xref: /linux/drivers/crypto/atmel-sha.c (revision c9d23f9657cabfd2836a096bf6eddf8df2cf1434)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cryptographic API.
4  *
5  * Support for ATMEL SHA1/SHA256 HW acceleration.
6  *
7  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8  * Author: Nicolas Royer <nicolas@eukrea.com>
9  *
10  * Some ideas are from omap-sham.c drivers.
11  */
12 
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22 
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/of_device.h>
32 #include <linux/delay.h>
33 #include <linux/crypto.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/sha1.h>
37 #include <crypto/sha2.h>
38 #include <crypto/hash.h>
39 #include <crypto/internal/hash.h>
40 #include "atmel-sha-regs.h"
41 #include "atmel-authenc.h"
42 
43 #define ATMEL_SHA_PRIORITY	300
44 
45 /* SHA flags */
46 #define SHA_FLAGS_BUSY			BIT(0)
47 #define	SHA_FLAGS_FINAL			BIT(1)
48 #define SHA_FLAGS_DMA_ACTIVE	BIT(2)
49 #define SHA_FLAGS_OUTPUT_READY	BIT(3)
50 #define SHA_FLAGS_INIT			BIT(4)
51 #define SHA_FLAGS_CPU			BIT(5)
52 #define SHA_FLAGS_DMA_READY		BIT(6)
53 #define SHA_FLAGS_DUMP_REG	BIT(7)
54 
55 /* bits[11:8] are reserved. */
56 
57 #define SHA_FLAGS_FINUP		BIT(16)
58 #define SHA_FLAGS_SG		BIT(17)
59 #define SHA_FLAGS_ERROR		BIT(23)
60 #define SHA_FLAGS_PAD		BIT(24)
61 #define SHA_FLAGS_RESTORE	BIT(25)
62 #define SHA_FLAGS_IDATAR0	BIT(26)
63 #define SHA_FLAGS_WAIT_DATARDY	BIT(27)
64 
65 #define SHA_OP_INIT	0
66 #define SHA_OP_UPDATE	1
67 #define SHA_OP_FINAL	2
68 #define SHA_OP_DIGEST	3
69 
70 #define SHA_BUFFER_LEN		(PAGE_SIZE / 16)
71 
72 #define ATMEL_SHA_DMA_THRESHOLD		56
73 
74 struct atmel_sha_caps {
75 	bool	has_dma;
76 	bool	has_dualbuff;
77 	bool	has_sha224;
78 	bool	has_sha_384_512;
79 	bool	has_uihv;
80 	bool	has_hmac;
81 };
82 
83 struct atmel_sha_dev;
84 
85 /*
86  * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
87  * tested by the ahash_prepare_alg() function.
88  */
89 struct atmel_sha_reqctx {
90 	struct atmel_sha_dev	*dd;
91 	unsigned long	flags;
92 	unsigned long	op;
93 
94 	u8	digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
95 	u64	digcnt[2];
96 	size_t	bufcnt;
97 	size_t	buflen;
98 	dma_addr_t	dma_addr;
99 
100 	/* walk state */
101 	struct scatterlist	*sg;
102 	unsigned int	offset;	/* offset in current sg */
103 	unsigned int	total;	/* total request */
104 
105 	size_t block_size;
106 	size_t hash_size;
107 
108 	u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
109 };
110 
111 typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
112 
113 struct atmel_sha_ctx {
114 	struct atmel_sha_dev	*dd;
115 	atmel_sha_fn_t		start;
116 
117 	unsigned long		flags;
118 };
119 
120 #define ATMEL_SHA_QUEUE_LENGTH	50
121 
122 struct atmel_sha_dma {
123 	struct dma_chan			*chan;
124 	struct dma_slave_config dma_conf;
125 	struct scatterlist	*sg;
126 	int			nents;
127 	unsigned int		last_sg_length;
128 };
129 
130 struct atmel_sha_dev {
131 	struct list_head	list;
132 	unsigned long		phys_base;
133 	struct device		*dev;
134 	struct clk			*iclk;
135 	int					irq;
136 	void __iomem		*io_base;
137 
138 	spinlock_t		lock;
139 	struct tasklet_struct	done_task;
140 	struct tasklet_struct	queue_task;
141 
142 	unsigned long		flags;
143 	struct crypto_queue	queue;
144 	struct ahash_request	*req;
145 	bool			is_async;
146 	bool			force_complete;
147 	atmel_sha_fn_t		resume;
148 	atmel_sha_fn_t		cpu_transfer_complete;
149 
150 	struct atmel_sha_dma	dma_lch_in;
151 
152 	struct atmel_sha_caps	caps;
153 
154 	struct scatterlist	tmp;
155 
156 	u32	hw_version;
157 };
158 
159 struct atmel_sha_drv {
160 	struct list_head	dev_list;
161 	spinlock_t		lock;
162 };
163 
164 static struct atmel_sha_drv atmel_sha = {
165 	.dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
166 	.lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
167 };
168 
169 #ifdef VERBOSE_DEBUG
170 static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
171 {
172 	switch (offset) {
173 	case SHA_CR:
174 		return "CR";
175 
176 	case SHA_MR:
177 		return "MR";
178 
179 	case SHA_IER:
180 		return "IER";
181 
182 	case SHA_IDR:
183 		return "IDR";
184 
185 	case SHA_IMR:
186 		return "IMR";
187 
188 	case SHA_ISR:
189 		return "ISR";
190 
191 	case SHA_MSR:
192 		return "MSR";
193 
194 	case SHA_BCR:
195 		return "BCR";
196 
197 	case SHA_REG_DIN(0):
198 	case SHA_REG_DIN(1):
199 	case SHA_REG_DIN(2):
200 	case SHA_REG_DIN(3):
201 	case SHA_REG_DIN(4):
202 	case SHA_REG_DIN(5):
203 	case SHA_REG_DIN(6):
204 	case SHA_REG_DIN(7):
205 	case SHA_REG_DIN(8):
206 	case SHA_REG_DIN(9):
207 	case SHA_REG_DIN(10):
208 	case SHA_REG_DIN(11):
209 	case SHA_REG_DIN(12):
210 	case SHA_REG_DIN(13):
211 	case SHA_REG_DIN(14):
212 	case SHA_REG_DIN(15):
213 		snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
214 		break;
215 
216 	case SHA_REG_DIGEST(0):
217 	case SHA_REG_DIGEST(1):
218 	case SHA_REG_DIGEST(2):
219 	case SHA_REG_DIGEST(3):
220 	case SHA_REG_DIGEST(4):
221 	case SHA_REG_DIGEST(5):
222 	case SHA_REG_DIGEST(6):
223 	case SHA_REG_DIGEST(7):
224 	case SHA_REG_DIGEST(8):
225 	case SHA_REG_DIGEST(9):
226 	case SHA_REG_DIGEST(10):
227 	case SHA_REG_DIGEST(11):
228 	case SHA_REG_DIGEST(12):
229 	case SHA_REG_DIGEST(13):
230 	case SHA_REG_DIGEST(14):
231 	case SHA_REG_DIGEST(15):
232 		if (wr)
233 			snprintf(tmp, sz, "IDATAR[%u]",
234 				 16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
235 		else
236 			snprintf(tmp, sz, "ODATAR[%u]",
237 				 (offset - SHA_REG_DIGEST(0)) >> 2);
238 		break;
239 
240 	case SHA_HW_VERSION:
241 		return "HWVER";
242 
243 	default:
244 		snprintf(tmp, sz, "0x%02x", offset);
245 		break;
246 	}
247 
248 	return tmp;
249 }
250 
251 #endif /* VERBOSE_DEBUG */
252 
253 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
254 {
255 	u32 value = readl_relaxed(dd->io_base + offset);
256 
257 #ifdef VERBOSE_DEBUG
258 	if (dd->flags & SHA_FLAGS_DUMP_REG) {
259 		char tmp[16];
260 
261 		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
262 			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
263 	}
264 #endif /* VERBOSE_DEBUG */
265 
266 	return value;
267 }
268 
269 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
270 					u32 offset, u32 value)
271 {
272 #ifdef VERBOSE_DEBUG
273 	if (dd->flags & SHA_FLAGS_DUMP_REG) {
274 		char tmp[16];
275 
276 		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
277 			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
278 	}
279 #endif /* VERBOSE_DEBUG */
280 
281 	writel_relaxed(value, dd->io_base + offset);
282 }
283 
284 static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
285 {
286 	struct ahash_request *req = dd->req;
287 
288 	dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
289 		       SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
290 		       SHA_FLAGS_DUMP_REG);
291 
292 	clk_disable(dd->iclk);
293 
294 	if ((dd->is_async || dd->force_complete) && req->base.complete)
295 		ahash_request_complete(req, err);
296 
297 	/* handle new request */
298 	tasklet_schedule(&dd->queue_task);
299 
300 	return err;
301 }
302 
303 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
304 {
305 	size_t count;
306 
307 	while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
308 		count = min(ctx->sg->length - ctx->offset, ctx->total);
309 		count = min(count, ctx->buflen - ctx->bufcnt);
310 
311 		if (count <= 0) {
312 			/*
313 			* Check if count <= 0 because the buffer is full or
314 			* because the sg length is 0. In the latest case,
315 			* check if there is another sg in the list, a 0 length
316 			* sg doesn't necessarily mean the end of the sg list.
317 			*/
318 			if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
319 				ctx->sg = sg_next(ctx->sg);
320 				continue;
321 			} else {
322 				break;
323 			}
324 		}
325 
326 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
327 			ctx->offset, count, 0);
328 
329 		ctx->bufcnt += count;
330 		ctx->offset += count;
331 		ctx->total -= count;
332 
333 		if (ctx->offset == ctx->sg->length) {
334 			ctx->sg = sg_next(ctx->sg);
335 			if (ctx->sg)
336 				ctx->offset = 0;
337 			else
338 				ctx->total = 0;
339 		}
340 	}
341 
342 	return 0;
343 }
344 
345 /*
346  * The purpose of this padding is to ensure that the padded message is a
347  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
348  * The bit "1" is appended at the end of the message followed by
349  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
350  * 128 bits block (SHA384/SHA512) equals to the message length in bits
351  * is appended.
352  *
353  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
354  *  - if message length < 56 bytes then padlen = 56 - message length
355  *  - else padlen = 64 + 56 - message length
356  *
357  * For SHA384/SHA512, padlen is calculated as followed:
358  *  - if message length < 112 bytes then padlen = 112 - message length
359  *  - else padlen = 128 + 112 - message length
360  */
361 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
362 {
363 	unsigned int index, padlen;
364 	__be64 bits[2];
365 	u64 size[2];
366 
367 	size[0] = ctx->digcnt[0];
368 	size[1] = ctx->digcnt[1];
369 
370 	size[0] += ctx->bufcnt;
371 	if (size[0] < ctx->bufcnt)
372 		size[1]++;
373 
374 	size[0] += length;
375 	if (size[0]  < length)
376 		size[1]++;
377 
378 	bits[1] = cpu_to_be64(size[0] << 3);
379 	bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
380 
381 	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
382 	case SHA_FLAGS_SHA384:
383 	case SHA_FLAGS_SHA512:
384 		index = ctx->bufcnt & 0x7f;
385 		padlen = (index < 112) ? (112 - index) : ((128+112) - index);
386 		*(ctx->buffer + ctx->bufcnt) = 0x80;
387 		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
388 		memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
389 		ctx->bufcnt += padlen + 16;
390 		ctx->flags |= SHA_FLAGS_PAD;
391 		break;
392 
393 	default:
394 		index = ctx->bufcnt & 0x3f;
395 		padlen = (index < 56) ? (56 - index) : ((64+56) - index);
396 		*(ctx->buffer + ctx->bufcnt) = 0x80;
397 		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
398 		memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
399 		ctx->bufcnt += padlen + 8;
400 		ctx->flags |= SHA_FLAGS_PAD;
401 		break;
402 	}
403 }
404 
405 static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
406 {
407 	struct atmel_sha_dev *dd = NULL;
408 	struct atmel_sha_dev *tmp;
409 
410 	spin_lock_bh(&atmel_sha.lock);
411 	if (!tctx->dd) {
412 		list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
413 			dd = tmp;
414 			break;
415 		}
416 		tctx->dd = dd;
417 	} else {
418 		dd = tctx->dd;
419 	}
420 
421 	spin_unlock_bh(&atmel_sha.lock);
422 
423 	return dd;
424 }
425 
426 static int atmel_sha_init(struct ahash_request *req)
427 {
428 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
429 	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
430 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
431 	struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
432 
433 	ctx->dd = dd;
434 
435 	ctx->flags = 0;
436 
437 	dev_dbg(dd->dev, "init: digest size: %u\n",
438 		crypto_ahash_digestsize(tfm));
439 
440 	switch (crypto_ahash_digestsize(tfm)) {
441 	case SHA1_DIGEST_SIZE:
442 		ctx->flags |= SHA_FLAGS_SHA1;
443 		ctx->block_size = SHA1_BLOCK_SIZE;
444 		break;
445 	case SHA224_DIGEST_SIZE:
446 		ctx->flags |= SHA_FLAGS_SHA224;
447 		ctx->block_size = SHA224_BLOCK_SIZE;
448 		break;
449 	case SHA256_DIGEST_SIZE:
450 		ctx->flags |= SHA_FLAGS_SHA256;
451 		ctx->block_size = SHA256_BLOCK_SIZE;
452 		break;
453 	case SHA384_DIGEST_SIZE:
454 		ctx->flags |= SHA_FLAGS_SHA384;
455 		ctx->block_size = SHA384_BLOCK_SIZE;
456 		break;
457 	case SHA512_DIGEST_SIZE:
458 		ctx->flags |= SHA_FLAGS_SHA512;
459 		ctx->block_size = SHA512_BLOCK_SIZE;
460 		break;
461 	default:
462 		return -EINVAL;
463 	}
464 
465 	ctx->bufcnt = 0;
466 	ctx->digcnt[0] = 0;
467 	ctx->digcnt[1] = 0;
468 	ctx->buflen = SHA_BUFFER_LEN;
469 
470 	return 0;
471 }
472 
473 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
474 {
475 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
476 	u32 valmr = SHA_MR_MODE_AUTO;
477 	unsigned int i, hashsize = 0;
478 
479 	if (likely(dma)) {
480 		if (!dd->caps.has_dma)
481 			atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
482 		valmr = SHA_MR_MODE_PDC;
483 		if (dd->caps.has_dualbuff)
484 			valmr |= SHA_MR_DUALBUFF;
485 	} else {
486 		atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
487 	}
488 
489 	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
490 	case SHA_FLAGS_SHA1:
491 		valmr |= SHA_MR_ALGO_SHA1;
492 		hashsize = SHA1_DIGEST_SIZE;
493 		break;
494 
495 	case SHA_FLAGS_SHA224:
496 		valmr |= SHA_MR_ALGO_SHA224;
497 		hashsize = SHA256_DIGEST_SIZE;
498 		break;
499 
500 	case SHA_FLAGS_SHA256:
501 		valmr |= SHA_MR_ALGO_SHA256;
502 		hashsize = SHA256_DIGEST_SIZE;
503 		break;
504 
505 	case SHA_FLAGS_SHA384:
506 		valmr |= SHA_MR_ALGO_SHA384;
507 		hashsize = SHA512_DIGEST_SIZE;
508 		break;
509 
510 	case SHA_FLAGS_SHA512:
511 		valmr |= SHA_MR_ALGO_SHA512;
512 		hashsize = SHA512_DIGEST_SIZE;
513 		break;
514 
515 	default:
516 		break;
517 	}
518 
519 	/* Setting CR_FIRST only for the first iteration */
520 	if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
521 		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
522 	} else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
523 		const u32 *hash = (const u32 *)ctx->digest;
524 
525 		/*
526 		 * Restore the hardware context: update the User Initialize
527 		 * Hash Value (UIHV) with the value saved when the latest
528 		 * 'update' operation completed on this very same crypto
529 		 * request.
530 		 */
531 		ctx->flags &= ~SHA_FLAGS_RESTORE;
532 		atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
533 		for (i = 0; i < hashsize / sizeof(u32); ++i)
534 			atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
535 		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
536 		valmr |= SHA_MR_UIHV;
537 	}
538 	/*
539 	 * WARNING: If the UIHV feature is not available, the hardware CANNOT
540 	 * process concurrent requests: the internal registers used to store
541 	 * the hash/digest are still set to the partial digest output values
542 	 * computed during the latest round.
543 	 */
544 
545 	atmel_sha_write(dd, SHA_MR, valmr);
546 }
547 
548 static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
549 						atmel_sha_fn_t resume)
550 {
551 	u32 isr = atmel_sha_read(dd, SHA_ISR);
552 
553 	if (unlikely(isr & SHA_INT_DATARDY))
554 		return resume(dd);
555 
556 	dd->resume = resume;
557 	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
558 	return -EINPROGRESS;
559 }
560 
561 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
562 			      size_t length, int final)
563 {
564 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
565 	int count, len32;
566 	const u32 *buffer = (const u32 *)buf;
567 
568 	dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
569 		ctx->digcnt[1], ctx->digcnt[0], length, final);
570 
571 	atmel_sha_write_ctrl(dd, 0);
572 
573 	/* should be non-zero before next lines to disable clocks later */
574 	ctx->digcnt[0] += length;
575 	if (ctx->digcnt[0] < length)
576 		ctx->digcnt[1]++;
577 
578 	if (final)
579 		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
580 
581 	len32 = DIV_ROUND_UP(length, sizeof(u32));
582 
583 	dd->flags |= SHA_FLAGS_CPU;
584 
585 	for (count = 0; count < len32; count++)
586 		atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
587 
588 	return -EINPROGRESS;
589 }
590 
591 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
592 		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
593 {
594 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
595 	int len32;
596 
597 	dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
598 		ctx->digcnt[1], ctx->digcnt[0], length1, final);
599 
600 	len32 = DIV_ROUND_UP(length1, sizeof(u32));
601 	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
602 	atmel_sha_write(dd, SHA_TPR, dma_addr1);
603 	atmel_sha_write(dd, SHA_TCR, len32);
604 
605 	len32 = DIV_ROUND_UP(length2, sizeof(u32));
606 	atmel_sha_write(dd, SHA_TNPR, dma_addr2);
607 	atmel_sha_write(dd, SHA_TNCR, len32);
608 
609 	atmel_sha_write_ctrl(dd, 1);
610 
611 	/* should be non-zero before next lines to disable clocks later */
612 	ctx->digcnt[0] += length1;
613 	if (ctx->digcnt[0] < length1)
614 		ctx->digcnt[1]++;
615 
616 	if (final)
617 		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
618 
619 	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
620 
621 	/* Start DMA transfer */
622 	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
623 
624 	return -EINPROGRESS;
625 }
626 
627 static void atmel_sha_dma_callback(void *data)
628 {
629 	struct atmel_sha_dev *dd = data;
630 
631 	dd->is_async = true;
632 
633 	/* dma_lch_in - completed - wait DATRDY */
634 	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
635 }
636 
637 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
638 		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
639 {
640 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
641 	struct dma_async_tx_descriptor	*in_desc;
642 	struct scatterlist sg[2];
643 
644 	dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
645 		ctx->digcnt[1], ctx->digcnt[0], length1, final);
646 
647 	dd->dma_lch_in.dma_conf.src_maxburst = 16;
648 	dd->dma_lch_in.dma_conf.dst_maxburst = 16;
649 
650 	dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
651 
652 	if (length2) {
653 		sg_init_table(sg, 2);
654 		sg_dma_address(&sg[0]) = dma_addr1;
655 		sg_dma_len(&sg[0]) = length1;
656 		sg_dma_address(&sg[1]) = dma_addr2;
657 		sg_dma_len(&sg[1]) = length2;
658 		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
659 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
660 	} else {
661 		sg_init_table(sg, 1);
662 		sg_dma_address(&sg[0]) = dma_addr1;
663 		sg_dma_len(&sg[0]) = length1;
664 		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
665 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
666 	}
667 	if (!in_desc)
668 		return atmel_sha_complete(dd, -EINVAL);
669 
670 	in_desc->callback = atmel_sha_dma_callback;
671 	in_desc->callback_param = dd;
672 
673 	atmel_sha_write_ctrl(dd, 1);
674 
675 	/* should be non-zero before next lines to disable clocks later */
676 	ctx->digcnt[0] += length1;
677 	if (ctx->digcnt[0] < length1)
678 		ctx->digcnt[1]++;
679 
680 	if (final)
681 		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
682 
683 	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
684 
685 	/* Start DMA transfer */
686 	dmaengine_submit(in_desc);
687 	dma_async_issue_pending(dd->dma_lch_in.chan);
688 
689 	return -EINPROGRESS;
690 }
691 
692 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
693 		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
694 {
695 	if (dd->caps.has_dma)
696 		return atmel_sha_xmit_dma(dd, dma_addr1, length1,
697 				dma_addr2, length2, final);
698 	else
699 		return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
700 				dma_addr2, length2, final);
701 }
702 
703 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
704 {
705 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
706 	int bufcnt;
707 
708 	atmel_sha_append_sg(ctx);
709 	atmel_sha_fill_padding(ctx, 0);
710 	bufcnt = ctx->bufcnt;
711 	ctx->bufcnt = 0;
712 
713 	return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
714 }
715 
716 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
717 					struct atmel_sha_reqctx *ctx,
718 					size_t length, int final)
719 {
720 	ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
721 				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
722 	if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
723 		dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
724 				ctx->block_size);
725 		return atmel_sha_complete(dd, -EINVAL);
726 	}
727 
728 	ctx->flags &= ~SHA_FLAGS_SG;
729 
730 	/* next call does not fail... so no unmap in the case of error */
731 	return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
732 }
733 
734 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
735 {
736 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
737 	unsigned int final;
738 	size_t count;
739 
740 	atmel_sha_append_sg(ctx);
741 
742 	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
743 
744 	dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
745 		 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
746 
747 	if (final)
748 		atmel_sha_fill_padding(ctx, 0);
749 
750 	if (final || (ctx->bufcnt == ctx->buflen)) {
751 		count = ctx->bufcnt;
752 		ctx->bufcnt = 0;
753 		return atmel_sha_xmit_dma_map(dd, ctx, count, final);
754 	}
755 
756 	return 0;
757 }
758 
759 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
760 {
761 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
762 	unsigned int length, final, tail;
763 	struct scatterlist *sg;
764 	unsigned int count;
765 
766 	if (!ctx->total)
767 		return 0;
768 
769 	if (ctx->bufcnt || ctx->offset)
770 		return atmel_sha_update_dma_slow(dd);
771 
772 	dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
773 		ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
774 
775 	sg = ctx->sg;
776 
777 	if (!IS_ALIGNED(sg->offset, sizeof(u32)))
778 		return atmel_sha_update_dma_slow(dd);
779 
780 	if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
781 		/* size is not ctx->block_size aligned */
782 		return atmel_sha_update_dma_slow(dd);
783 
784 	length = min(ctx->total, sg->length);
785 
786 	if (sg_is_last(sg)) {
787 		if (!(ctx->flags & SHA_FLAGS_FINUP)) {
788 			/* not last sg must be ctx->block_size aligned */
789 			tail = length & (ctx->block_size - 1);
790 			length -= tail;
791 		}
792 	}
793 
794 	ctx->total -= length;
795 	ctx->offset = length; /* offset where to start slow */
796 
797 	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
798 
799 	/* Add padding */
800 	if (final) {
801 		tail = length & (ctx->block_size - 1);
802 		length -= tail;
803 		ctx->total += tail;
804 		ctx->offset = length; /* offset where to start slow */
805 
806 		sg = ctx->sg;
807 		atmel_sha_append_sg(ctx);
808 
809 		atmel_sha_fill_padding(ctx, length);
810 
811 		ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
812 			ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
813 		if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
814 			dev_err(dd->dev, "dma %zu bytes error\n",
815 				ctx->buflen + ctx->block_size);
816 			return atmel_sha_complete(dd, -EINVAL);
817 		}
818 
819 		if (length == 0) {
820 			ctx->flags &= ~SHA_FLAGS_SG;
821 			count = ctx->bufcnt;
822 			ctx->bufcnt = 0;
823 			return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
824 					0, final);
825 		} else {
826 			ctx->sg = sg;
827 			if (!dma_map_sg(dd->dev, ctx->sg, 1,
828 				DMA_TO_DEVICE)) {
829 					dev_err(dd->dev, "dma_map_sg  error\n");
830 					return atmel_sha_complete(dd, -EINVAL);
831 			}
832 
833 			ctx->flags |= SHA_FLAGS_SG;
834 
835 			count = ctx->bufcnt;
836 			ctx->bufcnt = 0;
837 			return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
838 					length, ctx->dma_addr, count, final);
839 		}
840 	}
841 
842 	if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
843 		dev_err(dd->dev, "dma_map_sg  error\n");
844 		return atmel_sha_complete(dd, -EINVAL);
845 	}
846 
847 	ctx->flags |= SHA_FLAGS_SG;
848 
849 	/* next call does not fail... so no unmap in the case of error */
850 	return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
851 								0, final);
852 }
853 
854 static void atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
855 {
856 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
857 
858 	if (ctx->flags & SHA_FLAGS_SG) {
859 		dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
860 		if (ctx->sg->length == ctx->offset) {
861 			ctx->sg = sg_next(ctx->sg);
862 			if (ctx->sg)
863 				ctx->offset = 0;
864 		}
865 		if (ctx->flags & SHA_FLAGS_PAD) {
866 			dma_unmap_single(dd->dev, ctx->dma_addr,
867 				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
868 		}
869 	} else {
870 		dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
871 						ctx->block_size, DMA_TO_DEVICE);
872 	}
873 }
874 
875 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
876 {
877 	struct ahash_request *req = dd->req;
878 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
879 	int err;
880 
881 	dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
882 		ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
883 
884 	if (ctx->flags & SHA_FLAGS_CPU)
885 		err = atmel_sha_update_cpu(dd);
886 	else
887 		err = atmel_sha_update_dma_start(dd);
888 
889 	/* wait for dma completion before can take more data */
890 	dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
891 			err, ctx->digcnt[1], ctx->digcnt[0]);
892 
893 	return err;
894 }
895 
896 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
897 {
898 	struct ahash_request *req = dd->req;
899 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
900 	int err = 0;
901 	int count;
902 
903 	if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
904 		atmel_sha_fill_padding(ctx, 0);
905 		count = ctx->bufcnt;
906 		ctx->bufcnt = 0;
907 		err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
908 	}
909 	/* faster to handle last block with cpu */
910 	else {
911 		atmel_sha_fill_padding(ctx, 0);
912 		count = ctx->bufcnt;
913 		ctx->bufcnt = 0;
914 		err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
915 	}
916 
917 	dev_dbg(dd->dev, "final_req: err: %d\n", err);
918 
919 	return err;
920 }
921 
922 static void atmel_sha_copy_hash(struct ahash_request *req)
923 {
924 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
925 	u32 *hash = (u32 *)ctx->digest;
926 	unsigned int i, hashsize;
927 
928 	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
929 	case SHA_FLAGS_SHA1:
930 		hashsize = SHA1_DIGEST_SIZE;
931 		break;
932 
933 	case SHA_FLAGS_SHA224:
934 	case SHA_FLAGS_SHA256:
935 		hashsize = SHA256_DIGEST_SIZE;
936 		break;
937 
938 	case SHA_FLAGS_SHA384:
939 	case SHA_FLAGS_SHA512:
940 		hashsize = SHA512_DIGEST_SIZE;
941 		break;
942 
943 	default:
944 		/* Should not happen... */
945 		return;
946 	}
947 
948 	for (i = 0; i < hashsize / sizeof(u32); ++i)
949 		hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
950 	ctx->flags |= SHA_FLAGS_RESTORE;
951 }
952 
953 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
954 {
955 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
956 
957 	if (!req->result)
958 		return;
959 
960 	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
961 	default:
962 	case SHA_FLAGS_SHA1:
963 		memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
964 		break;
965 
966 	case SHA_FLAGS_SHA224:
967 		memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
968 		break;
969 
970 	case SHA_FLAGS_SHA256:
971 		memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
972 		break;
973 
974 	case SHA_FLAGS_SHA384:
975 		memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
976 		break;
977 
978 	case SHA_FLAGS_SHA512:
979 		memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
980 		break;
981 	}
982 }
983 
984 static int atmel_sha_finish(struct ahash_request *req)
985 {
986 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
987 	struct atmel_sha_dev *dd = ctx->dd;
988 
989 	if (ctx->digcnt[0] || ctx->digcnt[1])
990 		atmel_sha_copy_ready_hash(req);
991 
992 	dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
993 		ctx->digcnt[0], ctx->bufcnt);
994 
995 	return 0;
996 }
997 
998 static void atmel_sha_finish_req(struct ahash_request *req, int err)
999 {
1000 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1001 	struct atmel_sha_dev *dd = ctx->dd;
1002 
1003 	if (!err) {
1004 		atmel_sha_copy_hash(req);
1005 		if (SHA_FLAGS_FINAL & dd->flags)
1006 			err = atmel_sha_finish(req);
1007 	} else {
1008 		ctx->flags |= SHA_FLAGS_ERROR;
1009 	}
1010 
1011 	/* atomic operation is not needed here */
1012 	(void)atmel_sha_complete(dd, err);
1013 }
1014 
1015 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1016 {
1017 	int err;
1018 
1019 	err = clk_enable(dd->iclk);
1020 	if (err)
1021 		return err;
1022 
1023 	if (!(SHA_FLAGS_INIT & dd->flags)) {
1024 		atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1025 		dd->flags |= SHA_FLAGS_INIT;
1026 	}
1027 
1028 	return 0;
1029 }
1030 
1031 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1032 {
1033 	return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1034 }
1035 
1036 static int atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1037 {
1038 	int err;
1039 
1040 	err = atmel_sha_hw_init(dd);
1041 	if (err)
1042 		return err;
1043 
1044 	dd->hw_version = atmel_sha_get_version(dd);
1045 
1046 	dev_info(dd->dev,
1047 			"version: 0x%x\n", dd->hw_version);
1048 
1049 	clk_disable(dd->iclk);
1050 
1051 	return 0;
1052 }
1053 
1054 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1055 				  struct ahash_request *req)
1056 {
1057 	struct crypto_async_request *async_req, *backlog;
1058 	struct atmel_sha_ctx *ctx;
1059 	unsigned long flags;
1060 	bool start_async;
1061 	int err = 0, ret = 0;
1062 
1063 	spin_lock_irqsave(&dd->lock, flags);
1064 	if (req)
1065 		ret = ahash_enqueue_request(&dd->queue, req);
1066 
1067 	if (SHA_FLAGS_BUSY & dd->flags) {
1068 		spin_unlock_irqrestore(&dd->lock, flags);
1069 		return ret;
1070 	}
1071 
1072 	backlog = crypto_get_backlog(&dd->queue);
1073 	async_req = crypto_dequeue_request(&dd->queue);
1074 	if (async_req)
1075 		dd->flags |= SHA_FLAGS_BUSY;
1076 
1077 	spin_unlock_irqrestore(&dd->lock, flags);
1078 
1079 	if (!async_req)
1080 		return ret;
1081 
1082 	if (backlog)
1083 		crypto_request_complete(backlog, -EINPROGRESS);
1084 
1085 	ctx = crypto_tfm_ctx(async_req->tfm);
1086 
1087 	dd->req = ahash_request_cast(async_req);
1088 	start_async = (dd->req != req);
1089 	dd->is_async = start_async;
1090 	dd->force_complete = false;
1091 
1092 	/* WARNING: ctx->start() MAY change dd->is_async. */
1093 	err = ctx->start(dd);
1094 	return (start_async) ? ret : err;
1095 }
1096 
1097 static int atmel_sha_done(struct atmel_sha_dev *dd);
1098 
1099 static int atmel_sha_start(struct atmel_sha_dev *dd)
1100 {
1101 	struct ahash_request *req = dd->req;
1102 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1103 	int err;
1104 
1105 	dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %u\n",
1106 						ctx->op, req->nbytes);
1107 
1108 	err = atmel_sha_hw_init(dd);
1109 	if (err)
1110 		return atmel_sha_complete(dd, err);
1111 
1112 	/*
1113 	 * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114 	 *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115 	 *                its job later in the done_task.
1116 	 *                This is the main path.
1117 	 *
1118 	 * 0: the SHA driver can continue its job then release the hardware
1119 	 *    later, if needed, with atmel_sha_finish_req().
1120 	 *    This is the alternate path.
1121 	 *
1122 	 * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123 	 *      been called, hence the hardware has been released.
1124 	 *      The SHA driver must stop its job without calling
1125 	 *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126 	 *      called a second time.
1127 	 *
1128 	 * Please note that currently, atmel_sha_final_req() never returns 0.
1129 	 */
1130 
1131 	dd->resume = atmel_sha_done;
1132 	if (ctx->op == SHA_OP_UPDATE) {
1133 		err = atmel_sha_update_req(dd);
1134 		if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1135 			/* no final() after finup() */
1136 			err = atmel_sha_final_req(dd);
1137 	} else if (ctx->op == SHA_OP_FINAL) {
1138 		err = atmel_sha_final_req(dd);
1139 	}
1140 
1141 	if (!err)
1142 		/* done_task will not finish it, so do it here */
1143 		atmel_sha_finish_req(req, err);
1144 
1145 	dev_dbg(dd->dev, "exit, err: %d\n", err);
1146 
1147 	return err;
1148 }
1149 
1150 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1151 {
1152 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1153 	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1154 	struct atmel_sha_dev *dd = tctx->dd;
1155 
1156 	ctx->op = op;
1157 
1158 	return atmel_sha_handle_queue(dd, req);
1159 }
1160 
1161 static int atmel_sha_update(struct ahash_request *req)
1162 {
1163 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1164 
1165 	if (!req->nbytes)
1166 		return 0;
1167 
1168 	ctx->total = req->nbytes;
1169 	ctx->sg = req->src;
1170 	ctx->offset = 0;
1171 
1172 	if (ctx->flags & SHA_FLAGS_FINUP) {
1173 		if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1174 			/* faster to use CPU for short transfers */
1175 			ctx->flags |= SHA_FLAGS_CPU;
1176 	} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1177 		atmel_sha_append_sg(ctx);
1178 		return 0;
1179 	}
1180 	return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1181 }
1182 
1183 static int atmel_sha_final(struct ahash_request *req)
1184 {
1185 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1186 
1187 	ctx->flags |= SHA_FLAGS_FINUP;
1188 
1189 	if (ctx->flags & SHA_FLAGS_ERROR)
1190 		return 0; /* uncompleted hash is not needed */
1191 
1192 	if (ctx->flags & SHA_FLAGS_PAD)
1193 		/* copy ready hash (+ finalize hmac) */
1194 		return atmel_sha_finish(req);
1195 
1196 	return atmel_sha_enqueue(req, SHA_OP_FINAL);
1197 }
1198 
1199 static int atmel_sha_finup(struct ahash_request *req)
1200 {
1201 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1202 	int err1, err2;
1203 
1204 	ctx->flags |= SHA_FLAGS_FINUP;
1205 
1206 	err1 = atmel_sha_update(req);
1207 	if (err1 == -EINPROGRESS ||
1208 	    (err1 == -EBUSY && (ahash_request_flags(req) &
1209 				CRYPTO_TFM_REQ_MAY_BACKLOG)))
1210 		return err1;
1211 
1212 	/*
1213 	 * final() has to be always called to cleanup resources
1214 	 * even if udpate() failed, except EINPROGRESS
1215 	 */
1216 	err2 = atmel_sha_final(req);
1217 
1218 	return err1 ?: err2;
1219 }
1220 
1221 static int atmel_sha_digest(struct ahash_request *req)
1222 {
1223 	return atmel_sha_init(req) ?: atmel_sha_finup(req);
1224 }
1225 
1226 
1227 static int atmel_sha_export(struct ahash_request *req, void *out)
1228 {
1229 	const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1230 
1231 	memcpy(out, ctx, sizeof(*ctx));
1232 	return 0;
1233 }
1234 
1235 static int atmel_sha_import(struct ahash_request *req, const void *in)
1236 {
1237 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1238 
1239 	memcpy(ctx, in, sizeof(*ctx));
1240 	return 0;
1241 }
1242 
1243 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1244 {
1245 	struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1246 
1247 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1248 				 sizeof(struct atmel_sha_reqctx));
1249 	ctx->start = atmel_sha_start;
1250 
1251 	return 0;
1252 }
1253 
1254 static void atmel_sha_alg_init(struct ahash_alg *alg)
1255 {
1256 	alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
1257 	alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
1258 	alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_ctx);
1259 	alg->halg.base.cra_module = THIS_MODULE;
1260 	alg->halg.base.cra_init = atmel_sha_cra_init;
1261 
1262 	alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
1263 
1264 	alg->init = atmel_sha_init;
1265 	alg->update = atmel_sha_update;
1266 	alg->final = atmel_sha_final;
1267 	alg->finup = atmel_sha_finup;
1268 	alg->digest = atmel_sha_digest;
1269 	alg->export = atmel_sha_export;
1270 	alg->import = atmel_sha_import;
1271 }
1272 
1273 static struct ahash_alg sha_1_256_algs[] = {
1274 {
1275 	.halg.base.cra_name		= "sha1",
1276 	.halg.base.cra_driver_name	= "atmel-sha1",
1277 	.halg.base.cra_blocksize	= SHA1_BLOCK_SIZE,
1278 
1279 	.halg.digestsize = SHA1_DIGEST_SIZE,
1280 },
1281 {
1282 	.halg.base.cra_name		= "sha256",
1283 	.halg.base.cra_driver_name	= "atmel-sha256",
1284 	.halg.base.cra_blocksize	= SHA256_BLOCK_SIZE,
1285 
1286 	.halg.digestsize = SHA256_DIGEST_SIZE,
1287 },
1288 };
1289 
1290 static struct ahash_alg sha_224_alg = {
1291 	.halg.base.cra_name		= "sha224",
1292 	.halg.base.cra_driver_name	= "atmel-sha224",
1293 	.halg.base.cra_blocksize	= SHA224_BLOCK_SIZE,
1294 
1295 	.halg.digestsize = SHA224_DIGEST_SIZE,
1296 };
1297 
1298 static struct ahash_alg sha_384_512_algs[] = {
1299 {
1300 	.halg.base.cra_name		= "sha384",
1301 	.halg.base.cra_driver_name	= "atmel-sha384",
1302 	.halg.base.cra_blocksize	= SHA384_BLOCK_SIZE,
1303 	.halg.base.cra_alignmask	= 0x3,
1304 
1305 	.halg.digestsize = SHA384_DIGEST_SIZE,
1306 },
1307 {
1308 	.halg.base.cra_name		= "sha512",
1309 	.halg.base.cra_driver_name	= "atmel-sha512",
1310 	.halg.base.cra_blocksize	= SHA512_BLOCK_SIZE,
1311 	.halg.base.cra_alignmask	= 0x3,
1312 
1313 	.halg.digestsize = SHA512_DIGEST_SIZE,
1314 },
1315 };
1316 
1317 static void atmel_sha_queue_task(unsigned long data)
1318 {
1319 	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1320 
1321 	atmel_sha_handle_queue(dd, NULL);
1322 }
1323 
1324 static int atmel_sha_done(struct atmel_sha_dev *dd)
1325 {
1326 	int err = 0;
1327 
1328 	if (SHA_FLAGS_CPU & dd->flags) {
1329 		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1330 			dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1331 			goto finish;
1332 		}
1333 	} else if (SHA_FLAGS_DMA_READY & dd->flags) {
1334 		if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1335 			dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1336 			atmel_sha_update_dma_stop(dd);
1337 		}
1338 		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1339 			/* hash or semi-hash ready */
1340 			dd->flags &= ~(SHA_FLAGS_DMA_READY |
1341 						SHA_FLAGS_OUTPUT_READY);
1342 			err = atmel_sha_update_dma_start(dd);
1343 			if (err != -EINPROGRESS)
1344 				goto finish;
1345 		}
1346 	}
1347 	return err;
1348 
1349 finish:
1350 	/* finish curent request */
1351 	atmel_sha_finish_req(dd->req, err);
1352 
1353 	return err;
1354 }
1355 
1356 static void atmel_sha_done_task(unsigned long data)
1357 {
1358 	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1359 
1360 	dd->is_async = true;
1361 	(void)dd->resume(dd);
1362 }
1363 
1364 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1365 {
1366 	struct atmel_sha_dev *sha_dd = dev_id;
1367 	u32 reg;
1368 
1369 	reg = atmel_sha_read(sha_dd, SHA_ISR);
1370 	if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1371 		atmel_sha_write(sha_dd, SHA_IDR, reg);
1372 		if (SHA_FLAGS_BUSY & sha_dd->flags) {
1373 			sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1374 			if (!(SHA_FLAGS_CPU & sha_dd->flags))
1375 				sha_dd->flags |= SHA_FLAGS_DMA_READY;
1376 			tasklet_schedule(&sha_dd->done_task);
1377 		} else {
1378 			dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1379 		}
1380 		return IRQ_HANDLED;
1381 	}
1382 
1383 	return IRQ_NONE;
1384 }
1385 
1386 
1387 /* DMA transfer functions */
1388 
1389 static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1390 					struct scatterlist *sg,
1391 					size_t len)
1392 {
1393 	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1394 	struct ahash_request *req = dd->req;
1395 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1396 	size_t bs = ctx->block_size;
1397 	int nents;
1398 
1399 	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1400 		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1401 			return false;
1402 
1403 		/*
1404 		 * This is the last sg, the only one that is allowed to
1405 		 * have an unaligned length.
1406 		 */
1407 		if (len <= sg->length) {
1408 			dma->nents = nents + 1;
1409 			dma->last_sg_length = sg->length;
1410 			sg->length = ALIGN(len, sizeof(u32));
1411 			return true;
1412 		}
1413 
1414 		/* All other sg lengths MUST be aligned to the block size. */
1415 		if (!IS_ALIGNED(sg->length, bs))
1416 			return false;
1417 
1418 		len -= sg->length;
1419 	}
1420 
1421 	return false;
1422 }
1423 
1424 static void atmel_sha_dma_callback2(void *data)
1425 {
1426 	struct atmel_sha_dev *dd = data;
1427 	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1428 	struct scatterlist *sg;
1429 	int nents;
1430 
1431 	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1432 
1433 	sg = dma->sg;
1434 	for (nents = 0; nents < dma->nents - 1; ++nents)
1435 		sg = sg_next(sg);
1436 	sg->length = dma->last_sg_length;
1437 
1438 	dd->is_async = true;
1439 	(void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1440 }
1441 
1442 static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1443 			       struct scatterlist *src,
1444 			       size_t len,
1445 			       atmel_sha_fn_t resume)
1446 {
1447 	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1448 	struct dma_slave_config *config = &dma->dma_conf;
1449 	struct dma_chan *chan = dma->chan;
1450 	struct dma_async_tx_descriptor *desc;
1451 	dma_cookie_t cookie;
1452 	unsigned int sg_len;
1453 	int err;
1454 
1455 	dd->resume = resume;
1456 
1457 	/*
1458 	 * dma->nents has already been initialized by
1459 	 * atmel_sha_dma_check_aligned().
1460 	 */
1461 	dma->sg = src;
1462 	sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1463 	if (!sg_len) {
1464 		err = -ENOMEM;
1465 		goto exit;
1466 	}
1467 
1468 	config->src_maxburst = 16;
1469 	config->dst_maxburst = 16;
1470 	err = dmaengine_slave_config(chan, config);
1471 	if (err)
1472 		goto unmap_sg;
1473 
1474 	desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1475 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1476 	if (!desc) {
1477 		err = -ENOMEM;
1478 		goto unmap_sg;
1479 	}
1480 
1481 	desc->callback = atmel_sha_dma_callback2;
1482 	desc->callback_param = dd;
1483 	cookie = dmaengine_submit(desc);
1484 	err = dma_submit_error(cookie);
1485 	if (err)
1486 		goto unmap_sg;
1487 
1488 	dma_async_issue_pending(chan);
1489 
1490 	return -EINPROGRESS;
1491 
1492 unmap_sg:
1493 	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1494 exit:
1495 	return atmel_sha_complete(dd, err);
1496 }
1497 
1498 
1499 /* CPU transfer functions */
1500 
1501 static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1502 {
1503 	struct ahash_request *req = dd->req;
1504 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1505 	const u32 *words = (const u32 *)ctx->buffer;
1506 	size_t i, num_words;
1507 	u32 isr, din, din_inc;
1508 
1509 	din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1510 	for (;;) {
1511 		/* Write data into the Input Data Registers. */
1512 		num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1513 		for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1514 			atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1515 
1516 		ctx->offset += ctx->bufcnt;
1517 		ctx->total -= ctx->bufcnt;
1518 
1519 		if (!ctx->total)
1520 			break;
1521 
1522 		/*
1523 		 * Prepare next block:
1524 		 * Fill ctx->buffer now with the next data to be written into
1525 		 * IDATARx: it gives time for the SHA hardware to process
1526 		 * the current data so the SHA_INT_DATARDY flag might be set
1527 		 * in SHA_ISR when polling this register at the beginning of
1528 		 * the next loop.
1529 		 */
1530 		ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1531 		scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1532 					 ctx->offset, ctx->bufcnt, 0);
1533 
1534 		/* Wait for hardware to be ready again. */
1535 		isr = atmel_sha_read(dd, SHA_ISR);
1536 		if (!(isr & SHA_INT_DATARDY)) {
1537 			/* Not ready yet. */
1538 			dd->resume = atmel_sha_cpu_transfer;
1539 			atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1540 			return -EINPROGRESS;
1541 		}
1542 	}
1543 
1544 	if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1545 		return dd->cpu_transfer_complete(dd);
1546 
1547 	return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1548 }
1549 
1550 static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1551 			       struct scatterlist *sg,
1552 			       unsigned int len,
1553 			       bool idatar0_only,
1554 			       bool wait_data_ready,
1555 			       atmel_sha_fn_t resume)
1556 {
1557 	struct ahash_request *req = dd->req;
1558 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1559 
1560 	if (!len)
1561 		return resume(dd);
1562 
1563 	ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1564 
1565 	if (idatar0_only)
1566 		ctx->flags |= SHA_FLAGS_IDATAR0;
1567 
1568 	if (wait_data_ready)
1569 		ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1570 
1571 	ctx->sg = sg;
1572 	ctx->total = len;
1573 	ctx->offset = 0;
1574 
1575 	/* Prepare the first block to be written. */
1576 	ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1577 	scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1578 				 ctx->offset, ctx->bufcnt, 0);
1579 
1580 	dd->cpu_transfer_complete = resume;
1581 	return atmel_sha_cpu_transfer(dd);
1582 }
1583 
1584 static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1585 			      const void *data, unsigned int datalen,
1586 			      bool auto_padding,
1587 			      atmel_sha_fn_t resume)
1588 {
1589 	struct ahash_request *req = dd->req;
1590 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1591 	u32 msglen = (auto_padding) ? datalen : 0;
1592 	u32 mr = SHA_MR_MODE_AUTO;
1593 
1594 	if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1595 		return atmel_sha_complete(dd, -EINVAL);
1596 
1597 	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1598 	atmel_sha_write(dd, SHA_MR, mr);
1599 	atmel_sha_write(dd, SHA_MSR, msglen);
1600 	atmel_sha_write(dd, SHA_BCR, msglen);
1601 	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1602 
1603 	sg_init_one(&dd->tmp, data, datalen);
1604 	return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1605 }
1606 
1607 
1608 /* hmac functions */
1609 
1610 struct atmel_sha_hmac_key {
1611 	bool			valid;
1612 	unsigned int		keylen;
1613 	u8			buffer[SHA512_BLOCK_SIZE];
1614 	u8			*keydup;
1615 };
1616 
1617 static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1618 {
1619 	memset(hkey, 0, sizeof(*hkey));
1620 }
1621 
1622 static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1623 {
1624 	kfree(hkey->keydup);
1625 	memset(hkey, 0, sizeof(*hkey));
1626 }
1627 
1628 static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1629 					 const u8 *key,
1630 					 unsigned int keylen)
1631 {
1632 	atmel_sha_hmac_key_release(hkey);
1633 
1634 	if (keylen > sizeof(hkey->buffer)) {
1635 		hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1636 		if (!hkey->keydup)
1637 			return -ENOMEM;
1638 
1639 	} else {
1640 		memcpy(hkey->buffer, key, keylen);
1641 	}
1642 
1643 	hkey->valid = true;
1644 	hkey->keylen = keylen;
1645 	return 0;
1646 }
1647 
1648 static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1649 					  const u8 **key,
1650 					  unsigned int *keylen)
1651 {
1652 	if (!hkey->valid)
1653 		return false;
1654 
1655 	*keylen = hkey->keylen;
1656 	*key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1657 	return true;
1658 }
1659 
1660 
1661 struct atmel_sha_hmac_ctx {
1662 	struct atmel_sha_ctx	base;
1663 
1664 	struct atmel_sha_hmac_key	hkey;
1665 	u32			ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1666 	u32			opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1667 	atmel_sha_fn_t		resume;
1668 };
1669 
1670 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1671 				atmel_sha_fn_t resume);
1672 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1673 				      const u8 *key, unsigned int keylen);
1674 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1675 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1676 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1677 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1678 
1679 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1680 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1681 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1682 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1683 
1684 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1685 				atmel_sha_fn_t resume)
1686 {
1687 	struct ahash_request *req = dd->req;
1688 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1689 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1690 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1691 	unsigned int keylen;
1692 	const u8 *key;
1693 	size_t bs;
1694 
1695 	hmac->resume = resume;
1696 	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1697 	case SHA_FLAGS_SHA1:
1698 		ctx->block_size = SHA1_BLOCK_SIZE;
1699 		ctx->hash_size = SHA1_DIGEST_SIZE;
1700 		break;
1701 
1702 	case SHA_FLAGS_SHA224:
1703 		ctx->block_size = SHA224_BLOCK_SIZE;
1704 		ctx->hash_size = SHA256_DIGEST_SIZE;
1705 		break;
1706 
1707 	case SHA_FLAGS_SHA256:
1708 		ctx->block_size = SHA256_BLOCK_SIZE;
1709 		ctx->hash_size = SHA256_DIGEST_SIZE;
1710 		break;
1711 
1712 	case SHA_FLAGS_SHA384:
1713 		ctx->block_size = SHA384_BLOCK_SIZE;
1714 		ctx->hash_size = SHA512_DIGEST_SIZE;
1715 		break;
1716 
1717 	case SHA_FLAGS_SHA512:
1718 		ctx->block_size = SHA512_BLOCK_SIZE;
1719 		ctx->hash_size = SHA512_DIGEST_SIZE;
1720 		break;
1721 
1722 	default:
1723 		return atmel_sha_complete(dd, -EINVAL);
1724 	}
1725 	bs = ctx->block_size;
1726 
1727 	if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1728 		return resume(dd);
1729 
1730 	/* Compute K' from K. */
1731 	if (unlikely(keylen > bs))
1732 		return atmel_sha_hmac_prehash_key(dd, key, keylen);
1733 
1734 	/* Prepare ipad. */
1735 	memcpy((u8 *)hmac->ipad, key, keylen);
1736 	memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1737 	return atmel_sha_hmac_compute_ipad_hash(dd);
1738 }
1739 
1740 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1741 				      const u8 *key, unsigned int keylen)
1742 {
1743 	return atmel_sha_cpu_hash(dd, key, keylen, true,
1744 				  atmel_sha_hmac_prehash_key_done);
1745 }
1746 
1747 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1748 {
1749 	struct ahash_request *req = dd->req;
1750 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1751 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1752 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1753 	size_t ds = crypto_ahash_digestsize(tfm);
1754 	size_t bs = ctx->block_size;
1755 	size_t i, num_words = ds / sizeof(u32);
1756 
1757 	/* Prepare ipad. */
1758 	for (i = 0; i < num_words; ++i)
1759 		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1760 	memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1761 	return atmel_sha_hmac_compute_ipad_hash(dd);
1762 }
1763 
1764 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1765 {
1766 	struct ahash_request *req = dd->req;
1767 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1768 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1769 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1770 	size_t bs = ctx->block_size;
1771 	size_t i, num_words = bs / sizeof(u32);
1772 
1773 	memcpy(hmac->opad, hmac->ipad, bs);
1774 	for (i = 0; i < num_words; ++i) {
1775 		hmac->ipad[i] ^= 0x36363636;
1776 		hmac->opad[i] ^= 0x5c5c5c5c;
1777 	}
1778 
1779 	return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1780 				  atmel_sha_hmac_compute_opad_hash);
1781 }
1782 
1783 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1784 {
1785 	struct ahash_request *req = dd->req;
1786 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1787 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1788 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1789 	size_t bs = ctx->block_size;
1790 	size_t hs = ctx->hash_size;
1791 	size_t i, num_words = hs / sizeof(u32);
1792 
1793 	for (i = 0; i < num_words; ++i)
1794 		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1795 	return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1796 				  atmel_sha_hmac_setup_done);
1797 }
1798 
1799 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1800 {
1801 	struct ahash_request *req = dd->req;
1802 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1803 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1804 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1805 	size_t hs = ctx->hash_size;
1806 	size_t i, num_words = hs / sizeof(u32);
1807 
1808 	for (i = 0; i < num_words; ++i)
1809 		hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1810 	atmel_sha_hmac_key_release(&hmac->hkey);
1811 	return hmac->resume(dd);
1812 }
1813 
1814 static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1815 {
1816 	struct ahash_request *req = dd->req;
1817 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1818 	int err;
1819 
1820 	err = atmel_sha_hw_init(dd);
1821 	if (err)
1822 		return atmel_sha_complete(dd, err);
1823 
1824 	switch (ctx->op) {
1825 	case SHA_OP_INIT:
1826 		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1827 		break;
1828 
1829 	case SHA_OP_UPDATE:
1830 		dd->resume = atmel_sha_done;
1831 		err = atmel_sha_update_req(dd);
1832 		break;
1833 
1834 	case SHA_OP_FINAL:
1835 		dd->resume = atmel_sha_hmac_final;
1836 		err = atmel_sha_final_req(dd);
1837 		break;
1838 
1839 	case SHA_OP_DIGEST:
1840 		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1841 		break;
1842 
1843 	default:
1844 		return atmel_sha_complete(dd, -EINVAL);
1845 	}
1846 
1847 	return err;
1848 }
1849 
1850 static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1851 				 unsigned int keylen)
1852 {
1853 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1854 
1855 	return atmel_sha_hmac_key_set(&hmac->hkey, key, keylen);
1856 }
1857 
1858 static int atmel_sha_hmac_init(struct ahash_request *req)
1859 {
1860 	int err;
1861 
1862 	err = atmel_sha_init(req);
1863 	if (err)
1864 		return err;
1865 
1866 	return atmel_sha_enqueue(req, SHA_OP_INIT);
1867 }
1868 
1869 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1870 {
1871 	struct ahash_request *req = dd->req;
1872 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1873 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1874 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1875 	size_t bs = ctx->block_size;
1876 	size_t hs = ctx->hash_size;
1877 
1878 	ctx->bufcnt = 0;
1879 	ctx->digcnt[0] = bs;
1880 	ctx->digcnt[1] = 0;
1881 	ctx->flags |= SHA_FLAGS_RESTORE;
1882 	memcpy(ctx->digest, hmac->ipad, hs);
1883 	return atmel_sha_complete(dd, 0);
1884 }
1885 
1886 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1887 {
1888 	struct ahash_request *req = dd->req;
1889 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1890 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1891 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1892 	u32 *digest = (u32 *)ctx->digest;
1893 	size_t ds = crypto_ahash_digestsize(tfm);
1894 	size_t bs = ctx->block_size;
1895 	size_t hs = ctx->hash_size;
1896 	size_t i, num_words;
1897 	u32 mr;
1898 
1899 	/* Save d = SHA((K' + ipad) | msg). */
1900 	num_words = ds / sizeof(u32);
1901 	for (i = 0; i < num_words; ++i)
1902 		digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1903 
1904 	/* Restore context to finish computing SHA((K' + opad) | d). */
1905 	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1906 	num_words = hs / sizeof(u32);
1907 	for (i = 0; i < num_words; ++i)
1908 		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1909 
1910 	mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1911 	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1912 	atmel_sha_write(dd, SHA_MR, mr);
1913 	atmel_sha_write(dd, SHA_MSR, bs + ds);
1914 	atmel_sha_write(dd, SHA_BCR, ds);
1915 	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1916 
1917 	sg_init_one(&dd->tmp, digest, ds);
1918 	return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1919 				   atmel_sha_hmac_final_done);
1920 }
1921 
1922 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1923 {
1924 	/*
1925 	 * req->result might not be sizeof(u32) aligned, so copy the
1926 	 * digest into ctx->digest[] before memcpy() the data into
1927 	 * req->result.
1928 	 */
1929 	atmel_sha_copy_hash(dd->req);
1930 	atmel_sha_copy_ready_hash(dd->req);
1931 	return atmel_sha_complete(dd, 0);
1932 }
1933 
1934 static int atmel_sha_hmac_digest(struct ahash_request *req)
1935 {
1936 	int err;
1937 
1938 	err = atmel_sha_init(req);
1939 	if (err)
1940 		return err;
1941 
1942 	return atmel_sha_enqueue(req, SHA_OP_DIGEST);
1943 }
1944 
1945 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
1946 {
1947 	struct ahash_request *req = dd->req;
1948 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1949 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1950 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1951 	size_t hs = ctx->hash_size;
1952 	size_t i, num_words = hs / sizeof(u32);
1953 	bool use_dma = false;
1954 	u32 mr;
1955 
1956 	/* Special case for empty message. */
1957 	if (!req->nbytes)
1958 		return atmel_sha_complete(dd, -EINVAL); // TODO:
1959 
1960 	/* Check DMA threshold and alignment. */
1961 	if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
1962 	    atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
1963 		use_dma = true;
1964 
1965 	/* Write both initial hash values to compute a HMAC. */
1966 	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1967 	for (i = 0; i < num_words; ++i)
1968 		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
1969 
1970 	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
1971 	for (i = 0; i < num_words; ++i)
1972 		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1973 
1974 	/* Write the Mode, Message Size, Bytes Count then Control Registers. */
1975 	mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
1976 	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
1977 	if (use_dma)
1978 		mr |= SHA_MR_MODE_IDATAR0;
1979 	else
1980 		mr |= SHA_MR_MODE_AUTO;
1981 	atmel_sha_write(dd, SHA_MR, mr);
1982 
1983 	atmel_sha_write(dd, SHA_MSR, req->nbytes);
1984 	atmel_sha_write(dd, SHA_BCR, req->nbytes);
1985 
1986 	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1987 
1988 	/* Process data. */
1989 	if (use_dma)
1990 		return atmel_sha_dma_start(dd, req->src, req->nbytes,
1991 					   atmel_sha_hmac_final_done);
1992 
1993 	return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
1994 				   atmel_sha_hmac_final_done);
1995 }
1996 
1997 static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
1998 {
1999 	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2000 
2001 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2002 				 sizeof(struct atmel_sha_reqctx));
2003 	hmac->base.start = atmel_sha_hmac_start;
2004 	atmel_sha_hmac_key_init(&hmac->hkey);
2005 
2006 	return 0;
2007 }
2008 
2009 static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2010 {
2011 	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2012 
2013 	atmel_sha_hmac_key_release(&hmac->hkey);
2014 }
2015 
2016 static void atmel_sha_hmac_alg_init(struct ahash_alg *alg)
2017 {
2018 	alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
2019 	alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
2020 	alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx);
2021 	alg->halg.base.cra_module = THIS_MODULE;
2022 	alg->halg.base.cra_init	= atmel_sha_hmac_cra_init;
2023 	alg->halg.base.cra_exit	= atmel_sha_hmac_cra_exit;
2024 
2025 	alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
2026 
2027 	alg->init = atmel_sha_hmac_init;
2028 	alg->update = atmel_sha_update;
2029 	alg->final = atmel_sha_final;
2030 	alg->digest = atmel_sha_hmac_digest;
2031 	alg->setkey = atmel_sha_hmac_setkey;
2032 	alg->export = atmel_sha_export;
2033 	alg->import = atmel_sha_import;
2034 }
2035 
2036 static struct ahash_alg sha_hmac_algs[] = {
2037 {
2038 	.halg.base.cra_name		= "hmac(sha1)",
2039 	.halg.base.cra_driver_name	= "atmel-hmac-sha1",
2040 	.halg.base.cra_blocksize	= SHA1_BLOCK_SIZE,
2041 
2042 	.halg.digestsize = SHA1_DIGEST_SIZE,
2043 },
2044 {
2045 	.halg.base.cra_name		= "hmac(sha224)",
2046 	.halg.base.cra_driver_name	= "atmel-hmac-sha224",
2047 	.halg.base.cra_blocksize	= SHA224_BLOCK_SIZE,
2048 
2049 	.halg.digestsize = SHA224_DIGEST_SIZE,
2050 },
2051 {
2052 	.halg.base.cra_name		= "hmac(sha256)",
2053 	.halg.base.cra_driver_name	= "atmel-hmac-sha256",
2054 	.halg.base.cra_blocksize	= SHA256_BLOCK_SIZE,
2055 
2056 	.halg.digestsize = SHA256_DIGEST_SIZE,
2057 },
2058 {
2059 	.halg.base.cra_name		= "hmac(sha384)",
2060 	.halg.base.cra_driver_name	= "atmel-hmac-sha384",
2061 	.halg.base.cra_blocksize	= SHA384_BLOCK_SIZE,
2062 
2063 	.halg.digestsize = SHA384_DIGEST_SIZE,
2064 },
2065 {
2066 	.halg.base.cra_name		= "hmac(sha512)",
2067 	.halg.base.cra_driver_name	= "atmel-hmac-sha512",
2068 	.halg.base.cra_blocksize	= SHA512_BLOCK_SIZE,
2069 
2070 	.halg.digestsize = SHA512_DIGEST_SIZE,
2071 },
2072 };
2073 
2074 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2075 /* authenc functions */
2076 
2077 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2078 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2079 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2080 
2081 
2082 struct atmel_sha_authenc_ctx {
2083 	struct crypto_ahash	*tfm;
2084 };
2085 
2086 struct atmel_sha_authenc_reqctx {
2087 	struct atmel_sha_reqctx	base;
2088 
2089 	atmel_aes_authenc_fn_t	cb;
2090 	struct atmel_aes_dev	*aes_dev;
2091 
2092 	/* _init() parameters. */
2093 	struct scatterlist	*assoc;
2094 	u32			assoclen;
2095 	u32			textlen;
2096 
2097 	/* _final() parameters. */
2098 	u32			*digest;
2099 	unsigned int		digestlen;
2100 };
2101 
2102 static void atmel_sha_authenc_complete(void *data, int err)
2103 {
2104 	struct ahash_request *req = data;
2105 	struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2106 
2107 	authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2108 }
2109 
2110 static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2111 {
2112 	struct ahash_request *req = dd->req;
2113 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2114 	int err;
2115 
2116 	/*
2117 	 * Force atmel_sha_complete() to call req->base.complete(), ie
2118 	 * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2119 	 */
2120 	dd->force_complete = true;
2121 
2122 	err = atmel_sha_hw_init(dd);
2123 	return authctx->cb(authctx->aes_dev, err, dd->is_async);
2124 }
2125 
2126 bool atmel_sha_authenc_is_ready(void)
2127 {
2128 	struct atmel_sha_ctx dummy;
2129 
2130 	dummy.dd = NULL;
2131 	return (atmel_sha_find_dev(&dummy) != NULL);
2132 }
2133 EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2134 
2135 unsigned int atmel_sha_authenc_get_reqsize(void)
2136 {
2137 	return sizeof(struct atmel_sha_authenc_reqctx);
2138 }
2139 EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2140 
2141 struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2142 {
2143 	struct atmel_sha_authenc_ctx *auth;
2144 	struct crypto_ahash *tfm;
2145 	struct atmel_sha_ctx *tctx;
2146 	const char *name;
2147 	int err = -EINVAL;
2148 
2149 	switch (mode & SHA_FLAGS_MODE_MASK) {
2150 	case SHA_FLAGS_HMAC_SHA1:
2151 		name = "atmel-hmac-sha1";
2152 		break;
2153 
2154 	case SHA_FLAGS_HMAC_SHA224:
2155 		name = "atmel-hmac-sha224";
2156 		break;
2157 
2158 	case SHA_FLAGS_HMAC_SHA256:
2159 		name = "atmel-hmac-sha256";
2160 		break;
2161 
2162 	case SHA_FLAGS_HMAC_SHA384:
2163 		name = "atmel-hmac-sha384";
2164 		break;
2165 
2166 	case SHA_FLAGS_HMAC_SHA512:
2167 		name = "atmel-hmac-sha512";
2168 		break;
2169 
2170 	default:
2171 		goto error;
2172 	}
2173 
2174 	tfm = crypto_alloc_ahash(name, 0, 0);
2175 	if (IS_ERR(tfm)) {
2176 		err = PTR_ERR(tfm);
2177 		goto error;
2178 	}
2179 	tctx = crypto_ahash_ctx(tfm);
2180 	tctx->start = atmel_sha_authenc_start;
2181 	tctx->flags = mode;
2182 
2183 	auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2184 	if (!auth) {
2185 		err = -ENOMEM;
2186 		goto err_free_ahash;
2187 	}
2188 	auth->tfm = tfm;
2189 
2190 	return auth;
2191 
2192 err_free_ahash:
2193 	crypto_free_ahash(tfm);
2194 error:
2195 	return ERR_PTR(err);
2196 }
2197 EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2198 
2199 void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2200 {
2201 	if (auth)
2202 		crypto_free_ahash(auth->tfm);
2203 	kfree(auth);
2204 }
2205 EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2206 
2207 int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2208 			     const u8 *key, unsigned int keylen, u32 flags)
2209 {
2210 	struct crypto_ahash *tfm = auth->tfm;
2211 
2212 	crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2213 	crypto_ahash_set_flags(tfm, flags & CRYPTO_TFM_REQ_MASK);
2214 	return crypto_ahash_setkey(tfm, key, keylen);
2215 }
2216 EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2217 
2218 int atmel_sha_authenc_schedule(struct ahash_request *req,
2219 			       struct atmel_sha_authenc_ctx *auth,
2220 			       atmel_aes_authenc_fn_t cb,
2221 			       struct atmel_aes_dev *aes_dev)
2222 {
2223 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2224 	struct atmel_sha_reqctx *ctx = &authctx->base;
2225 	struct crypto_ahash *tfm = auth->tfm;
2226 	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2227 	struct atmel_sha_dev *dd;
2228 
2229 	/* Reset request context (MUST be done first). */
2230 	memset(authctx, 0, sizeof(*authctx));
2231 
2232 	/* Get SHA device. */
2233 	dd = atmel_sha_find_dev(tctx);
2234 	if (!dd)
2235 		return cb(aes_dev, -ENODEV, false);
2236 
2237 	/* Init request context. */
2238 	ctx->dd = dd;
2239 	ctx->buflen = SHA_BUFFER_LEN;
2240 	authctx->cb = cb;
2241 	authctx->aes_dev = aes_dev;
2242 	ahash_request_set_tfm(req, tfm);
2243 	ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2244 
2245 	return atmel_sha_handle_queue(dd, req);
2246 }
2247 EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2248 
2249 int atmel_sha_authenc_init(struct ahash_request *req,
2250 			   struct scatterlist *assoc, unsigned int assoclen,
2251 			   unsigned int textlen,
2252 			   atmel_aes_authenc_fn_t cb,
2253 			   struct atmel_aes_dev *aes_dev)
2254 {
2255 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2256 	struct atmel_sha_reqctx *ctx = &authctx->base;
2257 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2258 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2259 	struct atmel_sha_dev *dd = ctx->dd;
2260 
2261 	if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2262 		return atmel_sha_complete(dd, -EINVAL);
2263 
2264 	authctx->cb = cb;
2265 	authctx->aes_dev = aes_dev;
2266 	authctx->assoc = assoc;
2267 	authctx->assoclen = assoclen;
2268 	authctx->textlen = textlen;
2269 
2270 	ctx->flags = hmac->base.flags;
2271 	return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2272 }
2273 EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2274 
2275 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2276 {
2277 	struct ahash_request *req = dd->req;
2278 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2279 	struct atmel_sha_reqctx *ctx = &authctx->base;
2280 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2281 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2282 	size_t hs = ctx->hash_size;
2283 	size_t i, num_words = hs / sizeof(u32);
2284 	u32 mr, msg_size;
2285 
2286 	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2287 	for (i = 0; i < num_words; ++i)
2288 		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2289 
2290 	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2291 	for (i = 0; i < num_words; ++i)
2292 		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2293 
2294 	mr = (SHA_MR_MODE_IDATAR0 |
2295 	      SHA_MR_HMAC |
2296 	      SHA_MR_DUALBUFF);
2297 	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2298 	atmel_sha_write(dd, SHA_MR, mr);
2299 
2300 	msg_size = authctx->assoclen + authctx->textlen;
2301 	atmel_sha_write(dd, SHA_MSR, msg_size);
2302 	atmel_sha_write(dd, SHA_BCR, msg_size);
2303 
2304 	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2305 
2306 	/* Process assoc data. */
2307 	return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2308 				   true, false,
2309 				   atmel_sha_authenc_init_done);
2310 }
2311 
2312 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2313 {
2314 	struct ahash_request *req = dd->req;
2315 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2316 
2317 	return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2318 }
2319 
2320 int atmel_sha_authenc_final(struct ahash_request *req,
2321 			    u32 *digest, unsigned int digestlen,
2322 			    atmel_aes_authenc_fn_t cb,
2323 			    struct atmel_aes_dev *aes_dev)
2324 {
2325 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2326 	struct atmel_sha_reqctx *ctx = &authctx->base;
2327 	struct atmel_sha_dev *dd = ctx->dd;
2328 
2329 	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2330 	case SHA_FLAGS_SHA1:
2331 		authctx->digestlen = SHA1_DIGEST_SIZE;
2332 		break;
2333 
2334 	case SHA_FLAGS_SHA224:
2335 		authctx->digestlen = SHA224_DIGEST_SIZE;
2336 		break;
2337 
2338 	case SHA_FLAGS_SHA256:
2339 		authctx->digestlen = SHA256_DIGEST_SIZE;
2340 		break;
2341 
2342 	case SHA_FLAGS_SHA384:
2343 		authctx->digestlen = SHA384_DIGEST_SIZE;
2344 		break;
2345 
2346 	case SHA_FLAGS_SHA512:
2347 		authctx->digestlen = SHA512_DIGEST_SIZE;
2348 		break;
2349 
2350 	default:
2351 		return atmel_sha_complete(dd, -EINVAL);
2352 	}
2353 	if (authctx->digestlen > digestlen)
2354 		authctx->digestlen = digestlen;
2355 
2356 	authctx->cb = cb;
2357 	authctx->aes_dev = aes_dev;
2358 	authctx->digest = digest;
2359 	return atmel_sha_wait_for_data_ready(dd,
2360 					     atmel_sha_authenc_final_done);
2361 }
2362 EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2363 
2364 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2365 {
2366 	struct ahash_request *req = dd->req;
2367 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2368 	size_t i, num_words = authctx->digestlen / sizeof(u32);
2369 
2370 	for (i = 0; i < num_words; ++i)
2371 		authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2372 
2373 	return atmel_sha_complete(dd, 0);
2374 }
2375 
2376 void atmel_sha_authenc_abort(struct ahash_request *req)
2377 {
2378 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2379 	struct atmel_sha_reqctx *ctx = &authctx->base;
2380 	struct atmel_sha_dev *dd = ctx->dd;
2381 
2382 	/* Prevent atmel_sha_complete() from calling req->base.complete(). */
2383 	dd->is_async = false;
2384 	dd->force_complete = false;
2385 	(void)atmel_sha_complete(dd, 0);
2386 }
2387 EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2388 
2389 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2390 
2391 
2392 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2393 {
2394 	int i;
2395 
2396 	if (dd->caps.has_hmac)
2397 		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2398 			crypto_unregister_ahash(&sha_hmac_algs[i]);
2399 
2400 	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2401 		crypto_unregister_ahash(&sha_1_256_algs[i]);
2402 
2403 	if (dd->caps.has_sha224)
2404 		crypto_unregister_ahash(&sha_224_alg);
2405 
2406 	if (dd->caps.has_sha_384_512) {
2407 		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2408 			crypto_unregister_ahash(&sha_384_512_algs[i]);
2409 	}
2410 }
2411 
2412 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2413 {
2414 	int err, i, j;
2415 
2416 	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2417 		atmel_sha_alg_init(&sha_1_256_algs[i]);
2418 
2419 		err = crypto_register_ahash(&sha_1_256_algs[i]);
2420 		if (err)
2421 			goto err_sha_1_256_algs;
2422 	}
2423 
2424 	if (dd->caps.has_sha224) {
2425 		atmel_sha_alg_init(&sha_224_alg);
2426 
2427 		err = crypto_register_ahash(&sha_224_alg);
2428 		if (err)
2429 			goto err_sha_224_algs;
2430 	}
2431 
2432 	if (dd->caps.has_sha_384_512) {
2433 		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2434 			atmel_sha_alg_init(&sha_384_512_algs[i]);
2435 
2436 			err = crypto_register_ahash(&sha_384_512_algs[i]);
2437 			if (err)
2438 				goto err_sha_384_512_algs;
2439 		}
2440 	}
2441 
2442 	if (dd->caps.has_hmac) {
2443 		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2444 			atmel_sha_hmac_alg_init(&sha_hmac_algs[i]);
2445 
2446 			err = crypto_register_ahash(&sha_hmac_algs[i]);
2447 			if (err)
2448 				goto err_sha_hmac_algs;
2449 		}
2450 	}
2451 
2452 	return 0;
2453 
2454 	/*i = ARRAY_SIZE(sha_hmac_algs);*/
2455 err_sha_hmac_algs:
2456 	for (j = 0; j < i; j++)
2457 		crypto_unregister_ahash(&sha_hmac_algs[j]);
2458 	i = ARRAY_SIZE(sha_384_512_algs);
2459 err_sha_384_512_algs:
2460 	for (j = 0; j < i; j++)
2461 		crypto_unregister_ahash(&sha_384_512_algs[j]);
2462 	crypto_unregister_ahash(&sha_224_alg);
2463 err_sha_224_algs:
2464 	i = ARRAY_SIZE(sha_1_256_algs);
2465 err_sha_1_256_algs:
2466 	for (j = 0; j < i; j++)
2467 		crypto_unregister_ahash(&sha_1_256_algs[j]);
2468 
2469 	return err;
2470 }
2471 
2472 static int atmel_sha_dma_init(struct atmel_sha_dev *dd)
2473 {
2474 	dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx");
2475 	if (IS_ERR(dd->dma_lch_in.chan)) {
2476 		dev_err(dd->dev, "DMA channel is not available\n");
2477 		return PTR_ERR(dd->dma_lch_in.chan);
2478 	}
2479 
2480 	dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2481 		SHA_REG_DIN(0);
2482 	dd->dma_lch_in.dma_conf.src_maxburst = 1;
2483 	dd->dma_lch_in.dma_conf.src_addr_width =
2484 		DMA_SLAVE_BUSWIDTH_4_BYTES;
2485 	dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2486 	dd->dma_lch_in.dma_conf.dst_addr_width =
2487 		DMA_SLAVE_BUSWIDTH_4_BYTES;
2488 	dd->dma_lch_in.dma_conf.device_fc = false;
2489 
2490 	return 0;
2491 }
2492 
2493 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2494 {
2495 	dma_release_channel(dd->dma_lch_in.chan);
2496 }
2497 
2498 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2499 {
2500 
2501 	dd->caps.has_dma = 0;
2502 	dd->caps.has_dualbuff = 0;
2503 	dd->caps.has_sha224 = 0;
2504 	dd->caps.has_sha_384_512 = 0;
2505 	dd->caps.has_uihv = 0;
2506 	dd->caps.has_hmac = 0;
2507 
2508 	/* keep only major version number */
2509 	switch (dd->hw_version & 0xff0) {
2510 	case 0x700:
2511 	case 0x600:
2512 	case 0x510:
2513 		dd->caps.has_dma = 1;
2514 		dd->caps.has_dualbuff = 1;
2515 		dd->caps.has_sha224 = 1;
2516 		dd->caps.has_sha_384_512 = 1;
2517 		dd->caps.has_uihv = 1;
2518 		dd->caps.has_hmac = 1;
2519 		break;
2520 	case 0x420:
2521 		dd->caps.has_dma = 1;
2522 		dd->caps.has_dualbuff = 1;
2523 		dd->caps.has_sha224 = 1;
2524 		dd->caps.has_sha_384_512 = 1;
2525 		dd->caps.has_uihv = 1;
2526 		break;
2527 	case 0x410:
2528 		dd->caps.has_dma = 1;
2529 		dd->caps.has_dualbuff = 1;
2530 		dd->caps.has_sha224 = 1;
2531 		dd->caps.has_sha_384_512 = 1;
2532 		break;
2533 	case 0x400:
2534 		dd->caps.has_dma = 1;
2535 		dd->caps.has_dualbuff = 1;
2536 		dd->caps.has_sha224 = 1;
2537 		break;
2538 	case 0x320:
2539 		break;
2540 	default:
2541 		dev_warn(dd->dev,
2542 				"Unmanaged sha version, set minimum capabilities\n");
2543 		break;
2544 	}
2545 }
2546 
2547 #if defined(CONFIG_OF)
2548 static const struct of_device_id atmel_sha_dt_ids[] = {
2549 	{ .compatible = "atmel,at91sam9g46-sha" },
2550 	{ /* sentinel */ }
2551 };
2552 
2553 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2554 #endif
2555 
2556 static int atmel_sha_probe(struct platform_device *pdev)
2557 {
2558 	struct atmel_sha_dev *sha_dd;
2559 	struct device *dev = &pdev->dev;
2560 	struct resource *sha_res;
2561 	int err;
2562 
2563 	sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2564 	if (!sha_dd)
2565 		return -ENOMEM;
2566 
2567 	sha_dd->dev = dev;
2568 
2569 	platform_set_drvdata(pdev, sha_dd);
2570 
2571 	INIT_LIST_HEAD(&sha_dd->list);
2572 	spin_lock_init(&sha_dd->lock);
2573 
2574 	tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2575 					(unsigned long)sha_dd);
2576 	tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2577 					(unsigned long)sha_dd);
2578 
2579 	crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2580 
2581 	/* Get the base address */
2582 	sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2583 	if (!sha_res) {
2584 		dev_err(dev, "no MEM resource info\n");
2585 		err = -ENODEV;
2586 		goto err_tasklet_kill;
2587 	}
2588 	sha_dd->phys_base = sha_res->start;
2589 
2590 	/* Get the IRQ */
2591 	sha_dd->irq = platform_get_irq(pdev,  0);
2592 	if (sha_dd->irq < 0) {
2593 		err = sha_dd->irq;
2594 		goto err_tasklet_kill;
2595 	}
2596 
2597 	err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2598 			       IRQF_SHARED, "atmel-sha", sha_dd);
2599 	if (err) {
2600 		dev_err(dev, "unable to request sha irq.\n");
2601 		goto err_tasklet_kill;
2602 	}
2603 
2604 	/* Initializing the clock */
2605 	sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2606 	if (IS_ERR(sha_dd->iclk)) {
2607 		dev_err(dev, "clock initialization failed.\n");
2608 		err = PTR_ERR(sha_dd->iclk);
2609 		goto err_tasklet_kill;
2610 	}
2611 
2612 	sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2613 	if (IS_ERR(sha_dd->io_base)) {
2614 		dev_err(dev, "can't ioremap\n");
2615 		err = PTR_ERR(sha_dd->io_base);
2616 		goto err_tasklet_kill;
2617 	}
2618 
2619 	err = clk_prepare(sha_dd->iclk);
2620 	if (err)
2621 		goto err_tasklet_kill;
2622 
2623 	err = atmel_sha_hw_version_init(sha_dd);
2624 	if (err)
2625 		goto err_iclk_unprepare;
2626 
2627 	atmel_sha_get_cap(sha_dd);
2628 
2629 	if (sha_dd->caps.has_dma) {
2630 		err = atmel_sha_dma_init(sha_dd);
2631 		if (err)
2632 			goto err_iclk_unprepare;
2633 
2634 		dev_info(dev, "using %s for DMA transfers\n",
2635 				dma_chan_name(sha_dd->dma_lch_in.chan));
2636 	}
2637 
2638 	spin_lock(&atmel_sha.lock);
2639 	list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2640 	spin_unlock(&atmel_sha.lock);
2641 
2642 	err = atmel_sha_register_algs(sha_dd);
2643 	if (err)
2644 		goto err_algs;
2645 
2646 	dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2647 			sha_dd->caps.has_sha224 ? "/SHA224" : "",
2648 			sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2649 
2650 	return 0;
2651 
2652 err_algs:
2653 	spin_lock(&atmel_sha.lock);
2654 	list_del(&sha_dd->list);
2655 	spin_unlock(&atmel_sha.lock);
2656 	if (sha_dd->caps.has_dma)
2657 		atmel_sha_dma_cleanup(sha_dd);
2658 err_iclk_unprepare:
2659 	clk_unprepare(sha_dd->iclk);
2660 err_tasklet_kill:
2661 	tasklet_kill(&sha_dd->queue_task);
2662 	tasklet_kill(&sha_dd->done_task);
2663 
2664 	return err;
2665 }
2666 
2667 static int atmel_sha_remove(struct platform_device *pdev)
2668 {
2669 	struct atmel_sha_dev *sha_dd = platform_get_drvdata(pdev);
2670 
2671 	spin_lock(&atmel_sha.lock);
2672 	list_del(&sha_dd->list);
2673 	spin_unlock(&atmel_sha.lock);
2674 
2675 	atmel_sha_unregister_algs(sha_dd);
2676 
2677 	tasklet_kill(&sha_dd->queue_task);
2678 	tasklet_kill(&sha_dd->done_task);
2679 
2680 	if (sha_dd->caps.has_dma)
2681 		atmel_sha_dma_cleanup(sha_dd);
2682 
2683 	clk_unprepare(sha_dd->iclk);
2684 
2685 	return 0;
2686 }
2687 
2688 static struct platform_driver atmel_sha_driver = {
2689 	.probe		= atmel_sha_probe,
2690 	.remove		= atmel_sha_remove,
2691 	.driver		= {
2692 		.name	= "atmel_sha",
2693 		.of_match_table	= of_match_ptr(atmel_sha_dt_ids),
2694 	},
2695 };
2696 
2697 module_platform_driver(atmel_sha_driver);
2698 
2699 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2700 MODULE_LICENSE("GPL v2");
2701 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2702