xref: /linux/drivers/crypto/atmel-ecc.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * Microchip / Atmel ECC (I2C) driver.
3  *
4  * Copyright (c) 2017, Microchip Technology Inc.
5  * Author: Tudor Ambarus <tudor.ambarus@microchip.com>
6  *
7  * This software is licensed under the terms of the GNU General Public
8  * License version 2, as published by the Free Software Foundation, and
9  * may be copied, distributed, and modified under those terms.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  */
17 
18 #include <linux/bitrev.h>
19 #include <linux/crc16.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/err.h>
23 #include <linux/errno.h>
24 #include <linux/i2c.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/scatterlist.h>
30 #include <linux/slab.h>
31 #include <linux/workqueue.h>
32 #include <crypto/internal/kpp.h>
33 #include <crypto/ecdh.h>
34 #include <crypto/kpp.h>
35 #include "atmel-ecc.h"
36 
37 /* Used for binding tfm objects to i2c clients. */
38 struct atmel_ecc_driver_data {
39 	struct list_head i2c_client_list;
40 	spinlock_t i2c_list_lock;
41 } ____cacheline_aligned;
42 
43 static struct atmel_ecc_driver_data driver_data;
44 
45 /**
46  * atmel_ecc_i2c_client_priv - i2c_client private data
47  * @client              : pointer to i2c client device
48  * @i2c_client_list_node: part of i2c_client_list
49  * @lock                : lock for sending i2c commands
50  * @wake_token          : wake token array of zeros
51  * @wake_token_sz       : size in bytes of the wake_token
52  * @tfm_count           : number of active crypto transformations on i2c client
53  *
54  * Reads and writes from/to the i2c client are sequential. The first byte
55  * transmitted to the device is treated as the byte size. Any attempt to send
56  * more than this number of bytes will cause the device to not ACK those bytes.
57  * After the host writes a single command byte to the input buffer, reads are
58  * prohibited until after the device completes command execution. Use a mutex
59  * when sending i2c commands.
60  */
61 struct atmel_ecc_i2c_client_priv {
62 	struct i2c_client *client;
63 	struct list_head i2c_client_list_node;
64 	struct mutex lock;
65 	u8 wake_token[WAKE_TOKEN_MAX_SIZE];
66 	size_t wake_token_sz;
67 	atomic_t tfm_count ____cacheline_aligned;
68 };
69 
70 /**
71  * atmel_ecdh_ctx - transformation context
72  * @client     : pointer to i2c client device
73  * @fallback   : used for unsupported curves or when user wants to use its own
74  *               private key.
75  * @public_key : generated when calling set_secret(). It's the responsibility
76  *               of the user to not call set_secret() while
77  *               generate_public_key() or compute_shared_secret() are in flight.
78  * @curve_id   : elliptic curve id
79  * @n_sz       : size in bytes of the n prime
80  * @do_fallback: true when the device doesn't support the curve or when the user
81  *               wants to use its own private key.
82  */
83 struct atmel_ecdh_ctx {
84 	struct i2c_client *client;
85 	struct crypto_kpp *fallback;
86 	const u8 *public_key;
87 	unsigned int curve_id;
88 	size_t n_sz;
89 	bool do_fallback;
90 };
91 
92 /**
93  * atmel_ecc_work_data - data structure representing the work
94  * @ctx : transformation context.
95  * @cbk : pointer to a callback function to be invoked upon completion of this
96  *        request. This has the form:
97  *        callback(struct atmel_ecc_work_data *work_data, void *areq, u8 status)
98  *        where:
99  *        @work_data: data structure representing the work
100  *        @areq     : optional pointer to an argument passed with the original
101  *                    request.
102  *        @status   : status returned from the i2c client device or i2c error.
103  * @areq: optional pointer to a user argument for use at callback time.
104  * @work: describes the task to be executed.
105  * @cmd : structure used for communicating with the device.
106  */
107 struct atmel_ecc_work_data {
108 	struct atmel_ecdh_ctx *ctx;
109 	void (*cbk)(struct atmel_ecc_work_data *work_data, void *areq,
110 		    int status);
111 	void *areq;
112 	struct work_struct work;
113 	struct atmel_ecc_cmd cmd;
114 };
115 
116 static u16 atmel_ecc_crc16(u16 crc, const u8 *buffer, size_t len)
117 {
118 	return cpu_to_le16(bitrev16(crc16(crc, buffer, len)));
119 }
120 
121 /**
122  * atmel_ecc_checksum() - Generate 16-bit CRC as required by ATMEL ECC.
123  * CRC16 verification of the count, opcode, param1, param2 and data bytes.
124  * The checksum is saved in little-endian format in the least significant
125  * two bytes of the command. CRC polynomial is 0x8005 and the initial register
126  * value should be zero.
127  *
128  * @cmd : structure used for communicating with the device.
129  */
130 static void atmel_ecc_checksum(struct atmel_ecc_cmd *cmd)
131 {
132 	u8 *data = &cmd->count;
133 	size_t len = cmd->count - CRC_SIZE;
134 	u16 *crc16 = (u16 *)(data + len);
135 
136 	*crc16 = atmel_ecc_crc16(0, data, len);
137 }
138 
139 static void atmel_ecc_init_read_cmd(struct atmel_ecc_cmd *cmd)
140 {
141 	cmd->word_addr = COMMAND;
142 	cmd->opcode = OPCODE_READ;
143 	/*
144 	 * Read the word from Configuration zone that contains the lock bytes
145 	 * (UserExtra, Selector, LockValue, LockConfig).
146 	 */
147 	cmd->param1 = CONFIG_ZONE;
148 	cmd->param2 = DEVICE_LOCK_ADDR;
149 	cmd->count = READ_COUNT;
150 
151 	atmel_ecc_checksum(cmd);
152 
153 	cmd->msecs = MAX_EXEC_TIME_READ;
154 	cmd->rxsize = READ_RSP_SIZE;
155 }
156 
157 static void atmel_ecc_init_genkey_cmd(struct atmel_ecc_cmd *cmd, u16 keyid)
158 {
159 	cmd->word_addr = COMMAND;
160 	cmd->count = GENKEY_COUNT;
161 	cmd->opcode = OPCODE_GENKEY;
162 	cmd->param1 = GENKEY_MODE_PRIVATE;
163 	/* a random private key will be generated and stored in slot keyID */
164 	cmd->param2 = cpu_to_le16(keyid);
165 
166 	atmel_ecc_checksum(cmd);
167 
168 	cmd->msecs = MAX_EXEC_TIME_GENKEY;
169 	cmd->rxsize = GENKEY_RSP_SIZE;
170 }
171 
172 static int atmel_ecc_init_ecdh_cmd(struct atmel_ecc_cmd *cmd,
173 				   struct scatterlist *pubkey)
174 {
175 	size_t copied;
176 
177 	cmd->word_addr = COMMAND;
178 	cmd->count = ECDH_COUNT;
179 	cmd->opcode = OPCODE_ECDH;
180 	cmd->param1 = ECDH_PREFIX_MODE;
181 	/* private key slot */
182 	cmd->param2 = cpu_to_le16(DATA_SLOT_2);
183 
184 	/*
185 	 * The device only supports NIST P256 ECC keys. The public key size will
186 	 * always be the same. Use a macro for the key size to avoid unnecessary
187 	 * computations.
188 	 */
189 	copied = sg_copy_to_buffer(pubkey,
190 				   sg_nents_for_len(pubkey,
191 						    ATMEL_ECC_PUBKEY_SIZE),
192 				   cmd->data, ATMEL_ECC_PUBKEY_SIZE);
193 	if (copied != ATMEL_ECC_PUBKEY_SIZE)
194 		return -EINVAL;
195 
196 	atmel_ecc_checksum(cmd);
197 
198 	cmd->msecs = MAX_EXEC_TIME_ECDH;
199 	cmd->rxsize = ECDH_RSP_SIZE;
200 
201 	return 0;
202 }
203 
204 /*
205  * After wake and after execution of a command, there will be error, status, or
206  * result bytes in the device's output register that can be retrieved by the
207  * system. When the length of that group is four bytes, the codes returned are
208  * detailed in error_list.
209  */
210 static int atmel_ecc_status(struct device *dev, u8 *status)
211 {
212 	size_t err_list_len = ARRAY_SIZE(error_list);
213 	int i;
214 	u8 err_id = status[1];
215 
216 	if (*status != STATUS_SIZE)
217 		return 0;
218 
219 	if (err_id == STATUS_WAKE_SUCCESSFUL || err_id == STATUS_NOERR)
220 		return 0;
221 
222 	for (i = 0; i < err_list_len; i++)
223 		if (error_list[i].value == err_id)
224 			break;
225 
226 	/* if err_id is not in the error_list then ignore it */
227 	if (i != err_list_len) {
228 		dev_err(dev, "%02x: %s:\n", err_id, error_list[i].error_text);
229 		return err_id;
230 	}
231 
232 	return 0;
233 }
234 
235 static int atmel_ecc_wakeup(struct i2c_client *client)
236 {
237 	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
238 	u8 status[STATUS_RSP_SIZE];
239 	int ret;
240 
241 	/*
242 	 * The device ignores any levels or transitions on the SCL pin when the
243 	 * device is idle, asleep or during waking up. Don't check for error
244 	 * when waking up the device.
245 	 */
246 	i2c_master_send(client, i2c_priv->wake_token, i2c_priv->wake_token_sz);
247 
248 	/*
249 	 * Wait to wake the device. Typical execution times for ecdh and genkey
250 	 * are around tens of milliseconds. Delta is chosen to 50 microseconds.
251 	 */
252 	usleep_range(TWHI_MIN, TWHI_MAX);
253 
254 	ret = i2c_master_recv(client, status, STATUS_SIZE);
255 	if (ret < 0)
256 		return ret;
257 
258 	return atmel_ecc_status(&client->dev, status);
259 }
260 
261 static int atmel_ecc_sleep(struct i2c_client *client)
262 {
263 	u8 sleep = SLEEP_TOKEN;
264 
265 	return i2c_master_send(client, &sleep, 1);
266 }
267 
268 static void atmel_ecdh_done(struct atmel_ecc_work_data *work_data, void *areq,
269 			    int status)
270 {
271 	struct kpp_request *req = areq;
272 	struct atmel_ecdh_ctx *ctx = work_data->ctx;
273 	struct atmel_ecc_cmd *cmd = &work_data->cmd;
274 	size_t copied, n_sz;
275 
276 	if (status)
277 		goto free_work_data;
278 
279 	/* might want less than we've got */
280 	n_sz = min_t(size_t, ctx->n_sz, req->dst_len);
281 
282 	/* copy the shared secret */
283 	copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, n_sz),
284 				     &cmd->data[RSP_DATA_IDX], n_sz);
285 	if (copied != n_sz)
286 		status = -EINVAL;
287 
288 	/* fall through */
289 free_work_data:
290 	kzfree(work_data);
291 	kpp_request_complete(req, status);
292 }
293 
294 /*
295  * atmel_ecc_send_receive() - send a command to the device and receive its
296  *                            response.
297  * @client: i2c client device
298  * @cmd   : structure used to communicate with the device
299  *
300  * After the device receives a Wake token, a watchdog counter starts within the
301  * device. After the watchdog timer expires, the device enters sleep mode
302  * regardless of whether some I/O transmission or command execution is in
303  * progress. If a command is attempted when insufficient time remains prior to
304  * watchdog timer execution, the device will return the watchdog timeout error
305  * code without attempting to execute the command. There is no way to reset the
306  * counter other than to put the device into sleep or idle mode and then
307  * wake it up again.
308  */
309 static int atmel_ecc_send_receive(struct i2c_client *client,
310 				  struct atmel_ecc_cmd *cmd)
311 {
312 	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
313 	int ret;
314 
315 	mutex_lock(&i2c_priv->lock);
316 
317 	ret = atmel_ecc_wakeup(client);
318 	if (ret)
319 		goto err;
320 
321 	/* send the command */
322 	ret = i2c_master_send(client, (u8 *)cmd, cmd->count + WORD_ADDR_SIZE);
323 	if (ret < 0)
324 		goto err;
325 
326 	/* delay the appropriate amount of time for command to execute */
327 	msleep(cmd->msecs);
328 
329 	/* receive the response */
330 	ret = i2c_master_recv(client, cmd->data, cmd->rxsize);
331 	if (ret < 0)
332 		goto err;
333 
334 	/* put the device into low-power mode */
335 	ret = atmel_ecc_sleep(client);
336 	if (ret < 0)
337 		goto err;
338 
339 	mutex_unlock(&i2c_priv->lock);
340 	return atmel_ecc_status(&client->dev, cmd->data);
341 err:
342 	mutex_unlock(&i2c_priv->lock);
343 	return ret;
344 }
345 
346 static void atmel_ecc_work_handler(struct work_struct *work)
347 {
348 	struct atmel_ecc_work_data *work_data =
349 			container_of(work, struct atmel_ecc_work_data, work);
350 	struct atmel_ecc_cmd *cmd = &work_data->cmd;
351 	struct i2c_client *client = work_data->ctx->client;
352 	int status;
353 
354 	status = atmel_ecc_send_receive(client, cmd);
355 	work_data->cbk(work_data, work_data->areq, status);
356 }
357 
358 static void atmel_ecc_enqueue(struct atmel_ecc_work_data *work_data,
359 			      void (*cbk)(struct atmel_ecc_work_data *work_data,
360 					  void *areq, int status),
361 			      void *areq)
362 {
363 	work_data->cbk = (void *)cbk;
364 	work_data->areq = areq;
365 
366 	INIT_WORK(&work_data->work, atmel_ecc_work_handler);
367 	schedule_work(&work_data->work);
368 }
369 
370 static unsigned int atmel_ecdh_supported_curve(unsigned int curve_id)
371 {
372 	if (curve_id == ECC_CURVE_NIST_P256)
373 		return ATMEL_ECC_NIST_P256_N_SIZE;
374 
375 	return 0;
376 }
377 
378 /*
379  * A random private key is generated and stored in the device. The device
380  * returns the pair public key.
381  */
382 static int atmel_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
383 				 unsigned int len)
384 {
385 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
386 	struct atmel_ecc_cmd *cmd;
387 	void *public_key;
388 	struct ecdh params;
389 	int ret = -ENOMEM;
390 
391 	/* free the old public key, if any */
392 	kfree(ctx->public_key);
393 	/* make sure you don't free the old public key twice */
394 	ctx->public_key = NULL;
395 
396 	if (crypto_ecdh_decode_key(buf, len, &params) < 0) {
397 		dev_err(&ctx->client->dev, "crypto_ecdh_decode_key failed\n");
398 		return -EINVAL;
399 	}
400 
401 	ctx->n_sz = atmel_ecdh_supported_curve(params.curve_id);
402 	if (!ctx->n_sz || params.key_size) {
403 		/* fallback to ecdh software implementation */
404 		ctx->do_fallback = true;
405 		return crypto_kpp_set_secret(ctx->fallback, buf, len);
406 	}
407 
408 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
409 	if (!cmd)
410 		return -ENOMEM;
411 
412 	/*
413 	 * The device only supports NIST P256 ECC keys. The public key size will
414 	 * always be the same. Use a macro for the key size to avoid unnecessary
415 	 * computations.
416 	 */
417 	public_key = kmalloc(ATMEL_ECC_PUBKEY_SIZE, GFP_KERNEL);
418 	if (!public_key)
419 		goto free_cmd;
420 
421 	ctx->do_fallback = false;
422 	ctx->curve_id = params.curve_id;
423 
424 	atmel_ecc_init_genkey_cmd(cmd, DATA_SLOT_2);
425 
426 	ret = atmel_ecc_send_receive(ctx->client, cmd);
427 	if (ret)
428 		goto free_public_key;
429 
430 	/* save the public key */
431 	memcpy(public_key, &cmd->data[RSP_DATA_IDX], ATMEL_ECC_PUBKEY_SIZE);
432 	ctx->public_key = public_key;
433 
434 	kfree(cmd);
435 	return 0;
436 
437 free_public_key:
438 	kfree(public_key);
439 free_cmd:
440 	kfree(cmd);
441 	return ret;
442 }
443 
444 static int atmel_ecdh_generate_public_key(struct kpp_request *req)
445 {
446 	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
447 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
448 	size_t copied, nbytes;
449 	int ret = 0;
450 
451 	if (ctx->do_fallback) {
452 		kpp_request_set_tfm(req, ctx->fallback);
453 		return crypto_kpp_generate_public_key(req);
454 	}
455 
456 	/* might want less than we've got */
457 	nbytes = min_t(size_t, ATMEL_ECC_PUBKEY_SIZE, req->dst_len);
458 
459 	/* public key was saved at private key generation */
460 	copied = sg_copy_from_buffer(req->dst,
461 				     sg_nents_for_len(req->dst, nbytes),
462 				     ctx->public_key, nbytes);
463 	if (copied != nbytes)
464 		ret = -EINVAL;
465 
466 	return ret;
467 }
468 
469 static int atmel_ecdh_compute_shared_secret(struct kpp_request *req)
470 {
471 	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
472 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
473 	struct atmel_ecc_work_data *work_data;
474 	gfp_t gfp;
475 	int ret;
476 
477 	if (ctx->do_fallback) {
478 		kpp_request_set_tfm(req, ctx->fallback);
479 		return crypto_kpp_compute_shared_secret(req);
480 	}
481 
482 	/* must have exactly two points to be on the curve */
483 	if (req->src_len != ATMEL_ECC_PUBKEY_SIZE)
484 		return -EINVAL;
485 
486 	gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL :
487 							     GFP_ATOMIC;
488 
489 	work_data = kmalloc(sizeof(*work_data), gfp);
490 	if (!work_data)
491 		return -ENOMEM;
492 
493 	work_data->ctx = ctx;
494 
495 	ret = atmel_ecc_init_ecdh_cmd(&work_data->cmd, req->src);
496 	if (ret)
497 		goto free_work_data;
498 
499 	atmel_ecc_enqueue(work_data, atmel_ecdh_done, req);
500 
501 	return -EINPROGRESS;
502 
503 free_work_data:
504 	kfree(work_data);
505 	return ret;
506 }
507 
508 static struct i2c_client *atmel_ecc_i2c_client_alloc(void)
509 {
510 	struct atmel_ecc_i2c_client_priv *i2c_priv, *min_i2c_priv = NULL;
511 	struct i2c_client *client = ERR_PTR(-ENODEV);
512 	int min_tfm_cnt = INT_MAX;
513 	int tfm_cnt;
514 
515 	spin_lock(&driver_data.i2c_list_lock);
516 
517 	if (list_empty(&driver_data.i2c_client_list)) {
518 		spin_unlock(&driver_data.i2c_list_lock);
519 		return ERR_PTR(-ENODEV);
520 	}
521 
522 	list_for_each_entry(i2c_priv, &driver_data.i2c_client_list,
523 			    i2c_client_list_node) {
524 		tfm_cnt = atomic_read(&i2c_priv->tfm_count);
525 		if (tfm_cnt < min_tfm_cnt) {
526 			min_tfm_cnt = tfm_cnt;
527 			min_i2c_priv = i2c_priv;
528 		}
529 		if (!min_tfm_cnt)
530 			break;
531 	}
532 
533 	if (min_i2c_priv) {
534 		atomic_inc(&min_i2c_priv->tfm_count);
535 		client = min_i2c_priv->client;
536 	}
537 
538 	spin_unlock(&driver_data.i2c_list_lock);
539 
540 	return client;
541 }
542 
543 static void atmel_ecc_i2c_client_free(struct i2c_client *client)
544 {
545 	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
546 
547 	atomic_dec(&i2c_priv->tfm_count);
548 }
549 
550 static int atmel_ecdh_init_tfm(struct crypto_kpp *tfm)
551 {
552 	const char *alg = kpp_alg_name(tfm);
553 	struct crypto_kpp *fallback;
554 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
555 
556 	ctx->client = atmel_ecc_i2c_client_alloc();
557 	if (IS_ERR(ctx->client)) {
558 		pr_err("tfm - i2c_client binding failed\n");
559 		return PTR_ERR(ctx->client);
560 	}
561 
562 	fallback = crypto_alloc_kpp(alg, 0, CRYPTO_ALG_NEED_FALLBACK);
563 	if (IS_ERR(fallback)) {
564 		dev_err(&ctx->client->dev, "Failed to allocate transformation for '%s': %ld\n",
565 			alg, PTR_ERR(fallback));
566 		return PTR_ERR(fallback);
567 	}
568 
569 	crypto_kpp_set_flags(fallback, crypto_kpp_get_flags(tfm));
570 	ctx->fallback = fallback;
571 
572 	return 0;
573 }
574 
575 static void atmel_ecdh_exit_tfm(struct crypto_kpp *tfm)
576 {
577 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
578 
579 	kfree(ctx->public_key);
580 	crypto_free_kpp(ctx->fallback);
581 	atmel_ecc_i2c_client_free(ctx->client);
582 }
583 
584 static unsigned int atmel_ecdh_max_size(struct crypto_kpp *tfm)
585 {
586 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
587 
588 	if (ctx->fallback)
589 		return crypto_kpp_maxsize(ctx->fallback);
590 
591 	/*
592 	 * The device only supports NIST P256 ECC keys. The public key size will
593 	 * always be the same. Use a macro for the key size to avoid unnecessary
594 	 * computations.
595 	 */
596 	return ATMEL_ECC_PUBKEY_SIZE;
597 }
598 
599 static struct kpp_alg atmel_ecdh = {
600 	.set_secret = atmel_ecdh_set_secret,
601 	.generate_public_key = atmel_ecdh_generate_public_key,
602 	.compute_shared_secret = atmel_ecdh_compute_shared_secret,
603 	.init = atmel_ecdh_init_tfm,
604 	.exit = atmel_ecdh_exit_tfm,
605 	.max_size = atmel_ecdh_max_size,
606 	.base = {
607 		.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
608 		.cra_name = "ecdh",
609 		.cra_driver_name = "atmel-ecdh",
610 		.cra_priority = ATMEL_ECC_PRIORITY,
611 		.cra_module = THIS_MODULE,
612 		.cra_ctxsize = sizeof(struct atmel_ecdh_ctx),
613 	},
614 };
615 
616 static inline size_t atmel_ecc_wake_token_sz(u32 bus_clk_rate)
617 {
618 	u32 no_of_bits = DIV_ROUND_UP(TWLO_USEC * bus_clk_rate, USEC_PER_SEC);
619 
620 	/* return the size of the wake_token in bytes */
621 	return DIV_ROUND_UP(no_of_bits, 8);
622 }
623 
624 static int device_sanity_check(struct i2c_client *client)
625 {
626 	struct atmel_ecc_cmd *cmd;
627 	int ret;
628 
629 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
630 	if (!cmd)
631 		return -ENOMEM;
632 
633 	atmel_ecc_init_read_cmd(cmd);
634 
635 	ret = atmel_ecc_send_receive(client, cmd);
636 	if (ret)
637 		goto free_cmd;
638 
639 	/*
640 	 * It is vital that the Configuration, Data and OTP zones be locked
641 	 * prior to release into the field of the system containing the device.
642 	 * Failure to lock these zones may permit modification of any secret
643 	 * keys and may lead to other security problems.
644 	 */
645 	if (cmd->data[LOCK_CONFIG_IDX] || cmd->data[LOCK_VALUE_IDX]) {
646 		dev_err(&client->dev, "Configuration or Data and OTP zones are unlocked!\n");
647 		ret = -ENOTSUPP;
648 	}
649 
650 	/* fall through */
651 free_cmd:
652 	kfree(cmd);
653 	return ret;
654 }
655 
656 static int atmel_ecc_probe(struct i2c_client *client,
657 			   const struct i2c_device_id *id)
658 {
659 	struct atmel_ecc_i2c_client_priv *i2c_priv;
660 	struct device *dev = &client->dev;
661 	int ret;
662 	u32 bus_clk_rate;
663 
664 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
665 		dev_err(dev, "I2C_FUNC_I2C not supported\n");
666 		return -ENODEV;
667 	}
668 
669 	ret = of_property_read_u32(client->adapter->dev.of_node,
670 				   "clock-frequency", &bus_clk_rate);
671 	if (ret) {
672 		dev_err(dev, "of: failed to read clock-frequency property\n");
673 		return ret;
674 	}
675 
676 	if (bus_clk_rate > 1000000L) {
677 		dev_err(dev, "%d exceeds maximum supported clock frequency (1MHz)\n",
678 			bus_clk_rate);
679 		return -EINVAL;
680 	}
681 
682 	i2c_priv = devm_kmalloc(dev, sizeof(*i2c_priv), GFP_KERNEL);
683 	if (!i2c_priv)
684 		return -ENOMEM;
685 
686 	i2c_priv->client = client;
687 	mutex_init(&i2c_priv->lock);
688 
689 	/*
690 	 * WAKE_TOKEN_MAX_SIZE was calculated for the maximum bus_clk_rate -
691 	 * 1MHz. The previous bus_clk_rate check ensures us that wake_token_sz
692 	 * will always be smaller than or equal to WAKE_TOKEN_MAX_SIZE.
693 	 */
694 	i2c_priv->wake_token_sz = atmel_ecc_wake_token_sz(bus_clk_rate);
695 
696 	memset(i2c_priv->wake_token, 0, sizeof(i2c_priv->wake_token));
697 
698 	atomic_set(&i2c_priv->tfm_count, 0);
699 
700 	i2c_set_clientdata(client, i2c_priv);
701 
702 	ret = device_sanity_check(client);
703 	if (ret)
704 		return ret;
705 
706 	spin_lock(&driver_data.i2c_list_lock);
707 	list_add_tail(&i2c_priv->i2c_client_list_node,
708 		      &driver_data.i2c_client_list);
709 	spin_unlock(&driver_data.i2c_list_lock);
710 
711 	ret = crypto_register_kpp(&atmel_ecdh);
712 	if (ret) {
713 		spin_lock(&driver_data.i2c_list_lock);
714 		list_del(&i2c_priv->i2c_client_list_node);
715 		spin_unlock(&driver_data.i2c_list_lock);
716 
717 		dev_err(dev, "%s alg registration failed\n",
718 			atmel_ecdh.base.cra_driver_name);
719 	} else {
720 		dev_info(dev, "atmel ecc algorithms registered in /proc/crypto\n");
721 	}
722 
723 	return ret;
724 }
725 
726 static int atmel_ecc_remove(struct i2c_client *client)
727 {
728 	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
729 
730 	/* Return EBUSY if i2c client already allocated. */
731 	if (atomic_read(&i2c_priv->tfm_count)) {
732 		dev_err(&client->dev, "Device is busy\n");
733 		return -EBUSY;
734 	}
735 
736 	crypto_unregister_kpp(&atmel_ecdh);
737 
738 	spin_lock(&driver_data.i2c_list_lock);
739 	list_del(&i2c_priv->i2c_client_list_node);
740 	spin_unlock(&driver_data.i2c_list_lock);
741 
742 	return 0;
743 }
744 
745 #ifdef CONFIG_OF
746 static const struct of_device_id atmel_ecc_dt_ids[] = {
747 	{
748 		.compatible = "atmel,atecc508a",
749 	}, {
750 		/* sentinel */
751 	}
752 };
753 MODULE_DEVICE_TABLE(of, atmel_ecc_dt_ids);
754 #endif
755 
756 static const struct i2c_device_id atmel_ecc_id[] = {
757 	{ "atecc508a", 0 },
758 	{ }
759 };
760 MODULE_DEVICE_TABLE(i2c, atmel_ecc_id);
761 
762 static struct i2c_driver atmel_ecc_driver = {
763 	.driver = {
764 		.name	= "atmel-ecc",
765 		.of_match_table = of_match_ptr(atmel_ecc_dt_ids),
766 	},
767 	.probe		= atmel_ecc_probe,
768 	.remove		= atmel_ecc_remove,
769 	.id_table	= atmel_ecc_id,
770 };
771 
772 static int __init atmel_ecc_init(void)
773 {
774 	spin_lock_init(&driver_data.i2c_list_lock);
775 	INIT_LIST_HEAD(&driver_data.i2c_client_list);
776 	return i2c_add_driver(&atmel_ecc_driver);
777 }
778 
779 static void __exit atmel_ecc_exit(void)
780 {
781 	flush_scheduled_work();
782 	i2c_del_driver(&atmel_ecc_driver);
783 }
784 
785 module_init(atmel_ecc_init);
786 module_exit(atmel_ecc_exit);
787 
788 MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
789 MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver");
790 MODULE_LICENSE("GPL v2");
791