xref: /linux/drivers/crypto/atmel-aes.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 /*
2  * Cryptographic API.
3  *
4  * Support for ATMEL AES HW acceleration.
5  *
6  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7  * Author: Nicolas Royer <nicolas@eukrea.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as published
11  * by the Free Software Foundation.
12  *
13  * Some ideas are from omap-aes.c driver.
14  */
15 
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25 
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38 #include <crypto/aes.h>
39 #include <crypto/xts.h>
40 #include <crypto/internal/aead.h>
41 #include <linux/platform_data/crypto-atmel.h>
42 #include <dt-bindings/dma/at91.h>
43 #include "atmel-aes-regs.h"
44 
45 #define ATMEL_AES_PRIORITY	300
46 
47 #define ATMEL_AES_BUFFER_ORDER	2
48 #define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
49 
50 #define CFB8_BLOCK_SIZE		1
51 #define CFB16_BLOCK_SIZE	2
52 #define CFB32_BLOCK_SIZE	4
53 #define CFB64_BLOCK_SIZE	8
54 
55 #define SIZE_IN_WORDS(x)	((x) >> 2)
56 
57 /* AES flags */
58 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
59 #define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
60 #define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
61 #define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
62 #define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
63 #define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
64 #define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
65 #define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
66 #define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
67 #define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
68 #define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
69 #define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
70 #define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
71 #define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
72 #define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
73 
74 #define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
75 				 AES_FLAGS_ENCRYPT |		\
76 				 AES_FLAGS_GTAGEN)
77 
78 #define AES_FLAGS_INIT		BIT(2)
79 #define AES_FLAGS_BUSY		BIT(3)
80 #define AES_FLAGS_DUMP_REG	BIT(4)
81 
82 #define AES_FLAGS_PERSISTENT	(AES_FLAGS_INIT | AES_FLAGS_BUSY)
83 
84 #define ATMEL_AES_QUEUE_LENGTH	50
85 
86 #define ATMEL_AES_DMA_THRESHOLD		256
87 
88 
89 struct atmel_aes_caps {
90 	bool			has_dualbuff;
91 	bool			has_cfb64;
92 	bool			has_ctr32;
93 	bool			has_gcm;
94 	bool			has_xts;
95 	u32			max_burst_size;
96 };
97 
98 struct atmel_aes_dev;
99 
100 
101 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
102 
103 
104 struct atmel_aes_base_ctx {
105 	struct atmel_aes_dev	*dd;
106 	atmel_aes_fn_t		start;
107 	int			keylen;
108 	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
109 	u16			block_size;
110 };
111 
112 struct atmel_aes_ctx {
113 	struct atmel_aes_base_ctx	base;
114 };
115 
116 struct atmel_aes_ctr_ctx {
117 	struct atmel_aes_base_ctx	base;
118 
119 	u32			iv[AES_BLOCK_SIZE / sizeof(u32)];
120 	size_t			offset;
121 	struct scatterlist	src[2];
122 	struct scatterlist	dst[2];
123 };
124 
125 struct atmel_aes_gcm_ctx {
126 	struct atmel_aes_base_ctx	base;
127 
128 	struct scatterlist	src[2];
129 	struct scatterlist	dst[2];
130 
131 	u32			j0[AES_BLOCK_SIZE / sizeof(u32)];
132 	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
133 	u32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
134 	size_t			textlen;
135 
136 	const u32		*ghash_in;
137 	u32			*ghash_out;
138 	atmel_aes_fn_t		ghash_resume;
139 };
140 
141 struct atmel_aes_xts_ctx {
142 	struct atmel_aes_base_ctx	base;
143 
144 	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
145 };
146 
147 struct atmel_aes_reqctx {
148 	unsigned long		mode;
149 };
150 
151 struct atmel_aes_dma {
152 	struct dma_chan		*chan;
153 	struct scatterlist	*sg;
154 	int			nents;
155 	unsigned int		remainder;
156 	unsigned int		sg_len;
157 };
158 
159 struct atmel_aes_dev {
160 	struct list_head	list;
161 	unsigned long		phys_base;
162 	void __iomem		*io_base;
163 
164 	struct crypto_async_request	*areq;
165 	struct atmel_aes_base_ctx	*ctx;
166 
167 	bool			is_async;
168 	atmel_aes_fn_t		resume;
169 	atmel_aes_fn_t		cpu_transfer_complete;
170 
171 	struct device		*dev;
172 	struct clk		*iclk;
173 	int			irq;
174 
175 	unsigned long		flags;
176 
177 	spinlock_t		lock;
178 	struct crypto_queue	queue;
179 
180 	struct tasklet_struct	done_task;
181 	struct tasklet_struct	queue_task;
182 
183 	size_t			total;
184 	size_t			datalen;
185 	u32			*data;
186 
187 	struct atmel_aes_dma	src;
188 	struct atmel_aes_dma	dst;
189 
190 	size_t			buflen;
191 	void			*buf;
192 	struct scatterlist	aligned_sg;
193 	struct scatterlist	*real_dst;
194 
195 	struct atmel_aes_caps	caps;
196 
197 	u32			hw_version;
198 };
199 
200 struct atmel_aes_drv {
201 	struct list_head	dev_list;
202 	spinlock_t		lock;
203 };
204 
205 static struct atmel_aes_drv atmel_aes = {
206 	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
207 	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
208 };
209 
210 #ifdef VERBOSE_DEBUG
211 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
212 {
213 	switch (offset) {
214 	case AES_CR:
215 		return "CR";
216 
217 	case AES_MR:
218 		return "MR";
219 
220 	case AES_ISR:
221 		return "ISR";
222 
223 	case AES_IMR:
224 		return "IMR";
225 
226 	case AES_IER:
227 		return "IER";
228 
229 	case AES_IDR:
230 		return "IDR";
231 
232 	case AES_KEYWR(0):
233 	case AES_KEYWR(1):
234 	case AES_KEYWR(2):
235 	case AES_KEYWR(3):
236 	case AES_KEYWR(4):
237 	case AES_KEYWR(5):
238 	case AES_KEYWR(6):
239 	case AES_KEYWR(7):
240 		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
241 		break;
242 
243 	case AES_IDATAR(0):
244 	case AES_IDATAR(1):
245 	case AES_IDATAR(2):
246 	case AES_IDATAR(3):
247 		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
248 		break;
249 
250 	case AES_ODATAR(0):
251 	case AES_ODATAR(1):
252 	case AES_ODATAR(2):
253 	case AES_ODATAR(3):
254 		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
255 		break;
256 
257 	case AES_IVR(0):
258 	case AES_IVR(1):
259 	case AES_IVR(2):
260 	case AES_IVR(3):
261 		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
262 		break;
263 
264 	case AES_AADLENR:
265 		return "AADLENR";
266 
267 	case AES_CLENR:
268 		return "CLENR";
269 
270 	case AES_GHASHR(0):
271 	case AES_GHASHR(1):
272 	case AES_GHASHR(2):
273 	case AES_GHASHR(3):
274 		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
275 		break;
276 
277 	case AES_TAGR(0):
278 	case AES_TAGR(1):
279 	case AES_TAGR(2):
280 	case AES_TAGR(3):
281 		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
282 		break;
283 
284 	case AES_CTRR:
285 		return "CTRR";
286 
287 	case AES_GCMHR(0):
288 	case AES_GCMHR(1):
289 	case AES_GCMHR(2):
290 	case AES_GCMHR(3):
291 		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
292 		break;
293 
294 	case AES_TWR(0):
295 	case AES_TWR(1):
296 	case AES_TWR(2):
297 	case AES_TWR(3):
298 		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
299 		break;
300 
301 	case AES_ALPHAR(0):
302 	case AES_ALPHAR(1):
303 	case AES_ALPHAR(2):
304 	case AES_ALPHAR(3):
305 		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
306 		break;
307 
308 	default:
309 		snprintf(tmp, sz, "0x%02x", offset);
310 		break;
311 	}
312 
313 	return tmp;
314 }
315 #endif /* VERBOSE_DEBUG */
316 
317 /* Shared functions */
318 
319 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
320 {
321 	u32 value = readl_relaxed(dd->io_base + offset);
322 
323 #ifdef VERBOSE_DEBUG
324 	if (dd->flags & AES_FLAGS_DUMP_REG) {
325 		char tmp[16];
326 
327 		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
328 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
329 	}
330 #endif /* VERBOSE_DEBUG */
331 
332 	return value;
333 }
334 
335 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
336 					u32 offset, u32 value)
337 {
338 #ifdef VERBOSE_DEBUG
339 	if (dd->flags & AES_FLAGS_DUMP_REG) {
340 		char tmp[16];
341 
342 		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
343 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
344 	}
345 #endif /* VERBOSE_DEBUG */
346 
347 	writel_relaxed(value, dd->io_base + offset);
348 }
349 
350 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
351 					u32 *value, int count)
352 {
353 	for (; count--; value++, offset += 4)
354 		*value = atmel_aes_read(dd, offset);
355 }
356 
357 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
358 			      const u32 *value, int count)
359 {
360 	for (; count--; value++, offset += 4)
361 		atmel_aes_write(dd, offset, *value);
362 }
363 
364 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
365 					u32 *value)
366 {
367 	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
368 }
369 
370 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
371 					 const u32 *value)
372 {
373 	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
374 }
375 
376 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
377 						atmel_aes_fn_t resume)
378 {
379 	u32 isr = atmel_aes_read(dd, AES_ISR);
380 
381 	if (unlikely(isr & AES_INT_DATARDY))
382 		return resume(dd);
383 
384 	dd->resume = resume;
385 	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
386 	return -EINPROGRESS;
387 }
388 
389 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
390 {
391 	len &= block_size - 1;
392 	return len ? block_size - len : 0;
393 }
394 
395 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
396 {
397 	struct atmel_aes_dev *aes_dd = NULL;
398 	struct atmel_aes_dev *tmp;
399 
400 	spin_lock_bh(&atmel_aes.lock);
401 	if (!ctx->dd) {
402 		list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
403 			aes_dd = tmp;
404 			break;
405 		}
406 		ctx->dd = aes_dd;
407 	} else {
408 		aes_dd = ctx->dd;
409 	}
410 
411 	spin_unlock_bh(&atmel_aes.lock);
412 
413 	return aes_dd;
414 }
415 
416 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
417 {
418 	int err;
419 
420 	err = clk_enable(dd->iclk);
421 	if (err)
422 		return err;
423 
424 	if (!(dd->flags & AES_FLAGS_INIT)) {
425 		atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
426 		atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
427 		dd->flags |= AES_FLAGS_INIT;
428 	}
429 
430 	return 0;
431 }
432 
433 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
434 {
435 	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
436 }
437 
438 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
439 {
440 	int err;
441 
442 	err = atmel_aes_hw_init(dd);
443 	if (err)
444 		return err;
445 
446 	dd->hw_version = atmel_aes_get_version(dd);
447 
448 	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
449 
450 	clk_disable(dd->iclk);
451 	return 0;
452 }
453 
454 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
455 				      const struct atmel_aes_reqctx *rctx)
456 {
457 	/* Clear all but persistent flags and set request flags. */
458 	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
459 }
460 
461 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
462 {
463 	return (dd->flags & AES_FLAGS_ENCRYPT);
464 }
465 
466 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
467 {
468 	clk_disable(dd->iclk);
469 	dd->flags &= ~AES_FLAGS_BUSY;
470 
471 	if (dd->is_async)
472 		dd->areq->complete(dd->areq, err);
473 
474 	tasklet_schedule(&dd->queue_task);
475 
476 	return err;
477 }
478 
479 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
480 				     const u32 *iv, const u32 *key, int keylen)
481 {
482 	u32 valmr = 0;
483 
484 	/* MR register must be set before IV registers */
485 	if (keylen == AES_KEYSIZE_128)
486 		valmr |= AES_MR_KEYSIZE_128;
487 	else if (keylen == AES_KEYSIZE_192)
488 		valmr |= AES_MR_KEYSIZE_192;
489 	else
490 		valmr |= AES_MR_KEYSIZE_256;
491 
492 	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
493 
494 	if (use_dma) {
495 		valmr |= AES_MR_SMOD_IDATAR0;
496 		if (dd->caps.has_dualbuff)
497 			valmr |= AES_MR_DUALBUFF;
498 	} else {
499 		valmr |= AES_MR_SMOD_AUTO;
500 	}
501 
502 	atmel_aes_write(dd, AES_MR, valmr);
503 
504 	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
505 
506 	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
507 		atmel_aes_write_block(dd, AES_IVR(0), iv);
508 }
509 
510 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
511 					const u32 *iv)
512 
513 {
514 	atmel_aes_write_ctrl_key(dd, use_dma, iv,
515 				 dd->ctx->key, dd->ctx->keylen);
516 }
517 
518 /* CPU transfer */
519 
520 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
521 {
522 	int err = 0;
523 	u32 isr;
524 
525 	for (;;) {
526 		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
527 		dd->data += 4;
528 		dd->datalen -= AES_BLOCK_SIZE;
529 
530 		if (dd->datalen < AES_BLOCK_SIZE)
531 			break;
532 
533 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
534 
535 		isr = atmel_aes_read(dd, AES_ISR);
536 		if (!(isr & AES_INT_DATARDY)) {
537 			dd->resume = atmel_aes_cpu_transfer;
538 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
539 			return -EINPROGRESS;
540 		}
541 	}
542 
543 	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
544 				 dd->buf, dd->total))
545 		err = -EINVAL;
546 
547 	if (err)
548 		return atmel_aes_complete(dd, err);
549 
550 	return dd->cpu_transfer_complete(dd);
551 }
552 
553 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
554 			       struct scatterlist *src,
555 			       struct scatterlist *dst,
556 			       size_t len,
557 			       atmel_aes_fn_t resume)
558 {
559 	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
560 
561 	if (unlikely(len == 0))
562 		return -EINVAL;
563 
564 	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
565 
566 	dd->total = len;
567 	dd->real_dst = dst;
568 	dd->cpu_transfer_complete = resume;
569 	dd->datalen = len + padlen;
570 	dd->data = (u32 *)dd->buf;
571 	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
572 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
573 }
574 
575 
576 /* DMA transfer */
577 
578 static void atmel_aes_dma_callback(void *data);
579 
580 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
581 				    struct scatterlist *sg,
582 				    size_t len,
583 				    struct atmel_aes_dma *dma)
584 {
585 	int nents;
586 
587 	if (!IS_ALIGNED(len, dd->ctx->block_size))
588 		return false;
589 
590 	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
591 		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
592 			return false;
593 
594 		if (len <= sg->length) {
595 			if (!IS_ALIGNED(len, dd->ctx->block_size))
596 				return false;
597 
598 			dma->nents = nents+1;
599 			dma->remainder = sg->length - len;
600 			sg->length = len;
601 			return true;
602 		}
603 
604 		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
605 			return false;
606 
607 		len -= sg->length;
608 	}
609 
610 	return false;
611 }
612 
613 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
614 {
615 	struct scatterlist *sg = dma->sg;
616 	int nents = dma->nents;
617 
618 	if (!dma->remainder)
619 		return;
620 
621 	while (--nents > 0 && sg)
622 		sg = sg_next(sg);
623 
624 	if (!sg)
625 		return;
626 
627 	sg->length += dma->remainder;
628 }
629 
630 static int atmel_aes_map(struct atmel_aes_dev *dd,
631 			 struct scatterlist *src,
632 			 struct scatterlist *dst,
633 			 size_t len)
634 {
635 	bool src_aligned, dst_aligned;
636 	size_t padlen;
637 
638 	dd->total = len;
639 	dd->src.sg = src;
640 	dd->dst.sg = dst;
641 	dd->real_dst = dst;
642 
643 	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
644 	if (src == dst)
645 		dst_aligned = src_aligned;
646 	else
647 		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
648 	if (!src_aligned || !dst_aligned) {
649 		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
650 
651 		if (dd->buflen < len + padlen)
652 			return -ENOMEM;
653 
654 		if (!src_aligned) {
655 			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
656 			dd->src.sg = &dd->aligned_sg;
657 			dd->src.nents = 1;
658 			dd->src.remainder = 0;
659 		}
660 
661 		if (!dst_aligned) {
662 			dd->dst.sg = &dd->aligned_sg;
663 			dd->dst.nents = 1;
664 			dd->dst.remainder = 0;
665 		}
666 
667 		sg_init_table(&dd->aligned_sg, 1);
668 		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
669 	}
670 
671 	if (dd->src.sg == dd->dst.sg) {
672 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
673 					    DMA_BIDIRECTIONAL);
674 		dd->dst.sg_len = dd->src.sg_len;
675 		if (!dd->src.sg_len)
676 			return -EFAULT;
677 	} else {
678 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
679 					    DMA_TO_DEVICE);
680 		if (!dd->src.sg_len)
681 			return -EFAULT;
682 
683 		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
684 					    DMA_FROM_DEVICE);
685 		if (!dd->dst.sg_len) {
686 			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
687 				     DMA_TO_DEVICE);
688 			return -EFAULT;
689 		}
690 	}
691 
692 	return 0;
693 }
694 
695 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
696 {
697 	if (dd->src.sg == dd->dst.sg) {
698 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
699 			     DMA_BIDIRECTIONAL);
700 
701 		if (dd->src.sg != &dd->aligned_sg)
702 			atmel_aes_restore_sg(&dd->src);
703 	} else {
704 		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
705 			     DMA_FROM_DEVICE);
706 
707 		if (dd->dst.sg != &dd->aligned_sg)
708 			atmel_aes_restore_sg(&dd->dst);
709 
710 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
711 			     DMA_TO_DEVICE);
712 
713 		if (dd->src.sg != &dd->aligned_sg)
714 			atmel_aes_restore_sg(&dd->src);
715 	}
716 
717 	if (dd->dst.sg == &dd->aligned_sg)
718 		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
719 				    dd->buf, dd->total);
720 }
721 
722 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
723 					enum dma_slave_buswidth addr_width,
724 					enum dma_transfer_direction dir,
725 					u32 maxburst)
726 {
727 	struct dma_async_tx_descriptor *desc;
728 	struct dma_slave_config config;
729 	dma_async_tx_callback callback;
730 	struct atmel_aes_dma *dma;
731 	int err;
732 
733 	memset(&config, 0, sizeof(config));
734 	config.direction = dir;
735 	config.src_addr_width = addr_width;
736 	config.dst_addr_width = addr_width;
737 	config.src_maxburst = maxburst;
738 	config.dst_maxburst = maxburst;
739 
740 	switch (dir) {
741 	case DMA_MEM_TO_DEV:
742 		dma = &dd->src;
743 		callback = NULL;
744 		config.dst_addr = dd->phys_base + AES_IDATAR(0);
745 		break;
746 
747 	case DMA_DEV_TO_MEM:
748 		dma = &dd->dst;
749 		callback = atmel_aes_dma_callback;
750 		config.src_addr = dd->phys_base + AES_ODATAR(0);
751 		break;
752 
753 	default:
754 		return -EINVAL;
755 	}
756 
757 	err = dmaengine_slave_config(dma->chan, &config);
758 	if (err)
759 		return err;
760 
761 	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
762 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
763 	if (!desc)
764 		return -ENOMEM;
765 
766 	desc->callback = callback;
767 	desc->callback_param = dd;
768 	dmaengine_submit(desc);
769 	dma_async_issue_pending(dma->chan);
770 
771 	return 0;
772 }
773 
774 static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
775 					enum dma_transfer_direction dir)
776 {
777 	struct atmel_aes_dma *dma;
778 
779 	switch (dir) {
780 	case DMA_MEM_TO_DEV:
781 		dma = &dd->src;
782 		break;
783 
784 	case DMA_DEV_TO_MEM:
785 		dma = &dd->dst;
786 		break;
787 
788 	default:
789 		return;
790 	}
791 
792 	dmaengine_terminate_all(dma->chan);
793 }
794 
795 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
796 			       struct scatterlist *src,
797 			       struct scatterlist *dst,
798 			       size_t len,
799 			       atmel_aes_fn_t resume)
800 {
801 	enum dma_slave_buswidth addr_width;
802 	u32 maxburst;
803 	int err;
804 
805 	switch (dd->ctx->block_size) {
806 	case CFB8_BLOCK_SIZE:
807 		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
808 		maxburst = 1;
809 		break;
810 
811 	case CFB16_BLOCK_SIZE:
812 		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
813 		maxburst = 1;
814 		break;
815 
816 	case CFB32_BLOCK_SIZE:
817 	case CFB64_BLOCK_SIZE:
818 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
819 		maxburst = 1;
820 		break;
821 
822 	case AES_BLOCK_SIZE:
823 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
824 		maxburst = dd->caps.max_burst_size;
825 		break;
826 
827 	default:
828 		err = -EINVAL;
829 		goto exit;
830 	}
831 
832 	err = atmel_aes_map(dd, src, dst, len);
833 	if (err)
834 		goto exit;
835 
836 	dd->resume = resume;
837 
838 	/* Set output DMA transfer first */
839 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
840 					   maxburst);
841 	if (err)
842 		goto unmap;
843 
844 	/* Then set input DMA transfer */
845 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
846 					   maxburst);
847 	if (err)
848 		goto output_transfer_stop;
849 
850 	return -EINPROGRESS;
851 
852 output_transfer_stop:
853 	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
854 unmap:
855 	atmel_aes_unmap(dd);
856 exit:
857 	return atmel_aes_complete(dd, err);
858 }
859 
860 static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
861 {
862 	atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
863 	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
864 	atmel_aes_unmap(dd);
865 }
866 
867 static void atmel_aes_dma_callback(void *data)
868 {
869 	struct atmel_aes_dev *dd = data;
870 
871 	atmel_aes_dma_stop(dd);
872 	dd->is_async = true;
873 	(void)dd->resume(dd);
874 }
875 
876 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
877 				  struct crypto_async_request *new_areq)
878 {
879 	struct crypto_async_request *areq, *backlog;
880 	struct atmel_aes_base_ctx *ctx;
881 	unsigned long flags;
882 	int err, ret = 0;
883 
884 	spin_lock_irqsave(&dd->lock, flags);
885 	if (new_areq)
886 		ret = crypto_enqueue_request(&dd->queue, new_areq);
887 	if (dd->flags & AES_FLAGS_BUSY) {
888 		spin_unlock_irqrestore(&dd->lock, flags);
889 		return ret;
890 	}
891 	backlog = crypto_get_backlog(&dd->queue);
892 	areq = crypto_dequeue_request(&dd->queue);
893 	if (areq)
894 		dd->flags |= AES_FLAGS_BUSY;
895 	spin_unlock_irqrestore(&dd->lock, flags);
896 
897 	if (!areq)
898 		return ret;
899 
900 	if (backlog)
901 		backlog->complete(backlog, -EINPROGRESS);
902 
903 	ctx = crypto_tfm_ctx(areq->tfm);
904 
905 	dd->areq = areq;
906 	dd->ctx = ctx;
907 	dd->is_async = (areq != new_areq);
908 
909 	err = ctx->start(dd);
910 	return (dd->is_async) ? ret : err;
911 }
912 
913 
914 /* AES async block ciphers */
915 
916 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
917 {
918 	return atmel_aes_complete(dd, 0);
919 }
920 
921 static int atmel_aes_start(struct atmel_aes_dev *dd)
922 {
923 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
924 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
925 	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
926 			dd->ctx->block_size != AES_BLOCK_SIZE);
927 	int err;
928 
929 	atmel_aes_set_mode(dd, rctx);
930 
931 	err = atmel_aes_hw_init(dd);
932 	if (err)
933 		return atmel_aes_complete(dd, err);
934 
935 	atmel_aes_write_ctrl(dd, use_dma, req->info);
936 	if (use_dma)
937 		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
938 					   atmel_aes_transfer_complete);
939 
940 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
941 				   atmel_aes_transfer_complete);
942 }
943 
944 static inline struct atmel_aes_ctr_ctx *
945 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
946 {
947 	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
948 }
949 
950 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
951 {
952 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
953 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
954 	struct scatterlist *src, *dst;
955 	u32 ctr, blocks;
956 	size_t datalen;
957 	bool use_dma, fragmented = false;
958 
959 	/* Check for transfer completion. */
960 	ctx->offset += dd->total;
961 	if (ctx->offset >= req->nbytes)
962 		return atmel_aes_transfer_complete(dd);
963 
964 	/* Compute data length. */
965 	datalen = req->nbytes - ctx->offset;
966 	blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
967 	ctr = be32_to_cpu(ctx->iv[3]);
968 	if (dd->caps.has_ctr32) {
969 		/* Check 32bit counter overflow. */
970 		u32 start = ctr;
971 		u32 end = start + blocks - 1;
972 
973 		if (end < start) {
974 			ctr |= 0xffffffff;
975 			datalen = AES_BLOCK_SIZE * -start;
976 			fragmented = true;
977 		}
978 	} else {
979 		/* Check 16bit counter overflow. */
980 		u16 start = ctr & 0xffff;
981 		u16 end = start + (u16)blocks - 1;
982 
983 		if (blocks >> 16 || end < start) {
984 			ctr |= 0xffff;
985 			datalen = AES_BLOCK_SIZE * (0x10000-start);
986 			fragmented = true;
987 		}
988 	}
989 	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
990 
991 	/* Jump to offset. */
992 	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
993 	dst = ((req->src == req->dst) ? src :
994 	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
995 
996 	/* Configure hardware. */
997 	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
998 	if (unlikely(fragmented)) {
999 		/*
1000 		 * Increment the counter manually to cope with the hardware
1001 		 * counter overflow.
1002 		 */
1003 		ctx->iv[3] = cpu_to_be32(ctr);
1004 		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1005 	}
1006 
1007 	if (use_dma)
1008 		return atmel_aes_dma_start(dd, src, dst, datalen,
1009 					   atmel_aes_ctr_transfer);
1010 
1011 	return atmel_aes_cpu_start(dd, src, dst, datalen,
1012 				   atmel_aes_ctr_transfer);
1013 }
1014 
1015 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1016 {
1017 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1018 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1019 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1020 	int err;
1021 
1022 	atmel_aes_set_mode(dd, rctx);
1023 
1024 	err = atmel_aes_hw_init(dd);
1025 	if (err)
1026 		return atmel_aes_complete(dd, err);
1027 
1028 	memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
1029 	ctx->offset = 0;
1030 	dd->total = 0;
1031 	return atmel_aes_ctr_transfer(dd);
1032 }
1033 
1034 static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
1035 {
1036 	struct atmel_aes_base_ctx *ctx;
1037 	struct atmel_aes_reqctx *rctx;
1038 	struct atmel_aes_dev *dd;
1039 
1040 	ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1041 	switch (mode & AES_FLAGS_OPMODE_MASK) {
1042 	case AES_FLAGS_CFB8:
1043 		ctx->block_size = CFB8_BLOCK_SIZE;
1044 		break;
1045 
1046 	case AES_FLAGS_CFB16:
1047 		ctx->block_size = CFB16_BLOCK_SIZE;
1048 		break;
1049 
1050 	case AES_FLAGS_CFB32:
1051 		ctx->block_size = CFB32_BLOCK_SIZE;
1052 		break;
1053 
1054 	case AES_FLAGS_CFB64:
1055 		ctx->block_size = CFB64_BLOCK_SIZE;
1056 		break;
1057 
1058 	default:
1059 		ctx->block_size = AES_BLOCK_SIZE;
1060 		break;
1061 	}
1062 
1063 	dd = atmel_aes_find_dev(ctx);
1064 	if (!dd)
1065 		return -ENODEV;
1066 
1067 	rctx = ablkcipher_request_ctx(req);
1068 	rctx->mode = mode;
1069 
1070 	return atmel_aes_handle_queue(dd, &req->base);
1071 }
1072 
1073 static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1074 			   unsigned int keylen)
1075 {
1076 	struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1077 
1078 	if (keylen != AES_KEYSIZE_128 &&
1079 	    keylen != AES_KEYSIZE_192 &&
1080 	    keylen != AES_KEYSIZE_256) {
1081 		crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1082 		return -EINVAL;
1083 	}
1084 
1085 	memcpy(ctx->key, key, keylen);
1086 	ctx->keylen = keylen;
1087 
1088 	return 0;
1089 }
1090 
1091 static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
1092 {
1093 	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1094 }
1095 
1096 static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
1097 {
1098 	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1099 }
1100 
1101 static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
1102 {
1103 	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1104 }
1105 
1106 static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
1107 {
1108 	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1109 }
1110 
1111 static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
1112 {
1113 	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1114 }
1115 
1116 static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
1117 {
1118 	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1119 }
1120 
1121 static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
1122 {
1123 	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1124 }
1125 
1126 static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
1127 {
1128 	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1129 }
1130 
1131 static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
1132 {
1133 	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1134 }
1135 
1136 static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
1137 {
1138 	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1139 }
1140 
1141 static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
1142 {
1143 	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1144 }
1145 
1146 static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
1147 {
1148 	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1149 }
1150 
1151 static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
1152 {
1153 	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1154 }
1155 
1156 static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
1157 {
1158 	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1159 }
1160 
1161 static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
1162 {
1163 	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1164 }
1165 
1166 static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
1167 {
1168 	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1169 }
1170 
1171 static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
1172 {
1173 	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1174 }
1175 
1176 static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
1177 {
1178 	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1179 }
1180 
1181 static int atmel_aes_cra_init(struct crypto_tfm *tfm)
1182 {
1183 	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1184 
1185 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1186 	ctx->base.start = atmel_aes_start;
1187 
1188 	return 0;
1189 }
1190 
1191 static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
1192 {
1193 	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1194 
1195 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1196 	ctx->base.start = atmel_aes_ctr_start;
1197 
1198 	return 0;
1199 }
1200 
1201 static void atmel_aes_cra_exit(struct crypto_tfm *tfm)
1202 {
1203 }
1204 
1205 static struct crypto_alg aes_algs[] = {
1206 {
1207 	.cra_name		= "ecb(aes)",
1208 	.cra_driver_name	= "atmel-ecb-aes",
1209 	.cra_priority		= ATMEL_AES_PRIORITY,
1210 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1211 	.cra_blocksize		= AES_BLOCK_SIZE,
1212 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1213 	.cra_alignmask		= 0xf,
1214 	.cra_type		= &crypto_ablkcipher_type,
1215 	.cra_module		= THIS_MODULE,
1216 	.cra_init		= atmel_aes_cra_init,
1217 	.cra_exit		= atmel_aes_cra_exit,
1218 	.cra_u.ablkcipher = {
1219 		.min_keysize	= AES_MIN_KEY_SIZE,
1220 		.max_keysize	= AES_MAX_KEY_SIZE,
1221 		.setkey		= atmel_aes_setkey,
1222 		.encrypt	= atmel_aes_ecb_encrypt,
1223 		.decrypt	= atmel_aes_ecb_decrypt,
1224 	}
1225 },
1226 {
1227 	.cra_name		= "cbc(aes)",
1228 	.cra_driver_name	= "atmel-cbc-aes",
1229 	.cra_priority		= ATMEL_AES_PRIORITY,
1230 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1231 	.cra_blocksize		= AES_BLOCK_SIZE,
1232 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1233 	.cra_alignmask		= 0xf,
1234 	.cra_type		= &crypto_ablkcipher_type,
1235 	.cra_module		= THIS_MODULE,
1236 	.cra_init		= atmel_aes_cra_init,
1237 	.cra_exit		= atmel_aes_cra_exit,
1238 	.cra_u.ablkcipher = {
1239 		.min_keysize	= AES_MIN_KEY_SIZE,
1240 		.max_keysize	= AES_MAX_KEY_SIZE,
1241 		.ivsize		= AES_BLOCK_SIZE,
1242 		.setkey		= atmel_aes_setkey,
1243 		.encrypt	= atmel_aes_cbc_encrypt,
1244 		.decrypt	= atmel_aes_cbc_decrypt,
1245 	}
1246 },
1247 {
1248 	.cra_name		= "ofb(aes)",
1249 	.cra_driver_name	= "atmel-ofb-aes",
1250 	.cra_priority		= ATMEL_AES_PRIORITY,
1251 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1252 	.cra_blocksize		= AES_BLOCK_SIZE,
1253 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1254 	.cra_alignmask		= 0xf,
1255 	.cra_type		= &crypto_ablkcipher_type,
1256 	.cra_module		= THIS_MODULE,
1257 	.cra_init		= atmel_aes_cra_init,
1258 	.cra_exit		= atmel_aes_cra_exit,
1259 	.cra_u.ablkcipher = {
1260 		.min_keysize	= AES_MIN_KEY_SIZE,
1261 		.max_keysize	= AES_MAX_KEY_SIZE,
1262 		.ivsize		= AES_BLOCK_SIZE,
1263 		.setkey		= atmel_aes_setkey,
1264 		.encrypt	= atmel_aes_ofb_encrypt,
1265 		.decrypt	= atmel_aes_ofb_decrypt,
1266 	}
1267 },
1268 {
1269 	.cra_name		= "cfb(aes)",
1270 	.cra_driver_name	= "atmel-cfb-aes",
1271 	.cra_priority		= ATMEL_AES_PRIORITY,
1272 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1273 	.cra_blocksize		= AES_BLOCK_SIZE,
1274 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1275 	.cra_alignmask		= 0xf,
1276 	.cra_type		= &crypto_ablkcipher_type,
1277 	.cra_module		= THIS_MODULE,
1278 	.cra_init		= atmel_aes_cra_init,
1279 	.cra_exit		= atmel_aes_cra_exit,
1280 	.cra_u.ablkcipher = {
1281 		.min_keysize	= AES_MIN_KEY_SIZE,
1282 		.max_keysize	= AES_MAX_KEY_SIZE,
1283 		.ivsize		= AES_BLOCK_SIZE,
1284 		.setkey		= atmel_aes_setkey,
1285 		.encrypt	= atmel_aes_cfb_encrypt,
1286 		.decrypt	= atmel_aes_cfb_decrypt,
1287 	}
1288 },
1289 {
1290 	.cra_name		= "cfb32(aes)",
1291 	.cra_driver_name	= "atmel-cfb32-aes",
1292 	.cra_priority		= ATMEL_AES_PRIORITY,
1293 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1294 	.cra_blocksize		= CFB32_BLOCK_SIZE,
1295 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1296 	.cra_alignmask		= 0x3,
1297 	.cra_type		= &crypto_ablkcipher_type,
1298 	.cra_module		= THIS_MODULE,
1299 	.cra_init		= atmel_aes_cra_init,
1300 	.cra_exit		= atmel_aes_cra_exit,
1301 	.cra_u.ablkcipher = {
1302 		.min_keysize	= AES_MIN_KEY_SIZE,
1303 		.max_keysize	= AES_MAX_KEY_SIZE,
1304 		.ivsize		= AES_BLOCK_SIZE,
1305 		.setkey		= atmel_aes_setkey,
1306 		.encrypt	= atmel_aes_cfb32_encrypt,
1307 		.decrypt	= atmel_aes_cfb32_decrypt,
1308 	}
1309 },
1310 {
1311 	.cra_name		= "cfb16(aes)",
1312 	.cra_driver_name	= "atmel-cfb16-aes",
1313 	.cra_priority		= ATMEL_AES_PRIORITY,
1314 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1315 	.cra_blocksize		= CFB16_BLOCK_SIZE,
1316 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1317 	.cra_alignmask		= 0x1,
1318 	.cra_type		= &crypto_ablkcipher_type,
1319 	.cra_module		= THIS_MODULE,
1320 	.cra_init		= atmel_aes_cra_init,
1321 	.cra_exit		= atmel_aes_cra_exit,
1322 	.cra_u.ablkcipher = {
1323 		.min_keysize	= AES_MIN_KEY_SIZE,
1324 		.max_keysize	= AES_MAX_KEY_SIZE,
1325 		.ivsize		= AES_BLOCK_SIZE,
1326 		.setkey		= atmel_aes_setkey,
1327 		.encrypt	= atmel_aes_cfb16_encrypt,
1328 		.decrypt	= atmel_aes_cfb16_decrypt,
1329 	}
1330 },
1331 {
1332 	.cra_name		= "cfb8(aes)",
1333 	.cra_driver_name	= "atmel-cfb8-aes",
1334 	.cra_priority		= ATMEL_AES_PRIORITY,
1335 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1336 	.cra_blocksize		= CFB8_BLOCK_SIZE,
1337 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1338 	.cra_alignmask		= 0x0,
1339 	.cra_type		= &crypto_ablkcipher_type,
1340 	.cra_module		= THIS_MODULE,
1341 	.cra_init		= atmel_aes_cra_init,
1342 	.cra_exit		= atmel_aes_cra_exit,
1343 	.cra_u.ablkcipher = {
1344 		.min_keysize	= AES_MIN_KEY_SIZE,
1345 		.max_keysize	= AES_MAX_KEY_SIZE,
1346 		.ivsize		= AES_BLOCK_SIZE,
1347 		.setkey		= atmel_aes_setkey,
1348 		.encrypt	= atmel_aes_cfb8_encrypt,
1349 		.decrypt	= atmel_aes_cfb8_decrypt,
1350 	}
1351 },
1352 {
1353 	.cra_name		= "ctr(aes)",
1354 	.cra_driver_name	= "atmel-ctr-aes",
1355 	.cra_priority		= ATMEL_AES_PRIORITY,
1356 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1357 	.cra_blocksize		= 1,
1358 	.cra_ctxsize		= sizeof(struct atmel_aes_ctr_ctx),
1359 	.cra_alignmask		= 0xf,
1360 	.cra_type		= &crypto_ablkcipher_type,
1361 	.cra_module		= THIS_MODULE,
1362 	.cra_init		= atmel_aes_ctr_cra_init,
1363 	.cra_exit		= atmel_aes_cra_exit,
1364 	.cra_u.ablkcipher = {
1365 		.min_keysize	= AES_MIN_KEY_SIZE,
1366 		.max_keysize	= AES_MAX_KEY_SIZE,
1367 		.ivsize		= AES_BLOCK_SIZE,
1368 		.setkey		= atmel_aes_setkey,
1369 		.encrypt	= atmel_aes_ctr_encrypt,
1370 		.decrypt	= atmel_aes_ctr_decrypt,
1371 	}
1372 },
1373 };
1374 
1375 static struct crypto_alg aes_cfb64_alg = {
1376 	.cra_name		= "cfb64(aes)",
1377 	.cra_driver_name	= "atmel-cfb64-aes",
1378 	.cra_priority		= ATMEL_AES_PRIORITY,
1379 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1380 	.cra_blocksize		= CFB64_BLOCK_SIZE,
1381 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1382 	.cra_alignmask		= 0x7,
1383 	.cra_type		= &crypto_ablkcipher_type,
1384 	.cra_module		= THIS_MODULE,
1385 	.cra_init		= atmel_aes_cra_init,
1386 	.cra_exit		= atmel_aes_cra_exit,
1387 	.cra_u.ablkcipher = {
1388 		.min_keysize	= AES_MIN_KEY_SIZE,
1389 		.max_keysize	= AES_MAX_KEY_SIZE,
1390 		.ivsize		= AES_BLOCK_SIZE,
1391 		.setkey		= atmel_aes_setkey,
1392 		.encrypt	= atmel_aes_cfb64_encrypt,
1393 		.decrypt	= atmel_aes_cfb64_decrypt,
1394 	}
1395 };
1396 
1397 
1398 /* gcm aead functions */
1399 
1400 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1401 			       const u32 *data, size_t datalen,
1402 			       const u32 *ghash_in, u32 *ghash_out,
1403 			       atmel_aes_fn_t resume);
1404 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1405 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1406 
1407 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1408 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1409 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1410 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1411 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1412 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1413 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1414 
1415 static inline struct atmel_aes_gcm_ctx *
1416 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1417 {
1418 	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1419 }
1420 
1421 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1422 			       const u32 *data, size_t datalen,
1423 			       const u32 *ghash_in, u32 *ghash_out,
1424 			       atmel_aes_fn_t resume)
1425 {
1426 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1427 
1428 	dd->data = (u32 *)data;
1429 	dd->datalen = datalen;
1430 	ctx->ghash_in = ghash_in;
1431 	ctx->ghash_out = ghash_out;
1432 	ctx->ghash_resume = resume;
1433 
1434 	atmel_aes_write_ctrl(dd, false, NULL);
1435 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1436 }
1437 
1438 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1439 {
1440 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1441 
1442 	/* Set the data length. */
1443 	atmel_aes_write(dd, AES_AADLENR, dd->total);
1444 	atmel_aes_write(dd, AES_CLENR, 0);
1445 
1446 	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1447 	if (ctx->ghash_in)
1448 		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1449 
1450 	return atmel_aes_gcm_ghash_finalize(dd);
1451 }
1452 
1453 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1454 {
1455 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1456 	u32 isr;
1457 
1458 	/* Write data into the Input Data Registers. */
1459 	while (dd->datalen > 0) {
1460 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1461 		dd->data += 4;
1462 		dd->datalen -= AES_BLOCK_SIZE;
1463 
1464 		isr = atmel_aes_read(dd, AES_ISR);
1465 		if (!(isr & AES_INT_DATARDY)) {
1466 			dd->resume = atmel_aes_gcm_ghash_finalize;
1467 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1468 			return -EINPROGRESS;
1469 		}
1470 	}
1471 
1472 	/* Read the computed hash from GHASHRx. */
1473 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1474 
1475 	return ctx->ghash_resume(dd);
1476 }
1477 
1478 
1479 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1480 {
1481 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1482 	struct aead_request *req = aead_request_cast(dd->areq);
1483 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1484 	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1485 	size_t ivsize = crypto_aead_ivsize(tfm);
1486 	size_t datalen, padlen;
1487 	const void *iv = req->iv;
1488 	u8 *data = dd->buf;
1489 	int err;
1490 
1491 	atmel_aes_set_mode(dd, rctx);
1492 
1493 	err = atmel_aes_hw_init(dd);
1494 	if (err)
1495 		return atmel_aes_complete(dd, err);
1496 
1497 	if (likely(ivsize == 12)) {
1498 		memcpy(ctx->j0, iv, ivsize);
1499 		ctx->j0[3] = cpu_to_be32(1);
1500 		return atmel_aes_gcm_process(dd);
1501 	}
1502 
1503 	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1504 	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1505 	if (datalen > dd->buflen)
1506 		return atmel_aes_complete(dd, -EINVAL);
1507 
1508 	memcpy(data, iv, ivsize);
1509 	memset(data + ivsize, 0, padlen + sizeof(u64));
1510 	((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1511 
1512 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1513 				   NULL, ctx->j0, atmel_aes_gcm_process);
1514 }
1515 
1516 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1517 {
1518 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1519 	struct aead_request *req = aead_request_cast(dd->areq);
1520 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1521 	bool enc = atmel_aes_is_encrypt(dd);
1522 	u32 authsize;
1523 
1524 	/* Compute text length. */
1525 	authsize = crypto_aead_authsize(tfm);
1526 	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1527 
1528 	/*
1529 	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1530 	 * fails when both the message and its associated data are empty.
1531 	 */
1532 	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1533 		dd->flags |= AES_FLAGS_GTAGEN;
1534 
1535 	atmel_aes_write_ctrl(dd, false, NULL);
1536 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1537 }
1538 
1539 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1540 {
1541 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1542 	struct aead_request *req = aead_request_cast(dd->areq);
1543 	u32 j0_lsw, *j0 = ctx->j0;
1544 	size_t padlen;
1545 
1546 	/* Write incr32(J0) into IV. */
1547 	j0_lsw = j0[3];
1548 	j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1549 	atmel_aes_write_block(dd, AES_IVR(0), j0);
1550 	j0[3] = j0_lsw;
1551 
1552 	/* Set aad and text lengths. */
1553 	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1554 	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1555 
1556 	/* Check whether AAD are present. */
1557 	if (unlikely(req->assoclen == 0)) {
1558 		dd->datalen = 0;
1559 		return atmel_aes_gcm_data(dd);
1560 	}
1561 
1562 	/* Copy assoc data and add padding. */
1563 	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1564 	if (unlikely(req->assoclen + padlen > dd->buflen))
1565 		return atmel_aes_complete(dd, -EINVAL);
1566 	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1567 
1568 	/* Write assoc data into the Input Data register. */
1569 	dd->data = (u32 *)dd->buf;
1570 	dd->datalen = req->assoclen + padlen;
1571 	return atmel_aes_gcm_data(dd);
1572 }
1573 
1574 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1575 {
1576 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1577 	struct aead_request *req = aead_request_cast(dd->areq);
1578 	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1579 	struct scatterlist *src, *dst;
1580 	u32 isr, mr;
1581 
1582 	/* Write AAD first. */
1583 	while (dd->datalen > 0) {
1584 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1585 		dd->data += 4;
1586 		dd->datalen -= AES_BLOCK_SIZE;
1587 
1588 		isr = atmel_aes_read(dd, AES_ISR);
1589 		if (!(isr & AES_INT_DATARDY)) {
1590 			dd->resume = atmel_aes_gcm_data;
1591 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1592 			return -EINPROGRESS;
1593 		}
1594 	}
1595 
1596 	/* GMAC only. */
1597 	if (unlikely(ctx->textlen == 0))
1598 		return atmel_aes_gcm_tag_init(dd);
1599 
1600 	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1601 	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1602 	dst = ((req->src == req->dst) ? src :
1603 	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1604 
1605 	if (use_dma) {
1606 		/* Update the Mode Register for DMA transfers. */
1607 		mr = atmel_aes_read(dd, AES_MR);
1608 		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1609 		mr |= AES_MR_SMOD_IDATAR0;
1610 		if (dd->caps.has_dualbuff)
1611 			mr |= AES_MR_DUALBUFF;
1612 		atmel_aes_write(dd, AES_MR, mr);
1613 
1614 		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1615 					   atmel_aes_gcm_tag_init);
1616 	}
1617 
1618 	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1619 				   atmel_aes_gcm_tag_init);
1620 }
1621 
1622 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1623 {
1624 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1625 	struct aead_request *req = aead_request_cast(dd->areq);
1626 	u64 *data = dd->buf;
1627 
1628 	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1629 		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1630 			dd->resume = atmel_aes_gcm_tag_init;
1631 			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1632 			return -EINPROGRESS;
1633 		}
1634 
1635 		return atmel_aes_gcm_finalize(dd);
1636 	}
1637 
1638 	/* Read the GCM Intermediate Hash Word Registers. */
1639 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1640 
1641 	data[0] = cpu_to_be64(req->assoclen * 8);
1642 	data[1] = cpu_to_be64(ctx->textlen * 8);
1643 
1644 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1645 				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1646 }
1647 
1648 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1649 {
1650 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1651 	unsigned long flags;
1652 
1653 	/*
1654 	 * Change mode to CTR to complete the tag generation.
1655 	 * Use J0 as Initialization Vector.
1656 	 */
1657 	flags = dd->flags;
1658 	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1659 	dd->flags |= AES_FLAGS_CTR;
1660 	atmel_aes_write_ctrl(dd, false, ctx->j0);
1661 	dd->flags = flags;
1662 
1663 	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1664 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1665 }
1666 
1667 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1668 {
1669 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1670 	struct aead_request *req = aead_request_cast(dd->areq);
1671 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1672 	bool enc = atmel_aes_is_encrypt(dd);
1673 	u32 offset, authsize, itag[4], *otag = ctx->tag;
1674 	int err;
1675 
1676 	/* Read the computed tag. */
1677 	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1678 		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1679 	else
1680 		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1681 
1682 	offset = req->assoclen + ctx->textlen;
1683 	authsize = crypto_aead_authsize(tfm);
1684 	if (enc) {
1685 		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1686 		err = 0;
1687 	} else {
1688 		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1689 		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1690 	}
1691 
1692 	return atmel_aes_complete(dd, err);
1693 }
1694 
1695 static int atmel_aes_gcm_crypt(struct aead_request *req,
1696 			       unsigned long mode)
1697 {
1698 	struct atmel_aes_base_ctx *ctx;
1699 	struct atmel_aes_reqctx *rctx;
1700 	struct atmel_aes_dev *dd;
1701 
1702 	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1703 	ctx->block_size = AES_BLOCK_SIZE;
1704 
1705 	dd = atmel_aes_find_dev(ctx);
1706 	if (!dd)
1707 		return -ENODEV;
1708 
1709 	rctx = aead_request_ctx(req);
1710 	rctx->mode = AES_FLAGS_GCM | mode;
1711 
1712 	return atmel_aes_handle_queue(dd, &req->base);
1713 }
1714 
1715 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1716 				unsigned int keylen)
1717 {
1718 	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1719 
1720 	if (keylen != AES_KEYSIZE_256 &&
1721 	    keylen != AES_KEYSIZE_192 &&
1722 	    keylen != AES_KEYSIZE_128) {
1723 		crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1724 		return -EINVAL;
1725 	}
1726 
1727 	memcpy(ctx->key, key, keylen);
1728 	ctx->keylen = keylen;
1729 
1730 	return 0;
1731 }
1732 
1733 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1734 				     unsigned int authsize)
1735 {
1736 	/* Same as crypto_gcm_authsize() from crypto/gcm.c */
1737 	switch (authsize) {
1738 	case 4:
1739 	case 8:
1740 	case 12:
1741 	case 13:
1742 	case 14:
1743 	case 15:
1744 	case 16:
1745 		break;
1746 	default:
1747 		return -EINVAL;
1748 	}
1749 
1750 	return 0;
1751 }
1752 
1753 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1754 {
1755 	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1756 }
1757 
1758 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1759 {
1760 	return atmel_aes_gcm_crypt(req, 0);
1761 }
1762 
1763 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1764 {
1765 	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1766 
1767 	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1768 	ctx->base.start = atmel_aes_gcm_start;
1769 
1770 	return 0;
1771 }
1772 
1773 static void atmel_aes_gcm_exit(struct crypto_aead *tfm)
1774 {
1775 
1776 }
1777 
1778 static struct aead_alg aes_gcm_alg = {
1779 	.setkey		= atmel_aes_gcm_setkey,
1780 	.setauthsize	= atmel_aes_gcm_setauthsize,
1781 	.encrypt	= atmel_aes_gcm_encrypt,
1782 	.decrypt	= atmel_aes_gcm_decrypt,
1783 	.init		= atmel_aes_gcm_init,
1784 	.exit		= atmel_aes_gcm_exit,
1785 	.ivsize		= 12,
1786 	.maxauthsize	= AES_BLOCK_SIZE,
1787 
1788 	.base = {
1789 		.cra_name		= "gcm(aes)",
1790 		.cra_driver_name	= "atmel-gcm-aes",
1791 		.cra_priority		= ATMEL_AES_PRIORITY,
1792 		.cra_flags		= CRYPTO_ALG_ASYNC,
1793 		.cra_blocksize		= 1,
1794 		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1795 		.cra_alignmask		= 0xf,
1796 		.cra_module		= THIS_MODULE,
1797 	},
1798 };
1799 
1800 
1801 /* xts functions */
1802 
1803 static inline struct atmel_aes_xts_ctx *
1804 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1805 {
1806 	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1807 }
1808 
1809 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1810 
1811 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1812 {
1813 	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1814 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1815 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1816 	unsigned long flags;
1817 	int err;
1818 
1819 	atmel_aes_set_mode(dd, rctx);
1820 
1821 	err = atmel_aes_hw_init(dd);
1822 	if (err)
1823 		return atmel_aes_complete(dd, err);
1824 
1825 	/* Compute the tweak value from req->info with ecb(aes). */
1826 	flags = dd->flags;
1827 	dd->flags &= ~AES_FLAGS_MODE_MASK;
1828 	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1829 	atmel_aes_write_ctrl_key(dd, false, NULL,
1830 				 ctx->key2, ctx->base.keylen);
1831 	dd->flags = flags;
1832 
1833 	atmel_aes_write_block(dd, AES_IDATAR(0), req->info);
1834 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1835 }
1836 
1837 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1838 {
1839 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1840 	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD);
1841 	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1842 	static const u32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1843 	u8 *tweak_bytes = (u8 *)tweak;
1844 	int i;
1845 
1846 	/* Read the computed ciphered tweak value. */
1847 	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1848 	/*
1849 	 * Hardware quirk:
1850 	 * the order of the ciphered tweak bytes need to be reversed before
1851 	 * writing them into the ODATARx registers.
1852 	 */
1853 	for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1854 		u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1855 
1856 		tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1857 		tweak_bytes[i] = tmp;
1858 	}
1859 
1860 	/* Process the data. */
1861 	atmel_aes_write_ctrl(dd, use_dma, NULL);
1862 	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1863 	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1864 	if (use_dma)
1865 		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
1866 					   atmel_aes_transfer_complete);
1867 
1868 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
1869 				   atmel_aes_transfer_complete);
1870 }
1871 
1872 static int atmel_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1873 				unsigned int keylen)
1874 {
1875 	struct atmel_aes_xts_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1876 	int err;
1877 
1878 	err = xts_check_key(crypto_ablkcipher_tfm(tfm), key, keylen);
1879 	if (err)
1880 		return err;
1881 
1882 	memcpy(ctx->base.key, key, keylen/2);
1883 	memcpy(ctx->key2, key + keylen/2, keylen/2);
1884 	ctx->base.keylen = keylen/2;
1885 
1886 	return 0;
1887 }
1888 
1889 static int atmel_aes_xts_encrypt(struct ablkcipher_request *req)
1890 {
1891 	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1892 }
1893 
1894 static int atmel_aes_xts_decrypt(struct ablkcipher_request *req)
1895 {
1896 	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1897 }
1898 
1899 static int atmel_aes_xts_cra_init(struct crypto_tfm *tfm)
1900 {
1901 	struct atmel_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
1902 
1903 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1904 	ctx->base.start = atmel_aes_xts_start;
1905 
1906 	return 0;
1907 }
1908 
1909 static struct crypto_alg aes_xts_alg = {
1910 	.cra_name		= "xts(aes)",
1911 	.cra_driver_name	= "atmel-xts-aes",
1912 	.cra_priority		= ATMEL_AES_PRIORITY,
1913 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1914 	.cra_blocksize		= AES_BLOCK_SIZE,
1915 	.cra_ctxsize		= sizeof(struct atmel_aes_xts_ctx),
1916 	.cra_alignmask		= 0xf,
1917 	.cra_type		= &crypto_ablkcipher_type,
1918 	.cra_module		= THIS_MODULE,
1919 	.cra_init		= atmel_aes_xts_cra_init,
1920 	.cra_exit		= atmel_aes_cra_exit,
1921 	.cra_u.ablkcipher = {
1922 		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1923 		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1924 		.ivsize		= AES_BLOCK_SIZE,
1925 		.setkey		= atmel_aes_xts_setkey,
1926 		.encrypt	= atmel_aes_xts_encrypt,
1927 		.decrypt	= atmel_aes_xts_decrypt,
1928 	}
1929 };
1930 
1931 
1932 /* Probe functions */
1933 
1934 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
1935 {
1936 	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
1937 	dd->buflen = ATMEL_AES_BUFFER_SIZE;
1938 	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
1939 
1940 	if (!dd->buf) {
1941 		dev_err(dd->dev, "unable to alloc pages.\n");
1942 		return -ENOMEM;
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
1949 {
1950 	free_page((unsigned long)dd->buf);
1951 }
1952 
1953 static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
1954 {
1955 	struct at_dma_slave	*sl = slave;
1956 
1957 	if (sl && sl->dma_dev == chan->device->dev) {
1958 		chan->private = sl;
1959 		return true;
1960 	} else {
1961 		return false;
1962 	}
1963 }
1964 
1965 static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
1966 			      struct crypto_platform_data *pdata)
1967 {
1968 	struct at_dma_slave *slave;
1969 	int err = -ENOMEM;
1970 	dma_cap_mask_t mask;
1971 
1972 	dma_cap_zero(mask);
1973 	dma_cap_set(DMA_SLAVE, mask);
1974 
1975 	/* Try to grab 2 DMA channels */
1976 	slave = &pdata->dma_slave->rxdata;
1977 	dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
1978 							slave, dd->dev, "tx");
1979 	if (!dd->src.chan)
1980 		goto err_dma_in;
1981 
1982 	slave = &pdata->dma_slave->txdata;
1983 	dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
1984 							slave, dd->dev, "rx");
1985 	if (!dd->dst.chan)
1986 		goto err_dma_out;
1987 
1988 	return 0;
1989 
1990 err_dma_out:
1991 	dma_release_channel(dd->src.chan);
1992 err_dma_in:
1993 	dev_warn(dd->dev, "no DMA channel available\n");
1994 	return err;
1995 }
1996 
1997 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
1998 {
1999 	dma_release_channel(dd->dst.chan);
2000 	dma_release_channel(dd->src.chan);
2001 }
2002 
2003 static void atmel_aes_queue_task(unsigned long data)
2004 {
2005 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2006 
2007 	atmel_aes_handle_queue(dd, NULL);
2008 }
2009 
2010 static void atmel_aes_done_task(unsigned long data)
2011 {
2012 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2013 
2014 	dd->is_async = true;
2015 	(void)dd->resume(dd);
2016 }
2017 
2018 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2019 {
2020 	struct atmel_aes_dev *aes_dd = dev_id;
2021 	u32 reg;
2022 
2023 	reg = atmel_aes_read(aes_dd, AES_ISR);
2024 	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2025 		atmel_aes_write(aes_dd, AES_IDR, reg);
2026 		if (AES_FLAGS_BUSY & aes_dd->flags)
2027 			tasklet_schedule(&aes_dd->done_task);
2028 		else
2029 			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2030 		return IRQ_HANDLED;
2031 	}
2032 
2033 	return IRQ_NONE;
2034 }
2035 
2036 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2037 {
2038 	int i;
2039 
2040 	if (dd->caps.has_xts)
2041 		crypto_unregister_alg(&aes_xts_alg);
2042 
2043 	if (dd->caps.has_gcm)
2044 		crypto_unregister_aead(&aes_gcm_alg);
2045 
2046 	if (dd->caps.has_cfb64)
2047 		crypto_unregister_alg(&aes_cfb64_alg);
2048 
2049 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2050 		crypto_unregister_alg(&aes_algs[i]);
2051 }
2052 
2053 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2054 {
2055 	int err, i, j;
2056 
2057 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2058 		err = crypto_register_alg(&aes_algs[i]);
2059 		if (err)
2060 			goto err_aes_algs;
2061 	}
2062 
2063 	if (dd->caps.has_cfb64) {
2064 		err = crypto_register_alg(&aes_cfb64_alg);
2065 		if (err)
2066 			goto err_aes_cfb64_alg;
2067 	}
2068 
2069 	if (dd->caps.has_gcm) {
2070 		err = crypto_register_aead(&aes_gcm_alg);
2071 		if (err)
2072 			goto err_aes_gcm_alg;
2073 	}
2074 
2075 	if (dd->caps.has_xts) {
2076 		err = crypto_register_alg(&aes_xts_alg);
2077 		if (err)
2078 			goto err_aes_xts_alg;
2079 	}
2080 
2081 	return 0;
2082 
2083 err_aes_xts_alg:
2084 	crypto_unregister_aead(&aes_gcm_alg);
2085 err_aes_gcm_alg:
2086 	crypto_unregister_alg(&aes_cfb64_alg);
2087 err_aes_cfb64_alg:
2088 	i = ARRAY_SIZE(aes_algs);
2089 err_aes_algs:
2090 	for (j = 0; j < i; j++)
2091 		crypto_unregister_alg(&aes_algs[j]);
2092 
2093 	return err;
2094 }
2095 
2096 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2097 {
2098 	dd->caps.has_dualbuff = 0;
2099 	dd->caps.has_cfb64 = 0;
2100 	dd->caps.has_ctr32 = 0;
2101 	dd->caps.has_gcm = 0;
2102 	dd->caps.has_xts = 0;
2103 	dd->caps.max_burst_size = 1;
2104 
2105 	/* keep only major version number */
2106 	switch (dd->hw_version & 0xff0) {
2107 	case 0x500:
2108 		dd->caps.has_dualbuff = 1;
2109 		dd->caps.has_cfb64 = 1;
2110 		dd->caps.has_ctr32 = 1;
2111 		dd->caps.has_gcm = 1;
2112 		dd->caps.has_xts = 1;
2113 		dd->caps.max_burst_size = 4;
2114 		break;
2115 	case 0x200:
2116 		dd->caps.has_dualbuff = 1;
2117 		dd->caps.has_cfb64 = 1;
2118 		dd->caps.has_ctr32 = 1;
2119 		dd->caps.has_gcm = 1;
2120 		dd->caps.max_burst_size = 4;
2121 		break;
2122 	case 0x130:
2123 		dd->caps.has_dualbuff = 1;
2124 		dd->caps.has_cfb64 = 1;
2125 		dd->caps.max_burst_size = 4;
2126 		break;
2127 	case 0x120:
2128 		break;
2129 	default:
2130 		dev_warn(dd->dev,
2131 				"Unmanaged aes version, set minimum capabilities\n");
2132 		break;
2133 	}
2134 }
2135 
2136 #if defined(CONFIG_OF)
2137 static const struct of_device_id atmel_aes_dt_ids[] = {
2138 	{ .compatible = "atmel,at91sam9g46-aes" },
2139 	{ /* sentinel */ }
2140 };
2141 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2142 
2143 static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2144 {
2145 	struct device_node *np = pdev->dev.of_node;
2146 	struct crypto_platform_data *pdata;
2147 
2148 	if (!np) {
2149 		dev_err(&pdev->dev, "device node not found\n");
2150 		return ERR_PTR(-EINVAL);
2151 	}
2152 
2153 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2154 	if (!pdata) {
2155 		dev_err(&pdev->dev, "could not allocate memory for pdata\n");
2156 		return ERR_PTR(-ENOMEM);
2157 	}
2158 
2159 	pdata->dma_slave = devm_kzalloc(&pdev->dev,
2160 					sizeof(*(pdata->dma_slave)),
2161 					GFP_KERNEL);
2162 	if (!pdata->dma_slave) {
2163 		dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
2164 		devm_kfree(&pdev->dev, pdata);
2165 		return ERR_PTR(-ENOMEM);
2166 	}
2167 
2168 	return pdata;
2169 }
2170 #else
2171 static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2172 {
2173 	return ERR_PTR(-EINVAL);
2174 }
2175 #endif
2176 
2177 static int atmel_aes_probe(struct platform_device *pdev)
2178 {
2179 	struct atmel_aes_dev *aes_dd;
2180 	struct crypto_platform_data *pdata;
2181 	struct device *dev = &pdev->dev;
2182 	struct resource *aes_res;
2183 	int err;
2184 
2185 	pdata = pdev->dev.platform_data;
2186 	if (!pdata) {
2187 		pdata = atmel_aes_of_init(pdev);
2188 		if (IS_ERR(pdata)) {
2189 			err = PTR_ERR(pdata);
2190 			goto aes_dd_err;
2191 		}
2192 	}
2193 
2194 	if (!pdata->dma_slave) {
2195 		err = -ENXIO;
2196 		goto aes_dd_err;
2197 	}
2198 
2199 	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2200 	if (aes_dd == NULL) {
2201 		dev_err(dev, "unable to alloc data struct.\n");
2202 		err = -ENOMEM;
2203 		goto aes_dd_err;
2204 	}
2205 
2206 	aes_dd->dev = dev;
2207 
2208 	platform_set_drvdata(pdev, aes_dd);
2209 
2210 	INIT_LIST_HEAD(&aes_dd->list);
2211 	spin_lock_init(&aes_dd->lock);
2212 
2213 	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2214 					(unsigned long)aes_dd);
2215 	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2216 					(unsigned long)aes_dd);
2217 
2218 	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2219 
2220 	aes_dd->irq = -1;
2221 
2222 	/* Get the base address */
2223 	aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2224 	if (!aes_res) {
2225 		dev_err(dev, "no MEM resource info\n");
2226 		err = -ENODEV;
2227 		goto res_err;
2228 	}
2229 	aes_dd->phys_base = aes_res->start;
2230 
2231 	/* Get the IRQ */
2232 	aes_dd->irq = platform_get_irq(pdev,  0);
2233 	if (aes_dd->irq < 0) {
2234 		dev_err(dev, "no IRQ resource info\n");
2235 		err = aes_dd->irq;
2236 		goto res_err;
2237 	}
2238 
2239 	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2240 			       IRQF_SHARED, "atmel-aes", aes_dd);
2241 	if (err) {
2242 		dev_err(dev, "unable to request aes irq.\n");
2243 		goto res_err;
2244 	}
2245 
2246 	/* Initializing the clock */
2247 	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2248 	if (IS_ERR(aes_dd->iclk)) {
2249 		dev_err(dev, "clock initialization failed.\n");
2250 		err = PTR_ERR(aes_dd->iclk);
2251 		goto res_err;
2252 	}
2253 
2254 	aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2255 	if (IS_ERR(aes_dd->io_base)) {
2256 		dev_err(dev, "can't ioremap\n");
2257 		err = PTR_ERR(aes_dd->io_base);
2258 		goto res_err;
2259 	}
2260 
2261 	err = clk_prepare(aes_dd->iclk);
2262 	if (err)
2263 		goto res_err;
2264 
2265 	err = atmel_aes_hw_version_init(aes_dd);
2266 	if (err)
2267 		goto iclk_unprepare;
2268 
2269 	atmel_aes_get_cap(aes_dd);
2270 
2271 	err = atmel_aes_buff_init(aes_dd);
2272 	if (err)
2273 		goto err_aes_buff;
2274 
2275 	err = atmel_aes_dma_init(aes_dd, pdata);
2276 	if (err)
2277 		goto err_aes_dma;
2278 
2279 	spin_lock(&atmel_aes.lock);
2280 	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2281 	spin_unlock(&atmel_aes.lock);
2282 
2283 	err = atmel_aes_register_algs(aes_dd);
2284 	if (err)
2285 		goto err_algs;
2286 
2287 	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2288 			dma_chan_name(aes_dd->src.chan),
2289 			dma_chan_name(aes_dd->dst.chan));
2290 
2291 	return 0;
2292 
2293 err_algs:
2294 	spin_lock(&atmel_aes.lock);
2295 	list_del(&aes_dd->list);
2296 	spin_unlock(&atmel_aes.lock);
2297 	atmel_aes_dma_cleanup(aes_dd);
2298 err_aes_dma:
2299 	atmel_aes_buff_cleanup(aes_dd);
2300 err_aes_buff:
2301 iclk_unprepare:
2302 	clk_unprepare(aes_dd->iclk);
2303 res_err:
2304 	tasklet_kill(&aes_dd->done_task);
2305 	tasklet_kill(&aes_dd->queue_task);
2306 aes_dd_err:
2307 	dev_err(dev, "initialization failed.\n");
2308 
2309 	return err;
2310 }
2311 
2312 static int atmel_aes_remove(struct platform_device *pdev)
2313 {
2314 	struct atmel_aes_dev *aes_dd;
2315 
2316 	aes_dd = platform_get_drvdata(pdev);
2317 	if (!aes_dd)
2318 		return -ENODEV;
2319 	spin_lock(&atmel_aes.lock);
2320 	list_del(&aes_dd->list);
2321 	spin_unlock(&atmel_aes.lock);
2322 
2323 	atmel_aes_unregister_algs(aes_dd);
2324 
2325 	tasklet_kill(&aes_dd->done_task);
2326 	tasklet_kill(&aes_dd->queue_task);
2327 
2328 	atmel_aes_dma_cleanup(aes_dd);
2329 	atmel_aes_buff_cleanup(aes_dd);
2330 
2331 	clk_unprepare(aes_dd->iclk);
2332 
2333 	return 0;
2334 }
2335 
2336 static struct platform_driver atmel_aes_driver = {
2337 	.probe		= atmel_aes_probe,
2338 	.remove		= atmel_aes_remove,
2339 	.driver		= {
2340 		.name	= "atmel_aes",
2341 		.of_match_table = of_match_ptr(atmel_aes_dt_ids),
2342 	},
2343 };
2344 
2345 module_platform_driver(atmel_aes_driver);
2346 
2347 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2348 MODULE_LICENSE("GPL v2");
2349 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2350