 	struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(tfm);
1589 
1590 	crypto_free_sync_skcipher(ctx->fallback);
1591 	artpec6_crypto_aes_exit(tfm);
1592 }
1593 
1594 static int
1595 artpec6_crypto_cipher_set_key(struct crypto_skcipher *cipher, const u8 *key,
1596 			      unsigned int keylen)
1597 {
1598 	struct artpec6_cryptotfm_context *ctx =
1599 		crypto_skcipher_ctx(cipher);
1600 
1601 	switch (keylen) {
1602 	case 16:
1603 	case 24:
1604 	case 32:
1605 		break;
1606 	default:
1607 		return -EINVAL;
1608 	}
1609 
1610 	memcpy(ctx->aes_key, key, keylen);
1611 	ctx->key_length = keylen;
1612 	return 0;
1613 }
1614 
1615 static int
1616 artpec6_crypto_xts_set_key(struct crypto_skcipher *cipher, const u8 *key,
1617 			      unsigned int keylen)
1618 {
1619 	struct artpec6_cryptotfm_context *ctx =
1620 		crypto_skcipher_ctx(cipher);
1621 	int ret;
1622 
1623 	ret = xts_check_key(&cipher->base, key, keylen);
1624 	if (ret)
1625 		return ret;
1626 
1627 	switch (keylen) {
1628 	case 32:
1629 	case 48:
1630 	case 64:
1631 		break;
1632 	default:
1633 		return -EINVAL;
1634 	}
1635 
1636 	memcpy(ctx->aes_key, key, keylen);
1637 	ctx->key_length = keylen;
1638 	return 0;
1639 }
1640 
1641 /** artpec6_crypto_process_crypto - Prepare an async block cipher crypto request
1642  *
1643  * @req: The asynch request to process
1644  *
1645  * @return 0 if the dma job was successfully prepared
1646  *	  <0 on error
1647  *
1648  * This function sets up the PDMA descriptors for a block cipher request.
1649  *
1650  * The required padding is added for AES-CTR using a statically defined
1651  * buffer.
1652  *
1653  * The PDMA descriptor list will be as follows:
1654  *
1655  * OUT: [KEY_MD][KEY][EOP]<CIPHER_MD>[IV]<data_0>...[data_n][AES-CTR_pad]<eop>
1656  * IN:  <CIPHER_MD><data_0>...[data_n]<intr>
1657  *
1658  */
1659 static int artpec6_crypto_prepare_crypto(struct skcipher_request *areq)
1660 {
1661 	int ret;
1662 	struct artpec6_crypto_walk walk;
1663 	struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(areq);
1664 	struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(cipher);
1665 	struct artpec6_crypto_request_context *req_ctx = NULL;
1666 	size_t iv_len = crypto_skcipher_ivsize(cipher);
1667 	struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
1668 	enum artpec6_crypto_variant variant = ac->variant;
1669 	struct artpec6_crypto_req_common *common;
1670 	bool cipher_decr = false;
1671 	size_t cipher_klen;
1672 	u32 cipher_len = 0; /* Same as regk_crypto_key_128 for NULL crypto */
1673 	u32 oper;
1674 
1675 	req_ctx = skcipher_request_ctx(areq);
1676 	common = &req_ctx->common;
1677 
1678 	artpec6_crypto_init_dma_operation(common);
1679 
1680 	if (variant == ARTPEC6_CRYPTO)
1681 		ctx->key_md = FIELD_PREP(A6_CRY_MD_OPER, a6_regk_crypto_dlkey);
1682 	else
1683 		ctx->key_md = FIELD_PREP(A7_CRY_MD_OPER, a7_regk_crypto_dlkey);
1684 
1685 	ret = artpec6_crypto_setup_out_descr(common, (void *)&ctx->key_md,
1686 					     sizeof(ctx->key_md), false, false);
1687 	if (ret)
1688 		return ret;
1689 
1690 	ret = artpec6_crypto_setup_out_descr(common, ctx->aes_key,
1691 					      ctx->key_length, true, false);
1692 	if (ret)
1693 		return ret;
1694 
1695 	req_ctx->cipher_md = 0;
1696 
1697 	if (ctx->crypto_type == ARTPEC6_CRYPTO_CIPHER_AES_XTS)
1698 		cipher_klen = ctx->key_length/2;
1699 	else
1700 		cipher_klen =  ctx->key_length;
1701 
1702 	/* Metadata */
1703 	switch (cipher_klen) {
1704 	case 16:
1705 		cipher_len = regk_crypto_key_128;
1706 		break;
1707 	case 24:
1708 		cipher_len = regk_crypto_key_192;
1709 		break;
1710 	case 32:
1711 		cipher_len = regk_crypto_key_256;
1712 		break;
1713 	default:
1714 		pr_err("%s: Invalid key length %d!\n",
1715 			MODULE_NAME, ctx->key_length);
1716 		return -EINVAL;
1717 	}
1718 
1719 	switch (ctx->crypto_type) {
1720 	case ARTPEC6_CRYPTO_CIPHER_AES_ECB:
1721 		oper = regk_crypto_aes_ecb;
1722 		cipher_decr = req_ctx->decrypt;
1723 		break;
1724 
1725 	case ARTPEC6_CRYPTO_CIPHER_AES_CBC:
1726 		oper = regk_crypto_aes_cbc;
1727 		cipher_decr = req_ctx->decrypt;
1728 		break;
1729 
1730 	case ARTPEC6_CRYPTO_CIPHER_AES_CTR:
1731 		oper = regk_crypto_aes_ctr;
1732 		cipher_decr = false;
1733 		break;
1734 
1735 	case ARTPEC6_CRYPTO_CIPHER_AES_XTS:
1736 		oper = regk_crypto_aes_xts;
1737 		cipher_decr = req_ctx->decrypt;
1738 
1739 		if (variant == ARTPEC6_CRYPTO)
1740 			req_ctx->cipher_md |= A6_CRY_MD_CIPHER_DSEQ;
1741 		else
1742 			req_ctx->cipher_md |= A7_CRY_MD_CIPHER_DSEQ;
1743 		break;
1744 
1745 	default:
1746 		pr_err("%s: Invalid cipher mode %d!\n",
1747 			MODULE_NAME, ctx->crypto_type);
1748 		return -EINVAL;
1749 	}
1750 
1751 	if (variant == ARTPEC6_CRYPTO) {
1752 		req_ctx->cipher_md |= FIELD_PREP(A6_CRY_MD_OPER, oper);
1753 		req_ctx->cipher_md |= FIELD_PREP(A6_CRY_MD_CIPHER_LEN,
1754 						 cipher_len);
1755 		if (cipher_decr)
1756 			req_ctx->cipher_md |= A6_CRY_MD_CIPHER_DECR;
1757 	} else {
1758 		req_ctx->cipher_md |= FIELD_PREP(A7_CRY_MD_OPER, oper);
1759 		req_ctx->cipher_md |= FIELD_PREP(A7_CRY_MD_CIPHER_LEN,
1760 						 cipher_len);
1761 		if (cipher_decr)
1762 			req_ctx->cipher_md |= A7_CRY_MD_CIPHER_DECR;
1763 	}
1764 
1765 	ret = artpec6_crypto_setup_out_descr(common,
1766 					    &req_ctx->cipher_md,
1767 					    sizeof(req_ctx->cipher_md),
1768 					    false, false);
1769 	if (ret)
1770 		return ret;
1771 
1772 	ret = artpec6_crypto_setup_in_descr(common, ac->pad_buffer, 4, false);
1773 	if (ret)
1774 		return ret;
1775 
1776 	if (iv_len) {
1777 		ret = artpec6_crypto_setup_out_descr(common, areq->iv, iv_len,
1778 						     false, false);
1779 		if (ret)
1780 			return ret;
1781 	}
1782 	/* Data out */
1783 	artpec6_crypto_walk_init(&walk, areq->src);
1784 	ret = artpec6_crypto_setup_sg_descrs_out(common, &walk, areq->cryptlen);
1785 	if (ret)
1786 		return ret;
1787 
1788 	/* Data in */
1789 	artpec6_crypto_walk_init(&walk, areq->dst);
1790 	ret = artpec6_crypto_setup_sg_descrs_in(common, &walk, areq->cryptlen);
1791 	if (ret)
1792 		return ret;
1793 
1794 	/* CTR-mode padding required by the HW. */
1795 	if (ctx->crypto_type == ARTPEC6_CRYPTO_CIPHER_AES_CTR ||
1796 	    ctx->crypto_type == ARTPEC6_CRYPTO_CIPHER_AES_XTS) {
1797 		size_t pad = ALIGN(areq->cryptlen, AES_BLOCK_SIZE) -
1798 			     areq->cryptlen;
1799 
1800 		if (pad) {
1801 			ret = artpec6_crypto_setup_out_descr(common,
1802 							     ac->pad_buffer,
1803 							     pad, false, false);
1804 			if (ret)
1805 				return ret;
1806 
1807 			ret = artpec6_crypto_setup_in_descr(common,
1808 							    ac->pad_buffer, pad,
1809 							    false);
1810 			if (ret)
1811 				return ret;
1812 		}
1813 	}
1814 
1815 	ret = artpec6_crypto_terminate_out_descrs(common);
1816 	if (ret)
1817 		return ret;
1818 
1819 	ret = artpec6_crypto_terminate_in_descrs(common);
1820 	if (ret)
1821 		return ret;
1822 
1823 	return artpec6_crypto_dma_map_descs(common);
1824 }
1825 
1826 static int artpec6_crypto_prepare_aead(struct aead_request *areq)
1827 {
1828 	size_t count;
1829 	int ret;
1830 	size_t input_length;
1831 	struct artpec6_cryptotfm_context *ctx = crypto_tfm_ctx(areq->base.tfm);
1832 	struct artpec6_crypto_aead_req_ctx *req_ctx = aead_request_ctx(areq);
1833 	struct crypto_aead *cipher = crypto_aead_reqtfm(areq);
1834 	struct artpec6_crypto_req_common *common = &req_ctx->common;
1835 	struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
1836 	enum artpec6_crypto_variant variant = ac->variant;
1837 	u32 md_cipher_len;
1838 
1839 	artpec6_crypto_init_dma_operation(common);
1840 
1841 	/* Key */
1842 	if (variant == ARTPEC6_CRYPTO) {
1843 		ctx->key_md = FIELD_PREP(A6_CRY_MD_OPER,
1844 					 a6_regk_crypto_dlkey);
1845 	} else {
1846 		ctx->key_md = FIELD_PREP(A7_CRY_MD_OPER,
1847 					 a7_regk_crypto_dlkey);
1848 	}
1849 	ret = artpec6_crypto_setup_out_descr(common, (void *)&ctx->key_md,
1850 					     sizeof(ctx->key_md), false, false);
1851 	if (ret)
1852 		return ret;
1853 
1854 	ret = artpec6_crypto_setup_out_descr(common, ctx->aes_key,
1855 					     ctx->key_length, true, false);
1856 	if (ret)
1857 		return ret;
1858 
1859 	req_ctx->cipher_md = 0;
1860 
1861 	switch (ctx->key_length) {
1862 	case 16:
1863 		md_cipher_len = regk_crypto_key_128;
1864 		break;
1865 	case 24:
1866 		md_cipher_len = regk_crypto_key_192;
1867 		break;
1868 	case 32:
1869 		md_cipher_len = regk_crypto_key_256;
1870 		break;
1871 	default:
1872 		return -EINVAL;
1873 	}
1874 
1875 	if (variant == ARTPEC6_CRYPTO) {
1876 		req_ctx->cipher_md |= FIELD_PREP(A6_CRY_MD_OPER,
1877 						 regk_crypto_aes_gcm);
1878 		req_ctx->cipher_md |= FIELD_PREP(A6_CRY_MD_CIPHER_LEN,
1879 						 md_cipher_len);
1880 		if (req_ctx->decrypt)
1881 			req_ctx->cipher_md |= A6_CRY_MD_CIPHER_DECR;
1882 	} else {
1883 		req_ctx->cipher_md |= FIELD_PREP(A7_CRY_MD_OPER,
1884 						 regk_crypto_aes_gcm);
1885 		req_ctx->cipher_md |= FIELD_PREP(A7_CRY_MD_CIPHER_LEN,
1886 						 md_cipher_len);
1887 		if (req_ctx->decrypt)
1888 			req_ctx->cipher_md |= A7_CRY_MD_CIPHER_DECR;
1889 	}
1890 
1891 	ret = artpec6_crypto_setup_out_descr(common,
1892 					    (void *) &req_ctx->cipher_md,
1893 					    sizeof(req_ctx->cipher_md), false,
1894 					    false);
1895 	if (ret)
1896 		return ret;
1897 
1898 	ret = artpec6_crypto_setup_in_descr(common, ac->pad_buffer, 4, false);
1899 	if (ret)
1900 		return ret;
1901 
1902 	/* For the decryption, cryptlen includes the tag. */
1903 	input_length = areq->cryptlen;
1904 	if (req_ctx->decrypt)
1905 		input_length -= crypto_aead_authsize(cipher);
1906 
1907 	/* Prepare the context buffer */
1908 	req_ctx->hw_ctx.aad_length_bits =
1909 		__cpu_to_be64(8*areq->assoclen);
1910 
1911 	req_ctx->hw_ctx.text_length_bits =
1912 		__cpu_to_be64(8*input_length);
1913 
1914 	memcpy(req_ctx->hw_ctx.J0, areq->iv, crypto_aead_ivsize(cipher));
1915 	// The HW omits the initial increment of the counter field.
1916 	memcpy(req_ctx->hw_ctx.J0 + GCM_AES_IV_SIZE, "\x00\x00\x00\x01", 4);
1917 
1918 	ret = artpec6_crypto_setup_out_descr(common, &req_ctx->hw_ctx,
1919 		sizeof(struct artpec6_crypto_aead_hw_ctx), false, false);
1920 	if (ret)
1921 		return ret;
1922 
1923 	{
1924 		struct artpec6_crypto_walk walk;
1925 
1926 		artpec6_crypto_walk_init(&walk, areq->src);
1927 
1928 		/* Associated data */
1929 		count = areq->assoclen;
1930 		ret = artpec6_crypto_setup_sg_descrs_out(common, &walk, count);
1931 		if (ret)
1932 			return ret;
1933 
1934 		if (!IS_ALIGNED(areq->assoclen, 16)) {
1935 			size_t assoc_pad = 16 - (areq->assoclen % 16);
1936 			/* The HW mandates zero padding here */
1937 			ret = artpec6_crypto_setup_out_descr(common,
1938 							     ac->zero_buffer,
1939 							     assoc_pad, false,
1940 							     false);
1941 			if (ret)
1942 				return ret;
1943 		}
1944 
1945 		/* Data to crypto */
1946 		count = input_length;
1947 		ret = artpec6_crypto_setup_sg_descrs_out(common, &walk, count);
1948 		if (ret)
1949 			return ret;
1950 
1951 		if (!IS_ALIGNED(input_length, 16)) {
1952 			size_t crypto_pad = 16 - (input_length % 16);
1953 			/* The HW mandates zero padding here */
1954 			ret = artpec6_crypto_setup_out_descr(common,
1955 							     ac->zero_buffer,
1956 							     crypto_pad,
1957 							     false,
1958 							     false);
1959 			if (ret)
1960 				return ret;
1961 		}
1962 	}
1963 
1964 	/* Data from crypto */
1965 	{
1966 		struct artpec6_crypto_walk walk;
1967 		size_t output_len = areq->cryptlen;
1968 
1969 		if (req_ctx->decrypt)
1970 			output_len -= crypto_aead_authsize(cipher);
1971 
1972 		artpec6_crypto_walk_init(&walk, areq->dst);
1973 
1974 		/* skip associated data in the output */
1975 		count = artpec6_crypto_walk_advance(&walk, areq->assoclen);
1976 		if (count)
1977 			return -EINVAL;
1978 
1979 		count = output_len;
1980 		ret = artpec6_crypto_setup_sg_descrs_in(common, &walk, count);
1981 		if (ret)
1982 			return ret;
1983 
1984 		/* Put padding between the cryptotext and the auth tag */
1985 		if (!IS_ALIGNED(output_len, 16)) {
1986 			size_t crypto_pad = 16 - (output_len % 16);
1987 
1988 			ret = artpec6_crypto_setup_in_descr(common,
1989 							    ac->pad_buffer,
1990 							    crypto_pad, false);
1991 			if (ret)
1992 				return ret;
1993 		}
1994 
1995 		/* The authentication tag shall follow immediately after
1996 		 * the output ciphertext. For decryption it is put in a context
1997 		 * buffer for later compare against the input tag.
1998 		 */
1999 
2000 		if (req_ctx->decrypt) {
2001 			ret = artpec6_crypto_setup_in_descr(common,
2002 				req_ctx->decryption_tag, AES_BLOCK_SIZE, false);
2003 			if (ret)
2004 				return ret;
2005 
2006 		} else {
2007 			/* For encryption the requested tag size may be smaller
2008 			 * than the hardware's generated tag.
2009 			 */
2010 			size_t authsize = crypto_aead_authsize(cipher);
2011 
2012 			ret = artpec6_crypto_setup_sg_descrs_in(common, &walk,
2013 								authsize);
2014 			if (ret)
2015 				return ret;
2016 
2017 			if (authsize < AES_BLOCK_SIZE) {
2018 				count = AES_BLOCK_SIZE - authsize;
2019 				ret = artpec6_crypto_setup_in_descr(common,
2020 					ac->pad_buffer,
2021 					count, false);
2022 				if (ret)
2023 					return ret;
2024 			}
2025 		}
2026 
2027 	}
2028 
2029 	ret = artpec6_crypto_terminate_in_descrs(common);
2030 	if (ret)
2031 		return ret;
2032 
2033 	ret = artpec6_crypto_terminate_out_descrs(common);
2034 	if (ret)
2035 		return ret;
2036 
2037 	return artpec6_crypto_dma_map_descs(common);
2038 }
2039 
2040 static void artpec6_crypto_process_queue(struct artpec6_crypto *ac,
2041 	    struct list_head *completions)
2042 {
2043 	struct artpec6_crypto_req_common *req;
2044 
2045 	while (!list_empty(&ac->queue) && !artpec6_crypto_busy()) {
2046 		req = list_first_entry(&ac->queue,
2047 				       struct artpec6_crypto_req_common,
2048 				       list);
2049 		list_move_tail(&req->list, &ac->pending);
2050 		artpec6_crypto_start_dma(req);
2051 
2052 		list_add_tail(&req->complete_in_progress, completions);
2053 	}
2054 
2055 	/*
2056 	 * In some cases, the hardware can raise an in_eop_flush interrupt
2057 	 * before actually updating the status, so we have an timer which will
2058 	 * recheck the status on timeout.  Since the cases are expected to be
2059 	 * very rare, we use a relatively large timeout value.  There should be
2060 	 * no noticeable negative effect if we timeout spuriously.
2061 	 */
2062 	if (ac->pending_count)
2063 		mod_timer(&ac->timer, jiffies + msecs_to_jiffies(100));
2064 	else
2065 		del_timer(&ac->timer);
2066 }
2067 
2068 static void artpec6_crypto_timeout(struct timer_list *t)
2069 {
2070 	struct artpec6_crypto *ac = from_timer(ac, t, timer);
2071 
2072 	dev_info_ratelimited(artpec6_crypto_dev, "timeout\n");
2073 
2074 	tasklet_schedule(&ac->task);
2075 }
2076 
2077 static void artpec6_crypto_task(unsigned long data)
2078 {
2079 	struct artpec6_crypto *ac = (struct artpec6_crypto *)data;
2080 	struct artpec6_crypto_req_common *req;
2081 	struct artpec6_crypto_req_common *n;
2082 	struct list_head complete_done;
2083 	struct list_head complete_in_progress;
2084 
2085 	INIT_LIST_HEAD(&complete_done);
2086 	INIT_LIST_HEAD(&complete_in_progress);
2087 
2088 	if (list_empty(&ac->pending)) {
2089 		pr_debug("Spurious IRQ\n");
2090 		return;
2091 	}
2092 
2093 	spin_lock_bh(&ac->queue_lock);
2094 
2095 	list_for_each_entry_safe(req, n, &ac->pending, list) {
2096 		struct artpec6_crypto_dma_descriptors *dma = req->dma;
2097 		u32 stat;
2098 		dma_addr_t stataddr;
2099 
2100 		stataddr = dma->stat_dma_addr + 4 * (req->dma->in_cnt - 1);
2101 		dma_sync_single_for_cpu(artpec6_crypto_dev,
2102 					stataddr,
2103 					4,
2104 					DMA_BIDIRECTIONAL);
2105 
2106 		stat = req->dma->stat[req->dma->in_cnt-1];
2107 
2108 		/* A non-zero final status descriptor indicates
2109 		 * this job has finished.
2110 		 */
2111 		pr_debug("Request %p status is %X\n", req, stat);
2112 		if (!stat)
2113 			break;
2114 
2115 		/* Allow testing of timeout handling with fault injection */
2116 #ifdef CONFIG_FAULT_INJECTION
2117 		if (should_fail(&artpec6_crypto_fail_status_read, 1))
2118 			continue;
2119 #endif
2120 
2121 		pr_debug("Completing request %p\n", req);
2122 
2123 		list_move_tail(&req->list, &complete_done);
2124 
2125 		ac->pending_count--;
2126 	}
2127 
2128 	artpec6_crypto_process_queue(ac, &complete_in_progress);
2129 
2130 	spin_unlock_bh(&ac->queue_lock);
2131 
2132 	/* Perform the completion callbacks without holding the queue lock
2133 	 * to allow new request submissions from the callbacks.
2134 	 */
2135 	list_for_each_entry_safe(req, n, &complete_done, list) {
2136 		artpec6_crypto_dma_unmap_all(req);
2137 		artpec6_crypto_copy_bounce_buffers(req);
2138 		artpec6_crypto_common_destroy(req);
2139 
2140 		req->complete(req->req);
2141 	}
2142 
2143 	list_for_each_entry_safe(req, n, &complete_in_progress,
2144 				 complete_in_progress) {
2145 		req->req->complete(req->req, -EINPROGRESS);
2146 	}
2147 }
2148 
2149 static void artpec6_crypto_complete_crypto(struct crypto_async_request *req)
2150 {
2151 	req->complete(req, 0);
2152 }
2153 
2154 static void
2155 artpec6_crypto_complete_cbc_decrypt(struct crypto_async_request *req)
2156 {
2157 	struct skcipher_request *cipher_req = container_of(req,
2158 		struct skcipher_request, base);
2159 
2160 	scatterwalk_map_and_copy(cipher_req->iv, cipher_req->src,
2161 				 cipher_req->cryptlen - AES_BLOCK_SIZE,
2162 				 AES_BLOCK_SIZE, 0);
2163 	req->complete(req, 0);
2164 }
2165 
2166 static void
2167 artpec6_crypto_complete_cbc_encrypt(struct crypto_async_request *req)
2168 {
2169 	struct skcipher_request *cipher_req = container_of(req,
2170 		struct skcipher_request, base);
2171 
2172 	scatterwalk_map_and_copy(cipher_req->iv, cipher_req->dst,
2173 				 cipher_req->cryptlen - AES_BLOCK_SIZE,
2174 				 AES_BLOCK_SIZE, 0);
2175 	req->complete(req, 0);
2176 }
2177 
2178 static void artpec6_crypto_complete_aead(struct crypto_async_request *req)
2179 {
2180 	int result = 0;
2181 
2182 	/* Verify GCM hashtag. */
2183 	struct aead_request *areq = container_of(req,
2184 		struct aead_request, base);
2185 	struct crypto_aead *aead = crypto_aead_reqtfm(areq);
2186 	struct artpec6_crypto_aead_req_ctx *req_ctx = aead_request_ctx(areq);
2187 
2188 	if (req_ctx->decrypt) {
2189 		u8 input_tag[AES_BLOCK_SIZE];
2190 		unsigned int authsize = crypto_aead_authsize(aead);
2191 
2192 		sg_pcopy_to_buffer(areq->src,
2193 				   sg_nents(areq->src),
2194 				   input_tag,
2195 				   authsize,
2196 				   areq->assoclen + areq->cryptlen -
2197 				   authsize);
2198 
2199 		if (crypto_memneq(req_ctx->decryption_tag,
2200 				  input_tag,
2201 				  authsize)) {
2202 			pr_debug("***EBADMSG:\n");
2203 			print_hex_dump_debug("ref:", DUMP_PREFIX_ADDRESS, 32, 1,
2204 					     input_tag, authsize, true);
2205 			print_hex_dump_debug("out:", DUMP_PREFIX_ADDRESS, 32, 1,
2206 					     req_ctx->decryption_tag,
2207 					     authsize, true);
2208 
2209 			result = -EBADMSG;
2210 		}
2211 	}
2212 
2213 	req->complete(req, result);
2214 }
2215 
2216 static void artpec6_crypto_complete_hash(struct crypto_async_request *req)
2217 {
2218 	req->complete(req, 0);
2219 }
2220 
2221 
2222 /*------------------- Hash functions -----------------------------------------*/
2223 static int
2224 artpec6_crypto_hash_set_key(struct crypto_ahash *tfm,
2225 		    const u8 *key, unsigned int keylen)
2226 {
2227 	struct artpec6_hashalg_context *tfm_ctx = crypto_tfm_ctx(&tfm->base);
2228 	size_t blocksize;
2229 	int ret;
2230 
2231 	if (!keylen) {
2232 		pr_err("Invalid length (%d) of HMAC key\n",
2233 			keylen);
2234 		return -EINVAL;
2235 	}
2236 
2237 	memset(tfm_ctx->hmac_key, 0, sizeof(tfm_ctx->hmac_key));
2238 
2239 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2240 
2241 	if (keylen > blocksize) {
2242 		tfm_ctx->hmac_key_length = blocksize;
2243 
2244 		ret = crypto_shash_tfm_digest(tfm_ctx->child_hash, key, keylen,
2245 					      tfm_ctx->hmac_key);
2246 		if (ret)
2247 			return ret;
2248 	} else {
2249 		memcpy(tfm_ctx->hmac_key, key, keylen);
2250 		tfm_ctx->hmac_key_length = keylen;
2251 	}
2252 
2253 	return 0;
2254 }
2255 
2256 static int
2257 artpec6_crypto_init_hash(struct ahash_request *req, u8 type, int hmac)
2258 {
2259 	struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
2260 	enum artpec6_crypto_variant variant = ac->variant;
2261 	struct artpec6_hash_request_context *req_ctx = ahash_request_ctx(req);
2262 	u32 oper;
2263 
2264 	memset(req_ctx, 0, sizeof(*req_ctx));
2265 
2266 	req_ctx->hash_flags = HASH_FLAG_INIT_CTX;
2267 	if (hmac)
2268 		req_ctx->hash_flags |= (HASH_FLAG_HMAC | HASH_FLAG_UPDATE_KEY);
2269 
2270 	switch (type) {
2271 	case ARTPEC6_CRYPTO_HASH_SHA1:
2272 		oper = hmac ? regk_crypto_hmac_sha1 : regk_crypto_sha1;
2273 		break;
2274 	case ARTPEC6_CRYPTO_HASH_SHA256:
2275 		oper = hmac ? regk_crypto_hmac_sha256 : regk_crypto_sha256;
2276 		break;
2277 	default:
2278 		pr_err("%s: Unsupported hash type 0x%x\n", MODULE_NAME, type);
2279 		return -EINVAL;
2280 	}
2281 
2282 	if (variant == ARTPEC6_CRYPTO)
2283 		req_ctx->hash_md = FIELD_PREP(A6_CRY_MD_OPER, oper);
2284 	else
2285 		req_ctx->hash_md = FIELD_PREP(A7_CRY_MD_OPER, oper);
2286 
2287 	return 0;
2288 }
2289 
2290 static int artpec6_crypto_prepare_submit_hash(struct ahash_request *req)
2291 {
2292 	struct artpec6_hash_request_context *req_ctx = ahash_request_ctx(req);
2293 	int ret;
2294 
2295 	if (!req_ctx->common.dma) {
2296 		ret = artpec6_crypto_common_init(&req_ctx->common,
2297 					  &req->base,
2298 					  artpec6_crypto_complete_hash,
2299 					  NULL, 0);
2300 
2301 		if (ret)
2302 			return ret;
2303 	}
2304 
2305 	ret = artpec6_crypto_prepare_hash(req);
2306 	switch (ret) {
2307 	case ARTPEC6_CRYPTO_PREPARE_HASH_START:
2308 		ret = artpec6_crypto_submit(&req_ctx->common);
2309 		break;
2310 
2311 	case ARTPEC6_CRYPTO_PREPARE_HASH_NO_START:
2312 		ret = 0;
2313 		fallthrough;
2314 
2315 	default:
2316 		artpec6_crypto_common_destroy(&req_ctx->common);
2317 		break;
2318 	}
2319 
2320 	return ret;
2321 }
2322 
2323 static int artpec6_crypto_hash_final(struct ahash_request *req)
2324 {
2325 	struct artpec6_hash_request_context *req_ctx = ahash_request_ctx(req);
2326 
2327 	req_ctx->hash_flags |= HASH_FLAG_FINALIZE;
2328 
2329 	return artpec6_crypto_prepare_submit_hash(req);
2330 }
2331 
2332 static int artpec6_crypto_hash_update(struct ahash_request *req)
2333 {
2334 	struct artpec6_hash_request_context *req_ctx = ahash_request_ctx(req);
2335 
2336 	req_ctx->hash_flags |= HASH_FLAG_UPDATE;
2337 
2338 	return artpec6_crypto_prepare_submit_hash(req);
2339 }
2340 
2341 static int artpec6_crypto_sha1_init(struct ahash_request *req)
2342 {
2343 	return artpec6_crypto_init_hash(req, ARTPEC6_CRYPTO_HASH_SHA1, 0);
2344 }
2345 
2346 static int artpec6_crypto_sha1_digest(struct ahash_request *req)
2347 {
2348 	struct artpec6_hash_request_context *req_ctx = ahash_request_ctx(req);
2349 
2350 	artpec6_crypto_init_hash(req, ARTPEC6_CRYPTO_HASH_SHA1, 0);
2351 
2352 	req_ctx->hash_flags |= HASH_FLAG_UPDATE | HASH_FLAG_FINALIZE;
2353 
2354 	return artpec6_crypto_prepare_submit_hash(req);
2355 }
2356 
2357 static int artpec6_crypto_sha256_init(struct ahash_request *req)
2358 {
2359 	return artpec6_crypto_init_hash(req, ARTPEC6_CRYPTO_HASH_SHA256, 0);
2360 }
2361 
2362 static int artpec6_crypto_sha256_digest(struct ahash_request *req)
2363 {
2364 	struct artpec6_hash_request_context *req_ctx = ahash_request_ctx(req);
2365 
2366 	artpec6_crypto_init_hash(req, ARTPEC6_CRYPTO_HASH_SHA256, 0);
2367 	req_ctx->hash_flags |= HASH_FLAG_UPDATE | HASH_FLAG_FINALIZE;
2368 
2369 	return artpec6_crypto_prepare_submit_hash(req);
2370 }
2371 
2372 static int artpec6_crypto_hmac_sha256_init(struct ahash_request *req)
2373 {
2374 	return artpec6_crypto_init_hash(req, ARTPEC6_CRYPTO_HASH_SHA256, 1);
2375 }
2376 
2377 static int artpec6_crypto_hmac_sha256_digest(struct ahash_request *req)
2378 {
2379 	struct artpec6_hash_request_context *req_ctx = ahash_request_ctx(req);
2380 
2381 	artpec6_crypto_init_hash(req, ARTPEC6_CRYPTO_HASH_SHA256, 1);
2382 	req_ctx->hash_flags |= HASH_FLAG_UPDATE | HASH_FLAG_FINALIZE;
2383 
2384 	return artpec6_crypto_prepare_submit_hash(req);
2385 }
2386 
2387 static int artpec6_crypto_ahash_init_common(struct crypto_tfm *tfm,
2388 				    const char *base_hash_name)
2389 {
2390 	struct artpec6_hashalg_context *tfm_ctx = crypto_tfm_ctx(tfm);
2391 
2392 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2393 				 sizeof(struct artpec6_hash_request_context));
2394 	memset(tfm_ctx, 0, sizeof(*tfm_ctx));
2395 
2396 	if (base_hash_name) {
2397 		struct crypto_shash *child;
2398 
2399 		child = crypto_alloc_shash(base_hash_name, 0,
2400 					   CRYPTO_ALG_NEED_FALLBACK);
2401 
2402 		if (IS_ERR(child))
2403 			return PTR_ERR(child);
2404 
2405 		tfm_ctx->child_hash = child;
2406 	}
2407 
2408 	return 0;
2409 }
2410 
2411 static int artpec6_crypto_ahash_init(struct crypto_tfm *tfm)
2412 {
2413 	return artpec6_crypto_ahash_init_common(tfm, NULL);
2414 }
2415 
2416 static int artpec6_crypto_ahash_init_hmac_sha256(struct crypto_tfm *tfm)
2417 {
2418 	return artpec6_crypto_ahash_init_common(tfm, "sha256");
2419 }
2420 
2421 static void artpec6_crypto_ahash_exit(struct crypto_tfm *tfm)
2422 {
2423 	struct artpec6_hashalg_context *tfm_ctx = crypto_tfm_ctx(tfm);
2424 
2425 	if (tfm_ctx->child_hash)
2426 		crypto_free_shash(tfm_ctx->child_hash);
2427 
2428 	memset(tfm_ctx->hmac_key, 0, sizeof(tfm_ctx->hmac_key));
2429 	tfm_ctx->hmac_key_length = 0;
2430 }
2431 
2432 static int artpec6_crypto_hash_export(struct ahash_request *req, void *out)
2433 {
2434 	const struct artpec6_hash_request_context *ctx = ahash_request_ctx(req);
2435 	struct artpec6_hash_export_state *state = out;
2436 	struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
2437 	enum artpec6_crypto_variant variant = ac->variant;
2438 
2439 	BUILD_BUG_ON(sizeof(state->partial_buffer) !=
2440 		     sizeof(ctx->partial_buffer));
2441 	BUILD_BUG_ON(sizeof(state->digeststate) != sizeof(ctx->digeststate));
2442 
2443 	state->digcnt = ctx->digcnt;
2444 	state->partial_bytes = ctx->partial_bytes;
2445 	state->hash_flags = ctx->hash_flags;
2446 
2447 	if (variant == ARTPEC6_CRYPTO)
2448 		state->oper = FIELD_GET(A6_CRY_MD_OPER, ctx->hash_md);
2449 	else
2450 		state->oper = FIELD_GET(A7_CRY_MD_OPER, ctx->hash_md);
2451 
2452 	memcpy(state->partial_buffer, ctx->partial_buffer,
2453 	       sizeof(state->partial_buffer));
2454 	memcpy(state->digeststate, ctx->digeststate,
2455 	       sizeof(state->digeststate));
2456 
2457 	return 0;
2458 }
2459 
2460 static int artpec6_crypto_hash_import(struct ahash_request *req, const void *in)
2461 {
2462 	struct artpec6_hash_request_context *ctx = ahash_request_ctx(req);
2463 	const struct artpec6_hash_export_state *state = in;
2464 	struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
2465 	enum artpec6_crypto_variant variant = ac->variant;
2466 
2467 	memset(ctx, 0, sizeof(*ctx));
2468 
2469 	ctx->digcnt = state->digcnt;
2470 	ctx->partial_bytes = state->partial_bytes;
2471 	ctx->hash_flags = state->hash_flags;
2472 
2473 	if (variant == ARTPEC6_CRYPTO)
2474 		ctx->hash_md = FIELD_PREP(A6_CRY_MD_OPER, state->oper);
2475 	else
2476 		ctx->hash_md = FIELD_PREP(A7_CRY_MD_OPER, state->oper);
2477 
2478 	memcpy(ctx->partial_buffer, state->partial_buffer,
2479 	       sizeof(state->partial_buffer));
2480 	memcpy(ctx->digeststate, state->digeststate,
2481 	       sizeof(state->digeststate));
2482 
2483 	return 0;
2484 }
2485 
2486 static int init_crypto_hw(struct artpec6_crypto *ac)
2487 {
2488 	enum artpec6_crypto_variant variant = ac->variant;
2489 	void __iomem *base = ac->base;
2490 	u32 out_descr_buf_size;
2491 	u32 out_data_buf_size;
2492 	u32 in_data_buf_size;
2493 	u32 in_descr_buf_size;
2494 	u32 in_stat_buf_size;
2495 	u32 in, out;
2496 
2497 	/*
2498 	 * The PDMA unit contains 1984 bytes of internal memory for the OUT
2499 	 * channels and 1024 bytes for the IN channel. This is an elastic
2500 	 * memory used to internally store the descriptors and data. The values
2501 	 * ares specified in 64 byte incremements.  Trustzone buffers are not
2502 	 * used at this stage.
2503 	 */
2504 	out_data_buf_size = 16;  /* 1024 bytes for data */
2505 	out_descr_buf_size = 15; /* 960 bytes for descriptors */
2506 	in_data_buf_size = 8;    /* 512 bytes for data */
2507 	in_descr_buf_size = 4;   /* 256 bytes for descriptors */
2508 	in_stat_buf_size = 4;   /* 256 bytes for stat descrs */
2509 
2510 	BUILD_BUG_ON_MSG((out_data_buf_size
2511 				+ out_descr_buf_size) * 64 > 1984,
2512 			  "Invalid OUT configuration");
2513 
2514 	BUILD_BUG_ON_MSG((in_data_buf_size
2515 				+ in_descr_buf_size
2516 				+ in_stat_buf_size) * 64 > 1024,
2517 			  "Invalid IN configuration");
2518 
2519 	in = FIELD_PREP(PDMA_IN_BUF_CFG_DATA_BUF_SIZE, in_data_buf_size) |
2520 	     FIELD_PREP(PDMA_IN_BUF_CFG_DESCR_BUF_SIZE, in_descr_buf_size) |
2521 	     FIELD_PREP(PDMA_IN_BUF_CFG_STAT_BUF_SIZE, in_stat_buf_size);
2522 
2523 	out = FIELD_PREP(PDMA_OUT_BUF_CFG_DATA_BUF_SIZE, out_data_buf_size) |
2524 	      FIELD_PREP(PDMA_OUT_BUF_CFG_DESCR_BUF_SIZE, out_descr_buf_size);
2525 
2526 	writel_relaxed(out, base + PDMA_OUT_BUF_CFG);
2527 	writel_relaxed(PDMA_OUT_CFG_EN, base + PDMA_OUT_CFG);
2528 
2529 	if (variant == ARTPEC6_CRYPTO) {
2530 		writel_relaxed(in, base + A6_PDMA_IN_BUF_CFG);
2531 		writel_relaxed(PDMA_IN_CFG_EN, base + A6_PDMA_IN_CFG);
2532 		writel_relaxed(A6_PDMA_INTR_MASK_IN_DATA |
2533 			       A6_PDMA_INTR_MASK_IN_EOP_FLUSH,
2534 			       base + A6_PDMA_INTR_MASK);
2535 	} else {
2536 		writel_relaxed(in, base + A7_PDMA_IN_BUF_CFG);
2537 		writel_relaxed(PDMA_IN_CFG_EN, base + A7_PDMA_IN_CFG);
2538 		writel_relaxed(A7_PDMA_INTR_MASK_IN_DATA |
2539 			       A7_PDMA_INTR_MASK_IN_EOP_FLUSH,
2540 			       base + A7_PDMA_INTR_MASK);
2541 	}
2542 
2543 	return 0;
2544 }
2545 
2546 static void artpec6_crypto_disable_hw(struct artpec6_crypto *ac)
2547 {
2548 	enum artpec6_crypto_variant variant = ac->variant;
2549 	void __iomem *base = ac->base;
2550 
2551 	if (variant == ARTPEC6_CRYPTO) {
2552 		writel_relaxed(A6_PDMA_IN_CMD_STOP, base + A6_PDMA_IN_CMD);
2553 		writel_relaxed(0, base + A6_PDMA_IN_CFG);
2554 		writel_relaxed(A6_PDMA_OUT_CMD_STOP, base + PDMA_OUT_CMD);
2555 	} else {
2556 		writel_relaxed(A7_PDMA_IN_CMD_STOP, base + A7_PDMA_IN_CMD);
2557 		writel_relaxed(0, base + A7_PDMA_IN_CFG);
2558 		writel_relaxed(A7_PDMA_OUT_CMD_STOP, base + PDMA_OUT_CMD);
2559 	}
2560 
2561 	writel_relaxed(0, base + PDMA_OUT_CFG);
2562 
2563 }
2564 
2565 static irqreturn_t artpec6_crypto_irq(int irq, void *dev_id)
2566 {
2567 	struct artpec6_crypto *ac = dev_id;
2568 	enum artpec6_crypto_variant variant = ac->variant;
2569 	void __iomem *base = ac->base;
2570 	u32 mask_in_data, mask_in_eop_flush;
2571 	u32 in_cmd_flush_stat, in_cmd_reg;
2572 	u32 ack_intr_reg;
2573 	u32 ack = 0;
2574 	u32 intr;
2575 
2576 	if (variant == ARTPEC6_CRYPTO) {
2577 		intr = readl_relaxed(base + A6_PDMA_MASKED_INTR);
2578 		mask_in_data = A6_PDMA_INTR_MASK_IN_DATA;
2579 		mask_in_eop_flush = A6_PDMA_INTR_MASK_IN_EOP_FLUSH;
2580 		in_cmd_flush_stat = A6_PDMA_IN_CMD_FLUSH_STAT;
2581 		in_cmd_reg = A6_PDMA_IN_CMD;
2582 		ack_intr_reg = A6_PDMA_ACK_INTR;
2583 	} else {
2584 		intr = readl_relaxed(base + A7_PDMA_MASKED_INTR);
2585 		mask_in_data = A7_PDMA_INTR_MASK_IN_DATA;
2586 		mask_in_eop_flush = A7_PDMA_INTR_MASK_IN_EOP_FLUSH;
2587 		in_cmd_flush_stat = A7_PDMA_IN_CMD_FLUSH_STAT;
2588 		in_cmd_reg = A7_PDMA_IN_CMD;
2589 		ack_intr_reg = A7_PDMA_ACK_INTR;
2590 	}
2591 
2592 	/* We get two interrupt notifications from each job.
2593 	 * The in_data means all data was sent to memory and then
2594 	 * we request a status flush command to write the per-job
2595 	 * status to its status vector. This ensures that the
2596 	 * tasklet can detect exactly how many submitted jobs
2597 	 * that have finished.
2598 	 */
2599 	if (intr & mask_in_data)
2600 		ack |= mask_in_data;
2601 
2602 	if (intr & mask_in_eop_flush)
2603 		ack |= mask_in_eop_flush;
2604 	else
2605 		writel_relaxed(in_cmd_flush_stat, base + in_cmd_reg);
2606 
2607 	writel_relaxed(ack, base + ack_intr_reg);
2608 
2609 	if (intr & mask_in_eop_flush)
2610 		tasklet_schedule(&ac->task);
2611 
2612 	return IRQ_HANDLED;
2613 }
2614 
2615 /*------------------- Algorithm definitions ----------------------------------*/
2616 
2617 /* Hashes */
2618 static struct ahash_alg hash_algos[] = {
2619 	/* SHA-1 */
2620 	{
2621 		.init = artpec6_crypto_sha1_init,
2622 		.update = artpec6_crypto_hash_update,
2623 		.final = artpec6_crypto_hash_final,
2624 		.digest = artpec6_crypto_sha1_digest,
2625 		.import = artpec6_crypto_hash_import,
2626 		.export = artpec6_crypto_hash_export,
2627 		.halg.digestsize = SHA1_DIGEST_SIZE,
2628 		.halg.statesize = sizeof(struct artpec6_hash_export_state),
2629 		.halg.base = {
2630 			.cra_name = "sha1",
2631 			.cra_driver_name = "artpec-sha1",
2632 			.cra_priority = 300,
2633 			.cra_flags = CRYPTO_ALG_ASYNC |
2634 				     CRYPTO_ALG_ALLOCATES_MEMORY,
2635 			.cra_blocksize = SHA1_BLOCK_SIZE,
2636 			.cra_ctxsize = sizeof(struct artpec6_hashalg_context),
2637 			.cra_alignmask = 3,
2638 			.cra_module = THIS_MODULE,
2639 			.cra_init = artpec6_crypto_ahash_init,
2640 			.cra_exit = artpec6_crypto_ahash_exit,
2641 		}
2642 	},
2643 	/* SHA-256 */
2644 	{
2645 		.init = artpec6_crypto_sha256_init,
2646 		.update = artpec6_crypto_hash_update,
2647 		.final = artpec6_crypto_hash_final,
2648 		.digest = artpec6_crypto_sha256_digest,
2649 		.import = artpec6_crypto_hash_import,
2650 		.export = artpec6_crypto_hash_export,
2651 		.halg.digestsize = SHA256_DIGEST_SIZE,
2652 		.halg.statesize = sizeof(struct artpec6_hash_export_state),
2653 		.halg.base = {
2654 			.cra_name = "sha256",
2655 			.cra_driver_name = "artpec-sha256",
2656 			.cra_priority = 300,
2657 			.cra_flags = CRYPTO_ALG_ASYNC |
2658 				     CRYPTO_ALG_ALLOCATES_MEMORY,
2659 			.cra_blocksize = SHA256_BLOCK_SIZE,
2660 			.cra_ctxsize = sizeof(struct artpec6_hashalg_context),
2661 			.cra_alignmask = 3,
2662 			.cra_module = THIS_MODULE,
2663 			.cra_init = artpec6_crypto_ahash_init,
2664 			.cra_exit = artpec6_crypto_ahash_exit,
2665 		}
2666 	},
2667 	/* HMAC SHA-256 */
2668 	{
2669 		.init = artpec6_crypto_hmac_sha256_init,
2670 		.update = artpec6_crypto_hash_update,
2671 		.final = artpec6_crypto_hash_final,
2672 		.digest = artpec6_crypto_hmac_sha256_digest,
2673 		.import = artpec6_crypto_hash_import,
2674 		.export = artpec6_crypto_hash_export,
2675 		.setkey = artpec6_crypto_hash_set_key,
2676 		.halg.digestsize = SHA256_DIGEST_SIZE,
2677 		.halg.statesize = sizeof(struct artpec6_hash_export_state),
2678 		.halg.base = {
2679 			.cra_name = "hmac(sha256)",
2680 			.cra_driver_name = "artpec-hmac-sha256",
2681 			.cra_priority = 300,
2682 			.cra_flags = CRYPTO_ALG_ASYNC |
2683 				     CRYPTO_ALG_ALLOCATES_MEMORY,
2684 			.cra_blocksize = SHA256_BLOCK_SIZE,
2685 			.cra_ctxsize = sizeof(struct artpec6_hashalg_context),
2686 			.cra_alignmask = 3,
2687 			.cra_module = THIS_MODULE,
2688 			.cra_init = artpec6_crypto_ahash_init_hmac_sha256,
2689 			.cra_exit = artpec6_crypto_ahash_exit,
2690 		}
2691 	},
2692 };
2693 
2694 /* Crypto */
2695 static struct skcipher_alg crypto_algos[] = {
2696 	/* AES - ECB */
2697 	{
2698 		.base = {
2699 			.cra_name = "ecb(aes)",
2700 			.cra_driver_name = "artpec6-ecb-aes",
2701 			.cra_priority = 300,
2702 			.cra_flags = CRYPTO_ALG_ASYNC |
2703 				     CRYPTO_ALG_ALLOCATES_MEMORY,
2704 			.cra_blocksize = AES_BLOCK_SIZE,
2705 			.cra_ctxsize = sizeof(struct artpec6_cryptotfm_context),
2706 			.cra_alignmask = 3,
2707 			.cra_module = THIS_MODULE,
2708 		},
2709 		.min_keysize = AES_MIN_KEY_SIZE,
2710 		.max_keysize = AES_MAX_KEY_SIZE,
2711 		.setkey = artpec6_crypto_cipher_set_key,
2712 		.encrypt = artpec6_crypto_encrypt,
2713 		.decrypt = artpec6_crypto_decrypt,
2714 		.init = artpec6_crypto_aes_ecb_init,
2715 		.exit = artpec6_crypto_aes_exit,
2716 	},
2717 	/* AES - CTR */
2718 	{
2719 		.base = {
2720 			.cra_name = "ctr(aes)",
2721 			.cra_driver_name = "artpec6-ctr-aes",
2722 			.cra_priority = 300,
2723 			.cra_flags = CRYPTO_ALG_ASYNC |
2724 				     CRYPTO_ALG_ALLOCATES_MEMORY |
2725 				     CRYPTO_ALG_NEED_FALLBACK,
2726 			.cra_blocksize = 1,
2727 			.cra_ctxsize = sizeof(struct artpec6_cryptotfm_context),
2728 			.cra_alignmask = 3,
2729 			.cra_module = THIS_MODULE,
2730 		},
2731 		.min_keysize = AES_MIN_KEY_SIZE,
2732 		.max_keysize = AES_MAX_KEY_SIZE,
2733 		.ivsize = AES_BLOCK_SIZE,
2734 		.setkey = artpec6_crypto_cipher_set_key,
2735 		.encrypt = artpec6_crypto_ctr_encrypt,
2736 		.decrypt = artpec6_crypto_ctr_decrypt,
2737 		.init = artpec6_crypto_aes_ctr_init,
2738 		.exit = artpec6_crypto_aes_ctr_exit,
2739 	},
2740 	/* AES - CBC */
2741 	{
2742 		.base = {
2743 			.cra_name = "cbc(aes)",
2744 			.cra_driver_name = "artpec6-cbc-aes",
2745 			.cra_priority = 300,
2746 			.cra_flags = CRYPTO_ALG_ASYNC |
2747 				     CRYPTO_ALG_ALLOCATES_MEMORY,
2748 			.cra_blocksize = AES_BLOCK_SIZE,
2749 			.cra_ctxsize = sizeof(struct artpec6_cryptotfm_context),
2750 			.cra_alignmask = 3,
2751 			.cra_module = THIS_MODULE,
2752 		},
2753 		.min_keysize = AES_MIN_KEY_SIZE,
2754 		.max_keysize = AES_MAX_KEY_SIZE,
2755 		.ivsize = AES_BLOCK_SIZE,
2756 		.setkey = artpec6_crypto_cipher_set_key,
2757 		.encrypt = artpec6_crypto_encrypt,
2758 		.decrypt = artpec6_crypto_decrypt,
2759 		.init = artpec6_crypto_aes_cbc_init,
2760 		.exit = artpec6_crypto_aes_exit
2761 	},
2762 	/* AES - XTS */
2763 	{
2764 		.base = {
2765 			.cra_name = "xts(aes)",
2766 			.cra_driver_name = "artpec6-xts-aes",
2767 			.cra_priority = 300,
2768 			.cra_flags = CRYPTO_ALG_ASYNC |
2769 				     CRYPTO_ALG_ALLOCATES_MEMORY,
2770 			.cra_blocksize = 1,
2771 			.cra_ctxsize = sizeof(struct artpec6_cryptotfm_context),
2772 			.cra_alignmask = 3,
2773 			.cra_module = THIS_MODULE,
2774 		},
2775 		.min_keysize = 2*AES_MIN_KEY_SIZE,
2776 		.max_keysize = 2*AES_MAX_KEY_SIZE,
2777 		.ivsize = 16,
2778 		.setkey = artpec6_crypto_xts_set_key,
2779 		.encrypt = artpec6_crypto_encrypt,
2780 		.decrypt = artpec6_crypto_decrypt,
2781 		.init = artpec6_crypto_aes_xts_init,
2782 		.exit = artpec6_crypto_aes_exit,
2783 	},
2784 };
2785 
2786 static struct aead_alg aead_algos[] = {
2787 	{
2788 		.init   = artpec6_crypto_aead_init,
2789 		.setkey = artpec6_crypto_aead_set_key,
2790 		.encrypt = artpec6_crypto_aead_encrypt,
2791 		.decrypt = artpec6_crypto_aead_decrypt,
2792 		.ivsize = GCM_AES_IV_SIZE,
2793 		.maxauthsize = AES_BLOCK_SIZE,
2794 
2795 		.base = {
2796 			.cra_name = "gcm(aes)",
2797 			.cra_driver_name = "artpec-gcm-aes",
2798 			.cra_priority = 300,
2799 			.cra_flags = CRYPTO_ALG_ASYNC |
2800 				     CRYPTO_ALG_ALLOCATES_MEMORY |
2801 				     CRYPTO_ALG_KERN_DRIVER_ONLY,
2802 			.cra_blocksize = 1,
2803 			.cra_ctxsize = sizeof(struct artpec6_cryptotfm_context),
2804 			.cra_alignmask = 3,
2805 			.cra_module = THIS_MODULE,
2806 		},
2807 	}
2808 };
2809 
2810 #ifdef CONFIG_DEBUG_FS
2811 
2812 struct dbgfs_u32 {
2813 	char *name;
2814 	mode_t mode;
2815 	u32 *flag;
2816 	char *desc;
2817 };
2818 
2819 static struct dentry *dbgfs_root;
2820 
2821 static void artpec6_crypto_init_debugfs(void)
2822 {
2823 	dbgfs_root = debugfs_create_dir("artpec6_crypto", NULL);
2824 
2825 #ifdef CONFIG_FAULT_INJECTION
2826 	fault_create_debugfs_attr("fail_status_read", dbgfs_root,
2827 				  &artpec6_crypto_fail_status_read);
2828 
2829 	fault_create_debugfs_attr("fail_dma_array_full", dbgfs_root,
2830 				  &artpec6_crypto_fail_dma_array_full);
2831 #endif
2832 }
2833 
2834 static void artpec6_crypto_free_debugfs(void)
2835 {
2836 	debugfs_remove_recursive(dbgfs_root);
2837 	dbgfs_root = NULL;
2838 }
2839 #endif
2840 
2841 static const struct of_device_id artpec6_crypto_of_match[] = {
2842 	{ .compatible = "axis,artpec6-crypto", .data = (void *)ARTPEC6_CRYPTO },
2843 	{ .compatible = "axis,artpec7-crypto", .data = (void *)ARTPEC7_CRYPTO },
2844 	{}
2845 };
2846 MODULE_DEVICE_TABLE(of, artpec6_crypto_of_match);
2847 
2848 static int artpec6_crypto_probe(struct platform_device *pdev)
2849 {
2850 	const struct of_device_id *match;
2851 	enum artpec6_crypto_variant variant;
2852 	struct artpec6_crypto *ac;
2853 	struct device *dev = &pdev->dev;
2854 	void __iomem *base;
2855 	int irq;
2856 	int err;
2857 
2858 	if (artpec6_crypto_dev)
2859 		return -ENODEV;
2860 
2861 	match = of_match_node(artpec6_crypto_of_match, dev->of_node);
2862 	if (!match)
2863 		return -EINVAL;
2864 
2865 	variant = (enum artpec6_crypto_variant)match->data;
2866 
2867 	base = devm_platform_ioremap_resource(pdev, 0);
2868 	if (IS_ERR(base))
2869 		return PTR_ERR(base);
2870 
2871 	irq = platform_get_irq(pdev, 0);
2872 	if (irq < 0)
2873 		return -ENODEV;
2874 
2875 	ac = devm_kzalloc(&pdev->dev, sizeof(struct artpec6_crypto),
2876 			  GFP_KERNEL);
2877 	if (!ac)
2878 		return -ENOMEM;
2879 
2880 	platform_set_drvdata(pdev, ac);
2881 	ac->variant = variant;
2882 
2883 	spin_lock_init(&ac->queue_lock);
2884 	INIT_LIST_HEAD(&ac->queue);
2885 	INIT_LIST_HEAD(&ac->pending);
2886 	timer_setup(&ac->timer, artpec6_crypto_timeout, 0);
2887 
2888 	ac->base = base;
2889 
2890 	ac->dma_cache = kmem_cache_create("artpec6_crypto_dma",
2891 		sizeof(struct artpec6_crypto_dma_descriptors),
2892 		64,
2893 		0,
2894 		NULL);
2895 	if (!ac->dma_cache)
2896 		return -ENOMEM;
2897 
2898 #ifdef CONFIG_DEBUG_FS
2899 	artpec6_crypto_init_debugfs();
2900 #endif
2901 
2902 	tasklet_init(&ac->task, artpec6_crypto_task,
2903 		     (unsigned long)ac);
2904 
2905 	ac->pad_buffer = devm_kzalloc(&pdev->dev, 2 * ARTPEC_CACHE_LINE_MAX,
2906 				      GFP_KERNEL);
2907 	if (!ac->pad_buffer)
2908 		return -ENOMEM;
2909 	ac->pad_buffer = PTR_ALIGN(ac->pad_buffer, ARTPEC_CACHE_LINE_MAX);
2910 
2911 	ac->zero_buffer = devm_kzalloc(&pdev->dev, 2 * ARTPEC_CACHE_LINE_MAX,
2912 				      GFP_KERNEL);
2913 	if (!ac->zero_buffer)
2914 		return -ENOMEM;
2915 	ac->zero_buffer = PTR_ALIGN(ac->zero_buffer, ARTPEC_CACHE_LINE_MAX);
2916 
2917 	err = init_crypto_hw(ac);
2918 	if (err)
2919 		goto free_cache;
2920 
2921 	err = devm_request_irq(&pdev->dev, irq, artpec6_crypto_irq, 0,
2922 			       "artpec6-crypto", ac);
2923 	if (err)
2924 		goto disable_hw;
2925 
2926 	artpec6_crypto_dev = &pdev->dev;
2927 
2928 	err = crypto_register_ahashes(hash_algos, ARRAY_SIZE(hash_algos));
2929 	if (err) {
2930 		dev_err(dev, "Failed to register ahashes\n");
2931 		goto disable_hw;
2932 	}
2933 
2934 	err = crypto_register_skciphers(crypto_algos, ARRAY_SIZE(crypto_algos));
2935 	if (err) {
2936 		dev_err(dev, "Failed to register ciphers\n");
2937 		goto unregister_ahashes;
2938 	}
2939 
2940 	err = crypto_register_aeads(aead_algos, ARRAY_SIZE(aead_algos));
2941 	if (err) {
2942 		dev_err(dev, "Failed to register aeads\n");
2943 		goto unregister_algs;
2944 	}
2945 
2946 	return 0;
2947 
2948 unregister_algs:
2949 	crypto_unregister_skciphers(crypto_algos, ARRAY_SIZE(crypto_algos));
2950 unregister_ahashes:
2951 	crypto_unregister_ahashes(hash_algos, ARRAY_SIZE(hash_algos));
2952 disable_hw:
2953 	artpec6_crypto_disable_hw(ac);
2954 free_cache:
2955 	kmem_cache_destroy(ac->dma_cache);
2956 	return err;
2957 }
2958 
2959 static int artpec6_crypto_remove(struct platform_device *pdev)
2960 {
2961 	struct artpec6_crypto *ac = platform_get_drvdata(pdev);
2962 	int irq = platform_get_irq(pdev, 0);
2963 
2964 	crypto_unregister_ahashes(hash_algos, ARRAY_SIZE(hash_algos));
2965 	crypto_unregister_skciphers(crypto_algos, ARRAY_SIZE(crypto_algos));
2966 	crypto_unregister_aeads(aead_algos, ARRAY_SIZE(aead_algos));
2967 
2968 	tasklet_disable(&ac->task);
2969 	devm_free_irq(&pdev->dev, irq, ac);
2970 	tasklet_kill(&ac->task);
2971 	del_timer_sync(&ac->timer);
2972 
2973 	artpec6_crypto_disable_hw(ac);
2974 
2975 	kmem_cache_destroy(ac->dma_cache);
2976 #ifdef CONFIG_DEBUG_FS
2977 	artpec6_crypto_free_debugfs();
2978 #endif
2979 	return 0;
2980 }
2981 
2982 static struct platform_driver artpec6_crypto_driver = {
2983 	.probe   = artpec6_crypto_probe,
2984 	.remove  = artpec6_crypto_remove,
2985 	.driver  = {
2986 		.name  = "artpec6-crypto",
2987 		.of_match_table = artpec6_crypto_of_match,
2988 	},
2989 };
2990 
2991 module_platform_driver(artpec6_crypto_driver);
2992 
2993 MODULE_AUTHOR("Axis Communications AB");
2994 MODULE_DESCRIPTION("ARTPEC-6 Crypto driver");
2995 MODULE_LICENSE("GPL");
2996