1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Cryptographic API.
4 *
5 * Support for ATMEL AES HW acceleration.
6 *
7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8 * Author: Nicolas Royer <nicolas@eukrea.com>
9 *
10 * Some ideas are from omap-aes.c driver.
11 */
12
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/delay.h>
33 #include <linux/crypto.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/aes.h>
37 #include <crypto/gcm.h>
38 #include <crypto/xts.h>
39 #include <crypto/internal/aead.h>
40 #include <crypto/internal/skcipher.h>
41 #include "atmel-aes-regs.h"
42 #include "atmel-authenc.h"
43
44 #define ATMEL_AES_PRIORITY 300
45
46 #define ATMEL_AES_BUFFER_ORDER 2
47 #define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48
49 #define SIZE_IN_WORDS(x) ((x) >> 2)
50
51 /* AES flags */
52 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
53 #define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
54 #define AES_FLAGS_GTAGEN AES_MR_GTAGEN
55 #define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
56 #define AES_FLAGS_ECB AES_MR_OPMOD_ECB
57 #define AES_FLAGS_CBC AES_MR_OPMOD_CBC
58 #define AES_FLAGS_CTR AES_MR_OPMOD_CTR
59 #define AES_FLAGS_GCM AES_MR_OPMOD_GCM
60 #define AES_FLAGS_XTS AES_MR_OPMOD_XTS
61
62 #define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
63 AES_FLAGS_ENCRYPT | \
64 AES_FLAGS_GTAGEN)
65
66 #define AES_FLAGS_BUSY BIT(3)
67 #define AES_FLAGS_DUMP_REG BIT(4)
68 #define AES_FLAGS_OWN_SHA BIT(5)
69
70 #define AES_FLAGS_PERSISTENT AES_FLAGS_BUSY
71
72 #define ATMEL_AES_QUEUE_LENGTH 50
73
74 #define ATMEL_AES_DMA_THRESHOLD 256
75
76
77 struct atmel_aes_caps {
78 bool has_dualbuff;
79 bool has_gcm;
80 bool has_xts;
81 bool has_authenc;
82 u32 max_burst_size;
83 };
84
85 struct atmel_aes_dev;
86
87
88 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
89
90
91 struct atmel_aes_base_ctx {
92 struct atmel_aes_dev *dd;
93 atmel_aes_fn_t start;
94 int keylen;
95 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
96 u16 block_size;
97 bool is_aead;
98 };
99
100 struct atmel_aes_ctx {
101 struct atmel_aes_base_ctx base;
102 };
103
104 struct atmel_aes_ctr_ctx {
105 struct atmel_aes_base_ctx base;
106
107 __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
108 size_t offset;
109 struct scatterlist src[2];
110 struct scatterlist dst[2];
111 u32 blocks;
112 };
113
114 struct atmel_aes_gcm_ctx {
115 struct atmel_aes_base_ctx base;
116
117 struct scatterlist src[2];
118 struct scatterlist dst[2];
119
120 __be32 j0[AES_BLOCK_SIZE / sizeof(u32)];
121 u32 tag[AES_BLOCK_SIZE / sizeof(u32)];
122 __be32 ghash[AES_BLOCK_SIZE / sizeof(u32)];
123 size_t textlen;
124
125 const __be32 *ghash_in;
126 __be32 *ghash_out;
127 atmel_aes_fn_t ghash_resume;
128 };
129
130 struct atmel_aes_xts_ctx {
131 struct atmel_aes_base_ctx base;
132
133 u32 key2[AES_KEYSIZE_256 / sizeof(u32)];
134 struct crypto_skcipher *fallback_tfm;
135 };
136
137 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
138 struct atmel_aes_authenc_ctx {
139 struct atmel_aes_base_ctx base;
140 struct atmel_sha_authenc_ctx *auth;
141 };
142 #endif
143
144 struct atmel_aes_reqctx {
145 unsigned long mode;
146 u8 lastc[AES_BLOCK_SIZE];
147 struct skcipher_request fallback_req;
148 };
149
150 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
151 struct atmel_aes_authenc_reqctx {
152 struct atmel_aes_reqctx base;
153
154 struct scatterlist src[2];
155 struct scatterlist dst[2];
156 size_t textlen;
157 u32 digest[SHA512_DIGEST_SIZE / sizeof(u32)];
158
159 /* auth_req MUST be place last. */
160 struct ahash_request auth_req;
161 };
162 #endif
163
164 struct atmel_aes_dma {
165 struct dma_chan *chan;
166 struct scatterlist *sg;
167 int nents;
168 unsigned int remainder;
169 unsigned int sg_len;
170 };
171
172 struct atmel_aes_dev {
173 struct list_head list;
174 unsigned long phys_base;
175 void __iomem *io_base;
176
177 struct crypto_async_request *areq;
178 struct atmel_aes_base_ctx *ctx;
179
180 bool is_async;
181 atmel_aes_fn_t resume;
182 atmel_aes_fn_t cpu_transfer_complete;
183
184 struct device *dev;
185 struct clk *iclk;
186 int irq;
187
188 unsigned long flags;
189
190 spinlock_t lock;
191 struct crypto_queue queue;
192
193 struct tasklet_struct done_task;
194 struct tasklet_struct queue_task;
195
196 size_t total;
197 size_t datalen;
198 u32 *data;
199
200 struct atmel_aes_dma src;
201 struct atmel_aes_dma dst;
202
203 size_t buflen;
204 void *buf;
205 struct scatterlist aligned_sg;
206 struct scatterlist *real_dst;
207
208 struct atmel_aes_caps caps;
209
210 u32 hw_version;
211 };
212
213 struct atmel_aes_drv {
214 struct list_head dev_list;
215 spinlock_t lock;
216 };
217
218 static struct atmel_aes_drv atmel_aes = {
219 .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
220 .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
221 };
222
223 #ifdef VERBOSE_DEBUG
atmel_aes_reg_name(u32 offset,char * tmp,size_t sz)224 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
225 {
226 switch (offset) {
227 case AES_CR:
228 return "CR";
229
230 case AES_MR:
231 return "MR";
232
233 case AES_ISR:
234 return "ISR";
235
236 case AES_IMR:
237 return "IMR";
238
239 case AES_IER:
240 return "IER";
241
242 case AES_IDR:
243 return "IDR";
244
245 case AES_KEYWR(0):
246 case AES_KEYWR(1):
247 case AES_KEYWR(2):
248 case AES_KEYWR(3):
249 case AES_KEYWR(4):
250 case AES_KEYWR(5):
251 case AES_KEYWR(6):
252 case AES_KEYWR(7):
253 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
254 break;
255
256 case AES_IDATAR(0):
257 case AES_IDATAR(1):
258 case AES_IDATAR(2):
259 case AES_IDATAR(3):
260 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
261 break;
262
263 case AES_ODATAR(0):
264 case AES_ODATAR(1):
265 case AES_ODATAR(2):
266 case AES_ODATAR(3):
267 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
268 break;
269
270 case AES_IVR(0):
271 case AES_IVR(1):
272 case AES_IVR(2):
273 case AES_IVR(3):
274 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
275 break;
276
277 case AES_AADLENR:
278 return "AADLENR";
279
280 case AES_CLENR:
281 return "CLENR";
282
283 case AES_GHASHR(0):
284 case AES_GHASHR(1):
285 case AES_GHASHR(2):
286 case AES_GHASHR(3):
287 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
288 break;
289
290 case AES_TAGR(0):
291 case AES_TAGR(1):
292 case AES_TAGR(2):
293 case AES_TAGR(3):
294 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
295 break;
296
297 case AES_CTRR:
298 return "CTRR";
299
300 case AES_GCMHR(0):
301 case AES_GCMHR(1):
302 case AES_GCMHR(2):
303 case AES_GCMHR(3):
304 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
305 break;
306
307 case AES_EMR:
308 return "EMR";
309
310 case AES_TWR(0):
311 case AES_TWR(1):
312 case AES_TWR(2):
313 case AES_TWR(3):
314 snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
315 break;
316
317 case AES_ALPHAR(0):
318 case AES_ALPHAR(1):
319 case AES_ALPHAR(2):
320 case AES_ALPHAR(3):
321 snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
322 break;
323
324 default:
325 snprintf(tmp, sz, "0x%02x", offset);
326 break;
327 }
328
329 return tmp;
330 }
331 #endif /* VERBOSE_DEBUG */
332
333 /* Shared functions */
334
atmel_aes_read(struct atmel_aes_dev * dd,u32 offset)335 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
336 {
337 u32 value = readl_relaxed(dd->io_base + offset);
338
339 #ifdef VERBOSE_DEBUG
340 if (dd->flags & AES_FLAGS_DUMP_REG) {
341 char tmp[16];
342
343 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
344 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
345 }
346 #endif /* VERBOSE_DEBUG */
347
348 return value;
349 }
350
atmel_aes_write(struct atmel_aes_dev * dd,u32 offset,u32 value)351 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
352 u32 offset, u32 value)
353 {
354 #ifdef VERBOSE_DEBUG
355 if (dd->flags & AES_FLAGS_DUMP_REG) {
356 char tmp[16];
357
358 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
359 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
360 }
361 #endif /* VERBOSE_DEBUG */
362
363 writel_relaxed(value, dd->io_base + offset);
364 }
365
atmel_aes_read_n(struct atmel_aes_dev * dd,u32 offset,u32 * value,int count)366 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
367 u32 *value, int count)
368 {
369 for (; count--; value++, offset += 4)
370 *value = atmel_aes_read(dd, offset);
371 }
372
atmel_aes_write_n(struct atmel_aes_dev * dd,u32 offset,const u32 * value,int count)373 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
374 const u32 *value, int count)
375 {
376 for (; count--; value++, offset += 4)
377 atmel_aes_write(dd, offset, *value);
378 }
379
atmel_aes_read_block(struct atmel_aes_dev * dd,u32 offset,void * value)380 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
381 void *value)
382 {
383 atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
384 }
385
atmel_aes_write_block(struct atmel_aes_dev * dd,u32 offset,const void * value)386 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
387 const void *value)
388 {
389 atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
390 }
391
atmel_aes_wait_for_data_ready(struct atmel_aes_dev * dd,atmel_aes_fn_t resume)392 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
393 atmel_aes_fn_t resume)
394 {
395 u32 isr = atmel_aes_read(dd, AES_ISR);
396
397 if (unlikely(isr & AES_INT_DATARDY))
398 return resume(dd);
399
400 dd->resume = resume;
401 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
402 return -EINPROGRESS;
403 }
404
atmel_aes_padlen(size_t len,size_t block_size)405 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
406 {
407 len &= block_size - 1;
408 return len ? block_size - len : 0;
409 }
410
atmel_aes_dev_alloc(struct atmel_aes_base_ctx * ctx)411 static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
412 {
413 struct atmel_aes_dev *aes_dd;
414
415 spin_lock_bh(&atmel_aes.lock);
416 /* One AES IP per SoC. */
417 aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
418 struct atmel_aes_dev, list);
419 spin_unlock_bh(&atmel_aes.lock);
420 return aes_dd;
421 }
422
atmel_aes_hw_init(struct atmel_aes_dev * dd)423 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
424 {
425 int err;
426
427 err = clk_enable(dd->iclk);
428 if (err)
429 return err;
430
431 atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
432 atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
433
434 return 0;
435 }
436
atmel_aes_get_version(struct atmel_aes_dev * dd)437 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
438 {
439 return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
440 }
441
atmel_aes_hw_version_init(struct atmel_aes_dev * dd)442 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
443 {
444 int err;
445
446 err = atmel_aes_hw_init(dd);
447 if (err)
448 return err;
449
450 dd->hw_version = atmel_aes_get_version(dd);
451
452 dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
453
454 clk_disable(dd->iclk);
455 return 0;
456 }
457
atmel_aes_set_mode(struct atmel_aes_dev * dd,const struct atmel_aes_reqctx * rctx)458 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
459 const struct atmel_aes_reqctx *rctx)
460 {
461 /* Clear all but persistent flags and set request flags. */
462 dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
463 }
464
atmel_aes_is_encrypt(const struct atmel_aes_dev * dd)465 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
466 {
467 return (dd->flags & AES_FLAGS_ENCRYPT);
468 }
469
470 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
471 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
472 #endif
473
atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev * dd)474 static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
475 {
476 struct skcipher_request *req = skcipher_request_cast(dd->areq);
477 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
478 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
479 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
480
481 if (req->cryptlen < ivsize)
482 return;
483
484 if (rctx->mode & AES_FLAGS_ENCRYPT)
485 scatterwalk_map_and_copy(req->iv, req->dst,
486 req->cryptlen - ivsize, ivsize, 0);
487 else
488 memcpy(req->iv, rctx->lastc, ivsize);
489 }
490
491 static inline struct atmel_aes_ctr_ctx *
atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx * ctx)492 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
493 {
494 return container_of(ctx, struct atmel_aes_ctr_ctx, base);
495 }
496
atmel_aes_ctr_update_req_iv(struct atmel_aes_dev * dd)497 static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
498 {
499 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
500 struct skcipher_request *req = skcipher_request_cast(dd->areq);
501 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
502 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
503 int i;
504
505 /*
506 * The CTR transfer works in fragments of data of maximum 1 MByte
507 * because of the 16 bit CTR counter embedded in the IP. When reaching
508 * here, ctx->blocks contains the number of blocks of the last fragment
509 * processed, there is no need to explicit cast it to u16.
510 */
511 for (i = 0; i < ctx->blocks; i++)
512 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
513
514 memcpy(req->iv, ctx->iv, ivsize);
515 }
516
atmel_aes_complete(struct atmel_aes_dev * dd,int err)517 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
518 {
519 struct skcipher_request *req = skcipher_request_cast(dd->areq);
520 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
521
522 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
523 if (dd->ctx->is_aead)
524 atmel_aes_authenc_complete(dd, err);
525 #endif
526
527 clk_disable(dd->iclk);
528 dd->flags &= ~AES_FLAGS_BUSY;
529
530 if (!err && !dd->ctx->is_aead &&
531 (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
532 if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
533 atmel_aes_set_iv_as_last_ciphertext_block(dd);
534 else
535 atmel_aes_ctr_update_req_iv(dd);
536 }
537
538 if (dd->is_async)
539 crypto_request_complete(dd->areq, err);
540
541 tasklet_schedule(&dd->queue_task);
542
543 return err;
544 }
545
atmel_aes_write_ctrl_key(struct atmel_aes_dev * dd,bool use_dma,const __be32 * iv,const u32 * key,int keylen)546 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
547 const __be32 *iv, const u32 *key, int keylen)
548 {
549 u32 valmr = 0;
550
551 /* MR register must be set before IV registers */
552 if (keylen == AES_KEYSIZE_128)
553 valmr |= AES_MR_KEYSIZE_128;
554 else if (keylen == AES_KEYSIZE_192)
555 valmr |= AES_MR_KEYSIZE_192;
556 else
557 valmr |= AES_MR_KEYSIZE_256;
558
559 valmr |= dd->flags & AES_FLAGS_MODE_MASK;
560
561 if (use_dma) {
562 valmr |= AES_MR_SMOD_IDATAR0;
563 if (dd->caps.has_dualbuff)
564 valmr |= AES_MR_DUALBUFF;
565 } else {
566 valmr |= AES_MR_SMOD_AUTO;
567 }
568
569 atmel_aes_write(dd, AES_MR, valmr);
570
571 atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
572
573 if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
574 atmel_aes_write_block(dd, AES_IVR(0), iv);
575 }
576
atmel_aes_write_ctrl(struct atmel_aes_dev * dd,bool use_dma,const __be32 * iv)577 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
578 const __be32 *iv)
579
580 {
581 atmel_aes_write_ctrl_key(dd, use_dma, iv,
582 dd->ctx->key, dd->ctx->keylen);
583 }
584
585 /* CPU transfer */
586
atmel_aes_cpu_transfer(struct atmel_aes_dev * dd)587 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
588 {
589 int err = 0;
590 u32 isr;
591
592 for (;;) {
593 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
594 dd->data += 4;
595 dd->datalen -= AES_BLOCK_SIZE;
596
597 if (dd->datalen < AES_BLOCK_SIZE)
598 break;
599
600 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
601
602 isr = atmel_aes_read(dd, AES_ISR);
603 if (!(isr & AES_INT_DATARDY)) {
604 dd->resume = atmel_aes_cpu_transfer;
605 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
606 return -EINPROGRESS;
607 }
608 }
609
610 if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
611 dd->buf, dd->total))
612 err = -EINVAL;
613
614 if (err)
615 return atmel_aes_complete(dd, err);
616
617 return dd->cpu_transfer_complete(dd);
618 }
619
atmel_aes_cpu_start(struct atmel_aes_dev * dd,struct scatterlist * src,struct scatterlist * dst,size_t len,atmel_aes_fn_t resume)620 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
621 struct scatterlist *src,
622 struct scatterlist *dst,
623 size_t len,
624 atmel_aes_fn_t resume)
625 {
626 size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
627
628 if (unlikely(len == 0))
629 return -EINVAL;
630
631 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
632
633 dd->total = len;
634 dd->real_dst = dst;
635 dd->cpu_transfer_complete = resume;
636 dd->datalen = len + padlen;
637 dd->data = (u32 *)dd->buf;
638 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
639 return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
640 }
641
642
643 /* DMA transfer */
644
645 static void atmel_aes_dma_callback(void *data);
646
atmel_aes_check_aligned(struct atmel_aes_dev * dd,struct scatterlist * sg,size_t len,struct atmel_aes_dma * dma)647 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
648 struct scatterlist *sg,
649 size_t len,
650 struct atmel_aes_dma *dma)
651 {
652 int nents;
653
654 if (!IS_ALIGNED(len, dd->ctx->block_size))
655 return false;
656
657 for (nents = 0; sg; sg = sg_next(sg), ++nents) {
658 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
659 return false;
660
661 if (len <= sg->length) {
662 if (!IS_ALIGNED(len, dd->ctx->block_size))
663 return false;
664
665 dma->nents = nents+1;
666 dma->remainder = sg->length - len;
667 sg->length = len;
668 return true;
669 }
670
671 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
672 return false;
673
674 len -= sg->length;
675 }
676
677 return false;
678 }
679
atmel_aes_restore_sg(const struct atmel_aes_dma * dma)680 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
681 {
682 struct scatterlist *sg = dma->sg;
683 int nents = dma->nents;
684
685 if (!dma->remainder)
686 return;
687
688 while (--nents > 0 && sg)
689 sg = sg_next(sg);
690
691 if (!sg)
692 return;
693
694 sg->length += dma->remainder;
695 }
696
atmel_aes_map(struct atmel_aes_dev * dd,struct scatterlist * src,struct scatterlist * dst,size_t len)697 static int atmel_aes_map(struct atmel_aes_dev *dd,
698 struct scatterlist *src,
699 struct scatterlist *dst,
700 size_t len)
701 {
702 bool src_aligned, dst_aligned;
703 size_t padlen;
704
705 dd->total = len;
706 dd->src.sg = src;
707 dd->dst.sg = dst;
708 dd->real_dst = dst;
709
710 src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
711 if (src == dst)
712 dst_aligned = src_aligned;
713 else
714 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
715 if (!src_aligned || !dst_aligned) {
716 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
717
718 if (dd->buflen < len + padlen)
719 return -ENOMEM;
720
721 if (!src_aligned) {
722 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
723 dd->src.sg = &dd->aligned_sg;
724 dd->src.nents = 1;
725 dd->src.remainder = 0;
726 }
727
728 if (!dst_aligned) {
729 dd->dst.sg = &dd->aligned_sg;
730 dd->dst.nents = 1;
731 dd->dst.remainder = 0;
732 }
733
734 sg_init_table(&dd->aligned_sg, 1);
735 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
736 }
737
738 if (dd->src.sg == dd->dst.sg) {
739 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
740 DMA_BIDIRECTIONAL);
741 dd->dst.sg_len = dd->src.sg_len;
742 if (!dd->src.sg_len)
743 return -EFAULT;
744 } else {
745 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
746 DMA_TO_DEVICE);
747 if (!dd->src.sg_len)
748 return -EFAULT;
749
750 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
751 DMA_FROM_DEVICE);
752 if (!dd->dst.sg_len) {
753 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
754 DMA_TO_DEVICE);
755 return -EFAULT;
756 }
757 }
758
759 return 0;
760 }
761
atmel_aes_unmap(struct atmel_aes_dev * dd)762 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
763 {
764 if (dd->src.sg == dd->dst.sg) {
765 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
766 DMA_BIDIRECTIONAL);
767
768 if (dd->src.sg != &dd->aligned_sg)
769 atmel_aes_restore_sg(&dd->src);
770 } else {
771 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
772 DMA_FROM_DEVICE);
773
774 if (dd->dst.sg != &dd->aligned_sg)
775 atmel_aes_restore_sg(&dd->dst);
776
777 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
778 DMA_TO_DEVICE);
779
780 if (dd->src.sg != &dd->aligned_sg)
781 atmel_aes_restore_sg(&dd->src);
782 }
783
784 if (dd->dst.sg == &dd->aligned_sg)
785 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
786 dd->buf, dd->total);
787 }
788
atmel_aes_dma_transfer_start(struct atmel_aes_dev * dd,enum dma_slave_buswidth addr_width,enum dma_transfer_direction dir,u32 maxburst)789 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
790 enum dma_slave_buswidth addr_width,
791 enum dma_transfer_direction dir,
792 u32 maxburst)
793 {
794 struct dma_async_tx_descriptor *desc;
795 struct dma_slave_config config;
796 dma_async_tx_callback callback;
797 struct atmel_aes_dma *dma;
798 int err;
799
800 memset(&config, 0, sizeof(config));
801 config.src_addr_width = addr_width;
802 config.dst_addr_width = addr_width;
803 config.src_maxburst = maxburst;
804 config.dst_maxburst = maxburst;
805
806 switch (dir) {
807 case DMA_MEM_TO_DEV:
808 dma = &dd->src;
809 callback = NULL;
810 config.dst_addr = dd->phys_base + AES_IDATAR(0);
811 break;
812
813 case DMA_DEV_TO_MEM:
814 dma = &dd->dst;
815 callback = atmel_aes_dma_callback;
816 config.src_addr = dd->phys_base + AES_ODATAR(0);
817 break;
818
819 default:
820 return -EINVAL;
821 }
822
823 err = dmaengine_slave_config(dma->chan, &config);
824 if (err)
825 return err;
826
827 desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
828 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
829 if (!desc)
830 return -ENOMEM;
831
832 desc->callback = callback;
833 desc->callback_param = dd;
834 dmaengine_submit(desc);
835 dma_async_issue_pending(dma->chan);
836
837 return 0;
838 }
839
atmel_aes_dma_start(struct atmel_aes_dev * dd,struct scatterlist * src,struct scatterlist * dst,size_t len,atmel_aes_fn_t resume)840 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
841 struct scatterlist *src,
842 struct scatterlist *dst,
843 size_t len,
844 atmel_aes_fn_t resume)
845 {
846 enum dma_slave_buswidth addr_width;
847 u32 maxburst;
848 int err;
849
850 switch (dd->ctx->block_size) {
851 case AES_BLOCK_SIZE:
852 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
853 maxburst = dd->caps.max_burst_size;
854 break;
855
856 default:
857 err = -EINVAL;
858 goto exit;
859 }
860
861 err = atmel_aes_map(dd, src, dst, len);
862 if (err)
863 goto exit;
864
865 dd->resume = resume;
866
867 /* Set output DMA transfer first */
868 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
869 maxburst);
870 if (err)
871 goto unmap;
872
873 /* Then set input DMA transfer */
874 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
875 maxburst);
876 if (err)
877 goto output_transfer_stop;
878
879 return -EINPROGRESS;
880
881 output_transfer_stop:
882 dmaengine_terminate_sync(dd->dst.chan);
883 unmap:
884 atmel_aes_unmap(dd);
885 exit:
886 return atmel_aes_complete(dd, err);
887 }
888
atmel_aes_dma_callback(void * data)889 static void atmel_aes_dma_callback(void *data)
890 {
891 struct atmel_aes_dev *dd = data;
892
893 atmel_aes_unmap(dd);
894 dd->is_async = true;
895 (void)dd->resume(dd);
896 }
897
atmel_aes_handle_queue(struct atmel_aes_dev * dd,struct crypto_async_request * new_areq)898 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
899 struct crypto_async_request *new_areq)
900 {
901 struct crypto_async_request *areq, *backlog;
902 struct atmel_aes_base_ctx *ctx;
903 unsigned long flags;
904 bool start_async;
905 int err, ret = 0;
906
907 spin_lock_irqsave(&dd->lock, flags);
908 if (new_areq)
909 ret = crypto_enqueue_request(&dd->queue, new_areq);
910 if (dd->flags & AES_FLAGS_BUSY) {
911 spin_unlock_irqrestore(&dd->lock, flags);
912 return ret;
913 }
914 backlog = crypto_get_backlog(&dd->queue);
915 areq = crypto_dequeue_request(&dd->queue);
916 if (areq)
917 dd->flags |= AES_FLAGS_BUSY;
918 spin_unlock_irqrestore(&dd->lock, flags);
919
920 if (!areq)
921 return ret;
922
923 if (backlog)
924 crypto_request_complete(backlog, -EINPROGRESS);
925
926 ctx = crypto_tfm_ctx(areq->tfm);
927
928 dd->areq = areq;
929 dd->ctx = ctx;
930 start_async = (areq != new_areq);
931 dd->is_async = start_async;
932
933 /* WARNING: ctx->start() MAY change dd->is_async. */
934 err = ctx->start(dd);
935 return (start_async) ? ret : err;
936 }
937
938
939 /* AES async block ciphers */
940
atmel_aes_transfer_complete(struct atmel_aes_dev * dd)941 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
942 {
943 return atmel_aes_complete(dd, 0);
944 }
945
atmel_aes_start(struct atmel_aes_dev * dd)946 static int atmel_aes_start(struct atmel_aes_dev *dd)
947 {
948 struct skcipher_request *req = skcipher_request_cast(dd->areq);
949 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
950 bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
951 dd->ctx->block_size != AES_BLOCK_SIZE);
952 int err;
953
954 atmel_aes_set_mode(dd, rctx);
955
956 err = atmel_aes_hw_init(dd);
957 if (err)
958 return atmel_aes_complete(dd, err);
959
960 atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
961 if (use_dma)
962 return atmel_aes_dma_start(dd, req->src, req->dst,
963 req->cryptlen,
964 atmel_aes_transfer_complete);
965
966 return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
967 atmel_aes_transfer_complete);
968 }
969
atmel_aes_ctr_transfer(struct atmel_aes_dev * dd)970 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
971 {
972 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
973 struct skcipher_request *req = skcipher_request_cast(dd->areq);
974 struct scatterlist *src, *dst;
975 size_t datalen;
976 u32 ctr;
977 u16 start, end;
978 bool use_dma, fragmented = false;
979
980 /* Check for transfer completion. */
981 ctx->offset += dd->total;
982 if (ctx->offset >= req->cryptlen)
983 return atmel_aes_transfer_complete(dd);
984
985 /* Compute data length. */
986 datalen = req->cryptlen - ctx->offset;
987 ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
988 ctr = be32_to_cpu(ctx->iv[3]);
989
990 /* Check 16bit counter overflow. */
991 start = ctr & 0xffff;
992 end = start + ctx->blocks - 1;
993
994 if (ctx->blocks >> 16 || end < start) {
995 ctr |= 0xffff;
996 datalen = AES_BLOCK_SIZE * (0x10000 - start);
997 fragmented = true;
998 }
999
1000 use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1001
1002 /* Jump to offset. */
1003 src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1004 dst = ((req->src == req->dst) ? src :
1005 scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1006
1007 /* Configure hardware. */
1008 atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1009 if (unlikely(fragmented)) {
1010 /*
1011 * Increment the counter manually to cope with the hardware
1012 * counter overflow.
1013 */
1014 ctx->iv[3] = cpu_to_be32(ctr);
1015 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1016 }
1017
1018 if (use_dma)
1019 return atmel_aes_dma_start(dd, src, dst, datalen,
1020 atmel_aes_ctr_transfer);
1021
1022 return atmel_aes_cpu_start(dd, src, dst, datalen,
1023 atmel_aes_ctr_transfer);
1024 }
1025
atmel_aes_ctr_start(struct atmel_aes_dev * dd)1026 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1027 {
1028 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1029 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1030 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1031 int err;
1032
1033 atmel_aes_set_mode(dd, rctx);
1034
1035 err = atmel_aes_hw_init(dd);
1036 if (err)
1037 return atmel_aes_complete(dd, err);
1038
1039 memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1040 ctx->offset = 0;
1041 dd->total = 0;
1042 return atmel_aes_ctr_transfer(dd);
1043 }
1044
atmel_aes_xts_fallback(struct skcipher_request * req,bool enc)1045 static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1046 {
1047 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1048 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1049 crypto_skcipher_reqtfm(req));
1050
1051 skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1052 skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1053 req->base.complete, req->base.data);
1054 skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1055 req->cryptlen, req->iv);
1056
1057 return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1058 crypto_skcipher_decrypt(&rctx->fallback_req);
1059 }
1060
atmel_aes_crypt(struct skcipher_request * req,unsigned long mode)1061 static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1062 {
1063 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1064 struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1065 struct atmel_aes_reqctx *rctx;
1066 u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1067
1068 if (opmode == AES_FLAGS_XTS) {
1069 if (req->cryptlen < XTS_BLOCK_SIZE)
1070 return -EINVAL;
1071
1072 if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1073 return atmel_aes_xts_fallback(req,
1074 mode & AES_FLAGS_ENCRYPT);
1075 }
1076
1077 /*
1078 * ECB, CBC or CTR mode require the plaintext and ciphertext
1079 * to have a positve integer length.
1080 */
1081 if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1082 return 0;
1083
1084 if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1085 !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1086 return -EINVAL;
1087
1088 ctx->block_size = AES_BLOCK_SIZE;
1089 ctx->is_aead = false;
1090
1091 rctx = skcipher_request_ctx(req);
1092 rctx->mode = mode;
1093
1094 if (opmode != AES_FLAGS_ECB &&
1095 !(mode & AES_FLAGS_ENCRYPT)) {
1096 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1097
1098 if (req->cryptlen >= ivsize)
1099 scatterwalk_map_and_copy(rctx->lastc, req->src,
1100 req->cryptlen - ivsize,
1101 ivsize, 0);
1102 }
1103
1104 return atmel_aes_handle_queue(ctx->dd, &req->base);
1105 }
1106
atmel_aes_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)1107 static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1108 unsigned int keylen)
1109 {
1110 struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1111
1112 if (keylen != AES_KEYSIZE_128 &&
1113 keylen != AES_KEYSIZE_192 &&
1114 keylen != AES_KEYSIZE_256)
1115 return -EINVAL;
1116
1117 memcpy(ctx->key, key, keylen);
1118 ctx->keylen = keylen;
1119
1120 return 0;
1121 }
1122
atmel_aes_ecb_encrypt(struct skcipher_request * req)1123 static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1124 {
1125 return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1126 }
1127
atmel_aes_ecb_decrypt(struct skcipher_request * req)1128 static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1129 {
1130 return atmel_aes_crypt(req, AES_FLAGS_ECB);
1131 }
1132
atmel_aes_cbc_encrypt(struct skcipher_request * req)1133 static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1134 {
1135 return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1136 }
1137
atmel_aes_cbc_decrypt(struct skcipher_request * req)1138 static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1139 {
1140 return atmel_aes_crypt(req, AES_FLAGS_CBC);
1141 }
1142
atmel_aes_ctr_encrypt(struct skcipher_request * req)1143 static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1144 {
1145 return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1146 }
1147
atmel_aes_ctr_decrypt(struct skcipher_request * req)1148 static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1149 {
1150 return atmel_aes_crypt(req, AES_FLAGS_CTR);
1151 }
1152
atmel_aes_init_tfm(struct crypto_skcipher * tfm)1153 static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1154 {
1155 struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1156 struct atmel_aes_dev *dd;
1157
1158 dd = atmel_aes_dev_alloc(&ctx->base);
1159 if (!dd)
1160 return -ENODEV;
1161
1162 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1163 ctx->base.dd = dd;
1164 ctx->base.start = atmel_aes_start;
1165
1166 return 0;
1167 }
1168
atmel_aes_ctr_init_tfm(struct crypto_skcipher * tfm)1169 static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1170 {
1171 struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1172 struct atmel_aes_dev *dd;
1173
1174 dd = atmel_aes_dev_alloc(&ctx->base);
1175 if (!dd)
1176 return -ENODEV;
1177
1178 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1179 ctx->base.dd = dd;
1180 ctx->base.start = atmel_aes_ctr_start;
1181
1182 return 0;
1183 }
1184
1185 static struct skcipher_alg aes_algs[] = {
1186 {
1187 .base.cra_name = "ecb(aes)",
1188 .base.cra_driver_name = "atmel-ecb-aes",
1189 .base.cra_blocksize = AES_BLOCK_SIZE,
1190 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1191
1192 .init = atmel_aes_init_tfm,
1193 .min_keysize = AES_MIN_KEY_SIZE,
1194 .max_keysize = AES_MAX_KEY_SIZE,
1195 .setkey = atmel_aes_setkey,
1196 .encrypt = atmel_aes_ecb_encrypt,
1197 .decrypt = atmel_aes_ecb_decrypt,
1198 },
1199 {
1200 .base.cra_name = "cbc(aes)",
1201 .base.cra_driver_name = "atmel-cbc-aes",
1202 .base.cra_blocksize = AES_BLOCK_SIZE,
1203 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1204
1205 .init = atmel_aes_init_tfm,
1206 .min_keysize = AES_MIN_KEY_SIZE,
1207 .max_keysize = AES_MAX_KEY_SIZE,
1208 .setkey = atmel_aes_setkey,
1209 .encrypt = atmel_aes_cbc_encrypt,
1210 .decrypt = atmel_aes_cbc_decrypt,
1211 .ivsize = AES_BLOCK_SIZE,
1212 },
1213 {
1214 .base.cra_name = "ctr(aes)",
1215 .base.cra_driver_name = "atmel-ctr-aes",
1216 .base.cra_blocksize = 1,
1217 .base.cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx),
1218
1219 .init = atmel_aes_ctr_init_tfm,
1220 .min_keysize = AES_MIN_KEY_SIZE,
1221 .max_keysize = AES_MAX_KEY_SIZE,
1222 .setkey = atmel_aes_setkey,
1223 .encrypt = atmel_aes_ctr_encrypt,
1224 .decrypt = atmel_aes_ctr_decrypt,
1225 .ivsize = AES_BLOCK_SIZE,
1226 },
1227 };
1228
1229
1230 /* gcm aead functions */
1231
1232 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1233 const u32 *data, size_t datalen,
1234 const __be32 *ghash_in, __be32 *ghash_out,
1235 atmel_aes_fn_t resume);
1236 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1237 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1238
1239 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1240 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1241 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1242 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1243 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1244 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1245 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1246
1247 static inline struct atmel_aes_gcm_ctx *
atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx * ctx)1248 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1249 {
1250 return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1251 }
1252
atmel_aes_gcm_ghash(struct atmel_aes_dev * dd,const u32 * data,size_t datalen,const __be32 * ghash_in,__be32 * ghash_out,atmel_aes_fn_t resume)1253 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1254 const u32 *data, size_t datalen,
1255 const __be32 *ghash_in, __be32 *ghash_out,
1256 atmel_aes_fn_t resume)
1257 {
1258 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1259
1260 dd->data = (u32 *)data;
1261 dd->datalen = datalen;
1262 ctx->ghash_in = ghash_in;
1263 ctx->ghash_out = ghash_out;
1264 ctx->ghash_resume = resume;
1265
1266 atmel_aes_write_ctrl(dd, false, NULL);
1267 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1268 }
1269
atmel_aes_gcm_ghash_init(struct atmel_aes_dev * dd)1270 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1271 {
1272 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1273
1274 /* Set the data length. */
1275 atmel_aes_write(dd, AES_AADLENR, dd->total);
1276 atmel_aes_write(dd, AES_CLENR, 0);
1277
1278 /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1279 if (ctx->ghash_in)
1280 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1281
1282 return atmel_aes_gcm_ghash_finalize(dd);
1283 }
1284
atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev * dd)1285 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1286 {
1287 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1288 u32 isr;
1289
1290 /* Write data into the Input Data Registers. */
1291 while (dd->datalen > 0) {
1292 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1293 dd->data += 4;
1294 dd->datalen -= AES_BLOCK_SIZE;
1295
1296 isr = atmel_aes_read(dd, AES_ISR);
1297 if (!(isr & AES_INT_DATARDY)) {
1298 dd->resume = atmel_aes_gcm_ghash_finalize;
1299 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1300 return -EINPROGRESS;
1301 }
1302 }
1303
1304 /* Read the computed hash from GHASHRx. */
1305 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1306
1307 return ctx->ghash_resume(dd);
1308 }
1309
1310
atmel_aes_gcm_start(struct atmel_aes_dev * dd)1311 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1312 {
1313 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1314 struct aead_request *req = aead_request_cast(dd->areq);
1315 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1316 struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1317 size_t ivsize = crypto_aead_ivsize(tfm);
1318 size_t datalen, padlen;
1319 const void *iv = req->iv;
1320 u8 *data = dd->buf;
1321 int err;
1322
1323 atmel_aes_set_mode(dd, rctx);
1324
1325 err = atmel_aes_hw_init(dd);
1326 if (err)
1327 return atmel_aes_complete(dd, err);
1328
1329 if (likely(ivsize == GCM_AES_IV_SIZE)) {
1330 memcpy(ctx->j0, iv, ivsize);
1331 ctx->j0[3] = cpu_to_be32(1);
1332 return atmel_aes_gcm_process(dd);
1333 }
1334
1335 padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1336 datalen = ivsize + padlen + AES_BLOCK_SIZE;
1337 if (datalen > dd->buflen)
1338 return atmel_aes_complete(dd, -EINVAL);
1339
1340 memcpy(data, iv, ivsize);
1341 memset(data + ivsize, 0, padlen + sizeof(u64));
1342 ((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1343
1344 return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1345 NULL, ctx->j0, atmel_aes_gcm_process);
1346 }
1347
atmel_aes_gcm_process(struct atmel_aes_dev * dd)1348 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1349 {
1350 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1351 struct aead_request *req = aead_request_cast(dd->areq);
1352 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1353 bool enc = atmel_aes_is_encrypt(dd);
1354 u32 authsize;
1355
1356 /* Compute text length. */
1357 authsize = crypto_aead_authsize(tfm);
1358 ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1359
1360 /*
1361 * According to tcrypt test suite, the GCM Automatic Tag Generation
1362 * fails when both the message and its associated data are empty.
1363 */
1364 if (likely(req->assoclen != 0 || ctx->textlen != 0))
1365 dd->flags |= AES_FLAGS_GTAGEN;
1366
1367 atmel_aes_write_ctrl(dd, false, NULL);
1368 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1369 }
1370
atmel_aes_gcm_length(struct atmel_aes_dev * dd)1371 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1372 {
1373 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1374 struct aead_request *req = aead_request_cast(dd->areq);
1375 __be32 j0_lsw, *j0 = ctx->j0;
1376 size_t padlen;
1377
1378 /* Write incr32(J0) into IV. */
1379 j0_lsw = j0[3];
1380 be32_add_cpu(&j0[3], 1);
1381 atmel_aes_write_block(dd, AES_IVR(0), j0);
1382 j0[3] = j0_lsw;
1383
1384 /* Set aad and text lengths. */
1385 atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1386 atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1387
1388 /* Check whether AAD are present. */
1389 if (unlikely(req->assoclen == 0)) {
1390 dd->datalen = 0;
1391 return atmel_aes_gcm_data(dd);
1392 }
1393
1394 /* Copy assoc data and add padding. */
1395 padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1396 if (unlikely(req->assoclen + padlen > dd->buflen))
1397 return atmel_aes_complete(dd, -EINVAL);
1398 sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1399
1400 /* Write assoc data into the Input Data register. */
1401 dd->data = (u32 *)dd->buf;
1402 dd->datalen = req->assoclen + padlen;
1403 return atmel_aes_gcm_data(dd);
1404 }
1405
atmel_aes_gcm_data(struct atmel_aes_dev * dd)1406 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1407 {
1408 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1409 struct aead_request *req = aead_request_cast(dd->areq);
1410 bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1411 struct scatterlist *src, *dst;
1412 u32 isr, mr;
1413
1414 /* Write AAD first. */
1415 while (dd->datalen > 0) {
1416 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1417 dd->data += 4;
1418 dd->datalen -= AES_BLOCK_SIZE;
1419
1420 isr = atmel_aes_read(dd, AES_ISR);
1421 if (!(isr & AES_INT_DATARDY)) {
1422 dd->resume = atmel_aes_gcm_data;
1423 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1424 return -EINPROGRESS;
1425 }
1426 }
1427
1428 /* GMAC only. */
1429 if (unlikely(ctx->textlen == 0))
1430 return atmel_aes_gcm_tag_init(dd);
1431
1432 /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1433 src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1434 dst = ((req->src == req->dst) ? src :
1435 scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1436
1437 if (use_dma) {
1438 /* Update the Mode Register for DMA transfers. */
1439 mr = atmel_aes_read(dd, AES_MR);
1440 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1441 mr |= AES_MR_SMOD_IDATAR0;
1442 if (dd->caps.has_dualbuff)
1443 mr |= AES_MR_DUALBUFF;
1444 atmel_aes_write(dd, AES_MR, mr);
1445
1446 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1447 atmel_aes_gcm_tag_init);
1448 }
1449
1450 return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1451 atmel_aes_gcm_tag_init);
1452 }
1453
atmel_aes_gcm_tag_init(struct atmel_aes_dev * dd)1454 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1455 {
1456 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1457 struct aead_request *req = aead_request_cast(dd->areq);
1458 __be64 *data = dd->buf;
1459
1460 if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1461 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1462 dd->resume = atmel_aes_gcm_tag_init;
1463 atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1464 return -EINPROGRESS;
1465 }
1466
1467 return atmel_aes_gcm_finalize(dd);
1468 }
1469
1470 /* Read the GCM Intermediate Hash Word Registers. */
1471 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1472
1473 data[0] = cpu_to_be64(req->assoclen * 8);
1474 data[1] = cpu_to_be64(ctx->textlen * 8);
1475
1476 return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1477 ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1478 }
1479
atmel_aes_gcm_tag(struct atmel_aes_dev * dd)1480 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1481 {
1482 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1483 unsigned long flags;
1484
1485 /*
1486 * Change mode to CTR to complete the tag generation.
1487 * Use J0 as Initialization Vector.
1488 */
1489 flags = dd->flags;
1490 dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1491 dd->flags |= AES_FLAGS_CTR;
1492 atmel_aes_write_ctrl(dd, false, ctx->j0);
1493 dd->flags = flags;
1494
1495 atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1496 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1497 }
1498
atmel_aes_gcm_finalize(struct atmel_aes_dev * dd)1499 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1500 {
1501 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1502 struct aead_request *req = aead_request_cast(dd->areq);
1503 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1504 bool enc = atmel_aes_is_encrypt(dd);
1505 u32 offset, authsize, itag[4], *otag = ctx->tag;
1506 int err;
1507
1508 /* Read the computed tag. */
1509 if (likely(dd->flags & AES_FLAGS_GTAGEN))
1510 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1511 else
1512 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1513
1514 offset = req->assoclen + ctx->textlen;
1515 authsize = crypto_aead_authsize(tfm);
1516 if (enc) {
1517 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1518 err = 0;
1519 } else {
1520 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1521 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1522 }
1523
1524 return atmel_aes_complete(dd, err);
1525 }
1526
atmel_aes_gcm_crypt(struct aead_request * req,unsigned long mode)1527 static int atmel_aes_gcm_crypt(struct aead_request *req,
1528 unsigned long mode)
1529 {
1530 struct atmel_aes_base_ctx *ctx;
1531 struct atmel_aes_reqctx *rctx;
1532
1533 ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1534 ctx->block_size = AES_BLOCK_SIZE;
1535 ctx->is_aead = true;
1536
1537 rctx = aead_request_ctx(req);
1538 rctx->mode = AES_FLAGS_GCM | mode;
1539
1540 return atmel_aes_handle_queue(ctx->dd, &req->base);
1541 }
1542
atmel_aes_gcm_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1543 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1544 unsigned int keylen)
1545 {
1546 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1547
1548 if (keylen != AES_KEYSIZE_256 &&
1549 keylen != AES_KEYSIZE_192 &&
1550 keylen != AES_KEYSIZE_128)
1551 return -EINVAL;
1552
1553 memcpy(ctx->key, key, keylen);
1554 ctx->keylen = keylen;
1555
1556 return 0;
1557 }
1558
atmel_aes_gcm_setauthsize(struct crypto_aead * tfm,unsigned int authsize)1559 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1560 unsigned int authsize)
1561 {
1562 return crypto_gcm_check_authsize(authsize);
1563 }
1564
atmel_aes_gcm_encrypt(struct aead_request * req)1565 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1566 {
1567 return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1568 }
1569
atmel_aes_gcm_decrypt(struct aead_request * req)1570 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1571 {
1572 return atmel_aes_gcm_crypt(req, 0);
1573 }
1574
atmel_aes_gcm_init(struct crypto_aead * tfm)1575 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1576 {
1577 struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1578 struct atmel_aes_dev *dd;
1579
1580 dd = atmel_aes_dev_alloc(&ctx->base);
1581 if (!dd)
1582 return -ENODEV;
1583
1584 crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1585 ctx->base.dd = dd;
1586 ctx->base.start = atmel_aes_gcm_start;
1587
1588 return 0;
1589 }
1590
1591 static struct aead_alg aes_gcm_alg = {
1592 .setkey = atmel_aes_gcm_setkey,
1593 .setauthsize = atmel_aes_gcm_setauthsize,
1594 .encrypt = atmel_aes_gcm_encrypt,
1595 .decrypt = atmel_aes_gcm_decrypt,
1596 .init = atmel_aes_gcm_init,
1597 .ivsize = GCM_AES_IV_SIZE,
1598 .maxauthsize = AES_BLOCK_SIZE,
1599
1600 .base = {
1601 .cra_name = "gcm(aes)",
1602 .cra_driver_name = "atmel-gcm-aes",
1603 .cra_blocksize = 1,
1604 .cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx),
1605 },
1606 };
1607
1608
1609 /* xts functions */
1610
1611 static inline struct atmel_aes_xts_ctx *
atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx * ctx)1612 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1613 {
1614 return container_of(ctx, struct atmel_aes_xts_ctx, base);
1615 }
1616
1617 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1618
atmel_aes_xts_start(struct atmel_aes_dev * dd)1619 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1620 {
1621 struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1622 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1623 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1624 unsigned long flags;
1625 int err;
1626
1627 atmel_aes_set_mode(dd, rctx);
1628
1629 err = atmel_aes_hw_init(dd);
1630 if (err)
1631 return atmel_aes_complete(dd, err);
1632
1633 /* Compute the tweak value from req->iv with ecb(aes). */
1634 flags = dd->flags;
1635 dd->flags &= ~AES_FLAGS_MODE_MASK;
1636 dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1637 atmel_aes_write_ctrl_key(dd, false, NULL,
1638 ctx->key2, ctx->base.keylen);
1639 dd->flags = flags;
1640
1641 atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1642 return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1643 }
1644
atmel_aes_xts_process_data(struct atmel_aes_dev * dd)1645 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1646 {
1647 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1648 bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1649 u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1650 static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1651 u8 *tweak_bytes = (u8 *)tweak;
1652 int i;
1653
1654 /* Read the computed ciphered tweak value. */
1655 atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1656 /*
1657 * Hardware quirk:
1658 * the order of the ciphered tweak bytes need to be reversed before
1659 * writing them into the ODATARx registers.
1660 */
1661 for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1662 swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
1663
1664 /* Process the data. */
1665 atmel_aes_write_ctrl(dd, use_dma, NULL);
1666 atmel_aes_write_block(dd, AES_TWR(0), tweak);
1667 atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1668 if (use_dma)
1669 return atmel_aes_dma_start(dd, req->src, req->dst,
1670 req->cryptlen,
1671 atmel_aes_transfer_complete);
1672
1673 return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1674 atmel_aes_transfer_complete);
1675 }
1676
atmel_aes_xts_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)1677 static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1678 unsigned int keylen)
1679 {
1680 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1681 int err;
1682
1683 err = xts_verify_key(tfm, key, keylen);
1684 if (err)
1685 return err;
1686
1687 crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1688 crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1689 CRYPTO_TFM_REQ_MASK);
1690 err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1691 if (err)
1692 return err;
1693
1694 memcpy(ctx->base.key, key, keylen/2);
1695 memcpy(ctx->key2, key + keylen/2, keylen/2);
1696 ctx->base.keylen = keylen/2;
1697
1698 return 0;
1699 }
1700
atmel_aes_xts_encrypt(struct skcipher_request * req)1701 static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1702 {
1703 return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1704 }
1705
atmel_aes_xts_decrypt(struct skcipher_request * req)1706 static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1707 {
1708 return atmel_aes_crypt(req, AES_FLAGS_XTS);
1709 }
1710
atmel_aes_xts_init_tfm(struct crypto_skcipher * tfm)1711 static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1712 {
1713 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1714 struct atmel_aes_dev *dd;
1715 const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1716
1717 dd = atmel_aes_dev_alloc(&ctx->base);
1718 if (!dd)
1719 return -ENODEV;
1720
1721 ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1722 CRYPTO_ALG_NEED_FALLBACK);
1723 if (IS_ERR(ctx->fallback_tfm))
1724 return PTR_ERR(ctx->fallback_tfm);
1725
1726 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1727 crypto_skcipher_reqsize(ctx->fallback_tfm));
1728 ctx->base.dd = dd;
1729 ctx->base.start = atmel_aes_xts_start;
1730
1731 return 0;
1732 }
1733
atmel_aes_xts_exit_tfm(struct crypto_skcipher * tfm)1734 static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1735 {
1736 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1737
1738 crypto_free_skcipher(ctx->fallback_tfm);
1739 }
1740
1741 static struct skcipher_alg aes_xts_alg = {
1742 .base.cra_name = "xts(aes)",
1743 .base.cra_driver_name = "atmel-xts-aes",
1744 .base.cra_blocksize = AES_BLOCK_SIZE,
1745 .base.cra_ctxsize = sizeof(struct atmel_aes_xts_ctx),
1746 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
1747
1748 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1749 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1750 .ivsize = AES_BLOCK_SIZE,
1751 .setkey = atmel_aes_xts_setkey,
1752 .encrypt = atmel_aes_xts_encrypt,
1753 .decrypt = atmel_aes_xts_decrypt,
1754 .init = atmel_aes_xts_init_tfm,
1755 .exit = atmel_aes_xts_exit_tfm,
1756 };
1757
1758 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1759 /* authenc aead functions */
1760
1761 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1762 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1763 bool is_async);
1764 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1765 bool is_async);
1766 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1767 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1768 bool is_async);
1769
atmel_aes_authenc_complete(struct atmel_aes_dev * dd,int err)1770 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1771 {
1772 struct aead_request *req = aead_request_cast(dd->areq);
1773 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1774
1775 if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1776 atmel_sha_authenc_abort(&rctx->auth_req);
1777 dd->flags &= ~AES_FLAGS_OWN_SHA;
1778 }
1779
atmel_aes_authenc_start(struct atmel_aes_dev * dd)1780 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1781 {
1782 struct aead_request *req = aead_request_cast(dd->areq);
1783 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1784 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1785 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1786 int err;
1787
1788 atmel_aes_set_mode(dd, &rctx->base);
1789
1790 err = atmel_aes_hw_init(dd);
1791 if (err)
1792 return atmel_aes_complete(dd, err);
1793
1794 return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1795 atmel_aes_authenc_init, dd);
1796 }
1797
atmel_aes_authenc_init(struct atmel_aes_dev * dd,int err,bool is_async)1798 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1799 bool is_async)
1800 {
1801 struct aead_request *req = aead_request_cast(dd->areq);
1802 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1803
1804 if (is_async)
1805 dd->is_async = true;
1806 if (err)
1807 return atmel_aes_complete(dd, err);
1808
1809 /* If here, we've got the ownership of the SHA device. */
1810 dd->flags |= AES_FLAGS_OWN_SHA;
1811
1812 /* Configure the SHA device. */
1813 return atmel_sha_authenc_init(&rctx->auth_req,
1814 req->src, req->assoclen,
1815 rctx->textlen,
1816 atmel_aes_authenc_transfer, dd);
1817 }
1818
atmel_aes_authenc_transfer(struct atmel_aes_dev * dd,int err,bool is_async)1819 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1820 bool is_async)
1821 {
1822 struct aead_request *req = aead_request_cast(dd->areq);
1823 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1824 bool enc = atmel_aes_is_encrypt(dd);
1825 struct scatterlist *src, *dst;
1826 __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
1827 u32 emr;
1828
1829 if (is_async)
1830 dd->is_async = true;
1831 if (err)
1832 return atmel_aes_complete(dd, err);
1833
1834 /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
1835 src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
1836 dst = src;
1837
1838 if (req->src != req->dst)
1839 dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
1840
1841 /* Configure the AES device. */
1842 memcpy(iv, req->iv, sizeof(iv));
1843
1844 /*
1845 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
1846 * 'true' even if the data transfer is actually performed by the CPU (so
1847 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
1848 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
1849 * must be set to *_MR_SMOD_IDATAR0.
1850 */
1851 atmel_aes_write_ctrl(dd, true, iv);
1852 emr = AES_EMR_PLIPEN;
1853 if (!enc)
1854 emr |= AES_EMR_PLIPD;
1855 atmel_aes_write(dd, AES_EMR, emr);
1856
1857 /* Transfer data. */
1858 return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
1859 atmel_aes_authenc_digest);
1860 }
1861
atmel_aes_authenc_digest(struct atmel_aes_dev * dd)1862 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
1863 {
1864 struct aead_request *req = aead_request_cast(dd->areq);
1865 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1866
1867 /* atmel_sha_authenc_final() releases the SHA device. */
1868 dd->flags &= ~AES_FLAGS_OWN_SHA;
1869 return atmel_sha_authenc_final(&rctx->auth_req,
1870 rctx->digest, sizeof(rctx->digest),
1871 atmel_aes_authenc_final, dd);
1872 }
1873
atmel_aes_authenc_final(struct atmel_aes_dev * dd,int err,bool is_async)1874 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1875 bool is_async)
1876 {
1877 struct aead_request *req = aead_request_cast(dd->areq);
1878 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1879 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1880 bool enc = atmel_aes_is_encrypt(dd);
1881 u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
1882 u32 offs, authsize;
1883
1884 if (is_async)
1885 dd->is_async = true;
1886 if (err)
1887 goto complete;
1888
1889 offs = req->assoclen + rctx->textlen;
1890 authsize = crypto_aead_authsize(tfm);
1891 if (enc) {
1892 scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
1893 } else {
1894 scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
1895 if (crypto_memneq(idigest, odigest, authsize))
1896 err = -EBADMSG;
1897 }
1898
1899 complete:
1900 return atmel_aes_complete(dd, err);
1901 }
1902
atmel_aes_authenc_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1903 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
1904 unsigned int keylen)
1905 {
1906 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1907 struct crypto_authenc_keys keys;
1908 int err;
1909
1910 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1911 goto badkey;
1912
1913 if (keys.enckeylen > sizeof(ctx->base.key))
1914 goto badkey;
1915
1916 /* Save auth key. */
1917 err = atmel_sha_authenc_setkey(ctx->auth,
1918 keys.authkey, keys.authkeylen,
1919 crypto_aead_get_flags(tfm));
1920 if (err) {
1921 memzero_explicit(&keys, sizeof(keys));
1922 return err;
1923 }
1924
1925 /* Save enc key. */
1926 ctx->base.keylen = keys.enckeylen;
1927 memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
1928
1929 memzero_explicit(&keys, sizeof(keys));
1930 return 0;
1931
1932 badkey:
1933 memzero_explicit(&keys, sizeof(keys));
1934 return -EINVAL;
1935 }
1936
atmel_aes_authenc_init_tfm(struct crypto_aead * tfm,unsigned long auth_mode)1937 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
1938 unsigned long auth_mode)
1939 {
1940 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1941 unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
1942 struct atmel_aes_dev *dd;
1943
1944 dd = atmel_aes_dev_alloc(&ctx->base);
1945 if (!dd)
1946 return -ENODEV;
1947
1948 ctx->auth = atmel_sha_authenc_spawn(auth_mode);
1949 if (IS_ERR(ctx->auth))
1950 return PTR_ERR(ctx->auth);
1951
1952 crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
1953 auth_reqsize));
1954 ctx->base.dd = dd;
1955 ctx->base.start = atmel_aes_authenc_start;
1956
1957 return 0;
1958 }
1959
atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead * tfm)1960 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
1961 {
1962 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
1963 }
1964
atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead * tfm)1965 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
1966 {
1967 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
1968 }
1969
atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead * tfm)1970 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
1971 {
1972 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
1973 }
1974
atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead * tfm)1975 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
1976 {
1977 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
1978 }
1979
atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead * tfm)1980 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
1981 {
1982 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
1983 }
1984
atmel_aes_authenc_exit_tfm(struct crypto_aead * tfm)1985 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
1986 {
1987 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1988
1989 atmel_sha_authenc_free(ctx->auth);
1990 }
1991
atmel_aes_authenc_crypt(struct aead_request * req,unsigned long mode)1992 static int atmel_aes_authenc_crypt(struct aead_request *req,
1993 unsigned long mode)
1994 {
1995 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1996 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1997 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1998 u32 authsize = crypto_aead_authsize(tfm);
1999 bool enc = (mode & AES_FLAGS_ENCRYPT);
2000
2001 /* Compute text length. */
2002 if (!enc && req->cryptlen < authsize)
2003 return -EINVAL;
2004 rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2005
2006 /*
2007 * Currently, empty messages are not supported yet:
2008 * the SHA auto-padding can be used only on non-empty messages.
2009 * Hence a special case needs to be implemented for empty message.
2010 */
2011 if (!rctx->textlen && !req->assoclen)
2012 return -EINVAL;
2013
2014 rctx->base.mode = mode;
2015 ctx->block_size = AES_BLOCK_SIZE;
2016 ctx->is_aead = true;
2017
2018 return atmel_aes_handle_queue(ctx->dd, &req->base);
2019 }
2020
atmel_aes_authenc_cbc_aes_encrypt(struct aead_request * req)2021 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2022 {
2023 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2024 }
2025
atmel_aes_authenc_cbc_aes_decrypt(struct aead_request * req)2026 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2027 {
2028 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2029 }
2030
2031 static struct aead_alg aes_authenc_algs[] = {
2032 {
2033 .setkey = atmel_aes_authenc_setkey,
2034 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2035 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2036 .init = atmel_aes_authenc_hmac_sha1_init_tfm,
2037 .exit = atmel_aes_authenc_exit_tfm,
2038 .ivsize = AES_BLOCK_SIZE,
2039 .maxauthsize = SHA1_DIGEST_SIZE,
2040
2041 .base = {
2042 .cra_name = "authenc(hmac(sha1),cbc(aes))",
2043 .cra_driver_name = "atmel-authenc-hmac-sha1-cbc-aes",
2044 .cra_blocksize = AES_BLOCK_SIZE,
2045 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2046 },
2047 },
2048 {
2049 .setkey = atmel_aes_authenc_setkey,
2050 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2051 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2052 .init = atmel_aes_authenc_hmac_sha224_init_tfm,
2053 .exit = atmel_aes_authenc_exit_tfm,
2054 .ivsize = AES_BLOCK_SIZE,
2055 .maxauthsize = SHA224_DIGEST_SIZE,
2056
2057 .base = {
2058 .cra_name = "authenc(hmac(sha224),cbc(aes))",
2059 .cra_driver_name = "atmel-authenc-hmac-sha224-cbc-aes",
2060 .cra_blocksize = AES_BLOCK_SIZE,
2061 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2062 },
2063 },
2064 {
2065 .setkey = atmel_aes_authenc_setkey,
2066 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2067 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2068 .init = atmel_aes_authenc_hmac_sha256_init_tfm,
2069 .exit = atmel_aes_authenc_exit_tfm,
2070 .ivsize = AES_BLOCK_SIZE,
2071 .maxauthsize = SHA256_DIGEST_SIZE,
2072
2073 .base = {
2074 .cra_name = "authenc(hmac(sha256),cbc(aes))",
2075 .cra_driver_name = "atmel-authenc-hmac-sha256-cbc-aes",
2076 .cra_blocksize = AES_BLOCK_SIZE,
2077 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2078 },
2079 },
2080 {
2081 .setkey = atmel_aes_authenc_setkey,
2082 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2083 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2084 .init = atmel_aes_authenc_hmac_sha384_init_tfm,
2085 .exit = atmel_aes_authenc_exit_tfm,
2086 .ivsize = AES_BLOCK_SIZE,
2087 .maxauthsize = SHA384_DIGEST_SIZE,
2088
2089 .base = {
2090 .cra_name = "authenc(hmac(sha384),cbc(aes))",
2091 .cra_driver_name = "atmel-authenc-hmac-sha384-cbc-aes",
2092 .cra_blocksize = AES_BLOCK_SIZE,
2093 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2094 },
2095 },
2096 {
2097 .setkey = atmel_aes_authenc_setkey,
2098 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2099 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2100 .init = atmel_aes_authenc_hmac_sha512_init_tfm,
2101 .exit = atmel_aes_authenc_exit_tfm,
2102 .ivsize = AES_BLOCK_SIZE,
2103 .maxauthsize = SHA512_DIGEST_SIZE,
2104
2105 .base = {
2106 .cra_name = "authenc(hmac(sha512),cbc(aes))",
2107 .cra_driver_name = "atmel-authenc-hmac-sha512-cbc-aes",
2108 .cra_blocksize = AES_BLOCK_SIZE,
2109 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2110 },
2111 },
2112 };
2113 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2114
2115 /* Probe functions */
2116
atmel_aes_buff_init(struct atmel_aes_dev * dd)2117 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2118 {
2119 dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2120 dd->buflen = ATMEL_AES_BUFFER_SIZE;
2121 dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2122
2123 if (!dd->buf) {
2124 dev_err(dd->dev, "unable to alloc pages.\n");
2125 return -ENOMEM;
2126 }
2127
2128 return 0;
2129 }
2130
atmel_aes_buff_cleanup(struct atmel_aes_dev * dd)2131 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2132 {
2133 free_page((unsigned long)dd->buf);
2134 }
2135
atmel_aes_dma_init(struct atmel_aes_dev * dd)2136 static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2137 {
2138 int ret;
2139
2140 /* Try to grab 2 DMA channels */
2141 dd->src.chan = dma_request_chan(dd->dev, "tx");
2142 if (IS_ERR(dd->src.chan)) {
2143 ret = PTR_ERR(dd->src.chan);
2144 goto err_dma_in;
2145 }
2146
2147 dd->dst.chan = dma_request_chan(dd->dev, "rx");
2148 if (IS_ERR(dd->dst.chan)) {
2149 ret = PTR_ERR(dd->dst.chan);
2150 goto err_dma_out;
2151 }
2152
2153 return 0;
2154
2155 err_dma_out:
2156 dma_release_channel(dd->src.chan);
2157 err_dma_in:
2158 dev_err(dd->dev, "no DMA channel available\n");
2159 return ret;
2160 }
2161
atmel_aes_dma_cleanup(struct atmel_aes_dev * dd)2162 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2163 {
2164 dma_release_channel(dd->dst.chan);
2165 dma_release_channel(dd->src.chan);
2166 }
2167
atmel_aes_queue_task(unsigned long data)2168 static void atmel_aes_queue_task(unsigned long data)
2169 {
2170 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2171
2172 atmel_aes_handle_queue(dd, NULL);
2173 }
2174
atmel_aes_done_task(unsigned long data)2175 static void atmel_aes_done_task(unsigned long data)
2176 {
2177 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2178
2179 dd->is_async = true;
2180 (void)dd->resume(dd);
2181 }
2182
atmel_aes_irq(int irq,void * dev_id)2183 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2184 {
2185 struct atmel_aes_dev *aes_dd = dev_id;
2186 u32 reg;
2187
2188 reg = atmel_aes_read(aes_dd, AES_ISR);
2189 if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2190 atmel_aes_write(aes_dd, AES_IDR, reg);
2191 if (AES_FLAGS_BUSY & aes_dd->flags)
2192 tasklet_schedule(&aes_dd->done_task);
2193 else
2194 dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2195 return IRQ_HANDLED;
2196 }
2197
2198 return IRQ_NONE;
2199 }
2200
atmel_aes_unregister_algs(struct atmel_aes_dev * dd)2201 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2202 {
2203 int i;
2204
2205 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2206 if (dd->caps.has_authenc)
2207 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2208 crypto_unregister_aead(&aes_authenc_algs[i]);
2209 #endif
2210
2211 if (dd->caps.has_xts)
2212 crypto_unregister_skcipher(&aes_xts_alg);
2213
2214 if (dd->caps.has_gcm)
2215 crypto_unregister_aead(&aes_gcm_alg);
2216
2217 for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2218 crypto_unregister_skcipher(&aes_algs[i]);
2219 }
2220
atmel_aes_crypto_alg_init(struct crypto_alg * alg)2221 static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2222 {
2223 alg->cra_flags |= CRYPTO_ALG_ASYNC;
2224 alg->cra_alignmask = 0xf;
2225 alg->cra_priority = ATMEL_AES_PRIORITY;
2226 alg->cra_module = THIS_MODULE;
2227 }
2228
atmel_aes_register_algs(struct atmel_aes_dev * dd)2229 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2230 {
2231 int err, i, j;
2232
2233 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2234 atmel_aes_crypto_alg_init(&aes_algs[i].base);
2235
2236 err = crypto_register_skcipher(&aes_algs[i]);
2237 if (err)
2238 goto err_aes_algs;
2239 }
2240
2241 if (dd->caps.has_gcm) {
2242 atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2243
2244 err = crypto_register_aead(&aes_gcm_alg);
2245 if (err)
2246 goto err_aes_gcm_alg;
2247 }
2248
2249 if (dd->caps.has_xts) {
2250 atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2251
2252 err = crypto_register_skcipher(&aes_xts_alg);
2253 if (err)
2254 goto err_aes_xts_alg;
2255 }
2256
2257 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2258 if (dd->caps.has_authenc) {
2259 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2260 atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2261
2262 err = crypto_register_aead(&aes_authenc_algs[i]);
2263 if (err)
2264 goto err_aes_authenc_alg;
2265 }
2266 }
2267 #endif
2268
2269 return 0;
2270
2271 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2272 /* i = ARRAY_SIZE(aes_authenc_algs); */
2273 err_aes_authenc_alg:
2274 for (j = 0; j < i; j++)
2275 crypto_unregister_aead(&aes_authenc_algs[j]);
2276 crypto_unregister_skcipher(&aes_xts_alg);
2277 #endif
2278 err_aes_xts_alg:
2279 crypto_unregister_aead(&aes_gcm_alg);
2280 err_aes_gcm_alg:
2281 i = ARRAY_SIZE(aes_algs);
2282 err_aes_algs:
2283 for (j = 0; j < i; j++)
2284 crypto_unregister_skcipher(&aes_algs[j]);
2285
2286 return err;
2287 }
2288
atmel_aes_get_cap(struct atmel_aes_dev * dd)2289 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2290 {
2291 dd->caps.has_dualbuff = 0;
2292 dd->caps.has_gcm = 0;
2293 dd->caps.has_xts = 0;
2294 dd->caps.has_authenc = 0;
2295 dd->caps.max_burst_size = 1;
2296
2297 /* keep only major version number */
2298 switch (dd->hw_version & 0xff0) {
2299 case 0x700:
2300 case 0x600:
2301 case 0x500:
2302 dd->caps.has_dualbuff = 1;
2303 dd->caps.has_gcm = 1;
2304 dd->caps.has_xts = 1;
2305 dd->caps.has_authenc = 1;
2306 dd->caps.max_burst_size = 4;
2307 break;
2308 case 0x200:
2309 dd->caps.has_dualbuff = 1;
2310 dd->caps.has_gcm = 1;
2311 dd->caps.max_burst_size = 4;
2312 break;
2313 case 0x130:
2314 dd->caps.has_dualbuff = 1;
2315 dd->caps.max_burst_size = 4;
2316 break;
2317 case 0x120:
2318 break;
2319 default:
2320 dev_warn(dd->dev,
2321 "Unmanaged aes version, set minimum capabilities\n");
2322 break;
2323 }
2324 }
2325
2326 static const struct of_device_id atmel_aes_dt_ids[] = {
2327 { .compatible = "atmel,at91sam9g46-aes" },
2328 { /* sentinel */ }
2329 };
2330 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2331
atmel_aes_probe(struct platform_device * pdev)2332 static int atmel_aes_probe(struct platform_device *pdev)
2333 {
2334 struct atmel_aes_dev *aes_dd;
2335 struct device *dev = &pdev->dev;
2336 struct resource *aes_res;
2337 int err;
2338
2339 aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2340 if (!aes_dd)
2341 return -ENOMEM;
2342
2343 aes_dd->dev = dev;
2344
2345 platform_set_drvdata(pdev, aes_dd);
2346
2347 INIT_LIST_HEAD(&aes_dd->list);
2348 spin_lock_init(&aes_dd->lock);
2349
2350 tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2351 (unsigned long)aes_dd);
2352 tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2353 (unsigned long)aes_dd);
2354
2355 crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2356
2357 aes_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &aes_res);
2358 if (IS_ERR(aes_dd->io_base)) {
2359 err = PTR_ERR(aes_dd->io_base);
2360 goto err_tasklet_kill;
2361 }
2362 aes_dd->phys_base = aes_res->start;
2363
2364 /* Get the IRQ */
2365 aes_dd->irq = platform_get_irq(pdev, 0);
2366 if (aes_dd->irq < 0) {
2367 err = aes_dd->irq;
2368 goto err_tasklet_kill;
2369 }
2370
2371 err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2372 IRQF_SHARED, "atmel-aes", aes_dd);
2373 if (err) {
2374 dev_err(dev, "unable to request aes irq.\n");
2375 goto err_tasklet_kill;
2376 }
2377
2378 /* Initializing the clock */
2379 aes_dd->iclk = devm_clk_get_prepared(&pdev->dev, "aes_clk");
2380 if (IS_ERR(aes_dd->iclk)) {
2381 dev_err(dev, "clock initialization failed.\n");
2382 err = PTR_ERR(aes_dd->iclk);
2383 goto err_tasklet_kill;
2384 }
2385
2386 err = atmel_aes_hw_version_init(aes_dd);
2387 if (err)
2388 goto err_tasklet_kill;
2389
2390 atmel_aes_get_cap(aes_dd);
2391
2392 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2393 if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2394 err = -EPROBE_DEFER;
2395 goto err_tasklet_kill;
2396 }
2397 #endif
2398
2399 err = atmel_aes_buff_init(aes_dd);
2400 if (err)
2401 goto err_tasklet_kill;
2402
2403 err = atmel_aes_dma_init(aes_dd);
2404 if (err)
2405 goto err_buff_cleanup;
2406
2407 spin_lock(&atmel_aes.lock);
2408 list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2409 spin_unlock(&atmel_aes.lock);
2410
2411 err = atmel_aes_register_algs(aes_dd);
2412 if (err)
2413 goto err_algs;
2414
2415 dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2416 dma_chan_name(aes_dd->src.chan),
2417 dma_chan_name(aes_dd->dst.chan));
2418
2419 return 0;
2420
2421 err_algs:
2422 spin_lock(&atmel_aes.lock);
2423 list_del(&aes_dd->list);
2424 spin_unlock(&atmel_aes.lock);
2425 atmel_aes_dma_cleanup(aes_dd);
2426 err_buff_cleanup:
2427 atmel_aes_buff_cleanup(aes_dd);
2428 err_tasklet_kill:
2429 tasklet_kill(&aes_dd->done_task);
2430 tasklet_kill(&aes_dd->queue_task);
2431
2432 return err;
2433 }
2434
atmel_aes_remove(struct platform_device * pdev)2435 static void atmel_aes_remove(struct platform_device *pdev)
2436 {
2437 struct atmel_aes_dev *aes_dd;
2438
2439 aes_dd = platform_get_drvdata(pdev);
2440
2441 spin_lock(&atmel_aes.lock);
2442 list_del(&aes_dd->list);
2443 spin_unlock(&atmel_aes.lock);
2444
2445 atmel_aes_unregister_algs(aes_dd);
2446
2447 tasklet_kill(&aes_dd->done_task);
2448 tasklet_kill(&aes_dd->queue_task);
2449
2450 atmel_aes_dma_cleanup(aes_dd);
2451 atmel_aes_buff_cleanup(aes_dd);
2452 }
2453
2454 static struct platform_driver atmel_aes_driver = {
2455 .probe = atmel_aes_probe,
2456 .remove_new = atmel_aes_remove,
2457 .driver = {
2458 .name = "atmel_aes",
2459 .of_match_table = atmel_aes_dt_ids,
2460 },
2461 };
2462
2463 module_platform_driver(atmel_aes_driver);
2464
2465 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2466 MODULE_LICENSE("GPL v2");
2467 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2468