xref: /linux/drivers/crypto/amcc/crypto4xx_core.c (revision e47a324d6f07c9ef252cfce1f14cfa5110cbed99)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * AMCC SoC PPC4xx Crypto Driver
4  *
5  * Copyright (c) 2008 Applied Micro Circuits Corporation.
6  * All rights reserved. James Hsiao <jhsiao@amcc.com>
7  *
8  * This file implements AMCC crypto offload Linux device driver for use with
9  * Linux CryptoAPI.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/interrupt.h>
14 #include <linux/spinlock_types.h>
15 #include <linux/random.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/platform_device.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_platform.h>
25 #include <linux/slab.h>
26 #include <asm/dcr.h>
27 #include <asm/dcr-regs.h>
28 #include <asm/cacheflush.h>
29 #include <crypto/aead.h>
30 #include <crypto/aes.h>
31 #include <crypto/ctr.h>
32 #include <crypto/gcm.h>
33 #include <crypto/sha1.h>
34 #include <crypto/rng.h>
35 #include <crypto/scatterwalk.h>
36 #include <crypto/skcipher.h>
37 #include <crypto/internal/aead.h>
38 #include <crypto/internal/rng.h>
39 #include <crypto/internal/skcipher.h>
40 #include "crypto4xx_reg_def.h"
41 #include "crypto4xx_core.h"
42 #include "crypto4xx_sa.h"
43 #include "crypto4xx_trng.h"
44 
45 #define PPC4XX_SEC_VERSION_STR			"0.5"
46 
47 /*
48  * PPC4xx Crypto Engine Initialization Routine
49  */
50 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
51 {
52 	union ce_ring_size ring_size;
53 	union ce_ring_control ring_ctrl;
54 	union ce_part_ring_size part_ring_size;
55 	union ce_io_threshold io_threshold;
56 	u32 rand_num;
57 	union ce_pe_dma_cfg pe_dma_cfg;
58 	u32 device_ctrl;
59 
60 	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
61 	/* setup pe dma, include reset sg, pdr and pe, then release reset */
62 	pe_dma_cfg.w = 0;
63 	pe_dma_cfg.bf.bo_sgpd_en = 1;
64 	pe_dma_cfg.bf.bo_data_en = 0;
65 	pe_dma_cfg.bf.bo_sa_en = 1;
66 	pe_dma_cfg.bf.bo_pd_en = 1;
67 	pe_dma_cfg.bf.dynamic_sa_en = 1;
68 	pe_dma_cfg.bf.reset_sg = 1;
69 	pe_dma_cfg.bf.reset_pdr = 1;
70 	pe_dma_cfg.bf.reset_pe = 1;
71 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
72 	/* un reset pe,sg and pdr */
73 	pe_dma_cfg.bf.pe_mode = 0;
74 	pe_dma_cfg.bf.reset_sg = 0;
75 	pe_dma_cfg.bf.reset_pdr = 0;
76 	pe_dma_cfg.bf.reset_pe = 0;
77 	pe_dma_cfg.bf.bo_td_en = 0;
78 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
79 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
80 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
81 	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
82 	get_random_bytes(&rand_num, sizeof(rand_num));
83 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
84 	get_random_bytes(&rand_num, sizeof(rand_num));
85 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
86 	ring_size.w = 0;
87 	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
88 	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
89 	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
90 	ring_ctrl.w = 0;
91 	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
92 	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
93 	device_ctrl |= PPC4XX_DC_3DES_EN;
94 	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
95 	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
96 	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
97 	part_ring_size.w = 0;
98 	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
99 	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
100 	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
101 	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
102 	io_threshold.w = 0;
103 	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
104 	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
105 	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
106 	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
107 	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
108 	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
109 	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
110 	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
111 	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
112 	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
113 	/* un reset pe,sg and pdr */
114 	pe_dma_cfg.bf.pe_mode = 1;
115 	pe_dma_cfg.bf.reset_sg = 0;
116 	pe_dma_cfg.bf.reset_pdr = 0;
117 	pe_dma_cfg.bf.reset_pe = 0;
118 	pe_dma_cfg.bf.bo_td_en = 0;
119 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
120 	/*clear all pending interrupt*/
121 	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
122 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
123 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
124 	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
125 	if (dev->is_revb) {
126 		writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
127 		       dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
128 		writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
129 		       dev->ce_base + CRYPTO4XX_INT_EN);
130 	} else {
131 		writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
132 	}
133 }
134 
135 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
136 {
137 	ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
138 	if (ctx->sa_in == NULL)
139 		return -ENOMEM;
140 
141 	ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
142 	if (ctx->sa_out == NULL) {
143 		kfree(ctx->sa_in);
144 		ctx->sa_in = NULL;
145 		return -ENOMEM;
146 	}
147 
148 	ctx->sa_len = size;
149 
150 	return 0;
151 }
152 
153 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
154 {
155 	kfree(ctx->sa_in);
156 	ctx->sa_in = NULL;
157 	kfree(ctx->sa_out);
158 	ctx->sa_out = NULL;
159 	ctx->sa_len = 0;
160 }
161 
162 /*
163  * alloc memory for the gather ring
164  * no need to alloc buf for the ring
165  * gdr_tail, gdr_head and gdr_count are initialized by this function
166  */
167 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
168 {
169 	int i;
170 	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
171 				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
172 				      &dev->pdr_pa, GFP_KERNEL);
173 	if (!dev->pdr)
174 		return -ENOMEM;
175 
176 	dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
177 				 GFP_KERNEL);
178 	if (!dev->pdr_uinfo) {
179 		dma_free_coherent(dev->core_dev->device,
180 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
181 				  dev->pdr,
182 				  dev->pdr_pa);
183 		return -ENOMEM;
184 	}
185 	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
186 				   sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
187 				   &dev->shadow_sa_pool_pa,
188 				   GFP_KERNEL);
189 	if (!dev->shadow_sa_pool)
190 		return -ENOMEM;
191 
192 	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
193 			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
194 			 &dev->shadow_sr_pool_pa, GFP_KERNEL);
195 	if (!dev->shadow_sr_pool)
196 		return -ENOMEM;
197 	for (i = 0; i < PPC4XX_NUM_PD; i++) {
198 		struct ce_pd *pd = &dev->pdr[i];
199 		struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
200 
201 		pd->sa = dev->shadow_sa_pool_pa +
202 			sizeof(union shadow_sa_buf) * i;
203 
204 		/* alloc 256 bytes which is enough for any kind of dynamic sa */
205 		pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
206 
207 		/* alloc state record */
208 		pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
209 		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
210 		    sizeof(struct sa_state_record) * i;
211 	}
212 
213 	return 0;
214 }
215 
216 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
217 {
218 	if (dev->pdr)
219 		dma_free_coherent(dev->core_dev->device,
220 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
221 				  dev->pdr, dev->pdr_pa);
222 
223 	if (dev->shadow_sa_pool)
224 		dma_free_coherent(dev->core_dev->device,
225 			sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
226 			dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
227 
228 	if (dev->shadow_sr_pool)
229 		dma_free_coherent(dev->core_dev->device,
230 			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
231 			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
232 
233 	kfree(dev->pdr_uinfo);
234 }
235 
236 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
237 {
238 	u32 retval;
239 	u32 tmp;
240 
241 	retval = dev->pdr_head;
242 	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
243 
244 	if (tmp == dev->pdr_tail)
245 		return ERING_WAS_FULL;
246 
247 	dev->pdr_head = tmp;
248 
249 	return retval;
250 }
251 
252 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
253 {
254 	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
255 	u32 tail;
256 	unsigned long flags;
257 
258 	spin_lock_irqsave(&dev->core_dev->lock, flags);
259 	pd_uinfo->state = PD_ENTRY_FREE;
260 
261 	if (dev->pdr_tail != PPC4XX_LAST_PD)
262 		dev->pdr_tail++;
263 	else
264 		dev->pdr_tail = 0;
265 	tail = dev->pdr_tail;
266 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
267 
268 	return tail;
269 }
270 
271 /*
272  * alloc memory for the gather ring
273  * no need to alloc buf for the ring
274  * gdr_tail, gdr_head and gdr_count are initialized by this function
275  */
276 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
277 {
278 	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
279 				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
280 				      &dev->gdr_pa, GFP_KERNEL);
281 	if (!dev->gdr)
282 		return -ENOMEM;
283 
284 	return 0;
285 }
286 
287 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
288 {
289 	if (dev->gdr)
290 		dma_free_coherent(dev->core_dev->device,
291 			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
292 			  dev->gdr, dev->gdr_pa);
293 }
294 
295 /*
296  * when this function is called.
297  * preemption or interrupt must be disabled
298  */
299 static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
300 {
301 	u32 retval;
302 	u32 tmp;
303 
304 	if (n >= PPC4XX_NUM_GD)
305 		return ERING_WAS_FULL;
306 
307 	retval = dev->gdr_head;
308 	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
309 	if (dev->gdr_head > dev->gdr_tail) {
310 		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
311 			return ERING_WAS_FULL;
312 	} else if (dev->gdr_head < dev->gdr_tail) {
313 		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
314 			return ERING_WAS_FULL;
315 	}
316 	dev->gdr_head = tmp;
317 
318 	return retval;
319 }
320 
321 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
322 {
323 	unsigned long flags;
324 
325 	spin_lock_irqsave(&dev->core_dev->lock, flags);
326 	if (dev->gdr_tail == dev->gdr_head) {
327 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
328 		return 0;
329 	}
330 
331 	if (dev->gdr_tail != PPC4XX_LAST_GD)
332 		dev->gdr_tail++;
333 	else
334 		dev->gdr_tail = 0;
335 
336 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
337 
338 	return 0;
339 }
340 
341 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
342 					      dma_addr_t *gd_dma, u32 idx)
343 {
344 	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
345 
346 	return &dev->gdr[idx];
347 }
348 
349 /*
350  * alloc memory for the scatter ring
351  * need to alloc buf for the ring
352  * sdr_tail, sdr_head and sdr_count are initialized by this function
353  */
354 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
355 {
356 	int i;
357 
358 	dev->scatter_buffer_va =
359 		dma_alloc_coherent(dev->core_dev->device,
360 			PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
361 			&dev->scatter_buffer_pa, GFP_KERNEL);
362 	if (!dev->scatter_buffer_va)
363 		return -ENOMEM;
364 
365 	/* alloc memory for scatter descriptor ring */
366 	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
367 				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
368 				      &dev->sdr_pa, GFP_KERNEL);
369 	if (!dev->sdr)
370 		return -ENOMEM;
371 
372 	for (i = 0; i < PPC4XX_NUM_SD; i++) {
373 		dev->sdr[i].ptr = dev->scatter_buffer_pa +
374 				  PPC4XX_SD_BUFFER_SIZE * i;
375 	}
376 
377 	return 0;
378 }
379 
380 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
381 {
382 	if (dev->sdr)
383 		dma_free_coherent(dev->core_dev->device,
384 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
385 				  dev->sdr, dev->sdr_pa);
386 
387 	if (dev->scatter_buffer_va)
388 		dma_free_coherent(dev->core_dev->device,
389 				  PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
390 				  dev->scatter_buffer_va,
391 				  dev->scatter_buffer_pa);
392 }
393 
394 /*
395  * when this function is called.
396  * preemption or interrupt must be disabled
397  */
398 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
399 {
400 	u32 retval;
401 	u32 tmp;
402 
403 	if (n >= PPC4XX_NUM_SD)
404 		return ERING_WAS_FULL;
405 
406 	retval = dev->sdr_head;
407 	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
408 	if (dev->sdr_head > dev->gdr_tail) {
409 		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
410 			return ERING_WAS_FULL;
411 	} else if (dev->sdr_head < dev->sdr_tail) {
412 		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
413 			return ERING_WAS_FULL;
414 	} /* the head = tail, or empty case is already take cared */
415 	dev->sdr_head = tmp;
416 
417 	return retval;
418 }
419 
420 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
421 {
422 	unsigned long flags;
423 
424 	spin_lock_irqsave(&dev->core_dev->lock, flags);
425 	if (dev->sdr_tail == dev->sdr_head) {
426 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
427 		return 0;
428 	}
429 	if (dev->sdr_tail != PPC4XX_LAST_SD)
430 		dev->sdr_tail++;
431 	else
432 		dev->sdr_tail = 0;
433 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
434 
435 	return 0;
436 }
437 
438 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
439 					      dma_addr_t *sd_dma, u32 idx)
440 {
441 	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
442 
443 	return &dev->sdr[idx];
444 }
445 
446 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
447 				      struct ce_pd *pd,
448 				      struct pd_uinfo *pd_uinfo,
449 				      u32 nbytes,
450 				      struct scatterlist *dst)
451 {
452 	unsigned int first_sd = pd_uinfo->first_sd;
453 	unsigned int last_sd;
454 	unsigned int overflow = 0;
455 	unsigned int to_copy;
456 	unsigned int dst_start = 0;
457 
458 	/*
459 	 * Because the scatter buffers are all neatly organized in one
460 	 * big continuous ringbuffer; scatterwalk_map_and_copy() can
461 	 * be instructed to copy a range of buffers in one go.
462 	 */
463 
464 	last_sd = (first_sd + pd_uinfo->num_sd);
465 	if (last_sd > PPC4XX_LAST_SD) {
466 		last_sd = PPC4XX_LAST_SD;
467 		overflow = last_sd % PPC4XX_NUM_SD;
468 	}
469 
470 	while (nbytes) {
471 		void *buf = dev->scatter_buffer_va +
472 			first_sd * PPC4XX_SD_BUFFER_SIZE;
473 
474 		to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
475 				      (1 + last_sd - first_sd));
476 		scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
477 		nbytes -= to_copy;
478 
479 		if (overflow) {
480 			first_sd = 0;
481 			last_sd = overflow;
482 			dst_start += to_copy;
483 			overflow = 0;
484 		}
485 	}
486 }
487 
488 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
489 				  struct pd_uinfo *pd_uinfo)
490 {
491 	int i;
492 	if (pd_uinfo->num_gd) {
493 		for (i = 0; i < pd_uinfo->num_gd; i++)
494 			crypto4xx_put_gd_to_gdr(dev);
495 		pd_uinfo->first_gd = 0xffffffff;
496 		pd_uinfo->num_gd = 0;
497 	}
498 	if (pd_uinfo->num_sd) {
499 		for (i = 0; i < pd_uinfo->num_sd; i++)
500 			crypto4xx_put_sd_to_sdr(dev);
501 
502 		pd_uinfo->first_sd = 0xffffffff;
503 		pd_uinfo->num_sd = 0;
504 	}
505 }
506 
507 static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
508 				     struct pd_uinfo *pd_uinfo,
509 				     struct ce_pd *pd)
510 {
511 	struct skcipher_request *req;
512 	struct scatterlist *dst;
513 
514 	req = skcipher_request_cast(pd_uinfo->async_req);
515 
516 	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
517 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
518 					  req->cryptlen, req->dst);
519 	} else {
520 		dst = pd_uinfo->dest_va;
521 		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
522 			       DMA_FROM_DEVICE);
523 	}
524 
525 	if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
526 		struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
527 
528 		crypto4xx_memcpy_from_le32((u32 *)req->iv,
529 			pd_uinfo->sr_va->save_iv,
530 			crypto_skcipher_ivsize(skcipher));
531 	}
532 
533 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
534 
535 	if (pd_uinfo->state & PD_ENTRY_BUSY)
536 		skcipher_request_complete(req, -EINPROGRESS);
537 	skcipher_request_complete(req, 0);
538 }
539 
540 static void crypto4xx_aead_done(struct crypto4xx_device *dev,
541 				struct pd_uinfo *pd_uinfo,
542 				struct ce_pd *pd)
543 {
544 	struct aead_request *aead_req = container_of(pd_uinfo->async_req,
545 		struct aead_request, base);
546 	struct scatterlist *dst = pd_uinfo->dest_va;
547 	size_t cp_len = crypto_aead_authsize(
548 		crypto_aead_reqtfm(aead_req));
549 	u32 icv[AES_BLOCK_SIZE];
550 	int err = 0;
551 
552 	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
553 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
554 					  pd->pd_ctl_len.bf.pkt_len,
555 					  dst);
556 	} else {
557 		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
558 				DMA_FROM_DEVICE);
559 	}
560 
561 	if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
562 		/* append icv at the end */
563 		crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
564 					   sizeof(icv));
565 
566 		scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
567 					 cp_len, 1);
568 	} else {
569 		/* check icv at the end */
570 		scatterwalk_map_and_copy(icv, aead_req->src,
571 			aead_req->assoclen + aead_req->cryptlen -
572 			cp_len, cp_len, 0);
573 
574 		crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
575 
576 		if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
577 			err = -EBADMSG;
578 	}
579 
580 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
581 
582 	if (pd->pd_ctl.bf.status & 0xff) {
583 		if (!__ratelimit(&dev->aead_ratelimit)) {
584 			if (pd->pd_ctl.bf.status & 2)
585 				pr_err("pad fail error\n");
586 			if (pd->pd_ctl.bf.status & 4)
587 				pr_err("seqnum fail\n");
588 			if (pd->pd_ctl.bf.status & 8)
589 				pr_err("error _notify\n");
590 			pr_err("aead return err status = 0x%02x\n",
591 				pd->pd_ctl.bf.status & 0xff);
592 			pr_err("pd pad_ctl = 0x%08x\n",
593 				pd->pd_ctl.bf.pd_pad_ctl);
594 		}
595 		err = -EINVAL;
596 	}
597 
598 	if (pd_uinfo->state & PD_ENTRY_BUSY)
599 		aead_request_complete(aead_req, -EINPROGRESS);
600 
601 	aead_request_complete(aead_req, err);
602 }
603 
604 static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
605 {
606 	struct ce_pd *pd = &dev->pdr[idx];
607 	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
608 
609 	switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
610 	case CRYPTO_ALG_TYPE_SKCIPHER:
611 		crypto4xx_cipher_done(dev, pd_uinfo, pd);
612 		break;
613 	case CRYPTO_ALG_TYPE_AEAD:
614 		crypto4xx_aead_done(dev, pd_uinfo, pd);
615 		break;
616 	}
617 }
618 
619 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
620 {
621 	crypto4xx_destroy_pdr(core_dev->dev);
622 	crypto4xx_destroy_gdr(core_dev->dev);
623 	crypto4xx_destroy_sdr(core_dev->dev);
624 }
625 
626 static u32 get_next_gd(u32 current)
627 {
628 	if (current != PPC4XX_LAST_GD)
629 		return current + 1;
630 	else
631 		return 0;
632 }
633 
634 static u32 get_next_sd(u32 current)
635 {
636 	if (current != PPC4XX_LAST_SD)
637 		return current + 1;
638 	else
639 		return 0;
640 }
641 
642 int crypto4xx_build_pd(struct crypto_async_request *req,
643 		       struct crypto4xx_ctx *ctx,
644 		       struct scatterlist *src,
645 		       struct scatterlist *dst,
646 		       const unsigned int datalen,
647 		       const void *iv, const u32 iv_len,
648 		       const struct dynamic_sa_ctl *req_sa,
649 		       const unsigned int sa_len,
650 		       const unsigned int assoclen,
651 		       struct scatterlist *_dst)
652 {
653 	struct crypto4xx_device *dev = ctx->dev;
654 	struct dynamic_sa_ctl *sa;
655 	struct ce_gd *gd;
656 	struct ce_pd *pd;
657 	u32 num_gd, num_sd;
658 	u32 fst_gd = 0xffffffff;
659 	u32 fst_sd = 0xffffffff;
660 	u32 pd_entry;
661 	unsigned long flags;
662 	struct pd_uinfo *pd_uinfo;
663 	unsigned int nbytes = datalen;
664 	size_t offset_to_sr_ptr;
665 	u32 gd_idx = 0;
666 	int tmp;
667 	bool is_busy, force_sd;
668 
669 	/*
670 	 * There's a very subtile/disguised "bug" in the hardware that
671 	 * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
672 	 * of the hardware spec:
673 	 * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
674 	 * operation modes for >>> "Block ciphers" <<<.
675 	 *
676 	 * To workaround this issue and stop the hardware from causing
677 	 * "overran dst buffer" on crypttexts that are not a multiple
678 	 * of 16 (AES_BLOCK_SIZE), we force the driver to use the
679 	 * scatter buffers.
680 	 */
681 	force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
682 		|| req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
683 		&& (datalen % AES_BLOCK_SIZE);
684 
685 	/* figure how many gd are needed */
686 	tmp = sg_nents_for_len(src, assoclen + datalen);
687 	if (tmp < 0) {
688 		dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
689 		return tmp;
690 	}
691 	if (tmp == 1)
692 		tmp = 0;
693 	num_gd = tmp;
694 
695 	if (assoclen) {
696 		nbytes += assoclen;
697 		dst = scatterwalk_ffwd(_dst, dst, assoclen);
698 	}
699 
700 	/* figure how many sd are needed */
701 	if (sg_is_last(dst) && force_sd == false) {
702 		num_sd = 0;
703 	} else {
704 		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
705 			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
706 			if (datalen % PPC4XX_SD_BUFFER_SIZE)
707 				num_sd++;
708 		} else {
709 			num_sd = 1;
710 		}
711 	}
712 
713 	/*
714 	 * The follow section of code needs to be protected
715 	 * The gather ring and scatter ring needs to be consecutive
716 	 * In case of run out of any kind of descriptor, the descriptor
717 	 * already got must be return the original place.
718 	 */
719 	spin_lock_irqsave(&dev->core_dev->lock, flags);
720 	/*
721 	 * Let the caller know to slow down, once more than 13/16ths = 81%
722 	 * of the available data contexts are being used simultaneously.
723 	 *
724 	 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
725 	 * 31 more contexts. Before new requests have to be rejected.
726 	 */
727 	if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
728 		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
729 			((PPC4XX_NUM_PD * 13) / 16);
730 	} else {
731 		/*
732 		 * To fix contention issues between ipsec (no blacklog) and
733 		 * dm-crypto (backlog) reserve 32 entries for "no backlog"
734 		 * data contexts.
735 		 */
736 		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
737 			((PPC4XX_NUM_PD * 15) / 16);
738 
739 		if (is_busy) {
740 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
741 			return -EBUSY;
742 		}
743 	}
744 
745 	if (num_gd) {
746 		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
747 		if (fst_gd == ERING_WAS_FULL) {
748 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
749 			return -EAGAIN;
750 		}
751 	}
752 	if (num_sd) {
753 		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
754 		if (fst_sd == ERING_WAS_FULL) {
755 			if (num_gd)
756 				dev->gdr_head = fst_gd;
757 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
758 			return -EAGAIN;
759 		}
760 	}
761 	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
762 	if (pd_entry == ERING_WAS_FULL) {
763 		if (num_gd)
764 			dev->gdr_head = fst_gd;
765 		if (num_sd)
766 			dev->sdr_head = fst_sd;
767 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
768 		return -EAGAIN;
769 	}
770 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
771 
772 	pd = &dev->pdr[pd_entry];
773 	pd->sa_len = sa_len;
774 
775 	pd_uinfo = &dev->pdr_uinfo[pd_entry];
776 	pd_uinfo->num_gd = num_gd;
777 	pd_uinfo->num_sd = num_sd;
778 	pd_uinfo->dest_va = dst;
779 	pd_uinfo->async_req = req;
780 
781 	if (iv_len)
782 		memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
783 
784 	sa = pd_uinfo->sa_va;
785 	memcpy(sa, req_sa, sa_len * 4);
786 
787 	sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
788 	offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
789 	*(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
790 
791 	if (num_gd) {
792 		dma_addr_t gd_dma;
793 		struct scatterlist *sg;
794 
795 		/* get first gd we are going to use */
796 		gd_idx = fst_gd;
797 		pd_uinfo->first_gd = fst_gd;
798 		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
799 		pd->src = gd_dma;
800 		/* enable gather */
801 		sa->sa_command_0.bf.gather = 1;
802 		/* walk the sg, and setup gather array */
803 
804 		sg = src;
805 		while (nbytes) {
806 			size_t len;
807 
808 			len = min(sg->length, nbytes);
809 			gd->ptr = dma_map_page(dev->core_dev->device,
810 				sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
811 			gd->ctl_len.len = len;
812 			gd->ctl_len.done = 0;
813 			gd->ctl_len.ready = 1;
814 			if (len >= nbytes)
815 				break;
816 
817 			nbytes -= sg->length;
818 			gd_idx = get_next_gd(gd_idx);
819 			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
820 			sg = sg_next(sg);
821 		}
822 	} else {
823 		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
824 				src->offset, min(nbytes, src->length),
825 				DMA_TO_DEVICE);
826 		/*
827 		 * Disable gather in sa command
828 		 */
829 		sa->sa_command_0.bf.gather = 0;
830 		/*
831 		 * Indicate gather array is not used
832 		 */
833 		pd_uinfo->first_gd = 0xffffffff;
834 	}
835 	if (!num_sd) {
836 		/*
837 		 * we know application give us dst a whole piece of memory
838 		 * no need to use scatter ring.
839 		 */
840 		pd_uinfo->first_sd = 0xffffffff;
841 		sa->sa_command_0.bf.scatter = 0;
842 		pd->dest = (u32)dma_map_page(dev->core_dev->device,
843 					     sg_page(dst), dst->offset,
844 					     min(datalen, dst->length),
845 					     DMA_TO_DEVICE);
846 	} else {
847 		dma_addr_t sd_dma;
848 		struct ce_sd *sd = NULL;
849 
850 		u32 sd_idx = fst_sd;
851 		nbytes = datalen;
852 		sa->sa_command_0.bf.scatter = 1;
853 		pd_uinfo->first_sd = fst_sd;
854 		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
855 		pd->dest = sd_dma;
856 		/* setup scatter descriptor */
857 		sd->ctl.done = 0;
858 		sd->ctl.rdy = 1;
859 		/* sd->ptr should be setup by sd_init routine*/
860 		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
861 			nbytes -= PPC4XX_SD_BUFFER_SIZE;
862 		else
863 			nbytes = 0;
864 		while (nbytes) {
865 			sd_idx = get_next_sd(sd_idx);
866 			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
867 			/* setup scatter descriptor */
868 			sd->ctl.done = 0;
869 			sd->ctl.rdy = 1;
870 			if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
871 				nbytes -= PPC4XX_SD_BUFFER_SIZE;
872 			} else {
873 				/*
874 				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
875 				 * which is more than nbytes, so done.
876 				 */
877 				nbytes = 0;
878 			}
879 		}
880 	}
881 
882 	pd->pd_ctl.w = PD_CTL_HOST_READY |
883 		((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
884 			PD_CTL_HASH_FINAL : 0);
885 	pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
886 	pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
887 
888 	wmb();
889 	/* write any value to push engine to read a pd */
890 	writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
891 	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
892 	return is_busy ? -EBUSY : -EINPROGRESS;
893 }
894 
895 /*
896  * Algorithm Registration Functions
897  */
898 static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
899 			       struct crypto4xx_ctx *ctx)
900 {
901 	ctx->dev = amcc_alg->dev;
902 	ctx->sa_in = NULL;
903 	ctx->sa_out = NULL;
904 	ctx->sa_len = 0;
905 }
906 
907 static int crypto4xx_sk_init(struct crypto_skcipher *sk)
908 {
909 	struct skcipher_alg *alg = crypto_skcipher_alg(sk);
910 	struct crypto4xx_alg *amcc_alg;
911 	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
912 
913 	if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
914 		ctx->sw_cipher.cipher =
915 			crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
916 					      CRYPTO_ALG_NEED_FALLBACK);
917 		if (IS_ERR(ctx->sw_cipher.cipher))
918 			return PTR_ERR(ctx->sw_cipher.cipher);
919 	}
920 
921 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
922 	crypto4xx_ctx_init(amcc_alg, ctx);
923 	return 0;
924 }
925 
926 static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
927 {
928 	crypto4xx_free_sa(ctx);
929 }
930 
931 static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
932 {
933 	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
934 
935 	crypto4xx_common_exit(ctx);
936 	if (ctx->sw_cipher.cipher)
937 		crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
938 }
939 
940 static int crypto4xx_aead_init(struct crypto_aead *tfm)
941 {
942 	struct aead_alg *alg = crypto_aead_alg(tfm);
943 	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
944 	struct crypto4xx_alg *amcc_alg;
945 
946 	ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
947 						CRYPTO_ALG_NEED_FALLBACK |
948 						CRYPTO_ALG_ASYNC);
949 	if (IS_ERR(ctx->sw_cipher.aead))
950 		return PTR_ERR(ctx->sw_cipher.aead);
951 
952 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
953 	crypto4xx_ctx_init(amcc_alg, ctx);
954 	crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
955 				crypto_aead_reqsize(ctx->sw_cipher.aead),
956 				sizeof(struct crypto4xx_aead_reqctx)));
957 	return 0;
958 }
959 
960 static void crypto4xx_aead_exit(struct crypto_aead *tfm)
961 {
962 	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
963 
964 	crypto4xx_common_exit(ctx);
965 	crypto_free_aead(ctx->sw_cipher.aead);
966 }
967 
968 static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
969 				  struct crypto4xx_alg_common *crypto_alg,
970 				  int array_size)
971 {
972 	struct crypto4xx_alg *alg;
973 	int i;
974 	int rc = 0;
975 
976 	for (i = 0; i < array_size; i++) {
977 		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
978 		if (!alg)
979 			return -ENOMEM;
980 
981 		alg->alg = crypto_alg[i];
982 		alg->dev = sec_dev;
983 
984 		switch (alg->alg.type) {
985 		case CRYPTO_ALG_TYPE_AEAD:
986 			rc = crypto_register_aead(&alg->alg.u.aead);
987 			break;
988 
989 		case CRYPTO_ALG_TYPE_RNG:
990 			rc = crypto_register_rng(&alg->alg.u.rng);
991 			break;
992 
993 		default:
994 			rc = crypto_register_skcipher(&alg->alg.u.cipher);
995 			break;
996 		}
997 
998 		if (rc)
999 			kfree(alg);
1000 		else
1001 			list_add_tail(&alg->entry, &sec_dev->alg_list);
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1008 {
1009 	struct crypto4xx_alg *alg, *tmp;
1010 
1011 	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1012 		list_del(&alg->entry);
1013 		switch (alg->alg.type) {
1014 		case CRYPTO_ALG_TYPE_AEAD:
1015 			crypto_unregister_aead(&alg->alg.u.aead);
1016 			break;
1017 
1018 		case CRYPTO_ALG_TYPE_RNG:
1019 			crypto_unregister_rng(&alg->alg.u.rng);
1020 			break;
1021 
1022 		default:
1023 			crypto_unregister_skcipher(&alg->alg.u.cipher);
1024 		}
1025 		kfree(alg);
1026 	}
1027 }
1028 
1029 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1030 {
1031 	struct device *dev = (struct device *)data;
1032 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1033 	struct pd_uinfo *pd_uinfo;
1034 	struct ce_pd *pd;
1035 	u32 tail = core_dev->dev->pdr_tail;
1036 	u32 head = core_dev->dev->pdr_head;
1037 
1038 	do {
1039 		pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1040 		pd = &core_dev->dev->pdr[tail];
1041 		if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1042 		     ((READ_ONCE(pd->pd_ctl.w) &
1043 		       (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1044 		       PD_CTL_PE_DONE)) {
1045 			crypto4xx_pd_done(core_dev->dev, tail);
1046 			tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1047 		} else {
1048 			/* if tail not done, break */
1049 			break;
1050 		}
1051 	} while (head != tail);
1052 }
1053 
1054 /*
1055  * Top Half of isr.
1056  */
1057 static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1058 						      u32 clr_val)
1059 {
1060 	struct device *dev = data;
1061 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1062 
1063 	writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1064 	tasklet_schedule(&core_dev->tasklet);
1065 
1066 	return IRQ_HANDLED;
1067 }
1068 
1069 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1070 {
1071 	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1072 }
1073 
1074 static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1075 {
1076 	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1077 		PPC4XX_TMO_ERR_INT);
1078 }
1079 
1080 static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1081 				 u8 *data, unsigned int max)
1082 {
1083 	unsigned int i, curr = 0;
1084 	u32 val[2];
1085 
1086 	do {
1087 		/* trigger PRN generation */
1088 		writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1089 		       dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1090 
1091 		for (i = 0; i < 1024; i++) {
1092 			/* usually 19 iterations are enough */
1093 			if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1094 			     CRYPTO4XX_PRNG_STAT_BUSY))
1095 				continue;
1096 
1097 			val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1098 			val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1099 			break;
1100 		}
1101 		if (i == 1024)
1102 			return -ETIMEDOUT;
1103 
1104 		if ((max - curr) >= 8) {
1105 			memcpy(data, &val, 8);
1106 			data += 8;
1107 			curr += 8;
1108 		} else {
1109 			/* copy only remaining bytes */
1110 			memcpy(data, &val, max - curr);
1111 			break;
1112 		}
1113 	} while (curr < max);
1114 
1115 	return curr;
1116 }
1117 
1118 static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1119 				   const u8 *src, unsigned int slen,
1120 				   u8 *dstn, unsigned int dlen)
1121 {
1122 	struct rng_alg *alg = crypto_rng_alg(tfm);
1123 	struct crypto4xx_alg *amcc_alg;
1124 	struct crypto4xx_device *dev;
1125 	int ret;
1126 
1127 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1128 	dev = amcc_alg->dev;
1129 
1130 	mutex_lock(&dev->core_dev->rng_lock);
1131 	ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1132 	mutex_unlock(&dev->core_dev->rng_lock);
1133 	return ret;
1134 }
1135 
1136 
1137 static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1138 			unsigned int slen)
1139 {
1140 	return 0;
1141 }
1142 
1143 /*
1144  * Supported Crypto Algorithms
1145  */
1146 static struct crypto4xx_alg_common crypto4xx_alg[] = {
1147 	/* Crypto AES modes */
1148 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1149 		.base = {
1150 			.cra_name = "cbc(aes)",
1151 			.cra_driver_name = "cbc-aes-ppc4xx",
1152 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1153 			.cra_flags = CRYPTO_ALG_ASYNC |
1154 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1155 			.cra_blocksize = AES_BLOCK_SIZE,
1156 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1157 			.cra_module = THIS_MODULE,
1158 		},
1159 		.min_keysize = AES_MIN_KEY_SIZE,
1160 		.max_keysize = AES_MAX_KEY_SIZE,
1161 		.ivsize	= AES_IV_SIZE,
1162 		.setkey = crypto4xx_setkey_aes_cbc,
1163 		.encrypt = crypto4xx_encrypt_iv_block,
1164 		.decrypt = crypto4xx_decrypt_iv_block,
1165 		.init = crypto4xx_sk_init,
1166 		.exit = crypto4xx_sk_exit,
1167 	} },
1168 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1169 		.base = {
1170 			.cra_name = "ctr(aes)",
1171 			.cra_driver_name = "ctr-aes-ppc4xx",
1172 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1173 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1174 				CRYPTO_ALG_ASYNC |
1175 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1176 			.cra_blocksize = 1,
1177 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1178 			.cra_module = THIS_MODULE,
1179 		},
1180 		.min_keysize = AES_MIN_KEY_SIZE,
1181 		.max_keysize = AES_MAX_KEY_SIZE,
1182 		.ivsize	= AES_IV_SIZE,
1183 		.setkey	= crypto4xx_setkey_aes_ctr,
1184 		.encrypt = crypto4xx_encrypt_ctr,
1185 		.decrypt = crypto4xx_decrypt_ctr,
1186 		.init = crypto4xx_sk_init,
1187 		.exit = crypto4xx_sk_exit,
1188 	} },
1189 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1190 		.base = {
1191 			.cra_name = "rfc3686(ctr(aes))",
1192 			.cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1193 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1194 			.cra_flags = CRYPTO_ALG_ASYNC |
1195 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1196 			.cra_blocksize = 1,
1197 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1198 			.cra_module = THIS_MODULE,
1199 		},
1200 		.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1201 		.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1202 		.ivsize	= CTR_RFC3686_IV_SIZE,
1203 		.setkey = crypto4xx_setkey_rfc3686,
1204 		.encrypt = crypto4xx_rfc3686_encrypt,
1205 		.decrypt = crypto4xx_rfc3686_decrypt,
1206 		.init = crypto4xx_sk_init,
1207 		.exit = crypto4xx_sk_exit,
1208 	} },
1209 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1210 		.base = {
1211 			.cra_name = "ecb(aes)",
1212 			.cra_driver_name = "ecb-aes-ppc4xx",
1213 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1214 			.cra_flags = CRYPTO_ALG_ASYNC |
1215 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1216 			.cra_blocksize = AES_BLOCK_SIZE,
1217 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1218 			.cra_module = THIS_MODULE,
1219 		},
1220 		.min_keysize = AES_MIN_KEY_SIZE,
1221 		.max_keysize = AES_MAX_KEY_SIZE,
1222 		.setkey	= crypto4xx_setkey_aes_ecb,
1223 		.encrypt = crypto4xx_encrypt_noiv_block,
1224 		.decrypt = crypto4xx_decrypt_noiv_block,
1225 		.init = crypto4xx_sk_init,
1226 		.exit = crypto4xx_sk_exit,
1227 	} },
1228 
1229 	/* AEAD */
1230 	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1231 		.setkey		= crypto4xx_setkey_aes_ccm,
1232 		.setauthsize	= crypto4xx_setauthsize_aead,
1233 		.encrypt	= crypto4xx_encrypt_aes_ccm,
1234 		.decrypt	= crypto4xx_decrypt_aes_ccm,
1235 		.init		= crypto4xx_aead_init,
1236 		.exit		= crypto4xx_aead_exit,
1237 		.ivsize		= AES_BLOCK_SIZE,
1238 		.maxauthsize    = 16,
1239 		.base = {
1240 			.cra_name	= "ccm(aes)",
1241 			.cra_driver_name = "ccm-aes-ppc4xx",
1242 			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1243 			.cra_flags	= CRYPTO_ALG_ASYNC |
1244 					  CRYPTO_ALG_NEED_FALLBACK |
1245 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1246 			.cra_blocksize	= 1,
1247 			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1248 			.cra_module	= THIS_MODULE,
1249 		},
1250 	} },
1251 	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1252 		.setkey		= crypto4xx_setkey_aes_gcm,
1253 		.setauthsize	= crypto4xx_setauthsize_aead,
1254 		.encrypt	= crypto4xx_encrypt_aes_gcm,
1255 		.decrypt	= crypto4xx_decrypt_aes_gcm,
1256 		.init		= crypto4xx_aead_init,
1257 		.exit		= crypto4xx_aead_exit,
1258 		.ivsize		= GCM_AES_IV_SIZE,
1259 		.maxauthsize	= 16,
1260 		.base = {
1261 			.cra_name	= "gcm(aes)",
1262 			.cra_driver_name = "gcm-aes-ppc4xx",
1263 			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1264 			.cra_flags	= CRYPTO_ALG_ASYNC |
1265 					  CRYPTO_ALG_NEED_FALLBACK |
1266 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1267 			.cra_blocksize	= 1,
1268 			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1269 			.cra_module	= THIS_MODULE,
1270 		},
1271 	} },
1272 	{ .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1273 		.base = {
1274 			.cra_name		= "stdrng",
1275 			.cra_driver_name        = "crypto4xx_rng",
1276 			.cra_priority		= 300,
1277 			.cra_ctxsize		= 0,
1278 			.cra_module		= THIS_MODULE,
1279 		},
1280 		.generate               = crypto4xx_prng_generate,
1281 		.seed                   = crypto4xx_prng_seed,
1282 		.seedsize               = 0,
1283 	} },
1284 };
1285 
1286 /*
1287  * Module Initialization Routine
1288  */
1289 static int crypto4xx_probe(struct platform_device *ofdev)
1290 {
1291 	int rc;
1292 	struct device *dev = &ofdev->dev;
1293 	struct crypto4xx_core_device *core_dev;
1294 	struct device_node *np;
1295 	u32 pvr;
1296 	bool is_revb = true;
1297 
1298 	np = of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto");
1299 	if (np) {
1300 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1301 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1302 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1303 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1304 	} else {
1305 		np = of_find_compatible_node(NULL, NULL, "amcc,ppc405ex-crypto");
1306 		if (np) {
1307 			mtdcri(SDR0, PPC405EX_SDR0_SRST,
1308 				   mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1309 			mtdcri(SDR0, PPC405EX_SDR0_SRST,
1310 				   mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1311 			is_revb = false;
1312 		} else {
1313 			np = of_find_compatible_node(NULL, NULL, "amcc,ppc460sx-crypto");
1314 			if (np) {
1315 				mtdcri(SDR0, PPC460SX_SDR0_SRST,
1316 					mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1317 				mtdcri(SDR0, PPC460SX_SDR0_SRST,
1318 					mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1319 			} else {
1320 				printk(KERN_ERR "Crypto Function Not supported!\n");
1321 				return -EINVAL;
1322 			}
1323 		}
1324 	}
1325 
1326 	of_node_put(np);
1327 
1328 	core_dev = devm_kzalloc(
1329 		&ofdev->dev, sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1330 	if (!core_dev)
1331 		return -ENOMEM;
1332 
1333 	dev_set_drvdata(dev, core_dev);
1334 	core_dev->ofdev = ofdev;
1335 	core_dev->dev = devm_kzalloc(
1336 		&ofdev->dev, sizeof(struct crypto4xx_device), GFP_KERNEL);
1337 	if (!core_dev->dev)
1338 		return -ENOMEM;
1339 
1340 	/*
1341 	 * Older version of 460EX/GT have a hardware bug.
1342 	 * Hence they do not support H/W based security intr coalescing
1343 	 */
1344 	pvr = mfspr(SPRN_PVR);
1345 	if (is_revb && ((pvr >> 4) == 0x130218A)) {
1346 		u32 min = PVR_MIN(pvr);
1347 
1348 		if (min < 4) {
1349 			dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1350 			is_revb = false;
1351 		}
1352 	}
1353 
1354 	core_dev->dev->core_dev = core_dev;
1355 	core_dev->dev->is_revb = is_revb;
1356 	core_dev->device = dev;
1357 	rc = devm_mutex_init(&ofdev->dev, &core_dev->rng_lock);
1358 	if (rc)
1359 		return rc;
1360 	spin_lock_init(&core_dev->lock);
1361 	INIT_LIST_HEAD(&core_dev->dev->alg_list);
1362 	ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1363 	rc = crypto4xx_build_sdr(core_dev->dev);
1364 	if (rc)
1365 		goto err_build_sdr;
1366 	rc = crypto4xx_build_pdr(core_dev->dev);
1367 	if (rc)
1368 		goto err_build_sdr;
1369 
1370 	rc = crypto4xx_build_gdr(core_dev->dev);
1371 	if (rc)
1372 		goto err_build_sdr;
1373 
1374 	/* Init tasklet for bottom half processing */
1375 	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1376 		     (unsigned long) dev);
1377 
1378 	core_dev->dev->ce_base = devm_platform_ioremap_resource(ofdev, 0);
1379 	if (IS_ERR(core_dev->dev->ce_base)) {
1380 		dev_err(&ofdev->dev, "failed to ioremap resource");
1381 		rc = PTR_ERR(core_dev->dev->ce_base);
1382 		goto err_build_sdr;
1383 	}
1384 
1385 	/* Register for Crypto isr, Crypto Engine IRQ */
1386 	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1387 	rc = devm_request_irq(&ofdev->dev, core_dev->irq,
1388 			      is_revb ? crypto4xx_ce_interrupt_handler_revb :
1389 					crypto4xx_ce_interrupt_handler,
1390 			      0, KBUILD_MODNAME, dev);
1391 	if (rc)
1392 		goto err_iomap;
1393 
1394 	/* need to setup pdr, rdr, gdr and sdr before this */
1395 	crypto4xx_hw_init(core_dev->dev);
1396 
1397 	/* Register security algorithms with Linux CryptoAPI */
1398 	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1399 			       ARRAY_SIZE(crypto4xx_alg));
1400 	if (rc)
1401 		goto err_iomap;
1402 
1403 	ppc4xx_trng_probe(core_dev);
1404 	return 0;
1405 
1406 err_iomap:
1407 	tasklet_kill(&core_dev->tasklet);
1408 err_build_sdr:
1409 	crypto4xx_destroy_sdr(core_dev->dev);
1410 	crypto4xx_destroy_gdr(core_dev->dev);
1411 	crypto4xx_destroy_pdr(core_dev->dev);
1412 	return rc;
1413 }
1414 
1415 static void crypto4xx_remove(struct platform_device *ofdev)
1416 {
1417 	struct device *dev = &ofdev->dev;
1418 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1419 
1420 	ppc4xx_trng_remove(core_dev);
1421 
1422 	tasklet_kill(&core_dev->tasklet);
1423 	/* Un-register with Linux CryptoAPI */
1424 	crypto4xx_unregister_alg(core_dev->dev);
1425 	/* Free all allocated memory */
1426 	crypto4xx_stop_all(core_dev);
1427 }
1428 
1429 static const struct of_device_id crypto4xx_match[] = {
1430 	{ .compatible      = "amcc,ppc4xx-crypto",},
1431 	{ },
1432 };
1433 MODULE_DEVICE_TABLE(of, crypto4xx_match);
1434 
1435 static struct platform_driver crypto4xx_driver = {
1436 	.driver = {
1437 		.name = KBUILD_MODNAME,
1438 		.of_match_table = crypto4xx_match,
1439 	},
1440 	.probe		= crypto4xx_probe,
1441 	.remove		= crypto4xx_remove,
1442 };
1443 
1444 module_platform_driver(crypto4xx_driver);
1445 
1446 MODULE_LICENSE("GPL");
1447 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1448 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1449