xref: /linux/drivers/crypto/atmel-aes.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cryptographic API.
4  *
5  * Support for ATMEL AES HW acceleration.
6  *
7  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8  * Author: Nicolas Royer <nicolas@eukrea.com>
9  *
10  * Some ideas are from omap-aes.c driver.
11  */
12 
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22 
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/delay.h>
33 #include <linux/crypto.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/aes.h>
37 #include <crypto/gcm.h>
38 #include <crypto/xts.h>
39 #include <crypto/internal/aead.h>
40 #include <crypto/internal/skcipher.h>
41 #include "atmel-aes-regs.h"
42 #include "atmel-authenc.h"
43 
44 #define ATMEL_AES_PRIORITY	300
45 
46 #define ATMEL_AES_BUFFER_ORDER	2
47 #define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48 
49 #define SIZE_IN_WORDS(x)	((x) >> 2)
50 
51 /* AES flags */
52 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
53 #define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
54 #define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
55 #define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
56 #define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
57 #define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
58 #define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
59 #define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
60 #define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
61 
62 #define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
63 				 AES_FLAGS_ENCRYPT |		\
64 				 AES_FLAGS_GTAGEN)
65 
66 #define AES_FLAGS_BUSY		BIT(3)
67 #define AES_FLAGS_DUMP_REG	BIT(4)
68 #define AES_FLAGS_OWN_SHA	BIT(5)
69 
70 #define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
71 
72 #define ATMEL_AES_QUEUE_LENGTH	50
73 
74 #define ATMEL_AES_DMA_THRESHOLD		256
75 
76 
77 struct atmel_aes_caps {
78 	bool			has_dualbuff;
79 	bool			has_gcm;
80 	bool			has_xts;
81 	bool			has_authenc;
82 	u32			max_burst_size;
83 };
84 
85 struct atmel_aes_dev;
86 
87 
88 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
89 
90 
91 struct atmel_aes_base_ctx {
92 	struct atmel_aes_dev	*dd;
93 	atmel_aes_fn_t		start;
94 	int			keylen;
95 	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
96 	u16			block_size;
97 	bool			is_aead;
98 };
99 
100 struct atmel_aes_ctx {
101 	struct atmel_aes_base_ctx	base;
102 };
103 
104 struct atmel_aes_ctr_ctx {
105 	struct atmel_aes_base_ctx	base;
106 
107 	__be32			iv[AES_BLOCK_SIZE / sizeof(u32)];
108 	size_t			offset;
109 	struct scatterlist	src[2];
110 	struct scatterlist	dst[2];
111 	u32			blocks;
112 };
113 
114 struct atmel_aes_gcm_ctx {
115 	struct atmel_aes_base_ctx	base;
116 
117 	struct scatterlist	src[2];
118 	struct scatterlist	dst[2];
119 
120 	__be32			j0[AES_BLOCK_SIZE / sizeof(u32)];
121 	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
122 	__be32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
123 	size_t			textlen;
124 
125 	const __be32		*ghash_in;
126 	__be32			*ghash_out;
127 	atmel_aes_fn_t		ghash_resume;
128 };
129 
130 struct atmel_aes_xts_ctx {
131 	struct atmel_aes_base_ctx	base;
132 
133 	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
134 	struct crypto_skcipher *fallback_tfm;
135 };
136 
137 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
138 struct atmel_aes_authenc_ctx {
139 	struct atmel_aes_base_ctx	base;
140 	struct atmel_sha_authenc_ctx	*auth;
141 };
142 #endif
143 
144 struct atmel_aes_reqctx {
145 	unsigned long		mode;
146 	u8			lastc[AES_BLOCK_SIZE];
147 	struct skcipher_request fallback_req;
148 };
149 
150 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
151 struct atmel_aes_authenc_reqctx {
152 	struct atmel_aes_reqctx	base;
153 
154 	struct scatterlist	src[2];
155 	struct scatterlist	dst[2];
156 	size_t			textlen;
157 	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
158 
159 	/* auth_req MUST be place last. */
160 	struct ahash_request	auth_req;
161 };
162 #endif
163 
164 struct atmel_aes_dma {
165 	struct dma_chan		*chan;
166 	struct scatterlist	*sg;
167 	int			nents;
168 	unsigned int		remainder;
169 	unsigned int		sg_len;
170 };
171 
172 struct atmel_aes_dev {
173 	struct list_head	list;
174 	unsigned long		phys_base;
175 	void __iomem		*io_base;
176 
177 	struct crypto_async_request	*areq;
178 	struct atmel_aes_base_ctx	*ctx;
179 
180 	bool			is_async;
181 	atmel_aes_fn_t		resume;
182 	atmel_aes_fn_t		cpu_transfer_complete;
183 
184 	struct device		*dev;
185 	struct clk		*iclk;
186 	int			irq;
187 
188 	unsigned long		flags;
189 
190 	spinlock_t		lock;
191 	struct crypto_queue	queue;
192 
193 	struct tasklet_struct	done_task;
194 	struct tasklet_struct	queue_task;
195 
196 	size_t			total;
197 	size_t			datalen;
198 	u32			*data;
199 
200 	struct atmel_aes_dma	src;
201 	struct atmel_aes_dma	dst;
202 
203 	size_t			buflen;
204 	void			*buf;
205 	struct scatterlist	aligned_sg;
206 	struct scatterlist	*real_dst;
207 
208 	struct atmel_aes_caps	caps;
209 
210 	u32			hw_version;
211 };
212 
213 struct atmel_aes_drv {
214 	struct list_head	dev_list;
215 	spinlock_t		lock;
216 };
217 
218 static struct atmel_aes_drv atmel_aes = {
219 	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
220 	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
221 };
222 
223 #ifdef VERBOSE_DEBUG
224 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
225 {
226 	switch (offset) {
227 	case AES_CR:
228 		return "CR";
229 
230 	case AES_MR:
231 		return "MR";
232 
233 	case AES_ISR:
234 		return "ISR";
235 
236 	case AES_IMR:
237 		return "IMR";
238 
239 	case AES_IER:
240 		return "IER";
241 
242 	case AES_IDR:
243 		return "IDR";
244 
245 	case AES_KEYWR(0):
246 	case AES_KEYWR(1):
247 	case AES_KEYWR(2):
248 	case AES_KEYWR(3):
249 	case AES_KEYWR(4):
250 	case AES_KEYWR(5):
251 	case AES_KEYWR(6):
252 	case AES_KEYWR(7):
253 		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
254 		break;
255 
256 	case AES_IDATAR(0):
257 	case AES_IDATAR(1):
258 	case AES_IDATAR(2):
259 	case AES_IDATAR(3):
260 		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
261 		break;
262 
263 	case AES_ODATAR(0):
264 	case AES_ODATAR(1):
265 	case AES_ODATAR(2):
266 	case AES_ODATAR(3):
267 		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
268 		break;
269 
270 	case AES_IVR(0):
271 	case AES_IVR(1):
272 	case AES_IVR(2):
273 	case AES_IVR(3):
274 		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
275 		break;
276 
277 	case AES_AADLENR:
278 		return "AADLENR";
279 
280 	case AES_CLENR:
281 		return "CLENR";
282 
283 	case AES_GHASHR(0):
284 	case AES_GHASHR(1):
285 	case AES_GHASHR(2):
286 	case AES_GHASHR(3):
287 		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
288 		break;
289 
290 	case AES_TAGR(0):
291 	case AES_TAGR(1):
292 	case AES_TAGR(2):
293 	case AES_TAGR(3):
294 		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
295 		break;
296 
297 	case AES_CTRR:
298 		return "CTRR";
299 
300 	case AES_GCMHR(0):
301 	case AES_GCMHR(1):
302 	case AES_GCMHR(2):
303 	case AES_GCMHR(3):
304 		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
305 		break;
306 
307 	case AES_EMR:
308 		return "EMR";
309 
310 	case AES_TWR(0):
311 	case AES_TWR(1):
312 	case AES_TWR(2):
313 	case AES_TWR(3):
314 		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
315 		break;
316 
317 	case AES_ALPHAR(0):
318 	case AES_ALPHAR(1):
319 	case AES_ALPHAR(2):
320 	case AES_ALPHAR(3):
321 		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
322 		break;
323 
324 	default:
325 		snprintf(tmp, sz, "0x%02x", offset);
326 		break;
327 	}
328 
329 	return tmp;
330 }
331 #endif /* VERBOSE_DEBUG */
332 
333 /* Shared functions */
334 
335 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
336 {
337 	u32 value = readl_relaxed(dd->io_base + offset);
338 
339 #ifdef VERBOSE_DEBUG
340 	if (dd->flags & AES_FLAGS_DUMP_REG) {
341 		char tmp[16];
342 
343 		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
344 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
345 	}
346 #endif /* VERBOSE_DEBUG */
347 
348 	return value;
349 }
350 
351 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
352 					u32 offset, u32 value)
353 {
354 #ifdef VERBOSE_DEBUG
355 	if (dd->flags & AES_FLAGS_DUMP_REG) {
356 		char tmp[16];
357 
358 		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
359 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
360 	}
361 #endif /* VERBOSE_DEBUG */
362 
363 	writel_relaxed(value, dd->io_base + offset);
364 }
365 
366 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
367 					u32 *value, int count)
368 {
369 	for (; count--; value++, offset += 4)
370 		*value = atmel_aes_read(dd, offset);
371 }
372 
373 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
374 			      const u32 *value, int count)
375 {
376 	for (; count--; value++, offset += 4)
377 		atmel_aes_write(dd, offset, *value);
378 }
379 
380 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
381 					void *value)
382 {
383 	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
384 }
385 
386 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
387 					 const void *value)
388 {
389 	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
390 }
391 
392 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
393 						atmel_aes_fn_t resume)
394 {
395 	u32 isr = atmel_aes_read(dd, AES_ISR);
396 
397 	if (unlikely(isr & AES_INT_DATARDY))
398 		return resume(dd);
399 
400 	dd->resume = resume;
401 	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
402 	return -EINPROGRESS;
403 }
404 
405 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
406 {
407 	len &= block_size - 1;
408 	return len ? block_size - len : 0;
409 }
410 
411 static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
412 {
413 	struct atmel_aes_dev *aes_dd;
414 
415 	spin_lock_bh(&atmel_aes.lock);
416 	/* One AES IP per SoC. */
417 	aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
418 					  struct atmel_aes_dev, list);
419 	spin_unlock_bh(&atmel_aes.lock);
420 	return aes_dd;
421 }
422 
423 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
424 {
425 	int err;
426 
427 	err = clk_enable(dd->iclk);
428 	if (err)
429 		return err;
430 
431 	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
432 	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
433 
434 	return 0;
435 }
436 
437 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
438 {
439 	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
440 }
441 
442 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
443 {
444 	int err;
445 
446 	err = atmel_aes_hw_init(dd);
447 	if (err)
448 		return err;
449 
450 	dd->hw_version = atmel_aes_get_version(dd);
451 
452 	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
453 
454 	clk_disable(dd->iclk);
455 	return 0;
456 }
457 
458 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
459 				      const struct atmel_aes_reqctx *rctx)
460 {
461 	/* Clear all but persistent flags and set request flags. */
462 	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
463 }
464 
465 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
466 {
467 	return (dd->flags & AES_FLAGS_ENCRYPT);
468 }
469 
470 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
471 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
472 #endif
473 
474 static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
475 {
476 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
477 	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
478 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
479 	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
480 
481 	if (req->cryptlen < ivsize)
482 		return;
483 
484 	if (rctx->mode & AES_FLAGS_ENCRYPT)
485 		scatterwalk_map_and_copy(req->iv, req->dst,
486 					 req->cryptlen - ivsize, ivsize, 0);
487 	else
488 		memcpy(req->iv, rctx->lastc, ivsize);
489 }
490 
491 static inline struct atmel_aes_ctr_ctx *
492 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
493 {
494 	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
495 }
496 
497 static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
498 {
499 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
500 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
501 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
502 	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
503 	int i;
504 
505 	/*
506 	 * The CTR transfer works in fragments of data of maximum 1 MByte
507 	 * because of the 16 bit CTR counter embedded in the IP. When reaching
508 	 * here, ctx->blocks contains the number of blocks of the last fragment
509 	 * processed, there is no need to explicit cast it to u16.
510 	 */
511 	for (i = 0; i < ctx->blocks; i++)
512 		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
513 
514 	memcpy(req->iv, ctx->iv, ivsize);
515 }
516 
517 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
518 {
519 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
520 	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
521 
522 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
523 	if (dd->ctx->is_aead)
524 		atmel_aes_authenc_complete(dd, err);
525 #endif
526 
527 	clk_disable(dd->iclk);
528 	dd->flags &= ~AES_FLAGS_BUSY;
529 
530 	if (!err && !dd->ctx->is_aead &&
531 	    (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
532 		if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
533 			atmel_aes_set_iv_as_last_ciphertext_block(dd);
534 		else
535 			atmel_aes_ctr_update_req_iv(dd);
536 	}
537 
538 	if (dd->is_async)
539 		crypto_request_complete(dd->areq, err);
540 
541 	tasklet_schedule(&dd->queue_task);
542 
543 	return err;
544 }
545 
546 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
547 				     const __be32 *iv, const u32 *key, int keylen)
548 {
549 	u32 valmr = 0;
550 
551 	/* MR register must be set before IV registers */
552 	if (keylen == AES_KEYSIZE_128)
553 		valmr |= AES_MR_KEYSIZE_128;
554 	else if (keylen == AES_KEYSIZE_192)
555 		valmr |= AES_MR_KEYSIZE_192;
556 	else
557 		valmr |= AES_MR_KEYSIZE_256;
558 
559 	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
560 
561 	if (use_dma) {
562 		valmr |= AES_MR_SMOD_IDATAR0;
563 		if (dd->caps.has_dualbuff)
564 			valmr |= AES_MR_DUALBUFF;
565 	} else {
566 		valmr |= AES_MR_SMOD_AUTO;
567 	}
568 
569 	atmel_aes_write(dd, AES_MR, valmr);
570 
571 	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
572 
573 	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
574 		atmel_aes_write_block(dd, AES_IVR(0), iv);
575 }
576 
577 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
578 					const __be32 *iv)
579 
580 {
581 	atmel_aes_write_ctrl_key(dd, use_dma, iv,
582 				 dd->ctx->key, dd->ctx->keylen);
583 }
584 
585 /* CPU transfer */
586 
587 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
588 {
589 	int err = 0;
590 	u32 isr;
591 
592 	for (;;) {
593 		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
594 		dd->data += 4;
595 		dd->datalen -= AES_BLOCK_SIZE;
596 
597 		if (dd->datalen < AES_BLOCK_SIZE)
598 			break;
599 
600 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
601 
602 		isr = atmel_aes_read(dd, AES_ISR);
603 		if (!(isr & AES_INT_DATARDY)) {
604 			dd->resume = atmel_aes_cpu_transfer;
605 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
606 			return -EINPROGRESS;
607 		}
608 	}
609 
610 	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
611 				 dd->buf, dd->total))
612 		err = -EINVAL;
613 
614 	if (err)
615 		return atmel_aes_complete(dd, err);
616 
617 	return dd->cpu_transfer_complete(dd);
618 }
619 
620 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
621 			       struct scatterlist *src,
622 			       struct scatterlist *dst,
623 			       size_t len,
624 			       atmel_aes_fn_t resume)
625 {
626 	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
627 
628 	if (unlikely(len == 0))
629 		return -EINVAL;
630 
631 	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
632 
633 	dd->total = len;
634 	dd->real_dst = dst;
635 	dd->cpu_transfer_complete = resume;
636 	dd->datalen = len + padlen;
637 	dd->data = (u32 *)dd->buf;
638 	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
639 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
640 }
641 
642 
643 /* DMA transfer */
644 
645 static void atmel_aes_dma_callback(void *data);
646 
647 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
648 				    struct scatterlist *sg,
649 				    size_t len,
650 				    struct atmel_aes_dma *dma)
651 {
652 	int nents;
653 
654 	if (!IS_ALIGNED(len, dd->ctx->block_size))
655 		return false;
656 
657 	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
658 		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
659 			return false;
660 
661 		if (len <= sg->length) {
662 			if (!IS_ALIGNED(len, dd->ctx->block_size))
663 				return false;
664 
665 			dma->nents = nents+1;
666 			dma->remainder = sg->length - len;
667 			sg->length = len;
668 			return true;
669 		}
670 
671 		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
672 			return false;
673 
674 		len -= sg->length;
675 	}
676 
677 	return false;
678 }
679 
680 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
681 {
682 	struct scatterlist *sg = dma->sg;
683 	int nents = dma->nents;
684 
685 	if (!dma->remainder)
686 		return;
687 
688 	while (--nents > 0 && sg)
689 		sg = sg_next(sg);
690 
691 	if (!sg)
692 		return;
693 
694 	sg->length += dma->remainder;
695 }
696 
697 static int atmel_aes_map(struct atmel_aes_dev *dd,
698 			 struct scatterlist *src,
699 			 struct scatterlist *dst,
700 			 size_t len)
701 {
702 	bool src_aligned, dst_aligned;
703 	size_t padlen;
704 
705 	dd->total = len;
706 	dd->src.sg = src;
707 	dd->dst.sg = dst;
708 	dd->real_dst = dst;
709 
710 	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
711 	if (src == dst)
712 		dst_aligned = src_aligned;
713 	else
714 		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
715 	if (!src_aligned || !dst_aligned) {
716 		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
717 
718 		if (dd->buflen < len + padlen)
719 			return -ENOMEM;
720 
721 		if (!src_aligned) {
722 			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
723 			dd->src.sg = &dd->aligned_sg;
724 			dd->src.nents = 1;
725 			dd->src.remainder = 0;
726 		}
727 
728 		if (!dst_aligned) {
729 			dd->dst.sg = &dd->aligned_sg;
730 			dd->dst.nents = 1;
731 			dd->dst.remainder = 0;
732 		}
733 
734 		sg_init_table(&dd->aligned_sg, 1);
735 		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
736 	}
737 
738 	if (dd->src.sg == dd->dst.sg) {
739 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
740 					    DMA_BIDIRECTIONAL);
741 		dd->dst.sg_len = dd->src.sg_len;
742 		if (!dd->src.sg_len)
743 			return -EFAULT;
744 	} else {
745 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
746 					    DMA_TO_DEVICE);
747 		if (!dd->src.sg_len)
748 			return -EFAULT;
749 
750 		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
751 					    DMA_FROM_DEVICE);
752 		if (!dd->dst.sg_len) {
753 			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
754 				     DMA_TO_DEVICE);
755 			return -EFAULT;
756 		}
757 	}
758 
759 	return 0;
760 }
761 
762 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
763 {
764 	if (dd->src.sg == dd->dst.sg) {
765 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
766 			     DMA_BIDIRECTIONAL);
767 
768 		if (dd->src.sg != &dd->aligned_sg)
769 			atmel_aes_restore_sg(&dd->src);
770 	} else {
771 		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
772 			     DMA_FROM_DEVICE);
773 
774 		if (dd->dst.sg != &dd->aligned_sg)
775 			atmel_aes_restore_sg(&dd->dst);
776 
777 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
778 			     DMA_TO_DEVICE);
779 
780 		if (dd->src.sg != &dd->aligned_sg)
781 			atmel_aes_restore_sg(&dd->src);
782 	}
783 
784 	if (dd->dst.sg == &dd->aligned_sg)
785 		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
786 				    dd->buf, dd->total);
787 }
788 
789 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
790 					enum dma_slave_buswidth addr_width,
791 					enum dma_transfer_direction dir,
792 					u32 maxburst)
793 {
794 	struct dma_async_tx_descriptor *desc;
795 	struct dma_slave_config config;
796 	dma_async_tx_callback callback;
797 	struct atmel_aes_dma *dma;
798 	int err;
799 
800 	memset(&config, 0, sizeof(config));
801 	config.src_addr_width = addr_width;
802 	config.dst_addr_width = addr_width;
803 	config.src_maxburst = maxburst;
804 	config.dst_maxburst = maxburst;
805 
806 	switch (dir) {
807 	case DMA_MEM_TO_DEV:
808 		dma = &dd->src;
809 		callback = NULL;
810 		config.dst_addr = dd->phys_base + AES_IDATAR(0);
811 		break;
812 
813 	case DMA_DEV_TO_MEM:
814 		dma = &dd->dst;
815 		callback = atmel_aes_dma_callback;
816 		config.src_addr = dd->phys_base + AES_ODATAR(0);
817 		break;
818 
819 	default:
820 		return -EINVAL;
821 	}
822 
823 	err = dmaengine_slave_config(dma->chan, &config);
824 	if (err)
825 		return err;
826 
827 	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
828 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
829 	if (!desc)
830 		return -ENOMEM;
831 
832 	desc->callback = callback;
833 	desc->callback_param = dd;
834 	dmaengine_submit(desc);
835 	dma_async_issue_pending(dma->chan);
836 
837 	return 0;
838 }
839 
840 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
841 			       struct scatterlist *src,
842 			       struct scatterlist *dst,
843 			       size_t len,
844 			       atmel_aes_fn_t resume)
845 {
846 	enum dma_slave_buswidth addr_width;
847 	u32 maxburst;
848 	int err;
849 
850 	switch (dd->ctx->block_size) {
851 	case AES_BLOCK_SIZE:
852 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
853 		maxburst = dd->caps.max_burst_size;
854 		break;
855 
856 	default:
857 		err = -EINVAL;
858 		goto exit;
859 	}
860 
861 	err = atmel_aes_map(dd, src, dst, len);
862 	if (err)
863 		goto exit;
864 
865 	dd->resume = resume;
866 
867 	/* Set output DMA transfer first */
868 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
869 					   maxburst);
870 	if (err)
871 		goto unmap;
872 
873 	/* Then set input DMA transfer */
874 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
875 					   maxburst);
876 	if (err)
877 		goto output_transfer_stop;
878 
879 	return -EINPROGRESS;
880 
881 output_transfer_stop:
882 	dmaengine_terminate_sync(dd->dst.chan);
883 unmap:
884 	atmel_aes_unmap(dd);
885 exit:
886 	return atmel_aes_complete(dd, err);
887 }
888 
889 static void atmel_aes_dma_callback(void *data)
890 {
891 	struct atmel_aes_dev *dd = data;
892 
893 	atmel_aes_unmap(dd);
894 	dd->is_async = true;
895 	(void)dd->resume(dd);
896 }
897 
898 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
899 				  struct crypto_async_request *new_areq)
900 {
901 	struct crypto_async_request *areq, *backlog;
902 	struct atmel_aes_base_ctx *ctx;
903 	unsigned long flags;
904 	bool start_async;
905 	int err, ret = 0;
906 
907 	spin_lock_irqsave(&dd->lock, flags);
908 	if (new_areq)
909 		ret = crypto_enqueue_request(&dd->queue, new_areq);
910 	if (dd->flags & AES_FLAGS_BUSY) {
911 		spin_unlock_irqrestore(&dd->lock, flags);
912 		return ret;
913 	}
914 	backlog = crypto_get_backlog(&dd->queue);
915 	areq = crypto_dequeue_request(&dd->queue);
916 	if (areq)
917 		dd->flags |= AES_FLAGS_BUSY;
918 	spin_unlock_irqrestore(&dd->lock, flags);
919 
920 	if (!areq)
921 		return ret;
922 
923 	if (backlog)
924 		crypto_request_complete(backlog, -EINPROGRESS);
925 
926 	ctx = crypto_tfm_ctx(areq->tfm);
927 
928 	dd->areq = areq;
929 	dd->ctx = ctx;
930 	start_async = (areq != new_areq);
931 	dd->is_async = start_async;
932 
933 	/* WARNING: ctx->start() MAY change dd->is_async. */
934 	err = ctx->start(dd);
935 	return (start_async) ? ret : err;
936 }
937 
938 
939 /* AES async block ciphers */
940 
941 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
942 {
943 	return atmel_aes_complete(dd, 0);
944 }
945 
946 static int atmel_aes_start(struct atmel_aes_dev *dd)
947 {
948 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
949 	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
950 	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
951 			dd->ctx->block_size != AES_BLOCK_SIZE);
952 	int err;
953 
954 	atmel_aes_set_mode(dd, rctx);
955 
956 	err = atmel_aes_hw_init(dd);
957 	if (err)
958 		return atmel_aes_complete(dd, err);
959 
960 	atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
961 	if (use_dma)
962 		return atmel_aes_dma_start(dd, req->src, req->dst,
963 					   req->cryptlen,
964 					   atmel_aes_transfer_complete);
965 
966 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
967 				   atmel_aes_transfer_complete);
968 }
969 
970 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
971 {
972 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
973 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
974 	struct scatterlist *src, *dst;
975 	size_t datalen;
976 	u32 ctr;
977 	u16 start, end;
978 	bool use_dma, fragmented = false;
979 
980 	/* Check for transfer completion. */
981 	ctx->offset += dd->total;
982 	if (ctx->offset >= req->cryptlen)
983 		return atmel_aes_transfer_complete(dd);
984 
985 	/* Compute data length. */
986 	datalen = req->cryptlen - ctx->offset;
987 	ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
988 	ctr = be32_to_cpu(ctx->iv[3]);
989 
990 	/* Check 16bit counter overflow. */
991 	start = ctr & 0xffff;
992 	end = start + ctx->blocks - 1;
993 
994 	if (ctx->blocks >> 16 || end < start) {
995 		ctr |= 0xffff;
996 		datalen = AES_BLOCK_SIZE * (0x10000 - start);
997 		fragmented = true;
998 	}
999 
1000 	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1001 
1002 	/* Jump to offset. */
1003 	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1004 	dst = ((req->src == req->dst) ? src :
1005 	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1006 
1007 	/* Configure hardware. */
1008 	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1009 	if (unlikely(fragmented)) {
1010 		/*
1011 		 * Increment the counter manually to cope with the hardware
1012 		 * counter overflow.
1013 		 */
1014 		ctx->iv[3] = cpu_to_be32(ctr);
1015 		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1016 	}
1017 
1018 	if (use_dma)
1019 		return atmel_aes_dma_start(dd, src, dst, datalen,
1020 					   atmel_aes_ctr_transfer);
1021 
1022 	return atmel_aes_cpu_start(dd, src, dst, datalen,
1023 				   atmel_aes_ctr_transfer);
1024 }
1025 
1026 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1027 {
1028 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1029 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1030 	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1031 	int err;
1032 
1033 	atmel_aes_set_mode(dd, rctx);
1034 
1035 	err = atmel_aes_hw_init(dd);
1036 	if (err)
1037 		return atmel_aes_complete(dd, err);
1038 
1039 	memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1040 	ctx->offset = 0;
1041 	dd->total = 0;
1042 	return atmel_aes_ctr_transfer(dd);
1043 }
1044 
1045 static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1046 {
1047 	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1048 	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1049 			crypto_skcipher_reqtfm(req));
1050 
1051 	skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1052 	skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1053 				      req->base.complete, req->base.data);
1054 	skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1055 				   req->cryptlen, req->iv);
1056 
1057 	return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1058 		     crypto_skcipher_decrypt(&rctx->fallback_req);
1059 }
1060 
1061 static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1062 {
1063 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1064 	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1065 	struct atmel_aes_reqctx *rctx;
1066 	u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1067 
1068 	if (opmode == AES_FLAGS_XTS) {
1069 		if (req->cryptlen < XTS_BLOCK_SIZE)
1070 			return -EINVAL;
1071 
1072 		if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1073 			return atmel_aes_xts_fallback(req,
1074 						      mode & AES_FLAGS_ENCRYPT);
1075 	}
1076 
1077 	/*
1078 	 * ECB, CBC or CTR mode require the plaintext and ciphertext
1079 	 * to have a positve integer length.
1080 	 */
1081 	if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1082 		return 0;
1083 
1084 	if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1085 	    !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1086 		return -EINVAL;
1087 
1088 	ctx->block_size = AES_BLOCK_SIZE;
1089 	ctx->is_aead = false;
1090 
1091 	rctx = skcipher_request_ctx(req);
1092 	rctx->mode = mode;
1093 
1094 	if (opmode != AES_FLAGS_ECB &&
1095 	    !(mode & AES_FLAGS_ENCRYPT)) {
1096 		unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1097 
1098 		if (req->cryptlen >= ivsize)
1099 			scatterwalk_map_and_copy(rctx->lastc, req->src,
1100 						 req->cryptlen - ivsize,
1101 						 ivsize, 0);
1102 	}
1103 
1104 	return atmel_aes_handle_queue(ctx->dd, &req->base);
1105 }
1106 
1107 static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1108 			   unsigned int keylen)
1109 {
1110 	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1111 
1112 	if (keylen != AES_KEYSIZE_128 &&
1113 	    keylen != AES_KEYSIZE_192 &&
1114 	    keylen != AES_KEYSIZE_256)
1115 		return -EINVAL;
1116 
1117 	memcpy(ctx->key, key, keylen);
1118 	ctx->keylen = keylen;
1119 
1120 	return 0;
1121 }
1122 
1123 static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1124 {
1125 	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1126 }
1127 
1128 static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1129 {
1130 	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1131 }
1132 
1133 static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1134 {
1135 	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1136 }
1137 
1138 static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1139 {
1140 	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1141 }
1142 
1143 static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1144 {
1145 	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1146 }
1147 
1148 static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1149 {
1150 	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1151 }
1152 
1153 static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1154 {
1155 	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1156 	struct atmel_aes_dev *dd;
1157 
1158 	dd = atmel_aes_dev_alloc(&ctx->base);
1159 	if (!dd)
1160 		return -ENODEV;
1161 
1162 	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1163 	ctx->base.dd = dd;
1164 	ctx->base.start = atmel_aes_start;
1165 
1166 	return 0;
1167 }
1168 
1169 static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1170 {
1171 	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1172 	struct atmel_aes_dev *dd;
1173 
1174 	dd = atmel_aes_dev_alloc(&ctx->base);
1175 	if (!dd)
1176 		return -ENODEV;
1177 
1178 	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1179 	ctx->base.dd = dd;
1180 	ctx->base.start = atmel_aes_ctr_start;
1181 
1182 	return 0;
1183 }
1184 
1185 static struct skcipher_alg aes_algs[] = {
1186 {
1187 	.base.cra_name		= "ecb(aes)",
1188 	.base.cra_driver_name	= "atmel-ecb-aes",
1189 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1190 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1191 
1192 	.init			= atmel_aes_init_tfm,
1193 	.min_keysize		= AES_MIN_KEY_SIZE,
1194 	.max_keysize		= AES_MAX_KEY_SIZE,
1195 	.setkey			= atmel_aes_setkey,
1196 	.encrypt		= atmel_aes_ecb_encrypt,
1197 	.decrypt		= atmel_aes_ecb_decrypt,
1198 },
1199 {
1200 	.base.cra_name		= "cbc(aes)",
1201 	.base.cra_driver_name	= "atmel-cbc-aes",
1202 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1203 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1204 
1205 	.init			= atmel_aes_init_tfm,
1206 	.min_keysize		= AES_MIN_KEY_SIZE,
1207 	.max_keysize		= AES_MAX_KEY_SIZE,
1208 	.setkey			= atmel_aes_setkey,
1209 	.encrypt		= atmel_aes_cbc_encrypt,
1210 	.decrypt		= atmel_aes_cbc_decrypt,
1211 	.ivsize			= AES_BLOCK_SIZE,
1212 },
1213 {
1214 	.base.cra_name		= "ctr(aes)",
1215 	.base.cra_driver_name	= "atmel-ctr-aes",
1216 	.base.cra_blocksize	= 1,
1217 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctr_ctx),
1218 
1219 	.init			= atmel_aes_ctr_init_tfm,
1220 	.min_keysize		= AES_MIN_KEY_SIZE,
1221 	.max_keysize		= AES_MAX_KEY_SIZE,
1222 	.setkey			= atmel_aes_setkey,
1223 	.encrypt		= atmel_aes_ctr_encrypt,
1224 	.decrypt		= atmel_aes_ctr_decrypt,
1225 	.ivsize			= AES_BLOCK_SIZE,
1226 },
1227 };
1228 
1229 
1230 /* gcm aead functions */
1231 
1232 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1233 			       const u32 *data, size_t datalen,
1234 			       const __be32 *ghash_in, __be32 *ghash_out,
1235 			       atmel_aes_fn_t resume);
1236 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1237 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1238 
1239 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1240 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1241 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1242 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1243 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1244 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1245 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1246 
1247 static inline struct atmel_aes_gcm_ctx *
1248 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1249 {
1250 	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1251 }
1252 
1253 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1254 			       const u32 *data, size_t datalen,
1255 			       const __be32 *ghash_in, __be32 *ghash_out,
1256 			       atmel_aes_fn_t resume)
1257 {
1258 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1259 
1260 	dd->data = (u32 *)data;
1261 	dd->datalen = datalen;
1262 	ctx->ghash_in = ghash_in;
1263 	ctx->ghash_out = ghash_out;
1264 	ctx->ghash_resume = resume;
1265 
1266 	atmel_aes_write_ctrl(dd, false, NULL);
1267 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1268 }
1269 
1270 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1271 {
1272 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1273 
1274 	/* Set the data length. */
1275 	atmel_aes_write(dd, AES_AADLENR, dd->total);
1276 	atmel_aes_write(dd, AES_CLENR, 0);
1277 
1278 	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1279 	if (ctx->ghash_in)
1280 		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1281 
1282 	return atmel_aes_gcm_ghash_finalize(dd);
1283 }
1284 
1285 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1286 {
1287 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1288 	u32 isr;
1289 
1290 	/* Write data into the Input Data Registers. */
1291 	while (dd->datalen > 0) {
1292 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1293 		dd->data += 4;
1294 		dd->datalen -= AES_BLOCK_SIZE;
1295 
1296 		isr = atmel_aes_read(dd, AES_ISR);
1297 		if (!(isr & AES_INT_DATARDY)) {
1298 			dd->resume = atmel_aes_gcm_ghash_finalize;
1299 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1300 			return -EINPROGRESS;
1301 		}
1302 	}
1303 
1304 	/* Read the computed hash from GHASHRx. */
1305 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1306 
1307 	return ctx->ghash_resume(dd);
1308 }
1309 
1310 
1311 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1312 {
1313 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1314 	struct aead_request *req = aead_request_cast(dd->areq);
1315 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1316 	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1317 	size_t ivsize = crypto_aead_ivsize(tfm);
1318 	size_t datalen, padlen;
1319 	const void *iv = req->iv;
1320 	u8 *data = dd->buf;
1321 	int err;
1322 
1323 	atmel_aes_set_mode(dd, rctx);
1324 
1325 	err = atmel_aes_hw_init(dd);
1326 	if (err)
1327 		return atmel_aes_complete(dd, err);
1328 
1329 	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1330 		memcpy(ctx->j0, iv, ivsize);
1331 		ctx->j0[3] = cpu_to_be32(1);
1332 		return atmel_aes_gcm_process(dd);
1333 	}
1334 
1335 	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1336 	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1337 	if (datalen > dd->buflen)
1338 		return atmel_aes_complete(dd, -EINVAL);
1339 
1340 	memcpy(data, iv, ivsize);
1341 	memset(data + ivsize, 0, padlen + sizeof(u64));
1342 	((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1343 
1344 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1345 				   NULL, ctx->j0, atmel_aes_gcm_process);
1346 }
1347 
1348 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1349 {
1350 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1351 	struct aead_request *req = aead_request_cast(dd->areq);
1352 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1353 	bool enc = atmel_aes_is_encrypt(dd);
1354 	u32 authsize;
1355 
1356 	/* Compute text length. */
1357 	authsize = crypto_aead_authsize(tfm);
1358 	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1359 
1360 	/*
1361 	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1362 	 * fails when both the message and its associated data are empty.
1363 	 */
1364 	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1365 		dd->flags |= AES_FLAGS_GTAGEN;
1366 
1367 	atmel_aes_write_ctrl(dd, false, NULL);
1368 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1369 }
1370 
1371 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1372 {
1373 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1374 	struct aead_request *req = aead_request_cast(dd->areq);
1375 	__be32 j0_lsw, *j0 = ctx->j0;
1376 	size_t padlen;
1377 
1378 	/* Write incr32(J0) into IV. */
1379 	j0_lsw = j0[3];
1380 	be32_add_cpu(&j0[3], 1);
1381 	atmel_aes_write_block(dd, AES_IVR(0), j0);
1382 	j0[3] = j0_lsw;
1383 
1384 	/* Set aad and text lengths. */
1385 	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1386 	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1387 
1388 	/* Check whether AAD are present. */
1389 	if (unlikely(req->assoclen == 0)) {
1390 		dd->datalen = 0;
1391 		return atmel_aes_gcm_data(dd);
1392 	}
1393 
1394 	/* Copy assoc data and add padding. */
1395 	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1396 	if (unlikely(req->assoclen + padlen > dd->buflen))
1397 		return atmel_aes_complete(dd, -EINVAL);
1398 	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1399 
1400 	/* Write assoc data into the Input Data register. */
1401 	dd->data = (u32 *)dd->buf;
1402 	dd->datalen = req->assoclen + padlen;
1403 	return atmel_aes_gcm_data(dd);
1404 }
1405 
1406 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1407 {
1408 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1409 	struct aead_request *req = aead_request_cast(dd->areq);
1410 	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1411 	struct scatterlist *src, *dst;
1412 	u32 isr, mr;
1413 
1414 	/* Write AAD first. */
1415 	while (dd->datalen > 0) {
1416 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1417 		dd->data += 4;
1418 		dd->datalen -= AES_BLOCK_SIZE;
1419 
1420 		isr = atmel_aes_read(dd, AES_ISR);
1421 		if (!(isr & AES_INT_DATARDY)) {
1422 			dd->resume = atmel_aes_gcm_data;
1423 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1424 			return -EINPROGRESS;
1425 		}
1426 	}
1427 
1428 	/* GMAC only. */
1429 	if (unlikely(ctx->textlen == 0))
1430 		return atmel_aes_gcm_tag_init(dd);
1431 
1432 	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1433 	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1434 	dst = ((req->src == req->dst) ? src :
1435 	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1436 
1437 	if (use_dma) {
1438 		/* Update the Mode Register for DMA transfers. */
1439 		mr = atmel_aes_read(dd, AES_MR);
1440 		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1441 		mr |= AES_MR_SMOD_IDATAR0;
1442 		if (dd->caps.has_dualbuff)
1443 			mr |= AES_MR_DUALBUFF;
1444 		atmel_aes_write(dd, AES_MR, mr);
1445 
1446 		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1447 					   atmel_aes_gcm_tag_init);
1448 	}
1449 
1450 	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1451 				   atmel_aes_gcm_tag_init);
1452 }
1453 
1454 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1455 {
1456 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1457 	struct aead_request *req = aead_request_cast(dd->areq);
1458 	__be64 *data = dd->buf;
1459 
1460 	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1461 		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1462 			dd->resume = atmel_aes_gcm_tag_init;
1463 			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1464 			return -EINPROGRESS;
1465 		}
1466 
1467 		return atmel_aes_gcm_finalize(dd);
1468 	}
1469 
1470 	/* Read the GCM Intermediate Hash Word Registers. */
1471 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1472 
1473 	data[0] = cpu_to_be64(req->assoclen * 8);
1474 	data[1] = cpu_to_be64(ctx->textlen * 8);
1475 
1476 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1477 				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1478 }
1479 
1480 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1481 {
1482 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1483 	unsigned long flags;
1484 
1485 	/*
1486 	 * Change mode to CTR to complete the tag generation.
1487 	 * Use J0 as Initialization Vector.
1488 	 */
1489 	flags = dd->flags;
1490 	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1491 	dd->flags |= AES_FLAGS_CTR;
1492 	atmel_aes_write_ctrl(dd, false, ctx->j0);
1493 	dd->flags = flags;
1494 
1495 	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1496 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1497 }
1498 
1499 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1500 {
1501 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1502 	struct aead_request *req = aead_request_cast(dd->areq);
1503 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1504 	bool enc = atmel_aes_is_encrypt(dd);
1505 	u32 offset, authsize, itag[4], *otag = ctx->tag;
1506 	int err;
1507 
1508 	/* Read the computed tag. */
1509 	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1510 		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1511 	else
1512 		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1513 
1514 	offset = req->assoclen + ctx->textlen;
1515 	authsize = crypto_aead_authsize(tfm);
1516 	if (enc) {
1517 		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1518 		err = 0;
1519 	} else {
1520 		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1521 		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1522 	}
1523 
1524 	return atmel_aes_complete(dd, err);
1525 }
1526 
1527 static int atmel_aes_gcm_crypt(struct aead_request *req,
1528 			       unsigned long mode)
1529 {
1530 	struct atmel_aes_base_ctx *ctx;
1531 	struct atmel_aes_reqctx *rctx;
1532 
1533 	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1534 	ctx->block_size = AES_BLOCK_SIZE;
1535 	ctx->is_aead = true;
1536 
1537 	rctx = aead_request_ctx(req);
1538 	rctx->mode = AES_FLAGS_GCM | mode;
1539 
1540 	return atmel_aes_handle_queue(ctx->dd, &req->base);
1541 }
1542 
1543 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1544 				unsigned int keylen)
1545 {
1546 	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1547 
1548 	if (keylen != AES_KEYSIZE_256 &&
1549 	    keylen != AES_KEYSIZE_192 &&
1550 	    keylen != AES_KEYSIZE_128)
1551 		return -EINVAL;
1552 
1553 	memcpy(ctx->key, key, keylen);
1554 	ctx->keylen = keylen;
1555 
1556 	return 0;
1557 }
1558 
1559 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1560 				     unsigned int authsize)
1561 {
1562 	return crypto_gcm_check_authsize(authsize);
1563 }
1564 
1565 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1566 {
1567 	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1568 }
1569 
1570 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1571 {
1572 	return atmel_aes_gcm_crypt(req, 0);
1573 }
1574 
1575 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1576 {
1577 	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1578 	struct atmel_aes_dev *dd;
1579 
1580 	dd = atmel_aes_dev_alloc(&ctx->base);
1581 	if (!dd)
1582 		return -ENODEV;
1583 
1584 	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1585 	ctx->base.dd = dd;
1586 	ctx->base.start = atmel_aes_gcm_start;
1587 
1588 	return 0;
1589 }
1590 
1591 static struct aead_alg aes_gcm_alg = {
1592 	.setkey		= atmel_aes_gcm_setkey,
1593 	.setauthsize	= atmel_aes_gcm_setauthsize,
1594 	.encrypt	= atmel_aes_gcm_encrypt,
1595 	.decrypt	= atmel_aes_gcm_decrypt,
1596 	.init		= atmel_aes_gcm_init,
1597 	.ivsize		= GCM_AES_IV_SIZE,
1598 	.maxauthsize	= AES_BLOCK_SIZE,
1599 
1600 	.base = {
1601 		.cra_name		= "gcm(aes)",
1602 		.cra_driver_name	= "atmel-gcm-aes",
1603 		.cra_blocksize		= 1,
1604 		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1605 	},
1606 };
1607 
1608 
1609 /* xts functions */
1610 
1611 static inline struct atmel_aes_xts_ctx *
1612 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1613 {
1614 	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1615 }
1616 
1617 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1618 
1619 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1620 {
1621 	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1622 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1623 	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1624 	unsigned long flags;
1625 	int err;
1626 
1627 	atmel_aes_set_mode(dd, rctx);
1628 
1629 	err = atmel_aes_hw_init(dd);
1630 	if (err)
1631 		return atmel_aes_complete(dd, err);
1632 
1633 	/* Compute the tweak value from req->iv with ecb(aes). */
1634 	flags = dd->flags;
1635 	dd->flags &= ~AES_FLAGS_MODE_MASK;
1636 	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1637 	atmel_aes_write_ctrl_key(dd, false, NULL,
1638 				 ctx->key2, ctx->base.keylen);
1639 	dd->flags = flags;
1640 
1641 	atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1642 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1643 }
1644 
1645 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1646 {
1647 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1648 	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1649 	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1650 	static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1651 	u8 *tweak_bytes = (u8 *)tweak;
1652 	int i;
1653 
1654 	/* Read the computed ciphered tweak value. */
1655 	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1656 	/*
1657 	 * Hardware quirk:
1658 	 * the order of the ciphered tweak bytes need to be reversed before
1659 	 * writing them into the ODATARx registers.
1660 	 */
1661 	for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1662 		swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
1663 
1664 	/* Process the data. */
1665 	atmel_aes_write_ctrl(dd, use_dma, NULL);
1666 	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1667 	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1668 	if (use_dma)
1669 		return atmel_aes_dma_start(dd, req->src, req->dst,
1670 					   req->cryptlen,
1671 					   atmel_aes_transfer_complete);
1672 
1673 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1674 				   atmel_aes_transfer_complete);
1675 }
1676 
1677 static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1678 				unsigned int keylen)
1679 {
1680 	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1681 	int err;
1682 
1683 	err = xts_verify_key(tfm, key, keylen);
1684 	if (err)
1685 		return err;
1686 
1687 	crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1688 	crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1689 				  CRYPTO_TFM_REQ_MASK);
1690 	err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1691 	if (err)
1692 		return err;
1693 
1694 	memcpy(ctx->base.key, key, keylen/2);
1695 	memcpy(ctx->key2, key + keylen/2, keylen/2);
1696 	ctx->base.keylen = keylen/2;
1697 
1698 	return 0;
1699 }
1700 
1701 static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1702 {
1703 	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1704 }
1705 
1706 static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1707 {
1708 	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1709 }
1710 
1711 static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1712 {
1713 	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1714 	struct atmel_aes_dev *dd;
1715 	const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1716 
1717 	dd = atmel_aes_dev_alloc(&ctx->base);
1718 	if (!dd)
1719 		return -ENODEV;
1720 
1721 	ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1722 						  CRYPTO_ALG_NEED_FALLBACK);
1723 	if (IS_ERR(ctx->fallback_tfm))
1724 		return PTR_ERR(ctx->fallback_tfm);
1725 
1726 	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1727 				    crypto_skcipher_reqsize(ctx->fallback_tfm));
1728 	ctx->base.dd = dd;
1729 	ctx->base.start = atmel_aes_xts_start;
1730 
1731 	return 0;
1732 }
1733 
1734 static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1735 {
1736 	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1737 
1738 	crypto_free_skcipher(ctx->fallback_tfm);
1739 }
1740 
1741 static struct skcipher_alg aes_xts_alg = {
1742 	.base.cra_name		= "xts(aes)",
1743 	.base.cra_driver_name	= "atmel-xts-aes",
1744 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1745 	.base.cra_ctxsize	= sizeof(struct atmel_aes_xts_ctx),
1746 	.base.cra_flags		= CRYPTO_ALG_NEED_FALLBACK,
1747 
1748 	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
1749 	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
1750 	.ivsize			= AES_BLOCK_SIZE,
1751 	.setkey			= atmel_aes_xts_setkey,
1752 	.encrypt		= atmel_aes_xts_encrypt,
1753 	.decrypt		= atmel_aes_xts_decrypt,
1754 	.init			= atmel_aes_xts_init_tfm,
1755 	.exit			= atmel_aes_xts_exit_tfm,
1756 };
1757 
1758 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1759 /* authenc aead functions */
1760 
1761 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1762 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1763 				  bool is_async);
1764 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1765 				      bool is_async);
1766 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1767 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1768 				   bool is_async);
1769 
1770 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1771 {
1772 	struct aead_request *req = aead_request_cast(dd->areq);
1773 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1774 
1775 	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1776 		atmel_sha_authenc_abort(&rctx->auth_req);
1777 	dd->flags &= ~AES_FLAGS_OWN_SHA;
1778 }
1779 
1780 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1781 {
1782 	struct aead_request *req = aead_request_cast(dd->areq);
1783 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1784 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1785 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1786 	int err;
1787 
1788 	atmel_aes_set_mode(dd, &rctx->base);
1789 
1790 	err = atmel_aes_hw_init(dd);
1791 	if (err)
1792 		return atmel_aes_complete(dd, err);
1793 
1794 	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1795 					  atmel_aes_authenc_init, dd);
1796 }
1797 
1798 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1799 				  bool is_async)
1800 {
1801 	struct aead_request *req = aead_request_cast(dd->areq);
1802 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1803 
1804 	if (is_async)
1805 		dd->is_async = true;
1806 	if (err)
1807 		return atmel_aes_complete(dd, err);
1808 
1809 	/* If here, we've got the ownership of the SHA device. */
1810 	dd->flags |= AES_FLAGS_OWN_SHA;
1811 
1812 	/* Configure the SHA device. */
1813 	return atmel_sha_authenc_init(&rctx->auth_req,
1814 				      req->src, req->assoclen,
1815 				      rctx->textlen,
1816 				      atmel_aes_authenc_transfer, dd);
1817 }
1818 
1819 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1820 				      bool is_async)
1821 {
1822 	struct aead_request *req = aead_request_cast(dd->areq);
1823 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1824 	bool enc = atmel_aes_is_encrypt(dd);
1825 	struct scatterlist *src, *dst;
1826 	__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
1827 	u32 emr;
1828 
1829 	if (is_async)
1830 		dd->is_async = true;
1831 	if (err)
1832 		return atmel_aes_complete(dd, err);
1833 
1834 	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
1835 	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
1836 	dst = src;
1837 
1838 	if (req->src != req->dst)
1839 		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
1840 
1841 	/* Configure the AES device. */
1842 	memcpy(iv, req->iv, sizeof(iv));
1843 
1844 	/*
1845 	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
1846 	 * 'true' even if the data transfer is actually performed by the CPU (so
1847 	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
1848 	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
1849 	 * must be set to *_MR_SMOD_IDATAR0.
1850 	 */
1851 	atmel_aes_write_ctrl(dd, true, iv);
1852 	emr = AES_EMR_PLIPEN;
1853 	if (!enc)
1854 		emr |= AES_EMR_PLIPD;
1855 	atmel_aes_write(dd, AES_EMR, emr);
1856 
1857 	/* Transfer data. */
1858 	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
1859 				   atmel_aes_authenc_digest);
1860 }
1861 
1862 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
1863 {
1864 	struct aead_request *req = aead_request_cast(dd->areq);
1865 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1866 
1867 	/* atmel_sha_authenc_final() releases the SHA device. */
1868 	dd->flags &= ~AES_FLAGS_OWN_SHA;
1869 	return atmel_sha_authenc_final(&rctx->auth_req,
1870 				       rctx->digest, sizeof(rctx->digest),
1871 				       atmel_aes_authenc_final, dd);
1872 }
1873 
1874 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1875 				   bool is_async)
1876 {
1877 	struct aead_request *req = aead_request_cast(dd->areq);
1878 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1879 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1880 	bool enc = atmel_aes_is_encrypt(dd);
1881 	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
1882 	u32 offs, authsize;
1883 
1884 	if (is_async)
1885 		dd->is_async = true;
1886 	if (err)
1887 		goto complete;
1888 
1889 	offs = req->assoclen + rctx->textlen;
1890 	authsize = crypto_aead_authsize(tfm);
1891 	if (enc) {
1892 		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
1893 	} else {
1894 		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
1895 		if (crypto_memneq(idigest, odigest, authsize))
1896 			err = -EBADMSG;
1897 	}
1898 
1899 complete:
1900 	return atmel_aes_complete(dd, err);
1901 }
1902 
1903 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
1904 				    unsigned int keylen)
1905 {
1906 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1907 	struct crypto_authenc_keys keys;
1908 	int err;
1909 
1910 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1911 		goto badkey;
1912 
1913 	if (keys.enckeylen > sizeof(ctx->base.key))
1914 		goto badkey;
1915 
1916 	/* Save auth key. */
1917 	err = atmel_sha_authenc_setkey(ctx->auth,
1918 				       keys.authkey, keys.authkeylen,
1919 				       crypto_aead_get_flags(tfm));
1920 	if (err) {
1921 		memzero_explicit(&keys, sizeof(keys));
1922 		return err;
1923 	}
1924 
1925 	/* Save enc key. */
1926 	ctx->base.keylen = keys.enckeylen;
1927 	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
1928 
1929 	memzero_explicit(&keys, sizeof(keys));
1930 	return 0;
1931 
1932 badkey:
1933 	memzero_explicit(&keys, sizeof(keys));
1934 	return -EINVAL;
1935 }
1936 
1937 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
1938 				      unsigned long auth_mode)
1939 {
1940 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1941 	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
1942 	struct atmel_aes_dev *dd;
1943 
1944 	dd = atmel_aes_dev_alloc(&ctx->base);
1945 	if (!dd)
1946 		return -ENODEV;
1947 
1948 	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
1949 	if (IS_ERR(ctx->auth))
1950 		return PTR_ERR(ctx->auth);
1951 
1952 	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
1953 				      auth_reqsize));
1954 	ctx->base.dd = dd;
1955 	ctx->base.start = atmel_aes_authenc_start;
1956 
1957 	return 0;
1958 }
1959 
1960 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
1961 {
1962 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
1963 }
1964 
1965 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
1966 {
1967 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
1968 }
1969 
1970 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
1971 {
1972 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
1973 }
1974 
1975 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
1976 {
1977 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
1978 }
1979 
1980 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
1981 {
1982 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
1983 }
1984 
1985 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
1986 {
1987 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1988 
1989 	atmel_sha_authenc_free(ctx->auth);
1990 }
1991 
1992 static int atmel_aes_authenc_crypt(struct aead_request *req,
1993 				   unsigned long mode)
1994 {
1995 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1996 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1997 	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1998 	u32 authsize = crypto_aead_authsize(tfm);
1999 	bool enc = (mode & AES_FLAGS_ENCRYPT);
2000 
2001 	/* Compute text length. */
2002 	if (!enc && req->cryptlen < authsize)
2003 		return -EINVAL;
2004 	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2005 
2006 	/*
2007 	 * Currently, empty messages are not supported yet:
2008 	 * the SHA auto-padding can be used only on non-empty messages.
2009 	 * Hence a special case needs to be implemented for empty message.
2010 	 */
2011 	if (!rctx->textlen && !req->assoclen)
2012 		return -EINVAL;
2013 
2014 	rctx->base.mode = mode;
2015 	ctx->block_size = AES_BLOCK_SIZE;
2016 	ctx->is_aead = true;
2017 
2018 	return atmel_aes_handle_queue(ctx->dd, &req->base);
2019 }
2020 
2021 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2022 {
2023 	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2024 }
2025 
2026 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2027 {
2028 	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2029 }
2030 
2031 static struct aead_alg aes_authenc_algs[] = {
2032 {
2033 	.setkey		= atmel_aes_authenc_setkey,
2034 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2035 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2036 	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2037 	.exit		= atmel_aes_authenc_exit_tfm,
2038 	.ivsize		= AES_BLOCK_SIZE,
2039 	.maxauthsize	= SHA1_DIGEST_SIZE,
2040 
2041 	.base = {
2042 		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2043 		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2044 		.cra_blocksize		= AES_BLOCK_SIZE,
2045 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2046 	},
2047 },
2048 {
2049 	.setkey		= atmel_aes_authenc_setkey,
2050 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2051 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2052 	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2053 	.exit		= atmel_aes_authenc_exit_tfm,
2054 	.ivsize		= AES_BLOCK_SIZE,
2055 	.maxauthsize	= SHA224_DIGEST_SIZE,
2056 
2057 	.base = {
2058 		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2059 		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2060 		.cra_blocksize		= AES_BLOCK_SIZE,
2061 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2062 	},
2063 },
2064 {
2065 	.setkey		= atmel_aes_authenc_setkey,
2066 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2067 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2068 	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2069 	.exit		= atmel_aes_authenc_exit_tfm,
2070 	.ivsize		= AES_BLOCK_SIZE,
2071 	.maxauthsize	= SHA256_DIGEST_SIZE,
2072 
2073 	.base = {
2074 		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2075 		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2076 		.cra_blocksize		= AES_BLOCK_SIZE,
2077 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2078 	},
2079 },
2080 {
2081 	.setkey		= atmel_aes_authenc_setkey,
2082 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2083 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2084 	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2085 	.exit		= atmel_aes_authenc_exit_tfm,
2086 	.ivsize		= AES_BLOCK_SIZE,
2087 	.maxauthsize	= SHA384_DIGEST_SIZE,
2088 
2089 	.base = {
2090 		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2091 		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2092 		.cra_blocksize		= AES_BLOCK_SIZE,
2093 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2094 	},
2095 },
2096 {
2097 	.setkey		= atmel_aes_authenc_setkey,
2098 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2099 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2100 	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2101 	.exit		= atmel_aes_authenc_exit_tfm,
2102 	.ivsize		= AES_BLOCK_SIZE,
2103 	.maxauthsize	= SHA512_DIGEST_SIZE,
2104 
2105 	.base = {
2106 		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2107 		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2108 		.cra_blocksize		= AES_BLOCK_SIZE,
2109 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2110 	},
2111 },
2112 };
2113 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2114 
2115 /* Probe functions */
2116 
2117 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2118 {
2119 	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2120 	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2121 	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2122 
2123 	if (!dd->buf) {
2124 		dev_err(dd->dev, "unable to alloc pages.\n");
2125 		return -ENOMEM;
2126 	}
2127 
2128 	return 0;
2129 }
2130 
2131 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2132 {
2133 	free_page((unsigned long)dd->buf);
2134 }
2135 
2136 static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2137 {
2138 	int ret;
2139 
2140 	/* Try to grab 2 DMA channels */
2141 	dd->src.chan = dma_request_chan(dd->dev, "tx");
2142 	if (IS_ERR(dd->src.chan)) {
2143 		ret = PTR_ERR(dd->src.chan);
2144 		goto err_dma_in;
2145 	}
2146 
2147 	dd->dst.chan = dma_request_chan(dd->dev, "rx");
2148 	if (IS_ERR(dd->dst.chan)) {
2149 		ret = PTR_ERR(dd->dst.chan);
2150 		goto err_dma_out;
2151 	}
2152 
2153 	return 0;
2154 
2155 err_dma_out:
2156 	dma_release_channel(dd->src.chan);
2157 err_dma_in:
2158 	dev_err(dd->dev, "no DMA channel available\n");
2159 	return ret;
2160 }
2161 
2162 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2163 {
2164 	dma_release_channel(dd->dst.chan);
2165 	dma_release_channel(dd->src.chan);
2166 }
2167 
2168 static void atmel_aes_queue_task(unsigned long data)
2169 {
2170 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2171 
2172 	atmel_aes_handle_queue(dd, NULL);
2173 }
2174 
2175 static void atmel_aes_done_task(unsigned long data)
2176 {
2177 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2178 
2179 	dd->is_async = true;
2180 	(void)dd->resume(dd);
2181 }
2182 
2183 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2184 {
2185 	struct atmel_aes_dev *aes_dd = dev_id;
2186 	u32 reg;
2187 
2188 	reg = atmel_aes_read(aes_dd, AES_ISR);
2189 	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2190 		atmel_aes_write(aes_dd, AES_IDR, reg);
2191 		if (AES_FLAGS_BUSY & aes_dd->flags)
2192 			tasklet_schedule(&aes_dd->done_task);
2193 		else
2194 			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2195 		return IRQ_HANDLED;
2196 	}
2197 
2198 	return IRQ_NONE;
2199 }
2200 
2201 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2202 {
2203 	int i;
2204 
2205 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2206 	if (dd->caps.has_authenc)
2207 		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2208 			crypto_unregister_aead(&aes_authenc_algs[i]);
2209 #endif
2210 
2211 	if (dd->caps.has_xts)
2212 		crypto_unregister_skcipher(&aes_xts_alg);
2213 
2214 	if (dd->caps.has_gcm)
2215 		crypto_unregister_aead(&aes_gcm_alg);
2216 
2217 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2218 		crypto_unregister_skcipher(&aes_algs[i]);
2219 }
2220 
2221 static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2222 {
2223 	alg->cra_flags |= CRYPTO_ALG_ASYNC;
2224 	alg->cra_alignmask = 0xf;
2225 	alg->cra_priority = ATMEL_AES_PRIORITY;
2226 	alg->cra_module = THIS_MODULE;
2227 }
2228 
2229 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2230 {
2231 	int err, i, j;
2232 
2233 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2234 		atmel_aes_crypto_alg_init(&aes_algs[i].base);
2235 
2236 		err = crypto_register_skcipher(&aes_algs[i]);
2237 		if (err)
2238 			goto err_aes_algs;
2239 	}
2240 
2241 	if (dd->caps.has_gcm) {
2242 		atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2243 
2244 		err = crypto_register_aead(&aes_gcm_alg);
2245 		if (err)
2246 			goto err_aes_gcm_alg;
2247 	}
2248 
2249 	if (dd->caps.has_xts) {
2250 		atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2251 
2252 		err = crypto_register_skcipher(&aes_xts_alg);
2253 		if (err)
2254 			goto err_aes_xts_alg;
2255 	}
2256 
2257 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2258 	if (dd->caps.has_authenc) {
2259 		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2260 			atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2261 
2262 			err = crypto_register_aead(&aes_authenc_algs[i]);
2263 			if (err)
2264 				goto err_aes_authenc_alg;
2265 		}
2266 	}
2267 #endif
2268 
2269 	return 0;
2270 
2271 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2272 	/* i = ARRAY_SIZE(aes_authenc_algs); */
2273 err_aes_authenc_alg:
2274 	for (j = 0; j < i; j++)
2275 		crypto_unregister_aead(&aes_authenc_algs[j]);
2276 	crypto_unregister_skcipher(&aes_xts_alg);
2277 #endif
2278 err_aes_xts_alg:
2279 	crypto_unregister_aead(&aes_gcm_alg);
2280 err_aes_gcm_alg:
2281 	i = ARRAY_SIZE(aes_algs);
2282 err_aes_algs:
2283 	for (j = 0; j < i; j++)
2284 		crypto_unregister_skcipher(&aes_algs[j]);
2285 
2286 	return err;
2287 }
2288 
2289 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2290 {
2291 	dd->caps.has_dualbuff = 0;
2292 	dd->caps.has_gcm = 0;
2293 	dd->caps.has_xts = 0;
2294 	dd->caps.has_authenc = 0;
2295 	dd->caps.max_burst_size = 1;
2296 
2297 	/* keep only major version number */
2298 	switch (dd->hw_version & 0xff0) {
2299 	case 0x700:
2300 	case 0x600:
2301 	case 0x500:
2302 		dd->caps.has_dualbuff = 1;
2303 		dd->caps.has_gcm = 1;
2304 		dd->caps.has_xts = 1;
2305 		dd->caps.has_authenc = 1;
2306 		dd->caps.max_burst_size = 4;
2307 		break;
2308 	case 0x200:
2309 		dd->caps.has_dualbuff = 1;
2310 		dd->caps.has_gcm = 1;
2311 		dd->caps.max_burst_size = 4;
2312 		break;
2313 	case 0x130:
2314 		dd->caps.has_dualbuff = 1;
2315 		dd->caps.max_burst_size = 4;
2316 		break;
2317 	case 0x120:
2318 		break;
2319 	default:
2320 		dev_warn(dd->dev,
2321 				"Unmanaged aes version, set minimum capabilities\n");
2322 		break;
2323 	}
2324 }
2325 
2326 static const struct of_device_id atmel_aes_dt_ids[] = {
2327 	{ .compatible = "atmel,at91sam9g46-aes" },
2328 	{ /* sentinel */ }
2329 };
2330 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2331 
2332 static int atmel_aes_probe(struct platform_device *pdev)
2333 {
2334 	struct atmel_aes_dev *aes_dd;
2335 	struct device *dev = &pdev->dev;
2336 	struct resource *aes_res;
2337 	int err;
2338 
2339 	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2340 	if (!aes_dd)
2341 		return -ENOMEM;
2342 
2343 	aes_dd->dev = dev;
2344 
2345 	platform_set_drvdata(pdev, aes_dd);
2346 
2347 	INIT_LIST_HEAD(&aes_dd->list);
2348 	spin_lock_init(&aes_dd->lock);
2349 
2350 	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2351 					(unsigned long)aes_dd);
2352 	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2353 					(unsigned long)aes_dd);
2354 
2355 	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2356 
2357 	aes_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &aes_res);
2358 	if (IS_ERR(aes_dd->io_base)) {
2359 		err = PTR_ERR(aes_dd->io_base);
2360 		goto err_tasklet_kill;
2361 	}
2362 	aes_dd->phys_base = aes_res->start;
2363 
2364 	/* Get the IRQ */
2365 	aes_dd->irq = platform_get_irq(pdev,  0);
2366 	if (aes_dd->irq < 0) {
2367 		err = aes_dd->irq;
2368 		goto err_tasklet_kill;
2369 	}
2370 
2371 	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2372 			       IRQF_SHARED, "atmel-aes", aes_dd);
2373 	if (err) {
2374 		dev_err(dev, "unable to request aes irq.\n");
2375 		goto err_tasklet_kill;
2376 	}
2377 
2378 	/* Initializing the clock */
2379 	aes_dd->iclk = devm_clk_get_prepared(&pdev->dev, "aes_clk");
2380 	if (IS_ERR(aes_dd->iclk)) {
2381 		dev_err(dev, "clock initialization failed.\n");
2382 		err = PTR_ERR(aes_dd->iclk);
2383 		goto err_tasklet_kill;
2384 	}
2385 
2386 	err = atmel_aes_hw_version_init(aes_dd);
2387 	if (err)
2388 		goto err_tasklet_kill;
2389 
2390 	atmel_aes_get_cap(aes_dd);
2391 
2392 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2393 	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2394 		err = -EPROBE_DEFER;
2395 		goto err_tasklet_kill;
2396 	}
2397 #endif
2398 
2399 	err = atmel_aes_buff_init(aes_dd);
2400 	if (err)
2401 		goto err_tasklet_kill;
2402 
2403 	err = atmel_aes_dma_init(aes_dd);
2404 	if (err)
2405 		goto err_buff_cleanup;
2406 
2407 	spin_lock(&atmel_aes.lock);
2408 	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2409 	spin_unlock(&atmel_aes.lock);
2410 
2411 	err = atmel_aes_register_algs(aes_dd);
2412 	if (err)
2413 		goto err_algs;
2414 
2415 	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2416 			dma_chan_name(aes_dd->src.chan),
2417 			dma_chan_name(aes_dd->dst.chan));
2418 
2419 	return 0;
2420 
2421 err_algs:
2422 	spin_lock(&atmel_aes.lock);
2423 	list_del(&aes_dd->list);
2424 	spin_unlock(&atmel_aes.lock);
2425 	atmel_aes_dma_cleanup(aes_dd);
2426 err_buff_cleanup:
2427 	atmel_aes_buff_cleanup(aes_dd);
2428 err_tasklet_kill:
2429 	tasklet_kill(&aes_dd->done_task);
2430 	tasklet_kill(&aes_dd->queue_task);
2431 
2432 	return err;
2433 }
2434 
2435 static void atmel_aes_remove(struct platform_device *pdev)
2436 {
2437 	struct atmel_aes_dev *aes_dd;
2438 
2439 	aes_dd = platform_get_drvdata(pdev);
2440 
2441 	spin_lock(&atmel_aes.lock);
2442 	list_del(&aes_dd->list);
2443 	spin_unlock(&atmel_aes.lock);
2444 
2445 	atmel_aes_unregister_algs(aes_dd);
2446 
2447 	tasklet_kill(&aes_dd->done_task);
2448 	tasklet_kill(&aes_dd->queue_task);
2449 
2450 	atmel_aes_dma_cleanup(aes_dd);
2451 	atmel_aes_buff_cleanup(aes_dd);
2452 }
2453 
2454 static struct platform_driver atmel_aes_driver = {
2455 	.probe		= atmel_aes_probe,
2456 	.remove_new	= atmel_aes_remove,
2457 	.driver		= {
2458 		.name	= "atmel_aes",
2459 		.of_match_table = atmel_aes_dt_ids,
2460 	},
2461 };
2462 
2463 module_platform_driver(atmel_aes_driver);
2464 
2465 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2466 MODULE_LICENSE("GPL v2");
2467 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2468