1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Cryptographic API. 4 * 5 * Support for ATMEL AES HW acceleration. 6 * 7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL 8 * Author: Nicolas Royer <nicolas@eukrea.com> 9 * 10 * Some ideas are from omap-aes.c driver. 11 */ 12 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/err.h> 18 #include <linux/clk.h> 19 #include <linux/io.h> 20 #include <linux/hw_random.h> 21 #include <linux/platform_device.h> 22 23 #include <linux/device.h> 24 #include <linux/dmaengine.h> 25 #include <linux/init.h> 26 #include <linux/errno.h> 27 #include <linux/interrupt.h> 28 #include <linux/irq.h> 29 #include <linux/scatterlist.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/mod_devicetable.h> 32 #include <linux/delay.h> 33 #include <linux/crypto.h> 34 #include <crypto/scatterwalk.h> 35 #include <crypto/algapi.h> 36 #include <crypto/aes.h> 37 #include <crypto/gcm.h> 38 #include <crypto/xts.h> 39 #include <crypto/internal/aead.h> 40 #include <crypto/internal/skcipher.h> 41 #include "atmel-aes-regs.h" 42 #include "atmel-authenc.h" 43 44 #define ATMEL_AES_PRIORITY 300 45 46 #define ATMEL_AES_BUFFER_ORDER 2 47 #define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER) 48 49 #define CFB8_BLOCK_SIZE 1 50 #define CFB16_BLOCK_SIZE 2 51 #define CFB32_BLOCK_SIZE 4 52 #define CFB64_BLOCK_SIZE 8 53 54 #define SIZE_IN_WORDS(x) ((x) >> 2) 55 56 /* AES flags */ 57 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */ 58 #define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC 59 #define AES_FLAGS_GTAGEN AES_MR_GTAGEN 60 #define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK) 61 #define AES_FLAGS_ECB AES_MR_OPMOD_ECB 62 #define AES_FLAGS_CBC AES_MR_OPMOD_CBC 63 #define AES_FLAGS_OFB AES_MR_OPMOD_OFB 64 #define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b) 65 #define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b) 66 #define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b) 67 #define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b) 68 #define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b) 69 #define AES_FLAGS_CTR AES_MR_OPMOD_CTR 70 #define AES_FLAGS_GCM AES_MR_OPMOD_GCM 71 #define AES_FLAGS_XTS AES_MR_OPMOD_XTS 72 73 #define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \ 74 AES_FLAGS_ENCRYPT | \ 75 AES_FLAGS_GTAGEN) 76 77 #define AES_FLAGS_BUSY BIT(3) 78 #define AES_FLAGS_DUMP_REG BIT(4) 79 #define AES_FLAGS_OWN_SHA BIT(5) 80 81 #define AES_FLAGS_PERSISTENT AES_FLAGS_BUSY 82 83 #define ATMEL_AES_QUEUE_LENGTH 50 84 85 #define ATMEL_AES_DMA_THRESHOLD 256 86 87 88 struct atmel_aes_caps { 89 bool has_dualbuff; 90 bool has_cfb64; 91 bool has_gcm; 92 bool has_xts; 93 bool has_authenc; 94 u32 max_burst_size; 95 }; 96 97 struct atmel_aes_dev; 98 99 100 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *); 101 102 103 struct atmel_aes_base_ctx { 104 struct atmel_aes_dev *dd; 105 atmel_aes_fn_t start; 106 int keylen; 107 u32 key[AES_KEYSIZE_256 / sizeof(u32)]; 108 u16 block_size; 109 bool is_aead; 110 }; 111 112 struct atmel_aes_ctx { 113 struct atmel_aes_base_ctx base; 114 }; 115 116 struct atmel_aes_ctr_ctx { 117 struct atmel_aes_base_ctx base; 118 119 __be32 iv[AES_BLOCK_SIZE / sizeof(u32)]; 120 size_t offset; 121 struct scatterlist src[2]; 122 struct scatterlist dst[2]; 123 u32 blocks; 124 }; 125 126 struct atmel_aes_gcm_ctx { 127 struct atmel_aes_base_ctx base; 128 129 struct scatterlist src[2]; 130 struct scatterlist dst[2]; 131 132 __be32 j0[AES_BLOCK_SIZE / sizeof(u32)]; 133 u32 tag[AES_BLOCK_SIZE / sizeof(u32)]; 134 __be32 ghash[AES_BLOCK_SIZE / sizeof(u32)]; 135 size_t textlen; 136 137 const __be32 *ghash_in; 138 __be32 *ghash_out; 139 atmel_aes_fn_t ghash_resume; 140 }; 141 142 struct atmel_aes_xts_ctx { 143 struct atmel_aes_base_ctx base; 144 145 u32 key2[AES_KEYSIZE_256 / sizeof(u32)]; 146 struct crypto_skcipher *fallback_tfm; 147 }; 148 149 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) 150 struct atmel_aes_authenc_ctx { 151 struct atmel_aes_base_ctx base; 152 struct atmel_sha_authenc_ctx *auth; 153 }; 154 #endif 155 156 struct atmel_aes_reqctx { 157 unsigned long mode; 158 u8 lastc[AES_BLOCK_SIZE]; 159 struct skcipher_request fallback_req; 160 }; 161 162 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) 163 struct atmel_aes_authenc_reqctx { 164 struct atmel_aes_reqctx base; 165 166 struct scatterlist src[2]; 167 struct scatterlist dst[2]; 168 size_t textlen; 169 u32 digest[SHA512_DIGEST_SIZE / sizeof(u32)]; 170 171 /* auth_req MUST be place last. */ 172 struct ahash_request auth_req; 173 }; 174 #endif 175 176 struct atmel_aes_dma { 177 struct dma_chan *chan; 178 struct scatterlist *sg; 179 int nents; 180 unsigned int remainder; 181 unsigned int sg_len; 182 }; 183 184 struct atmel_aes_dev { 185 struct list_head list; 186 unsigned long phys_base; 187 void __iomem *io_base; 188 189 struct crypto_async_request *areq; 190 struct atmel_aes_base_ctx *ctx; 191 192 bool is_async; 193 atmel_aes_fn_t resume; 194 atmel_aes_fn_t cpu_transfer_complete; 195 196 struct device *dev; 197 struct clk *iclk; 198 int irq; 199 200 unsigned long flags; 201 202 spinlock_t lock; 203 struct crypto_queue queue; 204 205 struct tasklet_struct done_task; 206 struct tasklet_struct queue_task; 207 208 size_t total; 209 size_t datalen; 210 u32 *data; 211 212 struct atmel_aes_dma src; 213 struct atmel_aes_dma dst; 214 215 size_t buflen; 216 void *buf; 217 struct scatterlist aligned_sg; 218 struct scatterlist *real_dst; 219 220 struct atmel_aes_caps caps; 221 222 u32 hw_version; 223 }; 224 225 struct atmel_aes_drv { 226 struct list_head dev_list; 227 spinlock_t lock; 228 }; 229 230 static struct atmel_aes_drv atmel_aes = { 231 .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list), 232 .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock), 233 }; 234 235 #ifdef VERBOSE_DEBUG 236 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz) 237 { 238 switch (offset) { 239 case AES_CR: 240 return "CR"; 241 242 case AES_MR: 243 return "MR"; 244 245 case AES_ISR: 246 return "ISR"; 247 248 case AES_IMR: 249 return "IMR"; 250 251 case AES_IER: 252 return "IER"; 253 254 case AES_IDR: 255 return "IDR"; 256 257 case AES_KEYWR(0): 258 case AES_KEYWR(1): 259 case AES_KEYWR(2): 260 case AES_KEYWR(3): 261 case AES_KEYWR(4): 262 case AES_KEYWR(5): 263 case AES_KEYWR(6): 264 case AES_KEYWR(7): 265 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2); 266 break; 267 268 case AES_IDATAR(0): 269 case AES_IDATAR(1): 270 case AES_IDATAR(2): 271 case AES_IDATAR(3): 272 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2); 273 break; 274 275 case AES_ODATAR(0): 276 case AES_ODATAR(1): 277 case AES_ODATAR(2): 278 case AES_ODATAR(3): 279 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2); 280 break; 281 282 case AES_IVR(0): 283 case AES_IVR(1): 284 case AES_IVR(2): 285 case AES_IVR(3): 286 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2); 287 break; 288 289 case AES_AADLENR: 290 return "AADLENR"; 291 292 case AES_CLENR: 293 return "CLENR"; 294 295 case AES_GHASHR(0): 296 case AES_GHASHR(1): 297 case AES_GHASHR(2): 298 case AES_GHASHR(3): 299 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2); 300 break; 301 302 case AES_TAGR(0): 303 case AES_TAGR(1): 304 case AES_TAGR(2): 305 case AES_TAGR(3): 306 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2); 307 break; 308 309 case AES_CTRR: 310 return "CTRR"; 311 312 case AES_GCMHR(0): 313 case AES_GCMHR(1): 314 case AES_GCMHR(2): 315 case AES_GCMHR(3): 316 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2); 317 break; 318 319 case AES_EMR: 320 return "EMR"; 321 322 case AES_TWR(0): 323 case AES_TWR(1): 324 case AES_TWR(2): 325 case AES_TWR(3): 326 snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2); 327 break; 328 329 case AES_ALPHAR(0): 330 case AES_ALPHAR(1): 331 case AES_ALPHAR(2): 332 case AES_ALPHAR(3): 333 snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2); 334 break; 335 336 default: 337 snprintf(tmp, sz, "0x%02x", offset); 338 break; 339 } 340 341 return tmp; 342 } 343 #endif /* VERBOSE_DEBUG */ 344 345 /* Shared functions */ 346 347 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset) 348 { 349 u32 value = readl_relaxed(dd->io_base + offset); 350 351 #ifdef VERBOSE_DEBUG 352 if (dd->flags & AES_FLAGS_DUMP_REG) { 353 char tmp[16]; 354 355 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value, 356 atmel_aes_reg_name(offset, tmp, sizeof(tmp))); 357 } 358 #endif /* VERBOSE_DEBUG */ 359 360 return value; 361 } 362 363 static inline void atmel_aes_write(struct atmel_aes_dev *dd, 364 u32 offset, u32 value) 365 { 366 #ifdef VERBOSE_DEBUG 367 if (dd->flags & AES_FLAGS_DUMP_REG) { 368 char tmp[16]; 369 370 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value, 371 atmel_aes_reg_name(offset, tmp, sizeof(tmp))); 372 } 373 #endif /* VERBOSE_DEBUG */ 374 375 writel_relaxed(value, dd->io_base + offset); 376 } 377 378 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset, 379 u32 *value, int count) 380 { 381 for (; count--; value++, offset += 4) 382 *value = atmel_aes_read(dd, offset); 383 } 384 385 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset, 386 const u32 *value, int count) 387 { 388 for (; count--; value++, offset += 4) 389 atmel_aes_write(dd, offset, *value); 390 } 391 392 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset, 393 void *value) 394 { 395 atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE)); 396 } 397 398 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset, 399 const void *value) 400 { 401 atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE)); 402 } 403 404 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd, 405 atmel_aes_fn_t resume) 406 { 407 u32 isr = atmel_aes_read(dd, AES_ISR); 408 409 if (unlikely(isr & AES_INT_DATARDY)) 410 return resume(dd); 411 412 dd->resume = resume; 413 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY); 414 return -EINPROGRESS; 415 } 416 417 static inline size_t atmel_aes_padlen(size_t len, size_t block_size) 418 { 419 len &= block_size - 1; 420 return len ? block_size - len : 0; 421 } 422 423 static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx) 424 { 425 struct atmel_aes_dev *aes_dd; 426 427 spin_lock_bh(&atmel_aes.lock); 428 /* One AES IP per SoC. */ 429 aes_dd = list_first_entry_or_null(&atmel_aes.dev_list, 430 struct atmel_aes_dev, list); 431 spin_unlock_bh(&atmel_aes.lock); 432 return aes_dd; 433 } 434 435 static int atmel_aes_hw_init(struct atmel_aes_dev *dd) 436 { 437 int err; 438 439 err = clk_enable(dd->iclk); 440 if (err) 441 return err; 442 443 atmel_aes_write(dd, AES_CR, AES_CR_SWRST); 444 atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET); 445 446 return 0; 447 } 448 449 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd) 450 { 451 return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff; 452 } 453 454 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd) 455 { 456 int err; 457 458 err = atmel_aes_hw_init(dd); 459 if (err) 460 return err; 461 462 dd->hw_version = atmel_aes_get_version(dd); 463 464 dev_info(dd->dev, "version: 0x%x\n", dd->hw_version); 465 466 clk_disable(dd->iclk); 467 return 0; 468 } 469 470 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd, 471 const struct atmel_aes_reqctx *rctx) 472 { 473 /* Clear all but persistent flags and set request flags. */ 474 dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode; 475 } 476 477 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd) 478 { 479 return (dd->flags & AES_FLAGS_ENCRYPT); 480 } 481 482 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) 483 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err); 484 #endif 485 486 static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd) 487 { 488 struct skcipher_request *req = skcipher_request_cast(dd->areq); 489 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req); 490 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); 491 unsigned int ivsize = crypto_skcipher_ivsize(skcipher); 492 493 if (req->cryptlen < ivsize) 494 return; 495 496 if (rctx->mode & AES_FLAGS_ENCRYPT) 497 scatterwalk_map_and_copy(req->iv, req->dst, 498 req->cryptlen - ivsize, ivsize, 0); 499 else 500 memcpy(req->iv, rctx->lastc, ivsize); 501 } 502 503 static inline struct atmel_aes_ctr_ctx * 504 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx) 505 { 506 return container_of(ctx, struct atmel_aes_ctr_ctx, base); 507 } 508 509 static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd) 510 { 511 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx); 512 struct skcipher_request *req = skcipher_request_cast(dd->areq); 513 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); 514 unsigned int ivsize = crypto_skcipher_ivsize(skcipher); 515 int i; 516 517 /* 518 * The CTR transfer works in fragments of data of maximum 1 MByte 519 * because of the 16 bit CTR counter embedded in the IP. When reaching 520 * here, ctx->blocks contains the number of blocks of the last fragment 521 * processed, there is no need to explicit cast it to u16. 522 */ 523 for (i = 0; i < ctx->blocks; i++) 524 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE); 525 526 memcpy(req->iv, ctx->iv, ivsize); 527 } 528 529 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err) 530 { 531 struct skcipher_request *req = skcipher_request_cast(dd->areq); 532 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req); 533 534 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) 535 if (dd->ctx->is_aead) 536 atmel_aes_authenc_complete(dd, err); 537 #endif 538 539 clk_disable(dd->iclk); 540 dd->flags &= ~AES_FLAGS_BUSY; 541 542 if (!err && !dd->ctx->is_aead && 543 (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) { 544 if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR) 545 atmel_aes_set_iv_as_last_ciphertext_block(dd); 546 else 547 atmel_aes_ctr_update_req_iv(dd); 548 } 549 550 if (dd->is_async) 551 crypto_request_complete(dd->areq, err); 552 553 tasklet_schedule(&dd->queue_task); 554 555 return err; 556 } 557 558 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma, 559 const __be32 *iv, const u32 *key, int keylen) 560 { 561 u32 valmr = 0; 562 563 /* MR register must be set before IV registers */ 564 if (keylen == AES_KEYSIZE_128) 565 valmr |= AES_MR_KEYSIZE_128; 566 else if (keylen == AES_KEYSIZE_192) 567 valmr |= AES_MR_KEYSIZE_192; 568 else 569 valmr |= AES_MR_KEYSIZE_256; 570 571 valmr |= dd->flags & AES_FLAGS_MODE_MASK; 572 573 if (use_dma) { 574 valmr |= AES_MR_SMOD_IDATAR0; 575 if (dd->caps.has_dualbuff) 576 valmr |= AES_MR_DUALBUFF; 577 } else { 578 valmr |= AES_MR_SMOD_AUTO; 579 } 580 581 atmel_aes_write(dd, AES_MR, valmr); 582 583 atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen)); 584 585 if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB) 586 atmel_aes_write_block(dd, AES_IVR(0), iv); 587 } 588 589 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma, 590 const __be32 *iv) 591 592 { 593 atmel_aes_write_ctrl_key(dd, use_dma, iv, 594 dd->ctx->key, dd->ctx->keylen); 595 } 596 597 /* CPU transfer */ 598 599 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd) 600 { 601 int err = 0; 602 u32 isr; 603 604 for (;;) { 605 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data); 606 dd->data += 4; 607 dd->datalen -= AES_BLOCK_SIZE; 608 609 if (dd->datalen < AES_BLOCK_SIZE) 610 break; 611 612 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data); 613 614 isr = atmel_aes_read(dd, AES_ISR); 615 if (!(isr & AES_INT_DATARDY)) { 616 dd->resume = atmel_aes_cpu_transfer; 617 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY); 618 return -EINPROGRESS; 619 } 620 } 621 622 if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst), 623 dd->buf, dd->total)) 624 err = -EINVAL; 625 626 if (err) 627 return atmel_aes_complete(dd, err); 628 629 return dd->cpu_transfer_complete(dd); 630 } 631 632 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd, 633 struct scatterlist *src, 634 struct scatterlist *dst, 635 size_t len, 636 atmel_aes_fn_t resume) 637 { 638 size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE); 639 640 if (unlikely(len == 0)) 641 return -EINVAL; 642 643 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len); 644 645 dd->total = len; 646 dd->real_dst = dst; 647 dd->cpu_transfer_complete = resume; 648 dd->datalen = len + padlen; 649 dd->data = (u32 *)dd->buf; 650 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data); 651 return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer); 652 } 653 654 655 /* DMA transfer */ 656 657 static void atmel_aes_dma_callback(void *data); 658 659 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd, 660 struct scatterlist *sg, 661 size_t len, 662 struct atmel_aes_dma *dma) 663 { 664 int nents; 665 666 if (!IS_ALIGNED(len, dd->ctx->block_size)) 667 return false; 668 669 for (nents = 0; sg; sg = sg_next(sg), ++nents) { 670 if (!IS_ALIGNED(sg->offset, sizeof(u32))) 671 return false; 672 673 if (len <= sg->length) { 674 if (!IS_ALIGNED(len, dd->ctx->block_size)) 675 return false; 676 677 dma->nents = nents+1; 678 dma->remainder = sg->length - len; 679 sg->length = len; 680 return true; 681 } 682 683 if (!IS_ALIGNED(sg->length, dd->ctx->block_size)) 684 return false; 685 686 len -= sg->length; 687 } 688 689 return false; 690 } 691 692 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma) 693 { 694 struct scatterlist *sg = dma->sg; 695 int nents = dma->nents; 696 697 if (!dma->remainder) 698 return; 699 700 while (--nents > 0 && sg) 701 sg = sg_next(sg); 702 703 if (!sg) 704 return; 705 706 sg->length += dma->remainder; 707 } 708 709 static int atmel_aes_map(struct atmel_aes_dev *dd, 710 struct scatterlist *src, 711 struct scatterlist *dst, 712 size_t len) 713 { 714 bool src_aligned, dst_aligned; 715 size_t padlen; 716 717 dd->total = len; 718 dd->src.sg = src; 719 dd->dst.sg = dst; 720 dd->real_dst = dst; 721 722 src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src); 723 if (src == dst) 724 dst_aligned = src_aligned; 725 else 726 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst); 727 if (!src_aligned || !dst_aligned) { 728 padlen = atmel_aes_padlen(len, dd->ctx->block_size); 729 730 if (dd->buflen < len + padlen) 731 return -ENOMEM; 732 733 if (!src_aligned) { 734 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len); 735 dd->src.sg = &dd->aligned_sg; 736 dd->src.nents = 1; 737 dd->src.remainder = 0; 738 } 739 740 if (!dst_aligned) { 741 dd->dst.sg = &dd->aligned_sg; 742 dd->dst.nents = 1; 743 dd->dst.remainder = 0; 744 } 745 746 sg_init_table(&dd->aligned_sg, 1); 747 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen); 748 } 749 750 if (dd->src.sg == dd->dst.sg) { 751 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents, 752 DMA_BIDIRECTIONAL); 753 dd->dst.sg_len = dd->src.sg_len; 754 if (!dd->src.sg_len) 755 return -EFAULT; 756 } else { 757 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents, 758 DMA_TO_DEVICE); 759 if (!dd->src.sg_len) 760 return -EFAULT; 761 762 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents, 763 DMA_FROM_DEVICE); 764 if (!dd->dst.sg_len) { 765 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents, 766 DMA_TO_DEVICE); 767 return -EFAULT; 768 } 769 } 770 771 return 0; 772 } 773 774 static void atmel_aes_unmap(struct atmel_aes_dev *dd) 775 { 776 if (dd->src.sg == dd->dst.sg) { 777 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents, 778 DMA_BIDIRECTIONAL); 779 780 if (dd->src.sg != &dd->aligned_sg) 781 atmel_aes_restore_sg(&dd->src); 782 } else { 783 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents, 784 DMA_FROM_DEVICE); 785 786 if (dd->dst.sg != &dd->aligned_sg) 787 atmel_aes_restore_sg(&dd->dst); 788 789 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents, 790 DMA_TO_DEVICE); 791 792 if (dd->src.sg != &dd->aligned_sg) 793 atmel_aes_restore_sg(&dd->src); 794 } 795 796 if (dd->dst.sg == &dd->aligned_sg) 797 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst), 798 dd->buf, dd->total); 799 } 800 801 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd, 802 enum dma_slave_buswidth addr_width, 803 enum dma_transfer_direction dir, 804 u32 maxburst) 805 { 806 struct dma_async_tx_descriptor *desc; 807 struct dma_slave_config config; 808 dma_async_tx_callback callback; 809 struct atmel_aes_dma *dma; 810 int err; 811 812 memset(&config, 0, sizeof(config)); 813 config.src_addr_width = addr_width; 814 config.dst_addr_width = addr_width; 815 config.src_maxburst = maxburst; 816 config.dst_maxburst = maxburst; 817 818 switch (dir) { 819 case DMA_MEM_TO_DEV: 820 dma = &dd->src; 821 callback = NULL; 822 config.dst_addr = dd->phys_base + AES_IDATAR(0); 823 break; 824 825 case DMA_DEV_TO_MEM: 826 dma = &dd->dst; 827 callback = atmel_aes_dma_callback; 828 config.src_addr = dd->phys_base + AES_ODATAR(0); 829 break; 830 831 default: 832 return -EINVAL; 833 } 834 835 err = dmaengine_slave_config(dma->chan, &config); 836 if (err) 837 return err; 838 839 desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir, 840 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 841 if (!desc) 842 return -ENOMEM; 843 844 desc->callback = callback; 845 desc->callback_param = dd; 846 dmaengine_submit(desc); 847 dma_async_issue_pending(dma->chan); 848 849 return 0; 850 } 851 852 static int atmel_aes_dma_start(struct atmel_aes_dev *dd, 853 struct scatterlist *src, 854 struct scatterlist *dst, 855 size_t len, 856 atmel_aes_fn_t resume) 857 { 858 enum dma_slave_buswidth addr_width; 859 u32 maxburst; 860 int err; 861 862 switch (dd->ctx->block_size) { 863 case CFB8_BLOCK_SIZE: 864 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 865 maxburst = 1; 866 break; 867 868 case CFB16_BLOCK_SIZE: 869 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 870 maxburst = 1; 871 break; 872 873 case CFB32_BLOCK_SIZE: 874 case CFB64_BLOCK_SIZE: 875 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 876 maxburst = 1; 877 break; 878 879 case AES_BLOCK_SIZE: 880 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 881 maxburst = dd->caps.max_burst_size; 882 break; 883 884 default: 885 err = -EINVAL; 886 goto exit; 887 } 888 889 err = atmel_aes_map(dd, src, dst, len); 890 if (err) 891 goto exit; 892 893 dd->resume = resume; 894 895 /* Set output DMA transfer first */ 896 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM, 897 maxburst); 898 if (err) 899 goto unmap; 900 901 /* Then set input DMA transfer */ 902 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV, 903 maxburst); 904 if (err) 905 goto output_transfer_stop; 906 907 return -EINPROGRESS; 908 909 output_transfer_stop: 910 dmaengine_terminate_sync(dd->dst.chan); 911 unmap: 912 atmel_aes_unmap(dd); 913 exit: 914 return atmel_aes_complete(dd, err); 915 } 916 917 static void atmel_aes_dma_callback(void *data) 918 { 919 struct atmel_aes_dev *dd = data; 920 921 atmel_aes_unmap(dd); 922 dd->is_async = true; 923 (void)dd->resume(dd); 924 } 925 926 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd, 927 struct crypto_async_request *new_areq) 928 { 929 struct crypto_async_request *areq, *backlog; 930 struct atmel_aes_base_ctx *ctx; 931 unsigned long flags; 932 bool start_async; 933 int err, ret = 0; 934 935 spin_lock_irqsave(&dd->lock, flags); 936 if (new_areq) 937 ret = crypto_enqueue_request(&dd->queue, new_areq); 938 if (dd->flags & AES_FLAGS_BUSY) { 939 spin_unlock_irqrestore(&dd->lock, flags); 940 return ret; 941 } 942 backlog = crypto_get_backlog(&dd->queue); 943 areq = crypto_dequeue_request(&dd->queue); 944 if (areq) 945 dd->flags |= AES_FLAGS_BUSY; 946 spin_unlock_irqrestore(&dd->lock, flags); 947 948 if (!areq) 949 return ret; 950 951 if (backlog) 952 crypto_request_complete(backlog, -EINPROGRESS); 953 954 ctx = crypto_tfm_ctx(areq->tfm); 955 956 dd->areq = areq; 957 dd->ctx = ctx; 958 start_async = (areq != new_areq); 959 dd->is_async = start_async; 960 961 /* WARNING: ctx->start() MAY change dd->is_async. */ 962 err = ctx->start(dd); 963 return (start_async) ? ret : err; 964 } 965 966 967 /* AES async block ciphers */ 968 969 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd) 970 { 971 return atmel_aes_complete(dd, 0); 972 } 973 974 static int atmel_aes_start(struct atmel_aes_dev *dd) 975 { 976 struct skcipher_request *req = skcipher_request_cast(dd->areq); 977 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req); 978 bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD || 979 dd->ctx->block_size != AES_BLOCK_SIZE); 980 int err; 981 982 atmel_aes_set_mode(dd, rctx); 983 984 err = atmel_aes_hw_init(dd); 985 if (err) 986 return atmel_aes_complete(dd, err); 987 988 atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv); 989 if (use_dma) 990 return atmel_aes_dma_start(dd, req->src, req->dst, 991 req->cryptlen, 992 atmel_aes_transfer_complete); 993 994 return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen, 995 atmel_aes_transfer_complete); 996 } 997 998 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd) 999 { 1000 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx); 1001 struct skcipher_request *req = skcipher_request_cast(dd->areq); 1002 struct scatterlist *src, *dst; 1003 size_t datalen; 1004 u32 ctr; 1005 u16 start, end; 1006 bool use_dma, fragmented = false; 1007 1008 /* Check for transfer completion. */ 1009 ctx->offset += dd->total; 1010 if (ctx->offset >= req->cryptlen) 1011 return atmel_aes_transfer_complete(dd); 1012 1013 /* Compute data length. */ 1014 datalen = req->cryptlen - ctx->offset; 1015 ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE); 1016 ctr = be32_to_cpu(ctx->iv[3]); 1017 1018 /* Check 16bit counter overflow. */ 1019 start = ctr & 0xffff; 1020 end = start + ctx->blocks - 1; 1021 1022 if (ctx->blocks >> 16 || end < start) { 1023 ctr |= 0xffff; 1024 datalen = AES_BLOCK_SIZE * (0x10000 - start); 1025 fragmented = true; 1026 } 1027 1028 use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD); 1029 1030 /* Jump to offset. */ 1031 src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset); 1032 dst = ((req->src == req->dst) ? src : 1033 scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset)); 1034 1035 /* Configure hardware. */ 1036 atmel_aes_write_ctrl(dd, use_dma, ctx->iv); 1037 if (unlikely(fragmented)) { 1038 /* 1039 * Increment the counter manually to cope with the hardware 1040 * counter overflow. 1041 */ 1042 ctx->iv[3] = cpu_to_be32(ctr); 1043 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE); 1044 } 1045 1046 if (use_dma) 1047 return atmel_aes_dma_start(dd, src, dst, datalen, 1048 atmel_aes_ctr_transfer); 1049 1050 return atmel_aes_cpu_start(dd, src, dst, datalen, 1051 atmel_aes_ctr_transfer); 1052 } 1053 1054 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd) 1055 { 1056 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx); 1057 struct skcipher_request *req = skcipher_request_cast(dd->areq); 1058 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req); 1059 int err; 1060 1061 atmel_aes_set_mode(dd, rctx); 1062 1063 err = atmel_aes_hw_init(dd); 1064 if (err) 1065 return atmel_aes_complete(dd, err); 1066 1067 memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE); 1068 ctx->offset = 0; 1069 dd->total = 0; 1070 return atmel_aes_ctr_transfer(dd); 1071 } 1072 1073 static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc) 1074 { 1075 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req); 1076 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx( 1077 crypto_skcipher_reqtfm(req)); 1078 1079 skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 1080 skcipher_request_set_callback(&rctx->fallback_req, req->base.flags, 1081 req->base.complete, req->base.data); 1082 skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst, 1083 req->cryptlen, req->iv); 1084 1085 return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) : 1086 crypto_skcipher_decrypt(&rctx->fallback_req); 1087 } 1088 1089 static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode) 1090 { 1091 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); 1092 struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher); 1093 struct atmel_aes_reqctx *rctx; 1094 u32 opmode = mode & AES_FLAGS_OPMODE_MASK; 1095 1096 if (opmode == AES_FLAGS_XTS) { 1097 if (req->cryptlen < XTS_BLOCK_SIZE) 1098 return -EINVAL; 1099 1100 if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE)) 1101 return atmel_aes_xts_fallback(req, 1102 mode & AES_FLAGS_ENCRYPT); 1103 } 1104 1105 /* 1106 * ECB, CBC, CFB, OFB or CTR mode require the plaintext and ciphertext 1107 * to have a positve integer length. 1108 */ 1109 if (!req->cryptlen && opmode != AES_FLAGS_XTS) 1110 return 0; 1111 1112 if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) && 1113 !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher))) 1114 return -EINVAL; 1115 1116 switch (mode & AES_FLAGS_OPMODE_MASK) { 1117 case AES_FLAGS_CFB8: 1118 ctx->block_size = CFB8_BLOCK_SIZE; 1119 break; 1120 1121 case AES_FLAGS_CFB16: 1122 ctx->block_size = CFB16_BLOCK_SIZE; 1123 break; 1124 1125 case AES_FLAGS_CFB32: 1126 ctx->block_size = CFB32_BLOCK_SIZE; 1127 break; 1128 1129 case AES_FLAGS_CFB64: 1130 ctx->block_size = CFB64_BLOCK_SIZE; 1131 break; 1132 1133 default: 1134 ctx->block_size = AES_BLOCK_SIZE; 1135 break; 1136 } 1137 ctx->is_aead = false; 1138 1139 rctx = skcipher_request_ctx(req); 1140 rctx->mode = mode; 1141 1142 if (opmode != AES_FLAGS_ECB && 1143 !(mode & AES_FLAGS_ENCRYPT)) { 1144 unsigned int ivsize = crypto_skcipher_ivsize(skcipher); 1145 1146 if (req->cryptlen >= ivsize) 1147 scatterwalk_map_and_copy(rctx->lastc, req->src, 1148 req->cryptlen - ivsize, 1149 ivsize, 0); 1150 } 1151 1152 return atmel_aes_handle_queue(ctx->dd, &req->base); 1153 } 1154 1155 static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, 1156 unsigned int keylen) 1157 { 1158 struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm); 1159 1160 if (keylen != AES_KEYSIZE_128 && 1161 keylen != AES_KEYSIZE_192 && 1162 keylen != AES_KEYSIZE_256) 1163 return -EINVAL; 1164 1165 memcpy(ctx->key, key, keylen); 1166 ctx->keylen = keylen; 1167 1168 return 0; 1169 } 1170 1171 static int atmel_aes_ecb_encrypt(struct skcipher_request *req) 1172 { 1173 return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT); 1174 } 1175 1176 static int atmel_aes_ecb_decrypt(struct skcipher_request *req) 1177 { 1178 return atmel_aes_crypt(req, AES_FLAGS_ECB); 1179 } 1180 1181 static int atmel_aes_cbc_encrypt(struct skcipher_request *req) 1182 { 1183 return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT); 1184 } 1185 1186 static int atmel_aes_cbc_decrypt(struct skcipher_request *req) 1187 { 1188 return atmel_aes_crypt(req, AES_FLAGS_CBC); 1189 } 1190 1191 static int atmel_aes_ofb_encrypt(struct skcipher_request *req) 1192 { 1193 return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT); 1194 } 1195 1196 static int atmel_aes_ofb_decrypt(struct skcipher_request *req) 1197 { 1198 return atmel_aes_crypt(req, AES_FLAGS_OFB); 1199 } 1200 1201 static int atmel_aes_cfb_encrypt(struct skcipher_request *req) 1202 { 1203 return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT); 1204 } 1205 1206 static int atmel_aes_cfb_decrypt(struct skcipher_request *req) 1207 { 1208 return atmel_aes_crypt(req, AES_FLAGS_CFB128); 1209 } 1210 1211 static int atmel_aes_cfb64_encrypt(struct skcipher_request *req) 1212 { 1213 return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT); 1214 } 1215 1216 static int atmel_aes_cfb64_decrypt(struct skcipher_request *req) 1217 { 1218 return atmel_aes_crypt(req, AES_FLAGS_CFB64); 1219 } 1220 1221 static int atmel_aes_cfb32_encrypt(struct skcipher_request *req) 1222 { 1223 return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT); 1224 } 1225 1226 static int atmel_aes_cfb32_decrypt(struct skcipher_request *req) 1227 { 1228 return atmel_aes_crypt(req, AES_FLAGS_CFB32); 1229 } 1230 1231 static int atmel_aes_cfb16_encrypt(struct skcipher_request *req) 1232 { 1233 return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT); 1234 } 1235 1236 static int atmel_aes_cfb16_decrypt(struct skcipher_request *req) 1237 { 1238 return atmel_aes_crypt(req, AES_FLAGS_CFB16); 1239 } 1240 1241 static int atmel_aes_cfb8_encrypt(struct skcipher_request *req) 1242 { 1243 return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT); 1244 } 1245 1246 static int atmel_aes_cfb8_decrypt(struct skcipher_request *req) 1247 { 1248 return atmel_aes_crypt(req, AES_FLAGS_CFB8); 1249 } 1250 1251 static int atmel_aes_ctr_encrypt(struct skcipher_request *req) 1252 { 1253 return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT); 1254 } 1255 1256 static int atmel_aes_ctr_decrypt(struct skcipher_request *req) 1257 { 1258 return atmel_aes_crypt(req, AES_FLAGS_CTR); 1259 } 1260 1261 static int atmel_aes_init_tfm(struct crypto_skcipher *tfm) 1262 { 1263 struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm); 1264 struct atmel_aes_dev *dd; 1265 1266 dd = atmel_aes_dev_alloc(&ctx->base); 1267 if (!dd) 1268 return -ENODEV; 1269 1270 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx)); 1271 ctx->base.dd = dd; 1272 ctx->base.start = atmel_aes_start; 1273 1274 return 0; 1275 } 1276 1277 static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm) 1278 { 1279 struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm); 1280 struct atmel_aes_dev *dd; 1281 1282 dd = atmel_aes_dev_alloc(&ctx->base); 1283 if (!dd) 1284 return -ENODEV; 1285 1286 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx)); 1287 ctx->base.dd = dd; 1288 ctx->base.start = atmel_aes_ctr_start; 1289 1290 return 0; 1291 } 1292 1293 static struct skcipher_alg aes_algs[] = { 1294 { 1295 .base.cra_name = "ecb(aes)", 1296 .base.cra_driver_name = "atmel-ecb-aes", 1297 .base.cra_blocksize = AES_BLOCK_SIZE, 1298 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx), 1299 1300 .init = atmel_aes_init_tfm, 1301 .min_keysize = AES_MIN_KEY_SIZE, 1302 .max_keysize = AES_MAX_KEY_SIZE, 1303 .setkey = atmel_aes_setkey, 1304 .encrypt = atmel_aes_ecb_encrypt, 1305 .decrypt = atmel_aes_ecb_decrypt, 1306 }, 1307 { 1308 .base.cra_name = "cbc(aes)", 1309 .base.cra_driver_name = "atmel-cbc-aes", 1310 .base.cra_blocksize = AES_BLOCK_SIZE, 1311 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx), 1312 1313 .init = atmel_aes_init_tfm, 1314 .min_keysize = AES_MIN_KEY_SIZE, 1315 .max_keysize = AES_MAX_KEY_SIZE, 1316 .setkey = atmel_aes_setkey, 1317 .encrypt = atmel_aes_cbc_encrypt, 1318 .decrypt = atmel_aes_cbc_decrypt, 1319 .ivsize = AES_BLOCK_SIZE, 1320 }, 1321 { 1322 .base.cra_name = "ofb(aes)", 1323 .base.cra_driver_name = "atmel-ofb-aes", 1324 .base.cra_blocksize = 1, 1325 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx), 1326 1327 .init = atmel_aes_init_tfm, 1328 .min_keysize = AES_MIN_KEY_SIZE, 1329 .max_keysize = AES_MAX_KEY_SIZE, 1330 .setkey = atmel_aes_setkey, 1331 .encrypt = atmel_aes_ofb_encrypt, 1332 .decrypt = atmel_aes_ofb_decrypt, 1333 .ivsize = AES_BLOCK_SIZE, 1334 }, 1335 { 1336 .base.cra_name = "cfb(aes)", 1337 .base.cra_driver_name = "atmel-cfb-aes", 1338 .base.cra_blocksize = 1, 1339 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx), 1340 1341 .init = atmel_aes_init_tfm, 1342 .min_keysize = AES_MIN_KEY_SIZE, 1343 .max_keysize = AES_MAX_KEY_SIZE, 1344 .setkey = atmel_aes_setkey, 1345 .encrypt = atmel_aes_cfb_encrypt, 1346 .decrypt = atmel_aes_cfb_decrypt, 1347 .ivsize = AES_BLOCK_SIZE, 1348 }, 1349 { 1350 .base.cra_name = "cfb32(aes)", 1351 .base.cra_driver_name = "atmel-cfb32-aes", 1352 .base.cra_blocksize = CFB32_BLOCK_SIZE, 1353 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx), 1354 1355 .init = atmel_aes_init_tfm, 1356 .min_keysize = AES_MIN_KEY_SIZE, 1357 .max_keysize = AES_MAX_KEY_SIZE, 1358 .setkey = atmel_aes_setkey, 1359 .encrypt = atmel_aes_cfb32_encrypt, 1360 .decrypt = atmel_aes_cfb32_decrypt, 1361 .ivsize = AES_BLOCK_SIZE, 1362 }, 1363 { 1364 .base.cra_name = "cfb16(aes)", 1365 .base.cra_driver_name = "atmel-cfb16-aes", 1366 .base.cra_blocksize = CFB16_BLOCK_SIZE, 1367 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx), 1368 1369 .init = atmel_aes_init_tfm, 1370 .min_keysize = AES_MIN_KEY_SIZE, 1371 .max_keysize = AES_MAX_KEY_SIZE, 1372 .setkey = atmel_aes_setkey, 1373 .encrypt = atmel_aes_cfb16_encrypt, 1374 .decrypt = atmel_aes_cfb16_decrypt, 1375 .ivsize = AES_BLOCK_SIZE, 1376 }, 1377 { 1378 .base.cra_name = "cfb8(aes)", 1379 .base.cra_driver_name = "atmel-cfb8-aes", 1380 .base.cra_blocksize = CFB8_BLOCK_SIZE, 1381 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx), 1382 1383 .init = atmel_aes_init_tfm, 1384 .min_keysize = AES_MIN_KEY_SIZE, 1385 .max_keysize = AES_MAX_KEY_SIZE, 1386 .setkey = atmel_aes_setkey, 1387 .encrypt = atmel_aes_cfb8_encrypt, 1388 .decrypt = atmel_aes_cfb8_decrypt, 1389 .ivsize = AES_BLOCK_SIZE, 1390 }, 1391 { 1392 .base.cra_name = "ctr(aes)", 1393 .base.cra_driver_name = "atmel-ctr-aes", 1394 .base.cra_blocksize = 1, 1395 .base.cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx), 1396 1397 .init = atmel_aes_ctr_init_tfm, 1398 .min_keysize = AES_MIN_KEY_SIZE, 1399 .max_keysize = AES_MAX_KEY_SIZE, 1400 .setkey = atmel_aes_setkey, 1401 .encrypt = atmel_aes_ctr_encrypt, 1402 .decrypt = atmel_aes_ctr_decrypt, 1403 .ivsize = AES_BLOCK_SIZE, 1404 }, 1405 }; 1406 1407 static struct skcipher_alg aes_cfb64_alg = { 1408 .base.cra_name = "cfb64(aes)", 1409 .base.cra_driver_name = "atmel-cfb64-aes", 1410 .base.cra_blocksize = CFB64_BLOCK_SIZE, 1411 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx), 1412 1413 .init = atmel_aes_init_tfm, 1414 .min_keysize = AES_MIN_KEY_SIZE, 1415 .max_keysize = AES_MAX_KEY_SIZE, 1416 .setkey = atmel_aes_setkey, 1417 .encrypt = atmel_aes_cfb64_encrypt, 1418 .decrypt = atmel_aes_cfb64_decrypt, 1419 .ivsize = AES_BLOCK_SIZE, 1420 }; 1421 1422 1423 /* gcm aead functions */ 1424 1425 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd, 1426 const u32 *data, size_t datalen, 1427 const __be32 *ghash_in, __be32 *ghash_out, 1428 atmel_aes_fn_t resume); 1429 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd); 1430 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd); 1431 1432 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd); 1433 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd); 1434 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd); 1435 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd); 1436 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd); 1437 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd); 1438 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd); 1439 1440 static inline struct atmel_aes_gcm_ctx * 1441 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx) 1442 { 1443 return container_of(ctx, struct atmel_aes_gcm_ctx, base); 1444 } 1445 1446 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd, 1447 const u32 *data, size_t datalen, 1448 const __be32 *ghash_in, __be32 *ghash_out, 1449 atmel_aes_fn_t resume) 1450 { 1451 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1452 1453 dd->data = (u32 *)data; 1454 dd->datalen = datalen; 1455 ctx->ghash_in = ghash_in; 1456 ctx->ghash_out = ghash_out; 1457 ctx->ghash_resume = resume; 1458 1459 atmel_aes_write_ctrl(dd, false, NULL); 1460 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init); 1461 } 1462 1463 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd) 1464 { 1465 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1466 1467 /* Set the data length. */ 1468 atmel_aes_write(dd, AES_AADLENR, dd->total); 1469 atmel_aes_write(dd, AES_CLENR, 0); 1470 1471 /* If needed, overwrite the GCM Intermediate Hash Word Registers */ 1472 if (ctx->ghash_in) 1473 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in); 1474 1475 return atmel_aes_gcm_ghash_finalize(dd); 1476 } 1477 1478 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd) 1479 { 1480 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1481 u32 isr; 1482 1483 /* Write data into the Input Data Registers. */ 1484 while (dd->datalen > 0) { 1485 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data); 1486 dd->data += 4; 1487 dd->datalen -= AES_BLOCK_SIZE; 1488 1489 isr = atmel_aes_read(dd, AES_ISR); 1490 if (!(isr & AES_INT_DATARDY)) { 1491 dd->resume = atmel_aes_gcm_ghash_finalize; 1492 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY); 1493 return -EINPROGRESS; 1494 } 1495 } 1496 1497 /* Read the computed hash from GHASHRx. */ 1498 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out); 1499 1500 return ctx->ghash_resume(dd); 1501 } 1502 1503 1504 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd) 1505 { 1506 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1507 struct aead_request *req = aead_request_cast(dd->areq); 1508 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 1509 struct atmel_aes_reqctx *rctx = aead_request_ctx(req); 1510 size_t ivsize = crypto_aead_ivsize(tfm); 1511 size_t datalen, padlen; 1512 const void *iv = req->iv; 1513 u8 *data = dd->buf; 1514 int err; 1515 1516 atmel_aes_set_mode(dd, rctx); 1517 1518 err = atmel_aes_hw_init(dd); 1519 if (err) 1520 return atmel_aes_complete(dd, err); 1521 1522 if (likely(ivsize == GCM_AES_IV_SIZE)) { 1523 memcpy(ctx->j0, iv, ivsize); 1524 ctx->j0[3] = cpu_to_be32(1); 1525 return atmel_aes_gcm_process(dd); 1526 } 1527 1528 padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE); 1529 datalen = ivsize + padlen + AES_BLOCK_SIZE; 1530 if (datalen > dd->buflen) 1531 return atmel_aes_complete(dd, -EINVAL); 1532 1533 memcpy(data, iv, ivsize); 1534 memset(data + ivsize, 0, padlen + sizeof(u64)); 1535 ((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8); 1536 1537 return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen, 1538 NULL, ctx->j0, atmel_aes_gcm_process); 1539 } 1540 1541 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd) 1542 { 1543 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1544 struct aead_request *req = aead_request_cast(dd->areq); 1545 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 1546 bool enc = atmel_aes_is_encrypt(dd); 1547 u32 authsize; 1548 1549 /* Compute text length. */ 1550 authsize = crypto_aead_authsize(tfm); 1551 ctx->textlen = req->cryptlen - (enc ? 0 : authsize); 1552 1553 /* 1554 * According to tcrypt test suite, the GCM Automatic Tag Generation 1555 * fails when both the message and its associated data are empty. 1556 */ 1557 if (likely(req->assoclen != 0 || ctx->textlen != 0)) 1558 dd->flags |= AES_FLAGS_GTAGEN; 1559 1560 atmel_aes_write_ctrl(dd, false, NULL); 1561 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length); 1562 } 1563 1564 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd) 1565 { 1566 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1567 struct aead_request *req = aead_request_cast(dd->areq); 1568 __be32 j0_lsw, *j0 = ctx->j0; 1569 size_t padlen; 1570 1571 /* Write incr32(J0) into IV. */ 1572 j0_lsw = j0[3]; 1573 be32_add_cpu(&j0[3], 1); 1574 atmel_aes_write_block(dd, AES_IVR(0), j0); 1575 j0[3] = j0_lsw; 1576 1577 /* Set aad and text lengths. */ 1578 atmel_aes_write(dd, AES_AADLENR, req->assoclen); 1579 atmel_aes_write(dd, AES_CLENR, ctx->textlen); 1580 1581 /* Check whether AAD are present. */ 1582 if (unlikely(req->assoclen == 0)) { 1583 dd->datalen = 0; 1584 return atmel_aes_gcm_data(dd); 1585 } 1586 1587 /* Copy assoc data and add padding. */ 1588 padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE); 1589 if (unlikely(req->assoclen + padlen > dd->buflen)) 1590 return atmel_aes_complete(dd, -EINVAL); 1591 sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen); 1592 1593 /* Write assoc data into the Input Data register. */ 1594 dd->data = (u32 *)dd->buf; 1595 dd->datalen = req->assoclen + padlen; 1596 return atmel_aes_gcm_data(dd); 1597 } 1598 1599 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd) 1600 { 1601 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1602 struct aead_request *req = aead_request_cast(dd->areq); 1603 bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD); 1604 struct scatterlist *src, *dst; 1605 u32 isr, mr; 1606 1607 /* Write AAD first. */ 1608 while (dd->datalen > 0) { 1609 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data); 1610 dd->data += 4; 1611 dd->datalen -= AES_BLOCK_SIZE; 1612 1613 isr = atmel_aes_read(dd, AES_ISR); 1614 if (!(isr & AES_INT_DATARDY)) { 1615 dd->resume = atmel_aes_gcm_data; 1616 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY); 1617 return -EINPROGRESS; 1618 } 1619 } 1620 1621 /* GMAC only. */ 1622 if (unlikely(ctx->textlen == 0)) 1623 return atmel_aes_gcm_tag_init(dd); 1624 1625 /* Prepare src and dst scatter lists to transfer cipher/plain texts */ 1626 src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen); 1627 dst = ((req->src == req->dst) ? src : 1628 scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen)); 1629 1630 if (use_dma) { 1631 /* Update the Mode Register for DMA transfers. */ 1632 mr = atmel_aes_read(dd, AES_MR); 1633 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF); 1634 mr |= AES_MR_SMOD_IDATAR0; 1635 if (dd->caps.has_dualbuff) 1636 mr |= AES_MR_DUALBUFF; 1637 atmel_aes_write(dd, AES_MR, mr); 1638 1639 return atmel_aes_dma_start(dd, src, dst, ctx->textlen, 1640 atmel_aes_gcm_tag_init); 1641 } 1642 1643 return atmel_aes_cpu_start(dd, src, dst, ctx->textlen, 1644 atmel_aes_gcm_tag_init); 1645 } 1646 1647 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd) 1648 { 1649 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1650 struct aead_request *req = aead_request_cast(dd->areq); 1651 __be64 *data = dd->buf; 1652 1653 if (likely(dd->flags & AES_FLAGS_GTAGEN)) { 1654 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) { 1655 dd->resume = atmel_aes_gcm_tag_init; 1656 atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY); 1657 return -EINPROGRESS; 1658 } 1659 1660 return atmel_aes_gcm_finalize(dd); 1661 } 1662 1663 /* Read the GCM Intermediate Hash Word Registers. */ 1664 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash); 1665 1666 data[0] = cpu_to_be64(req->assoclen * 8); 1667 data[1] = cpu_to_be64(ctx->textlen * 8); 1668 1669 return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE, 1670 ctx->ghash, ctx->ghash, atmel_aes_gcm_tag); 1671 } 1672 1673 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd) 1674 { 1675 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1676 unsigned long flags; 1677 1678 /* 1679 * Change mode to CTR to complete the tag generation. 1680 * Use J0 as Initialization Vector. 1681 */ 1682 flags = dd->flags; 1683 dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN); 1684 dd->flags |= AES_FLAGS_CTR; 1685 atmel_aes_write_ctrl(dd, false, ctx->j0); 1686 dd->flags = flags; 1687 1688 atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash); 1689 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize); 1690 } 1691 1692 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd) 1693 { 1694 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1695 struct aead_request *req = aead_request_cast(dd->areq); 1696 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 1697 bool enc = atmel_aes_is_encrypt(dd); 1698 u32 offset, authsize, itag[4], *otag = ctx->tag; 1699 int err; 1700 1701 /* Read the computed tag. */ 1702 if (likely(dd->flags & AES_FLAGS_GTAGEN)) 1703 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag); 1704 else 1705 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag); 1706 1707 offset = req->assoclen + ctx->textlen; 1708 authsize = crypto_aead_authsize(tfm); 1709 if (enc) { 1710 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1); 1711 err = 0; 1712 } else { 1713 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0); 1714 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0; 1715 } 1716 1717 return atmel_aes_complete(dd, err); 1718 } 1719 1720 static int atmel_aes_gcm_crypt(struct aead_request *req, 1721 unsigned long mode) 1722 { 1723 struct atmel_aes_base_ctx *ctx; 1724 struct atmel_aes_reqctx *rctx; 1725 1726 ctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); 1727 ctx->block_size = AES_BLOCK_SIZE; 1728 ctx->is_aead = true; 1729 1730 rctx = aead_request_ctx(req); 1731 rctx->mode = AES_FLAGS_GCM | mode; 1732 1733 return atmel_aes_handle_queue(ctx->dd, &req->base); 1734 } 1735 1736 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key, 1737 unsigned int keylen) 1738 { 1739 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm); 1740 1741 if (keylen != AES_KEYSIZE_256 && 1742 keylen != AES_KEYSIZE_192 && 1743 keylen != AES_KEYSIZE_128) 1744 return -EINVAL; 1745 1746 memcpy(ctx->key, key, keylen); 1747 ctx->keylen = keylen; 1748 1749 return 0; 1750 } 1751 1752 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm, 1753 unsigned int authsize) 1754 { 1755 return crypto_gcm_check_authsize(authsize); 1756 } 1757 1758 static int atmel_aes_gcm_encrypt(struct aead_request *req) 1759 { 1760 return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT); 1761 } 1762 1763 static int atmel_aes_gcm_decrypt(struct aead_request *req) 1764 { 1765 return atmel_aes_gcm_crypt(req, 0); 1766 } 1767 1768 static int atmel_aes_gcm_init(struct crypto_aead *tfm) 1769 { 1770 struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm); 1771 struct atmel_aes_dev *dd; 1772 1773 dd = atmel_aes_dev_alloc(&ctx->base); 1774 if (!dd) 1775 return -ENODEV; 1776 1777 crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx)); 1778 ctx->base.dd = dd; 1779 ctx->base.start = atmel_aes_gcm_start; 1780 1781 return 0; 1782 } 1783 1784 static struct aead_alg aes_gcm_alg = { 1785 .setkey = atmel_aes_gcm_setkey, 1786 .setauthsize = atmel_aes_gcm_setauthsize, 1787 .encrypt = atmel_aes_gcm_encrypt, 1788 .decrypt = atmel_aes_gcm_decrypt, 1789 .init = atmel_aes_gcm_init, 1790 .ivsize = GCM_AES_IV_SIZE, 1791 .maxauthsize = AES_BLOCK_SIZE, 1792 1793 .base = { 1794 .cra_name = "gcm(aes)", 1795 .cra_driver_name = "atmel-gcm-aes", 1796 .cra_blocksize = 1, 1797 .cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx), 1798 }, 1799 }; 1800 1801 1802 /* xts functions */ 1803 1804 static inline struct atmel_aes_xts_ctx * 1805 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx) 1806 { 1807 return container_of(ctx, struct atmel_aes_xts_ctx, base); 1808 } 1809 1810 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd); 1811 1812 static int atmel_aes_xts_start(struct atmel_aes_dev *dd) 1813 { 1814 struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx); 1815 struct skcipher_request *req = skcipher_request_cast(dd->areq); 1816 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req); 1817 unsigned long flags; 1818 int err; 1819 1820 atmel_aes_set_mode(dd, rctx); 1821 1822 err = atmel_aes_hw_init(dd); 1823 if (err) 1824 return atmel_aes_complete(dd, err); 1825 1826 /* Compute the tweak value from req->iv with ecb(aes). */ 1827 flags = dd->flags; 1828 dd->flags &= ~AES_FLAGS_MODE_MASK; 1829 dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT); 1830 atmel_aes_write_ctrl_key(dd, false, NULL, 1831 ctx->key2, ctx->base.keylen); 1832 dd->flags = flags; 1833 1834 atmel_aes_write_block(dd, AES_IDATAR(0), req->iv); 1835 return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data); 1836 } 1837 1838 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd) 1839 { 1840 struct skcipher_request *req = skcipher_request_cast(dd->areq); 1841 bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD); 1842 u32 tweak[AES_BLOCK_SIZE / sizeof(u32)]; 1843 static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), }; 1844 u8 *tweak_bytes = (u8 *)tweak; 1845 int i; 1846 1847 /* Read the computed ciphered tweak value. */ 1848 atmel_aes_read_block(dd, AES_ODATAR(0), tweak); 1849 /* 1850 * Hardware quirk: 1851 * the order of the ciphered tweak bytes need to be reversed before 1852 * writing them into the ODATARx registers. 1853 */ 1854 for (i = 0; i < AES_BLOCK_SIZE/2; ++i) 1855 swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]); 1856 1857 /* Process the data. */ 1858 atmel_aes_write_ctrl(dd, use_dma, NULL); 1859 atmel_aes_write_block(dd, AES_TWR(0), tweak); 1860 atmel_aes_write_block(dd, AES_ALPHAR(0), one); 1861 if (use_dma) 1862 return atmel_aes_dma_start(dd, req->src, req->dst, 1863 req->cryptlen, 1864 atmel_aes_transfer_complete); 1865 1866 return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen, 1867 atmel_aes_transfer_complete); 1868 } 1869 1870 static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key, 1871 unsigned int keylen) 1872 { 1873 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); 1874 int err; 1875 1876 err = xts_verify_key(tfm, key, keylen); 1877 if (err) 1878 return err; 1879 1880 crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK); 1881 crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags & 1882 CRYPTO_TFM_REQ_MASK); 1883 err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen); 1884 if (err) 1885 return err; 1886 1887 memcpy(ctx->base.key, key, keylen/2); 1888 memcpy(ctx->key2, key + keylen/2, keylen/2); 1889 ctx->base.keylen = keylen/2; 1890 1891 return 0; 1892 } 1893 1894 static int atmel_aes_xts_encrypt(struct skcipher_request *req) 1895 { 1896 return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT); 1897 } 1898 1899 static int atmel_aes_xts_decrypt(struct skcipher_request *req) 1900 { 1901 return atmel_aes_crypt(req, AES_FLAGS_XTS); 1902 } 1903 1904 static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm) 1905 { 1906 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); 1907 struct atmel_aes_dev *dd; 1908 const char *tfm_name = crypto_tfm_alg_name(&tfm->base); 1909 1910 dd = atmel_aes_dev_alloc(&ctx->base); 1911 if (!dd) 1912 return -ENODEV; 1913 1914 ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0, 1915 CRYPTO_ALG_NEED_FALLBACK); 1916 if (IS_ERR(ctx->fallback_tfm)) 1917 return PTR_ERR(ctx->fallback_tfm); 1918 1919 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) + 1920 crypto_skcipher_reqsize(ctx->fallback_tfm)); 1921 ctx->base.dd = dd; 1922 ctx->base.start = atmel_aes_xts_start; 1923 1924 return 0; 1925 } 1926 1927 static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm) 1928 { 1929 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); 1930 1931 crypto_free_skcipher(ctx->fallback_tfm); 1932 } 1933 1934 static struct skcipher_alg aes_xts_alg = { 1935 .base.cra_name = "xts(aes)", 1936 .base.cra_driver_name = "atmel-xts-aes", 1937 .base.cra_blocksize = AES_BLOCK_SIZE, 1938 .base.cra_ctxsize = sizeof(struct atmel_aes_xts_ctx), 1939 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK, 1940 1941 .min_keysize = 2 * AES_MIN_KEY_SIZE, 1942 .max_keysize = 2 * AES_MAX_KEY_SIZE, 1943 .ivsize = AES_BLOCK_SIZE, 1944 .setkey = atmel_aes_xts_setkey, 1945 .encrypt = atmel_aes_xts_encrypt, 1946 .decrypt = atmel_aes_xts_decrypt, 1947 .init = atmel_aes_xts_init_tfm, 1948 .exit = atmel_aes_xts_exit_tfm, 1949 }; 1950 1951 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) 1952 /* authenc aead functions */ 1953 1954 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd); 1955 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err, 1956 bool is_async); 1957 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err, 1958 bool is_async); 1959 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd); 1960 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err, 1961 bool is_async); 1962 1963 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err) 1964 { 1965 struct aead_request *req = aead_request_cast(dd->areq); 1966 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req); 1967 1968 if (err && (dd->flags & AES_FLAGS_OWN_SHA)) 1969 atmel_sha_authenc_abort(&rctx->auth_req); 1970 dd->flags &= ~AES_FLAGS_OWN_SHA; 1971 } 1972 1973 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd) 1974 { 1975 struct aead_request *req = aead_request_cast(dd->areq); 1976 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req); 1977 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 1978 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm); 1979 int err; 1980 1981 atmel_aes_set_mode(dd, &rctx->base); 1982 1983 err = atmel_aes_hw_init(dd); 1984 if (err) 1985 return atmel_aes_complete(dd, err); 1986 1987 return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth, 1988 atmel_aes_authenc_init, dd); 1989 } 1990 1991 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err, 1992 bool is_async) 1993 { 1994 struct aead_request *req = aead_request_cast(dd->areq); 1995 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req); 1996 1997 if (is_async) 1998 dd->is_async = true; 1999 if (err) 2000 return atmel_aes_complete(dd, err); 2001 2002 /* If here, we've got the ownership of the SHA device. */ 2003 dd->flags |= AES_FLAGS_OWN_SHA; 2004 2005 /* Configure the SHA device. */ 2006 return atmel_sha_authenc_init(&rctx->auth_req, 2007 req->src, req->assoclen, 2008 rctx->textlen, 2009 atmel_aes_authenc_transfer, dd); 2010 } 2011 2012 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err, 2013 bool is_async) 2014 { 2015 struct aead_request *req = aead_request_cast(dd->areq); 2016 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req); 2017 bool enc = atmel_aes_is_encrypt(dd); 2018 struct scatterlist *src, *dst; 2019 __be32 iv[AES_BLOCK_SIZE / sizeof(u32)]; 2020 u32 emr; 2021 2022 if (is_async) 2023 dd->is_async = true; 2024 if (err) 2025 return atmel_aes_complete(dd, err); 2026 2027 /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */ 2028 src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen); 2029 dst = src; 2030 2031 if (req->src != req->dst) 2032 dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen); 2033 2034 /* Configure the AES device. */ 2035 memcpy(iv, req->iv, sizeof(iv)); 2036 2037 /* 2038 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to 2039 * 'true' even if the data transfer is actually performed by the CPU (so 2040 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the 2041 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD 2042 * must be set to *_MR_SMOD_IDATAR0. 2043 */ 2044 atmel_aes_write_ctrl(dd, true, iv); 2045 emr = AES_EMR_PLIPEN; 2046 if (!enc) 2047 emr |= AES_EMR_PLIPD; 2048 atmel_aes_write(dd, AES_EMR, emr); 2049 2050 /* Transfer data. */ 2051 return atmel_aes_dma_start(dd, src, dst, rctx->textlen, 2052 atmel_aes_authenc_digest); 2053 } 2054 2055 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd) 2056 { 2057 struct aead_request *req = aead_request_cast(dd->areq); 2058 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req); 2059 2060 /* atmel_sha_authenc_final() releases the SHA device. */ 2061 dd->flags &= ~AES_FLAGS_OWN_SHA; 2062 return atmel_sha_authenc_final(&rctx->auth_req, 2063 rctx->digest, sizeof(rctx->digest), 2064 atmel_aes_authenc_final, dd); 2065 } 2066 2067 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err, 2068 bool is_async) 2069 { 2070 struct aead_request *req = aead_request_cast(dd->areq); 2071 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req); 2072 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2073 bool enc = atmel_aes_is_encrypt(dd); 2074 u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest; 2075 u32 offs, authsize; 2076 2077 if (is_async) 2078 dd->is_async = true; 2079 if (err) 2080 goto complete; 2081 2082 offs = req->assoclen + rctx->textlen; 2083 authsize = crypto_aead_authsize(tfm); 2084 if (enc) { 2085 scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1); 2086 } else { 2087 scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0); 2088 if (crypto_memneq(idigest, odigest, authsize)) 2089 err = -EBADMSG; 2090 } 2091 2092 complete: 2093 return atmel_aes_complete(dd, err); 2094 } 2095 2096 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key, 2097 unsigned int keylen) 2098 { 2099 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm); 2100 struct crypto_authenc_keys keys; 2101 int err; 2102 2103 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0) 2104 goto badkey; 2105 2106 if (keys.enckeylen > sizeof(ctx->base.key)) 2107 goto badkey; 2108 2109 /* Save auth key. */ 2110 err = atmel_sha_authenc_setkey(ctx->auth, 2111 keys.authkey, keys.authkeylen, 2112 crypto_aead_get_flags(tfm)); 2113 if (err) { 2114 memzero_explicit(&keys, sizeof(keys)); 2115 return err; 2116 } 2117 2118 /* Save enc key. */ 2119 ctx->base.keylen = keys.enckeylen; 2120 memcpy(ctx->base.key, keys.enckey, keys.enckeylen); 2121 2122 memzero_explicit(&keys, sizeof(keys)); 2123 return 0; 2124 2125 badkey: 2126 memzero_explicit(&keys, sizeof(keys)); 2127 return -EINVAL; 2128 } 2129 2130 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm, 2131 unsigned long auth_mode) 2132 { 2133 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm); 2134 unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize(); 2135 struct atmel_aes_dev *dd; 2136 2137 dd = atmel_aes_dev_alloc(&ctx->base); 2138 if (!dd) 2139 return -ENODEV; 2140 2141 ctx->auth = atmel_sha_authenc_spawn(auth_mode); 2142 if (IS_ERR(ctx->auth)) 2143 return PTR_ERR(ctx->auth); 2144 2145 crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) + 2146 auth_reqsize)); 2147 ctx->base.dd = dd; 2148 ctx->base.start = atmel_aes_authenc_start; 2149 2150 return 0; 2151 } 2152 2153 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm) 2154 { 2155 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1); 2156 } 2157 2158 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm) 2159 { 2160 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224); 2161 } 2162 2163 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm) 2164 { 2165 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256); 2166 } 2167 2168 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm) 2169 { 2170 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384); 2171 } 2172 2173 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm) 2174 { 2175 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512); 2176 } 2177 2178 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm) 2179 { 2180 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm); 2181 2182 atmel_sha_authenc_free(ctx->auth); 2183 } 2184 2185 static int atmel_aes_authenc_crypt(struct aead_request *req, 2186 unsigned long mode) 2187 { 2188 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req); 2189 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2190 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm); 2191 u32 authsize = crypto_aead_authsize(tfm); 2192 bool enc = (mode & AES_FLAGS_ENCRYPT); 2193 2194 /* Compute text length. */ 2195 if (!enc && req->cryptlen < authsize) 2196 return -EINVAL; 2197 rctx->textlen = req->cryptlen - (enc ? 0 : authsize); 2198 2199 /* 2200 * Currently, empty messages are not supported yet: 2201 * the SHA auto-padding can be used only on non-empty messages. 2202 * Hence a special case needs to be implemented for empty message. 2203 */ 2204 if (!rctx->textlen && !req->assoclen) 2205 return -EINVAL; 2206 2207 rctx->base.mode = mode; 2208 ctx->block_size = AES_BLOCK_SIZE; 2209 ctx->is_aead = true; 2210 2211 return atmel_aes_handle_queue(ctx->dd, &req->base); 2212 } 2213 2214 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req) 2215 { 2216 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT); 2217 } 2218 2219 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req) 2220 { 2221 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC); 2222 } 2223 2224 static struct aead_alg aes_authenc_algs[] = { 2225 { 2226 .setkey = atmel_aes_authenc_setkey, 2227 .encrypt = atmel_aes_authenc_cbc_aes_encrypt, 2228 .decrypt = atmel_aes_authenc_cbc_aes_decrypt, 2229 .init = atmel_aes_authenc_hmac_sha1_init_tfm, 2230 .exit = atmel_aes_authenc_exit_tfm, 2231 .ivsize = AES_BLOCK_SIZE, 2232 .maxauthsize = SHA1_DIGEST_SIZE, 2233 2234 .base = { 2235 .cra_name = "authenc(hmac(sha1),cbc(aes))", 2236 .cra_driver_name = "atmel-authenc-hmac-sha1-cbc-aes", 2237 .cra_blocksize = AES_BLOCK_SIZE, 2238 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx), 2239 }, 2240 }, 2241 { 2242 .setkey = atmel_aes_authenc_setkey, 2243 .encrypt = atmel_aes_authenc_cbc_aes_encrypt, 2244 .decrypt = atmel_aes_authenc_cbc_aes_decrypt, 2245 .init = atmel_aes_authenc_hmac_sha224_init_tfm, 2246 .exit = atmel_aes_authenc_exit_tfm, 2247 .ivsize = AES_BLOCK_SIZE, 2248 .maxauthsize = SHA224_DIGEST_SIZE, 2249 2250 .base = { 2251 .cra_name = "authenc(hmac(sha224),cbc(aes))", 2252 .cra_driver_name = "atmel-authenc-hmac-sha224-cbc-aes", 2253 .cra_blocksize = AES_BLOCK_SIZE, 2254 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx), 2255 }, 2256 }, 2257 { 2258 .setkey = atmel_aes_authenc_setkey, 2259 .encrypt = atmel_aes_authenc_cbc_aes_encrypt, 2260 .decrypt = atmel_aes_authenc_cbc_aes_decrypt, 2261 .init = atmel_aes_authenc_hmac_sha256_init_tfm, 2262 .exit = atmel_aes_authenc_exit_tfm, 2263 .ivsize = AES_BLOCK_SIZE, 2264 .maxauthsize = SHA256_DIGEST_SIZE, 2265 2266 .base = { 2267 .cra_name = "authenc(hmac(sha256),cbc(aes))", 2268 .cra_driver_name = "atmel-authenc-hmac-sha256-cbc-aes", 2269 .cra_blocksize = AES_BLOCK_SIZE, 2270 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx), 2271 }, 2272 }, 2273 { 2274 .setkey = atmel_aes_authenc_setkey, 2275 .encrypt = atmel_aes_authenc_cbc_aes_encrypt, 2276 .decrypt = atmel_aes_authenc_cbc_aes_decrypt, 2277 .init = atmel_aes_authenc_hmac_sha384_init_tfm, 2278 .exit = atmel_aes_authenc_exit_tfm, 2279 .ivsize = AES_BLOCK_SIZE, 2280 .maxauthsize = SHA384_DIGEST_SIZE, 2281 2282 .base = { 2283 .cra_name = "authenc(hmac(sha384),cbc(aes))", 2284 .cra_driver_name = "atmel-authenc-hmac-sha384-cbc-aes", 2285 .cra_blocksize = AES_BLOCK_SIZE, 2286 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx), 2287 }, 2288 }, 2289 { 2290 .setkey = atmel_aes_authenc_setkey, 2291 .encrypt = atmel_aes_authenc_cbc_aes_encrypt, 2292 .decrypt = atmel_aes_authenc_cbc_aes_decrypt, 2293 .init = atmel_aes_authenc_hmac_sha512_init_tfm, 2294 .exit = atmel_aes_authenc_exit_tfm, 2295 .ivsize = AES_BLOCK_SIZE, 2296 .maxauthsize = SHA512_DIGEST_SIZE, 2297 2298 .base = { 2299 .cra_name = "authenc(hmac(sha512),cbc(aes))", 2300 .cra_driver_name = "atmel-authenc-hmac-sha512-cbc-aes", 2301 .cra_blocksize = AES_BLOCK_SIZE, 2302 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx), 2303 }, 2304 }, 2305 }; 2306 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */ 2307 2308 /* Probe functions */ 2309 2310 static int atmel_aes_buff_init(struct atmel_aes_dev *dd) 2311 { 2312 dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER); 2313 dd->buflen = ATMEL_AES_BUFFER_SIZE; 2314 dd->buflen &= ~(AES_BLOCK_SIZE - 1); 2315 2316 if (!dd->buf) { 2317 dev_err(dd->dev, "unable to alloc pages.\n"); 2318 return -ENOMEM; 2319 } 2320 2321 return 0; 2322 } 2323 2324 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd) 2325 { 2326 free_page((unsigned long)dd->buf); 2327 } 2328 2329 static int atmel_aes_dma_init(struct atmel_aes_dev *dd) 2330 { 2331 int ret; 2332 2333 /* Try to grab 2 DMA channels */ 2334 dd->src.chan = dma_request_chan(dd->dev, "tx"); 2335 if (IS_ERR(dd->src.chan)) { 2336 ret = PTR_ERR(dd->src.chan); 2337 goto err_dma_in; 2338 } 2339 2340 dd->dst.chan = dma_request_chan(dd->dev, "rx"); 2341 if (IS_ERR(dd->dst.chan)) { 2342 ret = PTR_ERR(dd->dst.chan); 2343 goto err_dma_out; 2344 } 2345 2346 return 0; 2347 2348 err_dma_out: 2349 dma_release_channel(dd->src.chan); 2350 err_dma_in: 2351 dev_err(dd->dev, "no DMA channel available\n"); 2352 return ret; 2353 } 2354 2355 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd) 2356 { 2357 dma_release_channel(dd->dst.chan); 2358 dma_release_channel(dd->src.chan); 2359 } 2360 2361 static void atmel_aes_queue_task(unsigned long data) 2362 { 2363 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data; 2364 2365 atmel_aes_handle_queue(dd, NULL); 2366 } 2367 2368 static void atmel_aes_done_task(unsigned long data) 2369 { 2370 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data; 2371 2372 dd->is_async = true; 2373 (void)dd->resume(dd); 2374 } 2375 2376 static irqreturn_t atmel_aes_irq(int irq, void *dev_id) 2377 { 2378 struct atmel_aes_dev *aes_dd = dev_id; 2379 u32 reg; 2380 2381 reg = atmel_aes_read(aes_dd, AES_ISR); 2382 if (reg & atmel_aes_read(aes_dd, AES_IMR)) { 2383 atmel_aes_write(aes_dd, AES_IDR, reg); 2384 if (AES_FLAGS_BUSY & aes_dd->flags) 2385 tasklet_schedule(&aes_dd->done_task); 2386 else 2387 dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n"); 2388 return IRQ_HANDLED; 2389 } 2390 2391 return IRQ_NONE; 2392 } 2393 2394 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd) 2395 { 2396 int i; 2397 2398 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) 2399 if (dd->caps.has_authenc) 2400 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) 2401 crypto_unregister_aead(&aes_authenc_algs[i]); 2402 #endif 2403 2404 if (dd->caps.has_xts) 2405 crypto_unregister_skcipher(&aes_xts_alg); 2406 2407 if (dd->caps.has_gcm) 2408 crypto_unregister_aead(&aes_gcm_alg); 2409 2410 if (dd->caps.has_cfb64) 2411 crypto_unregister_skcipher(&aes_cfb64_alg); 2412 2413 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) 2414 crypto_unregister_skcipher(&aes_algs[i]); 2415 } 2416 2417 static void atmel_aes_crypto_alg_init(struct crypto_alg *alg) 2418 { 2419 alg->cra_flags |= CRYPTO_ALG_ASYNC; 2420 alg->cra_alignmask = 0xf; 2421 alg->cra_priority = ATMEL_AES_PRIORITY; 2422 alg->cra_module = THIS_MODULE; 2423 } 2424 2425 static int atmel_aes_register_algs(struct atmel_aes_dev *dd) 2426 { 2427 int err, i, j; 2428 2429 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) { 2430 atmel_aes_crypto_alg_init(&aes_algs[i].base); 2431 2432 err = crypto_register_skcipher(&aes_algs[i]); 2433 if (err) 2434 goto err_aes_algs; 2435 } 2436 2437 if (dd->caps.has_cfb64) { 2438 atmel_aes_crypto_alg_init(&aes_cfb64_alg.base); 2439 2440 err = crypto_register_skcipher(&aes_cfb64_alg); 2441 if (err) 2442 goto err_aes_cfb64_alg; 2443 } 2444 2445 if (dd->caps.has_gcm) { 2446 atmel_aes_crypto_alg_init(&aes_gcm_alg.base); 2447 2448 err = crypto_register_aead(&aes_gcm_alg); 2449 if (err) 2450 goto err_aes_gcm_alg; 2451 } 2452 2453 if (dd->caps.has_xts) { 2454 atmel_aes_crypto_alg_init(&aes_xts_alg.base); 2455 2456 err = crypto_register_skcipher(&aes_xts_alg); 2457 if (err) 2458 goto err_aes_xts_alg; 2459 } 2460 2461 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) 2462 if (dd->caps.has_authenc) { 2463 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) { 2464 atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base); 2465 2466 err = crypto_register_aead(&aes_authenc_algs[i]); 2467 if (err) 2468 goto err_aes_authenc_alg; 2469 } 2470 } 2471 #endif 2472 2473 return 0; 2474 2475 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) 2476 /* i = ARRAY_SIZE(aes_authenc_algs); */ 2477 err_aes_authenc_alg: 2478 for (j = 0; j < i; j++) 2479 crypto_unregister_aead(&aes_authenc_algs[j]); 2480 crypto_unregister_skcipher(&aes_xts_alg); 2481 #endif 2482 err_aes_xts_alg: 2483 crypto_unregister_aead(&aes_gcm_alg); 2484 err_aes_gcm_alg: 2485 crypto_unregister_skcipher(&aes_cfb64_alg); 2486 err_aes_cfb64_alg: 2487 i = ARRAY_SIZE(aes_algs); 2488 err_aes_algs: 2489 for (j = 0; j < i; j++) 2490 crypto_unregister_skcipher(&aes_algs[j]); 2491 2492 return err; 2493 } 2494 2495 static void atmel_aes_get_cap(struct atmel_aes_dev *dd) 2496 { 2497 dd->caps.has_dualbuff = 0; 2498 dd->caps.has_cfb64 = 0; 2499 dd->caps.has_gcm = 0; 2500 dd->caps.has_xts = 0; 2501 dd->caps.has_authenc = 0; 2502 dd->caps.max_burst_size = 1; 2503 2504 /* keep only major version number */ 2505 switch (dd->hw_version & 0xff0) { 2506 case 0x700: 2507 case 0x600: 2508 case 0x500: 2509 dd->caps.has_dualbuff = 1; 2510 dd->caps.has_cfb64 = 1; 2511 dd->caps.has_gcm = 1; 2512 dd->caps.has_xts = 1; 2513 dd->caps.has_authenc = 1; 2514 dd->caps.max_burst_size = 4; 2515 break; 2516 case 0x200: 2517 dd->caps.has_dualbuff = 1; 2518 dd->caps.has_cfb64 = 1; 2519 dd->caps.has_gcm = 1; 2520 dd->caps.max_burst_size = 4; 2521 break; 2522 case 0x130: 2523 dd->caps.has_dualbuff = 1; 2524 dd->caps.has_cfb64 = 1; 2525 dd->caps.max_burst_size = 4; 2526 break; 2527 case 0x120: 2528 break; 2529 default: 2530 dev_warn(dd->dev, 2531 "Unmanaged aes version, set minimum capabilities\n"); 2532 break; 2533 } 2534 } 2535 2536 static const struct of_device_id atmel_aes_dt_ids[] = { 2537 { .compatible = "atmel,at91sam9g46-aes" }, 2538 { /* sentinel */ } 2539 }; 2540 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids); 2541 2542 static int atmel_aes_probe(struct platform_device *pdev) 2543 { 2544 struct atmel_aes_dev *aes_dd; 2545 struct device *dev = &pdev->dev; 2546 struct resource *aes_res; 2547 int err; 2548 2549 aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL); 2550 if (!aes_dd) 2551 return -ENOMEM; 2552 2553 aes_dd->dev = dev; 2554 2555 platform_set_drvdata(pdev, aes_dd); 2556 2557 INIT_LIST_HEAD(&aes_dd->list); 2558 spin_lock_init(&aes_dd->lock); 2559 2560 tasklet_init(&aes_dd->done_task, atmel_aes_done_task, 2561 (unsigned long)aes_dd); 2562 tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task, 2563 (unsigned long)aes_dd); 2564 2565 crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH); 2566 2567 aes_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &aes_res); 2568 if (IS_ERR(aes_dd->io_base)) { 2569 err = PTR_ERR(aes_dd->io_base); 2570 goto err_tasklet_kill; 2571 } 2572 aes_dd->phys_base = aes_res->start; 2573 2574 /* Get the IRQ */ 2575 aes_dd->irq = platform_get_irq(pdev, 0); 2576 if (aes_dd->irq < 0) { 2577 err = aes_dd->irq; 2578 goto err_tasklet_kill; 2579 } 2580 2581 err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq, 2582 IRQF_SHARED, "atmel-aes", aes_dd); 2583 if (err) { 2584 dev_err(dev, "unable to request aes irq.\n"); 2585 goto err_tasklet_kill; 2586 } 2587 2588 /* Initializing the clock */ 2589 aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk"); 2590 if (IS_ERR(aes_dd->iclk)) { 2591 dev_err(dev, "clock initialization failed.\n"); 2592 err = PTR_ERR(aes_dd->iclk); 2593 goto err_tasklet_kill; 2594 } 2595 2596 err = clk_prepare(aes_dd->iclk); 2597 if (err) 2598 goto err_tasklet_kill; 2599 2600 err = atmel_aes_hw_version_init(aes_dd); 2601 if (err) 2602 goto err_iclk_unprepare; 2603 2604 atmel_aes_get_cap(aes_dd); 2605 2606 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) 2607 if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) { 2608 err = -EPROBE_DEFER; 2609 goto err_iclk_unprepare; 2610 } 2611 #endif 2612 2613 err = atmel_aes_buff_init(aes_dd); 2614 if (err) 2615 goto err_iclk_unprepare; 2616 2617 err = atmel_aes_dma_init(aes_dd); 2618 if (err) 2619 goto err_buff_cleanup; 2620 2621 spin_lock(&atmel_aes.lock); 2622 list_add_tail(&aes_dd->list, &atmel_aes.dev_list); 2623 spin_unlock(&atmel_aes.lock); 2624 2625 err = atmel_aes_register_algs(aes_dd); 2626 if (err) 2627 goto err_algs; 2628 2629 dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n", 2630 dma_chan_name(aes_dd->src.chan), 2631 dma_chan_name(aes_dd->dst.chan)); 2632 2633 return 0; 2634 2635 err_algs: 2636 spin_lock(&atmel_aes.lock); 2637 list_del(&aes_dd->list); 2638 spin_unlock(&atmel_aes.lock); 2639 atmel_aes_dma_cleanup(aes_dd); 2640 err_buff_cleanup: 2641 atmel_aes_buff_cleanup(aes_dd); 2642 err_iclk_unprepare: 2643 clk_unprepare(aes_dd->iclk); 2644 err_tasklet_kill: 2645 tasklet_kill(&aes_dd->done_task); 2646 tasklet_kill(&aes_dd->queue_task); 2647 2648 return err; 2649 } 2650 2651 static void atmel_aes_remove(struct platform_device *pdev) 2652 { 2653 struct atmel_aes_dev *aes_dd; 2654 2655 aes_dd = platform_get_drvdata(pdev); 2656 2657 spin_lock(&atmel_aes.lock); 2658 list_del(&aes_dd->list); 2659 spin_unlock(&atmel_aes.lock); 2660 2661 atmel_aes_unregister_algs(aes_dd); 2662 2663 tasklet_kill(&aes_dd->done_task); 2664 tasklet_kill(&aes_dd->queue_task); 2665 2666 atmel_aes_dma_cleanup(aes_dd); 2667 atmel_aes_buff_cleanup(aes_dd); 2668 2669 clk_unprepare(aes_dd->iclk); 2670 } 2671 2672 static struct platform_driver atmel_aes_driver = { 2673 .probe = atmel_aes_probe, 2674 .remove_new = atmel_aes_remove, 2675 .driver = { 2676 .name = "atmel_aes", 2677 .of_match_table = atmel_aes_dt_ids, 2678 }, 2679 }; 2680 2681 module_platform_driver(atmel_aes_driver); 2682 2683 MODULE_DESCRIPTION("Atmel AES hw acceleration support."); 2684 MODULE_LICENSE("GPL v2"); 2685 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique"); 2686