xref: /linux/drivers/crypto/amcc/crypto4xx_core.c (revision e18655cf35a5958fbf4ae9ca3ebf28871a3a1801)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * AMCC SoC PPC4xx Crypto Driver
4  *
5  * Copyright (c) 2008 Applied Micro Circuits Corporation.
6  * All rights reserved. James Hsiao <jhsiao@amcc.com>
7  *
8  * This file implements AMCC crypto offload Linux device driver for use with
9  * Linux CryptoAPI.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/interrupt.h>
14 #include <linux/spinlock_types.h>
15 #include <linux/random.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/platform_device.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_platform.h>
25 #include <linux/slab.h>
26 #include <asm/dcr.h>
27 #include <asm/dcr-regs.h>
28 #include <asm/cacheflush.h>
29 #include <crypto/aead.h>
30 #include <crypto/aes.h>
31 #include <crypto/ctr.h>
32 #include <crypto/gcm.h>
33 #include <crypto/sha1.h>
34 #include <crypto/rng.h>
35 #include <crypto/scatterwalk.h>
36 #include <crypto/skcipher.h>
37 #include <crypto/internal/aead.h>
38 #include <crypto/internal/rng.h>
39 #include <crypto/internal/skcipher.h>
40 #include "crypto4xx_reg_def.h"
41 #include "crypto4xx_core.h"
42 #include "crypto4xx_sa.h"
43 #include "crypto4xx_trng.h"
44 
45 #define PPC4XX_SEC_VERSION_STR			"0.5"
46 
47 /*
48  * PPC4xx Crypto Engine Initialization Routine
49  */
50 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
51 {
52 	union ce_ring_size ring_size;
53 	union ce_ring_control ring_ctrl;
54 	union ce_part_ring_size part_ring_size;
55 	union ce_io_threshold io_threshold;
56 	u32 rand_num;
57 	union ce_pe_dma_cfg pe_dma_cfg;
58 	u32 device_ctrl;
59 
60 	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
61 	/* setup pe dma, include reset sg, pdr and pe, then release reset */
62 	pe_dma_cfg.w = 0;
63 	pe_dma_cfg.bf.bo_sgpd_en = 1;
64 	pe_dma_cfg.bf.bo_data_en = 0;
65 	pe_dma_cfg.bf.bo_sa_en = 1;
66 	pe_dma_cfg.bf.bo_pd_en = 1;
67 	pe_dma_cfg.bf.dynamic_sa_en = 1;
68 	pe_dma_cfg.bf.reset_sg = 1;
69 	pe_dma_cfg.bf.reset_pdr = 1;
70 	pe_dma_cfg.bf.reset_pe = 1;
71 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
72 	/* un reset pe,sg and pdr */
73 	pe_dma_cfg.bf.pe_mode = 0;
74 	pe_dma_cfg.bf.reset_sg = 0;
75 	pe_dma_cfg.bf.reset_pdr = 0;
76 	pe_dma_cfg.bf.reset_pe = 0;
77 	pe_dma_cfg.bf.bo_td_en = 0;
78 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
79 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
80 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
81 	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
82 	get_random_bytes(&rand_num, sizeof(rand_num));
83 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
84 	get_random_bytes(&rand_num, sizeof(rand_num));
85 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
86 	ring_size.w = 0;
87 	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
88 	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
89 	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
90 	ring_ctrl.w = 0;
91 	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
92 	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
93 	device_ctrl |= PPC4XX_DC_3DES_EN;
94 	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
95 	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
96 	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
97 	part_ring_size.w = 0;
98 	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
99 	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
100 	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
101 	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
102 	io_threshold.w = 0;
103 	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
104 	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
105 	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
106 	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
107 	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
108 	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
109 	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
110 	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
111 	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
112 	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
113 	/* un reset pe,sg and pdr */
114 	pe_dma_cfg.bf.pe_mode = 1;
115 	pe_dma_cfg.bf.reset_sg = 0;
116 	pe_dma_cfg.bf.reset_pdr = 0;
117 	pe_dma_cfg.bf.reset_pe = 0;
118 	pe_dma_cfg.bf.bo_td_en = 0;
119 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
120 	/*clear all pending interrupt*/
121 	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
122 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
123 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
124 	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
125 	if (dev->is_revb) {
126 		writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
127 		       dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
128 		writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
129 		       dev->ce_base + CRYPTO4XX_INT_EN);
130 	} else {
131 		writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
132 	}
133 }
134 
135 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
136 {
137 	ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
138 	if (ctx->sa_in == NULL)
139 		return -ENOMEM;
140 
141 	ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
142 	if (ctx->sa_out == NULL) {
143 		kfree(ctx->sa_in);
144 		ctx->sa_in = NULL;
145 		return -ENOMEM;
146 	}
147 
148 	ctx->sa_len = size;
149 
150 	return 0;
151 }
152 
153 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
154 {
155 	kfree(ctx->sa_in);
156 	ctx->sa_in = NULL;
157 	kfree(ctx->sa_out);
158 	ctx->sa_out = NULL;
159 	ctx->sa_len = 0;
160 }
161 
162 /*
163  * alloc memory for the gather ring
164  * no need to alloc buf for the ring
165  * gdr_tail, gdr_head and gdr_count are initialized by this function
166  */
167 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
168 {
169 	int i;
170 	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
171 				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
172 				      &dev->pdr_pa, GFP_KERNEL);
173 	if (!dev->pdr)
174 		return -ENOMEM;
175 
176 	dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
177 				 GFP_KERNEL);
178 	if (!dev->pdr_uinfo) {
179 		dma_free_coherent(dev->core_dev->device,
180 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
181 				  dev->pdr,
182 				  dev->pdr_pa);
183 		return -ENOMEM;
184 	}
185 	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
186 				   sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
187 				   &dev->shadow_sa_pool_pa,
188 				   GFP_KERNEL);
189 	if (!dev->shadow_sa_pool)
190 		return -ENOMEM;
191 
192 	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
193 			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
194 			 &dev->shadow_sr_pool_pa, GFP_KERNEL);
195 	if (!dev->shadow_sr_pool)
196 		return -ENOMEM;
197 	for (i = 0; i < PPC4XX_NUM_PD; i++) {
198 		struct ce_pd *pd = &dev->pdr[i];
199 		struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
200 
201 		pd->sa = dev->shadow_sa_pool_pa +
202 			sizeof(union shadow_sa_buf) * i;
203 
204 		/* alloc 256 bytes which is enough for any kind of dynamic sa */
205 		pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
206 
207 		/* alloc state record */
208 		pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
209 		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
210 		    sizeof(struct sa_state_record) * i;
211 	}
212 
213 	return 0;
214 }
215 
216 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
217 {
218 	if (dev->pdr)
219 		dma_free_coherent(dev->core_dev->device,
220 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
221 				  dev->pdr, dev->pdr_pa);
222 
223 	if (dev->shadow_sa_pool)
224 		dma_free_coherent(dev->core_dev->device,
225 			sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
226 			dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
227 
228 	if (dev->shadow_sr_pool)
229 		dma_free_coherent(dev->core_dev->device,
230 			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
231 			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
232 
233 	kfree(dev->pdr_uinfo);
234 }
235 
236 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
237 {
238 	u32 retval;
239 	u32 tmp;
240 
241 	retval = dev->pdr_head;
242 	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
243 
244 	if (tmp == dev->pdr_tail)
245 		return ERING_WAS_FULL;
246 
247 	dev->pdr_head = tmp;
248 
249 	return retval;
250 }
251 
252 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
253 {
254 	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
255 	u32 tail;
256 	unsigned long flags;
257 
258 	spin_lock_irqsave(&dev->core_dev->lock, flags);
259 	pd_uinfo->state = PD_ENTRY_FREE;
260 
261 	if (dev->pdr_tail != PPC4XX_LAST_PD)
262 		dev->pdr_tail++;
263 	else
264 		dev->pdr_tail = 0;
265 	tail = dev->pdr_tail;
266 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
267 
268 	return tail;
269 }
270 
271 /*
272  * alloc memory for the gather ring
273  * no need to alloc buf for the ring
274  * gdr_tail, gdr_head and gdr_count are initialized by this function
275  */
276 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
277 {
278 	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
279 				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
280 				      &dev->gdr_pa, GFP_KERNEL);
281 	if (!dev->gdr)
282 		return -ENOMEM;
283 
284 	return 0;
285 }
286 
287 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
288 {
289 	if (dev->gdr)
290 		dma_free_coherent(dev->core_dev->device,
291 			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
292 			  dev->gdr, dev->gdr_pa);
293 }
294 
295 /*
296  * when this function is called.
297  * preemption or interrupt must be disabled
298  */
299 static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
300 {
301 	u32 retval;
302 	u32 tmp;
303 
304 	if (n >= PPC4XX_NUM_GD)
305 		return ERING_WAS_FULL;
306 
307 	retval = dev->gdr_head;
308 	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
309 	if (dev->gdr_head > dev->gdr_tail) {
310 		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
311 			return ERING_WAS_FULL;
312 	} else if (dev->gdr_head < dev->gdr_tail) {
313 		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
314 			return ERING_WAS_FULL;
315 	}
316 	dev->gdr_head = tmp;
317 
318 	return retval;
319 }
320 
321 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
322 {
323 	unsigned long flags;
324 
325 	spin_lock_irqsave(&dev->core_dev->lock, flags);
326 	if (dev->gdr_tail == dev->gdr_head) {
327 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
328 		return 0;
329 	}
330 
331 	if (dev->gdr_tail != PPC4XX_LAST_GD)
332 		dev->gdr_tail++;
333 	else
334 		dev->gdr_tail = 0;
335 
336 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
337 
338 	return 0;
339 }
340 
341 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
342 					      dma_addr_t *gd_dma, u32 idx)
343 {
344 	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
345 
346 	return &dev->gdr[idx];
347 }
348 
349 /*
350  * alloc memory for the scatter ring
351  * need to alloc buf for the ring
352  * sdr_tail, sdr_head and sdr_count are initialized by this function
353  */
354 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
355 {
356 	int i;
357 
358 	dev->scatter_buffer_va =
359 		dma_alloc_coherent(dev->core_dev->device,
360 			PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
361 			&dev->scatter_buffer_pa, GFP_KERNEL);
362 	if (!dev->scatter_buffer_va)
363 		return -ENOMEM;
364 
365 	/* alloc memory for scatter descriptor ring */
366 	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
367 				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
368 				      &dev->sdr_pa, GFP_KERNEL);
369 	if (!dev->sdr)
370 		return -ENOMEM;
371 
372 	for (i = 0; i < PPC4XX_NUM_SD; i++) {
373 		dev->sdr[i].ptr = dev->scatter_buffer_pa +
374 				  PPC4XX_SD_BUFFER_SIZE * i;
375 	}
376 
377 	return 0;
378 }
379 
380 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
381 {
382 	if (dev->sdr)
383 		dma_free_coherent(dev->core_dev->device,
384 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
385 				  dev->sdr, dev->sdr_pa);
386 
387 	if (dev->scatter_buffer_va)
388 		dma_free_coherent(dev->core_dev->device,
389 				  PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
390 				  dev->scatter_buffer_va,
391 				  dev->scatter_buffer_pa);
392 }
393 
394 /*
395  * when this function is called.
396  * preemption or interrupt must be disabled
397  */
398 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
399 {
400 	u32 retval;
401 	u32 tmp;
402 
403 	if (n >= PPC4XX_NUM_SD)
404 		return ERING_WAS_FULL;
405 
406 	retval = dev->sdr_head;
407 	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
408 	if (dev->sdr_head > dev->gdr_tail) {
409 		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
410 			return ERING_WAS_FULL;
411 	} else if (dev->sdr_head < dev->sdr_tail) {
412 		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
413 			return ERING_WAS_FULL;
414 	} /* the head = tail, or empty case is already take cared */
415 	dev->sdr_head = tmp;
416 
417 	return retval;
418 }
419 
420 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
421 {
422 	unsigned long flags;
423 
424 	spin_lock_irqsave(&dev->core_dev->lock, flags);
425 	if (dev->sdr_tail == dev->sdr_head) {
426 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
427 		return 0;
428 	}
429 	if (dev->sdr_tail != PPC4XX_LAST_SD)
430 		dev->sdr_tail++;
431 	else
432 		dev->sdr_tail = 0;
433 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
434 
435 	return 0;
436 }
437 
438 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
439 					      dma_addr_t *sd_dma, u32 idx)
440 {
441 	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
442 
443 	return &dev->sdr[idx];
444 }
445 
446 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
447 				      struct ce_pd *pd,
448 				      struct pd_uinfo *pd_uinfo,
449 				      u32 nbytes,
450 				      struct scatterlist *dst)
451 {
452 	unsigned int first_sd = pd_uinfo->first_sd;
453 	unsigned int last_sd;
454 	unsigned int overflow = 0;
455 	unsigned int to_copy;
456 	unsigned int dst_start = 0;
457 
458 	/*
459 	 * Because the scatter buffers are all neatly organized in one
460 	 * big continuous ringbuffer; scatterwalk_map_and_copy() can
461 	 * be instructed to copy a range of buffers in one go.
462 	 */
463 
464 	last_sd = (first_sd + pd_uinfo->num_sd);
465 	if (last_sd > PPC4XX_LAST_SD) {
466 		last_sd = PPC4XX_LAST_SD;
467 		overflow = last_sd % PPC4XX_NUM_SD;
468 	}
469 
470 	while (nbytes) {
471 		void *buf = dev->scatter_buffer_va +
472 			first_sd * PPC4XX_SD_BUFFER_SIZE;
473 
474 		to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
475 				      (1 + last_sd - first_sd));
476 		scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
477 		nbytes -= to_copy;
478 
479 		if (overflow) {
480 			first_sd = 0;
481 			last_sd = overflow;
482 			dst_start += to_copy;
483 			overflow = 0;
484 		}
485 	}
486 }
487 
488 static void crypto4xx_copy_digest_to_dst(void *dst,
489 					struct pd_uinfo *pd_uinfo,
490 					struct crypto4xx_ctx *ctx)
491 {
492 	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
493 
494 	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
495 		memcpy(dst, pd_uinfo->sr_va->save_digest,
496 		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
497 	}
498 }
499 
500 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
501 				  struct pd_uinfo *pd_uinfo)
502 {
503 	int i;
504 	if (pd_uinfo->num_gd) {
505 		for (i = 0; i < pd_uinfo->num_gd; i++)
506 			crypto4xx_put_gd_to_gdr(dev);
507 		pd_uinfo->first_gd = 0xffffffff;
508 		pd_uinfo->num_gd = 0;
509 	}
510 	if (pd_uinfo->num_sd) {
511 		for (i = 0; i < pd_uinfo->num_sd; i++)
512 			crypto4xx_put_sd_to_sdr(dev);
513 
514 		pd_uinfo->first_sd = 0xffffffff;
515 		pd_uinfo->num_sd = 0;
516 	}
517 }
518 
519 static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
520 				     struct pd_uinfo *pd_uinfo,
521 				     struct ce_pd *pd)
522 {
523 	struct skcipher_request *req;
524 	struct scatterlist *dst;
525 
526 	req = skcipher_request_cast(pd_uinfo->async_req);
527 
528 	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
529 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
530 					  req->cryptlen, req->dst);
531 	} else {
532 		dst = pd_uinfo->dest_va;
533 		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
534 			       DMA_FROM_DEVICE);
535 	}
536 
537 	if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
538 		struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
539 
540 		crypto4xx_memcpy_from_le32((u32 *)req->iv,
541 			pd_uinfo->sr_va->save_iv,
542 			crypto_skcipher_ivsize(skcipher));
543 	}
544 
545 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
546 
547 	if (pd_uinfo->state & PD_ENTRY_BUSY)
548 		skcipher_request_complete(req, -EINPROGRESS);
549 	skcipher_request_complete(req, 0);
550 }
551 
552 static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
553 				struct pd_uinfo *pd_uinfo)
554 {
555 	struct crypto4xx_ctx *ctx;
556 	struct ahash_request *ahash_req;
557 
558 	ahash_req = ahash_request_cast(pd_uinfo->async_req);
559 	ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(ahash_req));
560 
561 	crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo, ctx);
562 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
563 
564 	if (pd_uinfo->state & PD_ENTRY_BUSY)
565 		ahash_request_complete(ahash_req, -EINPROGRESS);
566 	ahash_request_complete(ahash_req, 0);
567 }
568 
569 static void crypto4xx_aead_done(struct crypto4xx_device *dev,
570 				struct pd_uinfo *pd_uinfo,
571 				struct ce_pd *pd)
572 {
573 	struct aead_request *aead_req = container_of(pd_uinfo->async_req,
574 		struct aead_request, base);
575 	struct scatterlist *dst = pd_uinfo->dest_va;
576 	size_t cp_len = crypto_aead_authsize(
577 		crypto_aead_reqtfm(aead_req));
578 	u32 icv[AES_BLOCK_SIZE];
579 	int err = 0;
580 
581 	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
582 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
583 					  pd->pd_ctl_len.bf.pkt_len,
584 					  dst);
585 	} else {
586 		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
587 				DMA_FROM_DEVICE);
588 	}
589 
590 	if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
591 		/* append icv at the end */
592 		crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
593 					   sizeof(icv));
594 
595 		scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
596 					 cp_len, 1);
597 	} else {
598 		/* check icv at the end */
599 		scatterwalk_map_and_copy(icv, aead_req->src,
600 			aead_req->assoclen + aead_req->cryptlen -
601 			cp_len, cp_len, 0);
602 
603 		crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
604 
605 		if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
606 			err = -EBADMSG;
607 	}
608 
609 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
610 
611 	if (pd->pd_ctl.bf.status & 0xff) {
612 		if (!__ratelimit(&dev->aead_ratelimit)) {
613 			if (pd->pd_ctl.bf.status & 2)
614 				pr_err("pad fail error\n");
615 			if (pd->pd_ctl.bf.status & 4)
616 				pr_err("seqnum fail\n");
617 			if (pd->pd_ctl.bf.status & 8)
618 				pr_err("error _notify\n");
619 			pr_err("aead return err status = 0x%02x\n",
620 				pd->pd_ctl.bf.status & 0xff);
621 			pr_err("pd pad_ctl = 0x%08x\n",
622 				pd->pd_ctl.bf.pd_pad_ctl);
623 		}
624 		err = -EINVAL;
625 	}
626 
627 	if (pd_uinfo->state & PD_ENTRY_BUSY)
628 		aead_request_complete(aead_req, -EINPROGRESS);
629 
630 	aead_request_complete(aead_req, err);
631 }
632 
633 static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
634 {
635 	struct ce_pd *pd = &dev->pdr[idx];
636 	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
637 
638 	switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
639 	case CRYPTO_ALG_TYPE_SKCIPHER:
640 		crypto4xx_cipher_done(dev, pd_uinfo, pd);
641 		break;
642 	case CRYPTO_ALG_TYPE_AEAD:
643 		crypto4xx_aead_done(dev, pd_uinfo, pd);
644 		break;
645 	case CRYPTO_ALG_TYPE_AHASH:
646 		crypto4xx_ahash_done(dev, pd_uinfo);
647 		break;
648 	}
649 }
650 
651 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
652 {
653 	crypto4xx_destroy_pdr(core_dev->dev);
654 	crypto4xx_destroy_gdr(core_dev->dev);
655 	crypto4xx_destroy_sdr(core_dev->dev);
656 }
657 
658 static u32 get_next_gd(u32 current)
659 {
660 	if (current != PPC4XX_LAST_GD)
661 		return current + 1;
662 	else
663 		return 0;
664 }
665 
666 static u32 get_next_sd(u32 current)
667 {
668 	if (current != PPC4XX_LAST_SD)
669 		return current + 1;
670 	else
671 		return 0;
672 }
673 
674 int crypto4xx_build_pd(struct crypto_async_request *req,
675 		       struct crypto4xx_ctx *ctx,
676 		       struct scatterlist *src,
677 		       struct scatterlist *dst,
678 		       const unsigned int datalen,
679 		       const __le32 *iv, const u32 iv_len,
680 		       const struct dynamic_sa_ctl *req_sa,
681 		       const unsigned int sa_len,
682 		       const unsigned int assoclen,
683 		       struct scatterlist *_dst)
684 {
685 	struct crypto4xx_device *dev = ctx->dev;
686 	struct dynamic_sa_ctl *sa;
687 	struct ce_gd *gd;
688 	struct ce_pd *pd;
689 	u32 num_gd, num_sd;
690 	u32 fst_gd = 0xffffffff;
691 	u32 fst_sd = 0xffffffff;
692 	u32 pd_entry;
693 	unsigned long flags;
694 	struct pd_uinfo *pd_uinfo;
695 	unsigned int nbytes = datalen;
696 	size_t offset_to_sr_ptr;
697 	u32 gd_idx = 0;
698 	int tmp;
699 	bool is_busy, force_sd;
700 
701 	/*
702 	 * There's a very subtile/disguised "bug" in the hardware that
703 	 * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
704 	 * of the hardware spec:
705 	 * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
706 	 * operation modes for >>> "Block ciphers" <<<.
707 	 *
708 	 * To workaround this issue and stop the hardware from causing
709 	 * "overran dst buffer" on crypttexts that are not a multiple
710 	 * of 16 (AES_BLOCK_SIZE), we force the driver to use the
711 	 * scatter buffers.
712 	 */
713 	force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
714 		|| req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
715 		&& (datalen % AES_BLOCK_SIZE);
716 
717 	/* figure how many gd are needed */
718 	tmp = sg_nents_for_len(src, assoclen + datalen);
719 	if (tmp < 0) {
720 		dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
721 		return tmp;
722 	}
723 	if (tmp == 1)
724 		tmp = 0;
725 	num_gd = tmp;
726 
727 	if (assoclen) {
728 		nbytes += assoclen;
729 		dst = scatterwalk_ffwd(_dst, dst, assoclen);
730 	}
731 
732 	/* figure how many sd are needed */
733 	if (sg_is_last(dst) && force_sd == false) {
734 		num_sd = 0;
735 	} else {
736 		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
737 			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
738 			if (datalen % PPC4XX_SD_BUFFER_SIZE)
739 				num_sd++;
740 		} else {
741 			num_sd = 1;
742 		}
743 	}
744 
745 	/*
746 	 * The follow section of code needs to be protected
747 	 * The gather ring and scatter ring needs to be consecutive
748 	 * In case of run out of any kind of descriptor, the descriptor
749 	 * already got must be return the original place.
750 	 */
751 	spin_lock_irqsave(&dev->core_dev->lock, flags);
752 	/*
753 	 * Let the caller know to slow down, once more than 13/16ths = 81%
754 	 * of the available data contexts are being used simultaneously.
755 	 *
756 	 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
757 	 * 31 more contexts. Before new requests have to be rejected.
758 	 */
759 	if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
760 		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
761 			((PPC4XX_NUM_PD * 13) / 16);
762 	} else {
763 		/*
764 		 * To fix contention issues between ipsec (no blacklog) and
765 		 * dm-crypto (backlog) reserve 32 entries for "no backlog"
766 		 * data contexts.
767 		 */
768 		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
769 			((PPC4XX_NUM_PD * 15) / 16);
770 
771 		if (is_busy) {
772 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
773 			return -EBUSY;
774 		}
775 	}
776 
777 	if (num_gd) {
778 		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
779 		if (fst_gd == ERING_WAS_FULL) {
780 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
781 			return -EAGAIN;
782 		}
783 	}
784 	if (num_sd) {
785 		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
786 		if (fst_sd == ERING_WAS_FULL) {
787 			if (num_gd)
788 				dev->gdr_head = fst_gd;
789 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
790 			return -EAGAIN;
791 		}
792 	}
793 	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
794 	if (pd_entry == ERING_WAS_FULL) {
795 		if (num_gd)
796 			dev->gdr_head = fst_gd;
797 		if (num_sd)
798 			dev->sdr_head = fst_sd;
799 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
800 		return -EAGAIN;
801 	}
802 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
803 
804 	pd = &dev->pdr[pd_entry];
805 	pd->sa_len = sa_len;
806 
807 	pd_uinfo = &dev->pdr_uinfo[pd_entry];
808 	pd_uinfo->num_gd = num_gd;
809 	pd_uinfo->num_sd = num_sd;
810 	pd_uinfo->dest_va = dst;
811 	pd_uinfo->async_req = req;
812 
813 	if (iv_len)
814 		memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
815 
816 	sa = pd_uinfo->sa_va;
817 	memcpy(sa, req_sa, sa_len * 4);
818 
819 	sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
820 	offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
821 	*(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
822 
823 	if (num_gd) {
824 		dma_addr_t gd_dma;
825 		struct scatterlist *sg;
826 
827 		/* get first gd we are going to use */
828 		gd_idx = fst_gd;
829 		pd_uinfo->first_gd = fst_gd;
830 		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
831 		pd->src = gd_dma;
832 		/* enable gather */
833 		sa->sa_command_0.bf.gather = 1;
834 		/* walk the sg, and setup gather array */
835 
836 		sg = src;
837 		while (nbytes) {
838 			size_t len;
839 
840 			len = min(sg->length, nbytes);
841 			gd->ptr = dma_map_page(dev->core_dev->device,
842 				sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
843 			gd->ctl_len.len = len;
844 			gd->ctl_len.done = 0;
845 			gd->ctl_len.ready = 1;
846 			if (len >= nbytes)
847 				break;
848 
849 			nbytes -= sg->length;
850 			gd_idx = get_next_gd(gd_idx);
851 			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
852 			sg = sg_next(sg);
853 		}
854 	} else {
855 		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
856 				src->offset, min(nbytes, src->length),
857 				DMA_TO_DEVICE);
858 		/*
859 		 * Disable gather in sa command
860 		 */
861 		sa->sa_command_0.bf.gather = 0;
862 		/*
863 		 * Indicate gather array is not used
864 		 */
865 		pd_uinfo->first_gd = 0xffffffff;
866 	}
867 	if (!num_sd) {
868 		/*
869 		 * we know application give us dst a whole piece of memory
870 		 * no need to use scatter ring.
871 		 */
872 		pd_uinfo->first_sd = 0xffffffff;
873 		sa->sa_command_0.bf.scatter = 0;
874 		pd->dest = (u32)dma_map_page(dev->core_dev->device,
875 					     sg_page(dst), dst->offset,
876 					     min(datalen, dst->length),
877 					     DMA_TO_DEVICE);
878 	} else {
879 		dma_addr_t sd_dma;
880 		struct ce_sd *sd = NULL;
881 
882 		u32 sd_idx = fst_sd;
883 		nbytes = datalen;
884 		sa->sa_command_0.bf.scatter = 1;
885 		pd_uinfo->first_sd = fst_sd;
886 		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
887 		pd->dest = sd_dma;
888 		/* setup scatter descriptor */
889 		sd->ctl.done = 0;
890 		sd->ctl.rdy = 1;
891 		/* sd->ptr should be setup by sd_init routine*/
892 		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
893 			nbytes -= PPC4XX_SD_BUFFER_SIZE;
894 		else
895 			nbytes = 0;
896 		while (nbytes) {
897 			sd_idx = get_next_sd(sd_idx);
898 			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
899 			/* setup scatter descriptor */
900 			sd->ctl.done = 0;
901 			sd->ctl.rdy = 1;
902 			if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
903 				nbytes -= PPC4XX_SD_BUFFER_SIZE;
904 			} else {
905 				/*
906 				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
907 				 * which is more than nbytes, so done.
908 				 */
909 				nbytes = 0;
910 			}
911 		}
912 	}
913 
914 	pd->pd_ctl.w = PD_CTL_HOST_READY |
915 		((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) ||
916 		 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
917 			PD_CTL_HASH_FINAL : 0);
918 	pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
919 	pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
920 
921 	wmb();
922 	/* write any value to push engine to read a pd */
923 	writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
924 	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
925 	return is_busy ? -EBUSY : -EINPROGRESS;
926 }
927 
928 /*
929  * Algorithm Registration Functions
930  */
931 static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
932 			       struct crypto4xx_ctx *ctx)
933 {
934 	ctx->dev = amcc_alg->dev;
935 	ctx->sa_in = NULL;
936 	ctx->sa_out = NULL;
937 	ctx->sa_len = 0;
938 }
939 
940 static int crypto4xx_sk_init(struct crypto_skcipher *sk)
941 {
942 	struct skcipher_alg *alg = crypto_skcipher_alg(sk);
943 	struct crypto4xx_alg *amcc_alg;
944 	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
945 
946 	if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
947 		ctx->sw_cipher.cipher =
948 			crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
949 					      CRYPTO_ALG_NEED_FALLBACK);
950 		if (IS_ERR(ctx->sw_cipher.cipher))
951 			return PTR_ERR(ctx->sw_cipher.cipher);
952 	}
953 
954 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
955 	crypto4xx_ctx_init(amcc_alg, ctx);
956 	return 0;
957 }
958 
959 static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
960 {
961 	crypto4xx_free_sa(ctx);
962 }
963 
964 static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
965 {
966 	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
967 
968 	crypto4xx_common_exit(ctx);
969 	if (ctx->sw_cipher.cipher)
970 		crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
971 }
972 
973 static int crypto4xx_aead_init(struct crypto_aead *tfm)
974 {
975 	struct aead_alg *alg = crypto_aead_alg(tfm);
976 	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
977 	struct crypto4xx_alg *amcc_alg;
978 
979 	ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
980 						CRYPTO_ALG_NEED_FALLBACK |
981 						CRYPTO_ALG_ASYNC);
982 	if (IS_ERR(ctx->sw_cipher.aead))
983 		return PTR_ERR(ctx->sw_cipher.aead);
984 
985 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
986 	crypto4xx_ctx_init(amcc_alg, ctx);
987 	crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
988 				crypto_aead_reqsize(ctx->sw_cipher.aead),
989 				sizeof(struct crypto4xx_aead_reqctx)));
990 	return 0;
991 }
992 
993 static void crypto4xx_aead_exit(struct crypto_aead *tfm)
994 {
995 	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
996 
997 	crypto4xx_common_exit(ctx);
998 	crypto_free_aead(ctx->sw_cipher.aead);
999 }
1000 
1001 static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1002 				  struct crypto4xx_alg_common *crypto_alg,
1003 				  int array_size)
1004 {
1005 	struct crypto4xx_alg *alg;
1006 	int i;
1007 	int rc = 0;
1008 
1009 	for (i = 0; i < array_size; i++) {
1010 		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1011 		if (!alg)
1012 			return -ENOMEM;
1013 
1014 		alg->alg = crypto_alg[i];
1015 		alg->dev = sec_dev;
1016 
1017 		switch (alg->alg.type) {
1018 		case CRYPTO_ALG_TYPE_AEAD:
1019 			rc = crypto_register_aead(&alg->alg.u.aead);
1020 			break;
1021 
1022 		case CRYPTO_ALG_TYPE_AHASH:
1023 			rc = crypto_register_ahash(&alg->alg.u.hash);
1024 			break;
1025 
1026 		case CRYPTO_ALG_TYPE_RNG:
1027 			rc = crypto_register_rng(&alg->alg.u.rng);
1028 			break;
1029 
1030 		default:
1031 			rc = crypto_register_skcipher(&alg->alg.u.cipher);
1032 			break;
1033 		}
1034 
1035 		if (rc)
1036 			kfree(alg);
1037 		else
1038 			list_add_tail(&alg->entry, &sec_dev->alg_list);
1039 	}
1040 
1041 	return 0;
1042 }
1043 
1044 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1045 {
1046 	struct crypto4xx_alg *alg, *tmp;
1047 
1048 	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1049 		list_del(&alg->entry);
1050 		switch (alg->alg.type) {
1051 		case CRYPTO_ALG_TYPE_AHASH:
1052 			crypto_unregister_ahash(&alg->alg.u.hash);
1053 			break;
1054 
1055 		case CRYPTO_ALG_TYPE_AEAD:
1056 			crypto_unregister_aead(&alg->alg.u.aead);
1057 			break;
1058 
1059 		case CRYPTO_ALG_TYPE_RNG:
1060 			crypto_unregister_rng(&alg->alg.u.rng);
1061 			break;
1062 
1063 		default:
1064 			crypto_unregister_skcipher(&alg->alg.u.cipher);
1065 		}
1066 		kfree(alg);
1067 	}
1068 }
1069 
1070 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1071 {
1072 	struct device *dev = (struct device *)data;
1073 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1074 	struct pd_uinfo *pd_uinfo;
1075 	struct ce_pd *pd;
1076 	u32 tail = core_dev->dev->pdr_tail;
1077 	u32 head = core_dev->dev->pdr_head;
1078 
1079 	do {
1080 		pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1081 		pd = &core_dev->dev->pdr[tail];
1082 		if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1083 		     ((READ_ONCE(pd->pd_ctl.w) &
1084 		       (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1085 		       PD_CTL_PE_DONE)) {
1086 			crypto4xx_pd_done(core_dev->dev, tail);
1087 			tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1088 		} else {
1089 			/* if tail not done, break */
1090 			break;
1091 		}
1092 	} while (head != tail);
1093 }
1094 
1095 /*
1096  * Top Half of isr.
1097  */
1098 static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1099 						      u32 clr_val)
1100 {
1101 	struct device *dev = data;
1102 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1103 
1104 	writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1105 	tasklet_schedule(&core_dev->tasklet);
1106 
1107 	return IRQ_HANDLED;
1108 }
1109 
1110 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1111 {
1112 	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1113 }
1114 
1115 static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1116 {
1117 	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1118 		PPC4XX_TMO_ERR_INT);
1119 }
1120 
1121 static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1122 				 u8 *data, unsigned int max)
1123 {
1124 	unsigned int i, curr = 0;
1125 	u32 val[2];
1126 
1127 	do {
1128 		/* trigger PRN generation */
1129 		writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1130 		       dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1131 
1132 		for (i = 0; i < 1024; i++) {
1133 			/* usually 19 iterations are enough */
1134 			if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1135 			     CRYPTO4XX_PRNG_STAT_BUSY))
1136 				continue;
1137 
1138 			val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1139 			val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1140 			break;
1141 		}
1142 		if (i == 1024)
1143 			return -ETIMEDOUT;
1144 
1145 		if ((max - curr) >= 8) {
1146 			memcpy(data, &val, 8);
1147 			data += 8;
1148 			curr += 8;
1149 		} else {
1150 			/* copy only remaining bytes */
1151 			memcpy(data, &val, max - curr);
1152 			break;
1153 		}
1154 	} while (curr < max);
1155 
1156 	return curr;
1157 }
1158 
1159 static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1160 				   const u8 *src, unsigned int slen,
1161 				   u8 *dstn, unsigned int dlen)
1162 {
1163 	struct rng_alg *alg = crypto_rng_alg(tfm);
1164 	struct crypto4xx_alg *amcc_alg;
1165 	struct crypto4xx_device *dev;
1166 	int ret;
1167 
1168 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1169 	dev = amcc_alg->dev;
1170 
1171 	mutex_lock(&dev->core_dev->rng_lock);
1172 	ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1173 	mutex_unlock(&dev->core_dev->rng_lock);
1174 	return ret;
1175 }
1176 
1177 
1178 static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1179 			unsigned int slen)
1180 {
1181 	return 0;
1182 }
1183 
1184 /*
1185  * Supported Crypto Algorithms
1186  */
1187 static struct crypto4xx_alg_common crypto4xx_alg[] = {
1188 	/* Crypto AES modes */
1189 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1190 		.base = {
1191 			.cra_name = "cbc(aes)",
1192 			.cra_driver_name = "cbc-aes-ppc4xx",
1193 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1194 			.cra_flags = CRYPTO_ALG_ASYNC |
1195 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1196 			.cra_blocksize = AES_BLOCK_SIZE,
1197 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1198 			.cra_module = THIS_MODULE,
1199 		},
1200 		.min_keysize = AES_MIN_KEY_SIZE,
1201 		.max_keysize = AES_MAX_KEY_SIZE,
1202 		.ivsize	= AES_IV_SIZE,
1203 		.setkey = crypto4xx_setkey_aes_cbc,
1204 		.encrypt = crypto4xx_encrypt_iv_block,
1205 		.decrypt = crypto4xx_decrypt_iv_block,
1206 		.init = crypto4xx_sk_init,
1207 		.exit = crypto4xx_sk_exit,
1208 	} },
1209 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1210 		.base = {
1211 			.cra_name = "ctr(aes)",
1212 			.cra_driver_name = "ctr-aes-ppc4xx",
1213 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1214 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1215 				CRYPTO_ALG_ASYNC |
1216 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1217 			.cra_blocksize = 1,
1218 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1219 			.cra_module = THIS_MODULE,
1220 		},
1221 		.min_keysize = AES_MIN_KEY_SIZE,
1222 		.max_keysize = AES_MAX_KEY_SIZE,
1223 		.ivsize	= AES_IV_SIZE,
1224 		.setkey	= crypto4xx_setkey_aes_ctr,
1225 		.encrypt = crypto4xx_encrypt_ctr,
1226 		.decrypt = crypto4xx_decrypt_ctr,
1227 		.init = crypto4xx_sk_init,
1228 		.exit = crypto4xx_sk_exit,
1229 	} },
1230 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1231 		.base = {
1232 			.cra_name = "rfc3686(ctr(aes))",
1233 			.cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1234 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1235 			.cra_flags = CRYPTO_ALG_ASYNC |
1236 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1237 			.cra_blocksize = 1,
1238 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1239 			.cra_module = THIS_MODULE,
1240 		},
1241 		.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1242 		.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1243 		.ivsize	= CTR_RFC3686_IV_SIZE,
1244 		.setkey = crypto4xx_setkey_rfc3686,
1245 		.encrypt = crypto4xx_rfc3686_encrypt,
1246 		.decrypt = crypto4xx_rfc3686_decrypt,
1247 		.init = crypto4xx_sk_init,
1248 		.exit = crypto4xx_sk_exit,
1249 	} },
1250 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1251 		.base = {
1252 			.cra_name = "ecb(aes)",
1253 			.cra_driver_name = "ecb-aes-ppc4xx",
1254 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1255 			.cra_flags = CRYPTO_ALG_ASYNC |
1256 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1257 			.cra_blocksize = AES_BLOCK_SIZE,
1258 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1259 			.cra_module = THIS_MODULE,
1260 		},
1261 		.min_keysize = AES_MIN_KEY_SIZE,
1262 		.max_keysize = AES_MAX_KEY_SIZE,
1263 		.setkey	= crypto4xx_setkey_aes_ecb,
1264 		.encrypt = crypto4xx_encrypt_noiv_block,
1265 		.decrypt = crypto4xx_decrypt_noiv_block,
1266 		.init = crypto4xx_sk_init,
1267 		.exit = crypto4xx_sk_exit,
1268 	} },
1269 
1270 	/* AEAD */
1271 	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1272 		.setkey		= crypto4xx_setkey_aes_ccm,
1273 		.setauthsize	= crypto4xx_setauthsize_aead,
1274 		.encrypt	= crypto4xx_encrypt_aes_ccm,
1275 		.decrypt	= crypto4xx_decrypt_aes_ccm,
1276 		.init		= crypto4xx_aead_init,
1277 		.exit		= crypto4xx_aead_exit,
1278 		.ivsize		= AES_BLOCK_SIZE,
1279 		.maxauthsize    = 16,
1280 		.base = {
1281 			.cra_name	= "ccm(aes)",
1282 			.cra_driver_name = "ccm-aes-ppc4xx",
1283 			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1284 			.cra_flags	= CRYPTO_ALG_ASYNC |
1285 					  CRYPTO_ALG_NEED_FALLBACK |
1286 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1287 			.cra_blocksize	= 1,
1288 			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1289 			.cra_module	= THIS_MODULE,
1290 		},
1291 	} },
1292 	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1293 		.setkey		= crypto4xx_setkey_aes_gcm,
1294 		.setauthsize	= crypto4xx_setauthsize_aead,
1295 		.encrypt	= crypto4xx_encrypt_aes_gcm,
1296 		.decrypt	= crypto4xx_decrypt_aes_gcm,
1297 		.init		= crypto4xx_aead_init,
1298 		.exit		= crypto4xx_aead_exit,
1299 		.ivsize		= GCM_AES_IV_SIZE,
1300 		.maxauthsize	= 16,
1301 		.base = {
1302 			.cra_name	= "gcm(aes)",
1303 			.cra_driver_name = "gcm-aes-ppc4xx",
1304 			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1305 			.cra_flags	= CRYPTO_ALG_ASYNC |
1306 					  CRYPTO_ALG_NEED_FALLBACK |
1307 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1308 			.cra_blocksize	= 1,
1309 			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1310 			.cra_module	= THIS_MODULE,
1311 		},
1312 	} },
1313 	{ .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1314 		.base = {
1315 			.cra_name		= "stdrng",
1316 			.cra_driver_name        = "crypto4xx_rng",
1317 			.cra_priority		= 300,
1318 			.cra_ctxsize		= 0,
1319 			.cra_module		= THIS_MODULE,
1320 		},
1321 		.generate               = crypto4xx_prng_generate,
1322 		.seed                   = crypto4xx_prng_seed,
1323 		.seedsize               = 0,
1324 	} },
1325 };
1326 
1327 /*
1328  * Module Initialization Routine
1329  */
1330 static int crypto4xx_probe(struct platform_device *ofdev)
1331 {
1332 	int rc;
1333 	struct device *dev = &ofdev->dev;
1334 	struct crypto4xx_core_device *core_dev;
1335 	struct device_node *np;
1336 	u32 pvr;
1337 	bool is_revb = true;
1338 
1339 	np = of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto");
1340 	if (np) {
1341 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1342 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1343 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1344 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1345 	} else {
1346 		np = of_find_compatible_node(NULL, NULL, "amcc,ppc405ex-crypto");
1347 		if (np) {
1348 			mtdcri(SDR0, PPC405EX_SDR0_SRST,
1349 				   mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1350 			mtdcri(SDR0, PPC405EX_SDR0_SRST,
1351 				   mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1352 			is_revb = false;
1353 		} else {
1354 			np = of_find_compatible_node(NULL, NULL, "amcc,ppc460sx-crypto");
1355 			if (np) {
1356 				mtdcri(SDR0, PPC460SX_SDR0_SRST,
1357 					mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1358 				mtdcri(SDR0, PPC460SX_SDR0_SRST,
1359 					mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1360 			} else {
1361 				printk(KERN_ERR "Crypto Function Not supported!\n");
1362 				return -EINVAL;
1363 			}
1364 		}
1365 	}
1366 
1367 	of_node_put(np);
1368 
1369 	core_dev = devm_kzalloc(
1370 		&ofdev->dev, sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1371 	if (!core_dev)
1372 		return -ENOMEM;
1373 
1374 	dev_set_drvdata(dev, core_dev);
1375 	core_dev->ofdev = ofdev;
1376 	core_dev->dev = devm_kzalloc(
1377 		&ofdev->dev, sizeof(struct crypto4xx_device), GFP_KERNEL);
1378 	if (!core_dev->dev)
1379 		return -ENOMEM;
1380 
1381 	/*
1382 	 * Older version of 460EX/GT have a hardware bug.
1383 	 * Hence they do not support H/W based security intr coalescing
1384 	 */
1385 	pvr = mfspr(SPRN_PVR);
1386 	if (is_revb && ((pvr >> 4) == 0x130218A)) {
1387 		u32 min = PVR_MIN(pvr);
1388 
1389 		if (min < 4) {
1390 			dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1391 			is_revb = false;
1392 		}
1393 	}
1394 
1395 	core_dev->dev->core_dev = core_dev;
1396 	core_dev->dev->is_revb = is_revb;
1397 	core_dev->device = dev;
1398 	rc = devm_mutex_init(&ofdev->dev, &core_dev->rng_lock);
1399 	if (rc)
1400 		return rc;
1401 	spin_lock_init(&core_dev->lock);
1402 	INIT_LIST_HEAD(&core_dev->dev->alg_list);
1403 	ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1404 	rc = crypto4xx_build_sdr(core_dev->dev);
1405 	if (rc)
1406 		goto err_build_sdr;
1407 	rc = crypto4xx_build_pdr(core_dev->dev);
1408 	if (rc)
1409 		goto err_build_sdr;
1410 
1411 	rc = crypto4xx_build_gdr(core_dev->dev);
1412 	if (rc)
1413 		goto err_build_sdr;
1414 
1415 	/* Init tasklet for bottom half processing */
1416 	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1417 		     (unsigned long) dev);
1418 
1419 	core_dev->dev->ce_base = devm_platform_ioremap_resource(ofdev, 0);
1420 	if (IS_ERR(core_dev->dev->ce_base)) {
1421 		dev_err(&ofdev->dev, "failed to ioremap resource");
1422 		rc = PTR_ERR(core_dev->dev->ce_base);
1423 		goto err_build_sdr;
1424 	}
1425 
1426 	/* Register for Crypto isr, Crypto Engine IRQ */
1427 	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1428 	rc = devm_request_irq(&ofdev->dev, core_dev->irq,
1429 			      is_revb ? crypto4xx_ce_interrupt_handler_revb :
1430 					crypto4xx_ce_interrupt_handler,
1431 			      0, KBUILD_MODNAME, dev);
1432 	if (rc)
1433 		goto err_iomap;
1434 
1435 	/* need to setup pdr, rdr, gdr and sdr before this */
1436 	crypto4xx_hw_init(core_dev->dev);
1437 
1438 	/* Register security algorithms with Linux CryptoAPI */
1439 	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1440 			       ARRAY_SIZE(crypto4xx_alg));
1441 	if (rc)
1442 		goto err_iomap;
1443 
1444 	ppc4xx_trng_probe(core_dev);
1445 	return 0;
1446 
1447 err_iomap:
1448 	tasklet_kill(&core_dev->tasklet);
1449 err_build_sdr:
1450 	crypto4xx_destroy_sdr(core_dev->dev);
1451 	crypto4xx_destroy_gdr(core_dev->dev);
1452 	crypto4xx_destroy_pdr(core_dev->dev);
1453 	return rc;
1454 }
1455 
1456 static void crypto4xx_remove(struct platform_device *ofdev)
1457 {
1458 	struct device *dev = &ofdev->dev;
1459 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1460 
1461 	ppc4xx_trng_remove(core_dev);
1462 
1463 	tasklet_kill(&core_dev->tasklet);
1464 	/* Un-register with Linux CryptoAPI */
1465 	crypto4xx_unregister_alg(core_dev->dev);
1466 	/* Free all allocated memory */
1467 	crypto4xx_stop_all(core_dev);
1468 }
1469 
1470 static const struct of_device_id crypto4xx_match[] = {
1471 	{ .compatible      = "amcc,ppc4xx-crypto",},
1472 	{ },
1473 };
1474 MODULE_DEVICE_TABLE(of, crypto4xx_match);
1475 
1476 static struct platform_driver crypto4xx_driver = {
1477 	.driver = {
1478 		.name = KBUILD_MODNAME,
1479 		.of_match_table = crypto4xx_match,
1480 	},
1481 	.probe		= crypto4xx_probe,
1482 	.remove		= crypto4xx_remove,
1483 };
1484 
1485 module_platform_driver(crypto4xx_driver);
1486 
1487 MODULE_LICENSE("GPL");
1488 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1489 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1490