xref: /linux/drivers/crypto/amcc/crypto4xx_core.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /**
2  * AMCC SoC PPC4xx Crypto Driver
3  *
4  * Copyright (c) 2008 Applied Micro Circuits Corporation.
5  * All rights reserved. James Hsiao <jhsiao@amcc.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * This file implements AMCC crypto offload Linux device driver for use with
18  * Linux CryptoAPI.
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock_types.h>
24 #include <linux/random.h>
25 #include <linux/scatterlist.h>
26 #include <linux/crypto.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/init.h>
30 #include <linux/module.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_platform.h>
34 #include <linux/slab.h>
35 #include <asm/dcr.h>
36 #include <asm/dcr-regs.h>
37 #include <asm/cacheflush.h>
38 #include <crypto/aes.h>
39 #include <crypto/sha.h>
40 #include "crypto4xx_reg_def.h"
41 #include "crypto4xx_core.h"
42 #include "crypto4xx_sa.h"
43 #include "crypto4xx_trng.h"
44 
45 #define PPC4XX_SEC_VERSION_STR			"0.5"
46 
47 /**
48  * PPC4xx Crypto Engine Initialization Routine
49  */
50 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
51 {
52 	union ce_ring_size ring_size;
53 	union ce_ring_contol ring_ctrl;
54 	union ce_part_ring_size part_ring_size;
55 	union ce_io_threshold io_threshold;
56 	u32 rand_num;
57 	union ce_pe_dma_cfg pe_dma_cfg;
58 	u32 device_ctrl;
59 
60 	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
61 	/* setup pe dma, include reset sg, pdr and pe, then release reset */
62 	pe_dma_cfg.w = 0;
63 	pe_dma_cfg.bf.bo_sgpd_en = 1;
64 	pe_dma_cfg.bf.bo_data_en = 0;
65 	pe_dma_cfg.bf.bo_sa_en = 1;
66 	pe_dma_cfg.bf.bo_pd_en = 1;
67 	pe_dma_cfg.bf.dynamic_sa_en = 1;
68 	pe_dma_cfg.bf.reset_sg = 1;
69 	pe_dma_cfg.bf.reset_pdr = 1;
70 	pe_dma_cfg.bf.reset_pe = 1;
71 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
72 	/* un reset pe,sg and pdr */
73 	pe_dma_cfg.bf.pe_mode = 0;
74 	pe_dma_cfg.bf.reset_sg = 0;
75 	pe_dma_cfg.bf.reset_pdr = 0;
76 	pe_dma_cfg.bf.reset_pe = 0;
77 	pe_dma_cfg.bf.bo_td_en = 0;
78 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
79 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
80 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
81 	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
82 	get_random_bytes(&rand_num, sizeof(rand_num));
83 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
84 	get_random_bytes(&rand_num, sizeof(rand_num));
85 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
86 	ring_size.w = 0;
87 	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
88 	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
89 	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
90 	ring_ctrl.w = 0;
91 	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
92 	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
93 	device_ctrl |= PPC4XX_DC_3DES_EN;
94 	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
95 	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
96 	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
97 	part_ring_size.w = 0;
98 	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
99 	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
100 	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
101 	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
102 	io_threshold.w = 0;
103 	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
104 	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
105 	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
106 	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
107 	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
108 	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
109 	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
110 	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
111 	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
112 	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
113 	/* un reset pe,sg and pdr */
114 	pe_dma_cfg.bf.pe_mode = 1;
115 	pe_dma_cfg.bf.reset_sg = 0;
116 	pe_dma_cfg.bf.reset_pdr = 0;
117 	pe_dma_cfg.bf.reset_pe = 0;
118 	pe_dma_cfg.bf.bo_td_en = 0;
119 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
120 	/*clear all pending interrupt*/
121 	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
122 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
123 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
124 	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
125 	writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
126 }
127 
128 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
129 {
130 	ctx->sa_in = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
131 					&ctx->sa_in_dma_addr, GFP_ATOMIC);
132 	if (ctx->sa_in == NULL)
133 		return -ENOMEM;
134 
135 	ctx->sa_out = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
136 					 &ctx->sa_out_dma_addr, GFP_ATOMIC);
137 	if (ctx->sa_out == NULL) {
138 		dma_free_coherent(ctx->dev->core_dev->device,
139 				  ctx->sa_len * 4,
140 				  ctx->sa_in, ctx->sa_in_dma_addr);
141 		return -ENOMEM;
142 	}
143 
144 	memset(ctx->sa_in, 0, size * 4);
145 	memset(ctx->sa_out, 0, size * 4);
146 	ctx->sa_len = size;
147 
148 	return 0;
149 }
150 
151 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
152 {
153 	if (ctx->sa_in != NULL)
154 		dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
155 				  ctx->sa_in, ctx->sa_in_dma_addr);
156 	if (ctx->sa_out != NULL)
157 		dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
158 				  ctx->sa_out, ctx->sa_out_dma_addr);
159 
160 	ctx->sa_in_dma_addr = 0;
161 	ctx->sa_out_dma_addr = 0;
162 	ctx->sa_len = 0;
163 }
164 
165 u32 crypto4xx_alloc_state_record(struct crypto4xx_ctx *ctx)
166 {
167 	ctx->state_record = dma_alloc_coherent(ctx->dev->core_dev->device,
168 				sizeof(struct sa_state_record),
169 				&ctx->state_record_dma_addr, GFP_ATOMIC);
170 	if (!ctx->state_record_dma_addr)
171 		return -ENOMEM;
172 	memset(ctx->state_record, 0, sizeof(struct sa_state_record));
173 
174 	return 0;
175 }
176 
177 void crypto4xx_free_state_record(struct crypto4xx_ctx *ctx)
178 {
179 	if (ctx->state_record != NULL)
180 		dma_free_coherent(ctx->dev->core_dev->device,
181 				  sizeof(struct sa_state_record),
182 				  ctx->state_record,
183 				  ctx->state_record_dma_addr);
184 	ctx->state_record_dma_addr = 0;
185 }
186 
187 /**
188  * alloc memory for the gather ring
189  * no need to alloc buf for the ring
190  * gdr_tail, gdr_head and gdr_count are initialized by this function
191  */
192 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
193 {
194 	int i;
195 	struct pd_uinfo *pd_uinfo;
196 	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
197 				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
198 				      &dev->pdr_pa, GFP_ATOMIC);
199 	if (!dev->pdr)
200 		return -ENOMEM;
201 
202 	dev->pdr_uinfo = kzalloc(sizeof(struct pd_uinfo) * PPC4XX_NUM_PD,
203 				GFP_KERNEL);
204 	if (!dev->pdr_uinfo) {
205 		dma_free_coherent(dev->core_dev->device,
206 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
207 				  dev->pdr,
208 				  dev->pdr_pa);
209 		return -ENOMEM;
210 	}
211 	memset(dev->pdr, 0,  sizeof(struct ce_pd) * PPC4XX_NUM_PD);
212 	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
213 				   256 * PPC4XX_NUM_PD,
214 				   &dev->shadow_sa_pool_pa,
215 				   GFP_ATOMIC);
216 	if (!dev->shadow_sa_pool)
217 		return -ENOMEM;
218 
219 	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
220 			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
221 			 &dev->shadow_sr_pool_pa, GFP_ATOMIC);
222 	if (!dev->shadow_sr_pool)
223 		return -ENOMEM;
224 	for (i = 0; i < PPC4XX_NUM_PD; i++) {
225 		pd_uinfo = (struct pd_uinfo *) (dev->pdr_uinfo +
226 						sizeof(struct pd_uinfo) * i);
227 
228 		/* alloc 256 bytes which is enough for any kind of dynamic sa */
229 		pd_uinfo->sa_va = dev->shadow_sa_pool + 256 * i;
230 		pd_uinfo->sa_pa = dev->shadow_sa_pool_pa + 256 * i;
231 
232 		/* alloc state record */
233 		pd_uinfo->sr_va = dev->shadow_sr_pool +
234 		    sizeof(struct sa_state_record) * i;
235 		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
236 		    sizeof(struct sa_state_record) * i;
237 	}
238 
239 	return 0;
240 }
241 
242 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
243 {
244 	if (dev->pdr != NULL)
245 		dma_free_coherent(dev->core_dev->device,
246 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
247 				  dev->pdr, dev->pdr_pa);
248 	if (dev->shadow_sa_pool)
249 		dma_free_coherent(dev->core_dev->device, 256 * PPC4XX_NUM_PD,
250 				  dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
251 	if (dev->shadow_sr_pool)
252 		dma_free_coherent(dev->core_dev->device,
253 			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
254 			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
255 
256 	kfree(dev->pdr_uinfo);
257 }
258 
259 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
260 {
261 	u32 retval;
262 	u32 tmp;
263 
264 	retval = dev->pdr_head;
265 	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
266 
267 	if (tmp == dev->pdr_tail)
268 		return ERING_WAS_FULL;
269 
270 	dev->pdr_head = tmp;
271 
272 	return retval;
273 }
274 
275 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
276 {
277 	struct pd_uinfo *pd_uinfo;
278 	unsigned long flags;
279 
280 	pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
281 				       sizeof(struct pd_uinfo) * idx);
282 	spin_lock_irqsave(&dev->core_dev->lock, flags);
283 	if (dev->pdr_tail != PPC4XX_LAST_PD)
284 		dev->pdr_tail++;
285 	else
286 		dev->pdr_tail = 0;
287 	pd_uinfo->state = PD_ENTRY_FREE;
288 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
289 
290 	return 0;
291 }
292 
293 static struct ce_pd *crypto4xx_get_pdp(struct crypto4xx_device *dev,
294 				       dma_addr_t *pd_dma, u32 idx)
295 {
296 	*pd_dma = dev->pdr_pa + sizeof(struct ce_pd) * idx;
297 
298 	return dev->pdr + sizeof(struct ce_pd) * idx;
299 }
300 
301 /**
302  * alloc memory for the gather ring
303  * no need to alloc buf for the ring
304  * gdr_tail, gdr_head and gdr_count are initialized by this function
305  */
306 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
307 {
308 	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
309 				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
310 				      &dev->gdr_pa, GFP_ATOMIC);
311 	if (!dev->gdr)
312 		return -ENOMEM;
313 
314 	memset(dev->gdr, 0, sizeof(struct ce_gd) * PPC4XX_NUM_GD);
315 
316 	return 0;
317 }
318 
319 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
320 {
321 	dma_free_coherent(dev->core_dev->device,
322 			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
323 			  dev->gdr, dev->gdr_pa);
324 }
325 
326 /*
327  * when this function is called.
328  * preemption or interrupt must be disabled
329  */
330 u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
331 {
332 	u32 retval;
333 	u32 tmp;
334 	if (n >= PPC4XX_NUM_GD)
335 		return ERING_WAS_FULL;
336 
337 	retval = dev->gdr_head;
338 	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
339 	if (dev->gdr_head > dev->gdr_tail) {
340 		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
341 			return ERING_WAS_FULL;
342 	} else if (dev->gdr_head < dev->gdr_tail) {
343 		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
344 			return ERING_WAS_FULL;
345 	}
346 	dev->gdr_head = tmp;
347 
348 	return retval;
349 }
350 
351 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
352 {
353 	unsigned long flags;
354 
355 	spin_lock_irqsave(&dev->core_dev->lock, flags);
356 	if (dev->gdr_tail == dev->gdr_head) {
357 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
358 		return 0;
359 	}
360 
361 	if (dev->gdr_tail != PPC4XX_LAST_GD)
362 		dev->gdr_tail++;
363 	else
364 		dev->gdr_tail = 0;
365 
366 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
367 
368 	return 0;
369 }
370 
371 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
372 					      dma_addr_t *gd_dma, u32 idx)
373 {
374 	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
375 
376 	return (struct ce_gd *) (dev->gdr + sizeof(struct ce_gd) * idx);
377 }
378 
379 /**
380  * alloc memory for the scatter ring
381  * need to alloc buf for the ring
382  * sdr_tail, sdr_head and sdr_count are initialized by this function
383  */
384 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
385 {
386 	int i;
387 	struct ce_sd *sd_array;
388 
389 	/* alloc memory for scatter descriptor ring */
390 	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
391 				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
392 				      &dev->sdr_pa, GFP_ATOMIC);
393 	if (!dev->sdr)
394 		return -ENOMEM;
395 
396 	dev->scatter_buffer_size = PPC4XX_SD_BUFFER_SIZE;
397 	dev->scatter_buffer_va =
398 		dma_alloc_coherent(dev->core_dev->device,
399 			dev->scatter_buffer_size * PPC4XX_NUM_SD,
400 			&dev->scatter_buffer_pa, GFP_ATOMIC);
401 	if (!dev->scatter_buffer_va) {
402 		dma_free_coherent(dev->core_dev->device,
403 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
404 				  dev->sdr, dev->sdr_pa);
405 		return -ENOMEM;
406 	}
407 
408 	sd_array = dev->sdr;
409 
410 	for (i = 0; i < PPC4XX_NUM_SD; i++) {
411 		sd_array[i].ptr = dev->scatter_buffer_pa +
412 				  dev->scatter_buffer_size * i;
413 	}
414 
415 	return 0;
416 }
417 
418 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
419 {
420 	if (dev->sdr != NULL)
421 		dma_free_coherent(dev->core_dev->device,
422 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
423 				  dev->sdr, dev->sdr_pa);
424 
425 	if (dev->scatter_buffer_va != NULL)
426 		dma_free_coherent(dev->core_dev->device,
427 				  dev->scatter_buffer_size * PPC4XX_NUM_SD,
428 				  dev->scatter_buffer_va,
429 				  dev->scatter_buffer_pa);
430 }
431 
432 /*
433  * when this function is called.
434  * preemption or interrupt must be disabled
435  */
436 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
437 {
438 	u32 retval;
439 	u32 tmp;
440 
441 	if (n >= PPC4XX_NUM_SD)
442 		return ERING_WAS_FULL;
443 
444 	retval = dev->sdr_head;
445 	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
446 	if (dev->sdr_head > dev->gdr_tail) {
447 		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
448 			return ERING_WAS_FULL;
449 	} else if (dev->sdr_head < dev->sdr_tail) {
450 		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
451 			return ERING_WAS_FULL;
452 	} /* the head = tail, or empty case is already take cared */
453 	dev->sdr_head = tmp;
454 
455 	return retval;
456 }
457 
458 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
459 {
460 	unsigned long flags;
461 
462 	spin_lock_irqsave(&dev->core_dev->lock, flags);
463 	if (dev->sdr_tail == dev->sdr_head) {
464 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
465 		return 0;
466 	}
467 	if (dev->sdr_tail != PPC4XX_LAST_SD)
468 		dev->sdr_tail++;
469 	else
470 		dev->sdr_tail = 0;
471 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
472 
473 	return 0;
474 }
475 
476 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
477 					      dma_addr_t *sd_dma, u32 idx)
478 {
479 	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
480 
481 	return  (struct ce_sd *)(dev->sdr + sizeof(struct ce_sd) * idx);
482 }
483 
484 static u32 crypto4xx_fill_one_page(struct crypto4xx_device *dev,
485 				   dma_addr_t *addr, u32 *length,
486 				   u32 *idx, u32 *offset, u32 *nbytes)
487 {
488 	u32 len;
489 
490 	if (*length > dev->scatter_buffer_size) {
491 		memcpy(phys_to_virt(*addr),
492 			dev->scatter_buffer_va +
493 			*idx * dev->scatter_buffer_size + *offset,
494 			dev->scatter_buffer_size);
495 		*offset = 0;
496 		*length -= dev->scatter_buffer_size;
497 		*nbytes -= dev->scatter_buffer_size;
498 		if (*idx == PPC4XX_LAST_SD)
499 			*idx = 0;
500 		else
501 			(*idx)++;
502 		*addr = *addr +  dev->scatter_buffer_size;
503 		return 1;
504 	} else if (*length < dev->scatter_buffer_size) {
505 		memcpy(phys_to_virt(*addr),
506 			dev->scatter_buffer_va +
507 			*idx * dev->scatter_buffer_size + *offset, *length);
508 		if ((*offset + *length) == dev->scatter_buffer_size) {
509 			if (*idx == PPC4XX_LAST_SD)
510 				*idx = 0;
511 			else
512 				(*idx)++;
513 			*nbytes -= *length;
514 			*offset = 0;
515 		} else {
516 			*nbytes -= *length;
517 			*offset += *length;
518 		}
519 
520 		return 0;
521 	} else {
522 		len = (*nbytes <= dev->scatter_buffer_size) ?
523 				(*nbytes) : dev->scatter_buffer_size;
524 		memcpy(phys_to_virt(*addr),
525 			dev->scatter_buffer_va +
526 			*idx * dev->scatter_buffer_size + *offset,
527 			len);
528 		*offset = 0;
529 		*nbytes -= len;
530 
531 		if (*idx == PPC4XX_LAST_SD)
532 			*idx = 0;
533 		else
534 			(*idx)++;
535 
536 		return 0;
537     }
538 }
539 
540 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
541 				      struct ce_pd *pd,
542 				      struct pd_uinfo *pd_uinfo,
543 				      u32 nbytes,
544 				      struct scatterlist *dst)
545 {
546 	dma_addr_t addr;
547 	u32 this_sd;
548 	u32 offset;
549 	u32 len;
550 	u32 i;
551 	u32 sg_len;
552 	struct scatterlist *sg;
553 
554 	this_sd = pd_uinfo->first_sd;
555 	offset = 0;
556 	i = 0;
557 
558 	while (nbytes) {
559 		sg = &dst[i];
560 		sg_len = sg->length;
561 		addr = dma_map_page(dev->core_dev->device, sg_page(sg),
562 				sg->offset, sg->length, DMA_TO_DEVICE);
563 
564 		if (offset == 0) {
565 			len = (nbytes <= sg->length) ? nbytes : sg->length;
566 			while (crypto4xx_fill_one_page(dev, &addr, &len,
567 				&this_sd, &offset, &nbytes))
568 				;
569 			if (!nbytes)
570 				return;
571 			i++;
572 		} else {
573 			len = (nbytes <= (dev->scatter_buffer_size - offset)) ?
574 				nbytes : (dev->scatter_buffer_size - offset);
575 			len = (sg->length < len) ? sg->length : len;
576 			while (crypto4xx_fill_one_page(dev, &addr, &len,
577 					       &this_sd, &offset, &nbytes))
578 				;
579 			if (!nbytes)
580 				return;
581 			sg_len -= len;
582 			if (sg_len) {
583 				addr += len;
584 				while (crypto4xx_fill_one_page(dev, &addr,
585 					&sg_len, &this_sd, &offset, &nbytes))
586 					;
587 			}
588 			i++;
589 		}
590 	}
591 }
592 
593 static u32 crypto4xx_copy_digest_to_dst(struct pd_uinfo *pd_uinfo,
594 					struct crypto4xx_ctx *ctx)
595 {
596 	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
597 	struct sa_state_record *state_record =
598 				(struct sa_state_record *) pd_uinfo->sr_va;
599 
600 	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
601 		memcpy((void *) pd_uinfo->dest_va, state_record->save_digest,
602 		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
603 	}
604 
605 	return 0;
606 }
607 
608 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
609 				  struct pd_uinfo *pd_uinfo)
610 {
611 	int i;
612 	if (pd_uinfo->num_gd) {
613 		for (i = 0; i < pd_uinfo->num_gd; i++)
614 			crypto4xx_put_gd_to_gdr(dev);
615 		pd_uinfo->first_gd = 0xffffffff;
616 		pd_uinfo->num_gd = 0;
617 	}
618 	if (pd_uinfo->num_sd) {
619 		for (i = 0; i < pd_uinfo->num_sd; i++)
620 			crypto4xx_put_sd_to_sdr(dev);
621 
622 		pd_uinfo->first_sd = 0xffffffff;
623 		pd_uinfo->num_sd = 0;
624 	}
625 }
626 
627 static u32 crypto4xx_ablkcipher_done(struct crypto4xx_device *dev,
628 				     struct pd_uinfo *pd_uinfo,
629 				     struct ce_pd *pd)
630 {
631 	struct crypto4xx_ctx *ctx;
632 	struct ablkcipher_request *ablk_req;
633 	struct scatterlist *dst;
634 	dma_addr_t addr;
635 
636 	ablk_req = ablkcipher_request_cast(pd_uinfo->async_req);
637 	ctx  = crypto_tfm_ctx(ablk_req->base.tfm);
638 
639 	if (pd_uinfo->using_sd) {
640 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, ablk_req->nbytes,
641 					  ablk_req->dst);
642 	} else {
643 		dst = pd_uinfo->dest_va;
644 		addr = dma_map_page(dev->core_dev->device, sg_page(dst),
645 				    dst->offset, dst->length, DMA_FROM_DEVICE);
646 	}
647 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
648 	if (ablk_req->base.complete != NULL)
649 		ablk_req->base.complete(&ablk_req->base, 0);
650 
651 	return 0;
652 }
653 
654 static u32 crypto4xx_ahash_done(struct crypto4xx_device *dev,
655 				struct pd_uinfo *pd_uinfo)
656 {
657 	struct crypto4xx_ctx *ctx;
658 	struct ahash_request *ahash_req;
659 
660 	ahash_req = ahash_request_cast(pd_uinfo->async_req);
661 	ctx  = crypto_tfm_ctx(ahash_req->base.tfm);
662 
663 	crypto4xx_copy_digest_to_dst(pd_uinfo,
664 				     crypto_tfm_ctx(ahash_req->base.tfm));
665 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
666 	/* call user provided callback function x */
667 	if (ahash_req->base.complete != NULL)
668 		ahash_req->base.complete(&ahash_req->base, 0);
669 
670 	return 0;
671 }
672 
673 static u32 crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
674 {
675 	struct ce_pd *pd;
676 	struct pd_uinfo *pd_uinfo;
677 
678 	pd =  dev->pdr + sizeof(struct ce_pd)*idx;
679 	pd_uinfo = dev->pdr_uinfo + sizeof(struct pd_uinfo)*idx;
680 	if (crypto_tfm_alg_type(pd_uinfo->async_req->tfm) ==
681 			CRYPTO_ALG_TYPE_ABLKCIPHER)
682 		return crypto4xx_ablkcipher_done(dev, pd_uinfo, pd);
683 	else
684 		return crypto4xx_ahash_done(dev, pd_uinfo);
685 }
686 
687 /**
688  * Note: Only use this function to copy items that is word aligned.
689  */
690 void crypto4xx_memcpy_le(unsigned int *dst,
691 			 const unsigned char *buf,
692 			 int len)
693 {
694 	u8 *tmp;
695 	for (; len >= 4; buf += 4, len -= 4)
696 		*dst++ = cpu_to_le32(*(unsigned int *) buf);
697 
698 	tmp = (u8 *)dst;
699 	switch (len) {
700 	case 3:
701 		*tmp++ = 0;
702 		*tmp++ = *(buf+2);
703 		*tmp++ = *(buf+1);
704 		*tmp++ = *buf;
705 		break;
706 	case 2:
707 		*tmp++ = 0;
708 		*tmp++ = 0;
709 		*tmp++ = *(buf+1);
710 		*tmp++ = *buf;
711 		break;
712 	case 1:
713 		*tmp++ = 0;
714 		*tmp++ = 0;
715 		*tmp++ = 0;
716 		*tmp++ = *buf;
717 		break;
718 	default:
719 		break;
720 	}
721 }
722 
723 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
724 {
725 	crypto4xx_destroy_pdr(core_dev->dev);
726 	crypto4xx_destroy_gdr(core_dev->dev);
727 	crypto4xx_destroy_sdr(core_dev->dev);
728 	iounmap(core_dev->dev->ce_base);
729 	kfree(core_dev->dev);
730 	kfree(core_dev);
731 }
732 
733 void crypto4xx_return_pd(struct crypto4xx_device *dev,
734 			 u32 pd_entry, struct ce_pd *pd,
735 			 struct pd_uinfo *pd_uinfo)
736 {
737 	/* irq should be already disabled */
738 	dev->pdr_head = pd_entry;
739 	pd->pd_ctl.w = 0;
740 	pd->pd_ctl_len.w = 0;
741 	pd_uinfo->state = PD_ENTRY_FREE;
742 }
743 
744 static u32 get_next_gd(u32 current)
745 {
746 	if (current != PPC4XX_LAST_GD)
747 		return current + 1;
748 	else
749 		return 0;
750 }
751 
752 static u32 get_next_sd(u32 current)
753 {
754 	if (current != PPC4XX_LAST_SD)
755 		return current + 1;
756 	else
757 		return 0;
758 }
759 
760 u32 crypto4xx_build_pd(struct crypto_async_request *req,
761 		       struct crypto4xx_ctx *ctx,
762 		       struct scatterlist *src,
763 		       struct scatterlist *dst,
764 		       unsigned int datalen,
765 		       void *iv, u32 iv_len)
766 {
767 	struct crypto4xx_device *dev = ctx->dev;
768 	dma_addr_t addr, pd_dma, sd_dma, gd_dma;
769 	struct dynamic_sa_ctl *sa;
770 	struct scatterlist *sg;
771 	struct ce_gd *gd;
772 	struct ce_pd *pd;
773 	u32 num_gd, num_sd;
774 	u32 fst_gd = 0xffffffff;
775 	u32 fst_sd = 0xffffffff;
776 	u32 pd_entry;
777 	unsigned long flags;
778 	struct pd_uinfo *pd_uinfo = NULL;
779 	unsigned int nbytes = datalen, idx;
780 	unsigned int ivlen = 0;
781 	u32 gd_idx = 0;
782 
783 	/* figure how many gd is needed */
784 	num_gd = sg_nents_for_len(src, datalen);
785 	if ((int)num_gd < 0) {
786 		dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
787 		return -EINVAL;
788 	}
789 	if (num_gd == 1)
790 		num_gd = 0;
791 
792 	/* figure how many sd is needed */
793 	if (sg_is_last(dst) || ctx->is_hash) {
794 		num_sd = 0;
795 	} else {
796 		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
797 			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
798 			if (datalen % PPC4XX_SD_BUFFER_SIZE)
799 				num_sd++;
800 		} else {
801 			num_sd = 1;
802 		}
803 	}
804 
805 	/*
806 	 * The follow section of code needs to be protected
807 	 * The gather ring and scatter ring needs to be consecutive
808 	 * In case of run out of any kind of descriptor, the descriptor
809 	 * already got must be return the original place.
810 	 */
811 	spin_lock_irqsave(&dev->core_dev->lock, flags);
812 	if (num_gd) {
813 		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
814 		if (fst_gd == ERING_WAS_FULL) {
815 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
816 			return -EAGAIN;
817 		}
818 	}
819 	if (num_sd) {
820 		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
821 		if (fst_sd == ERING_WAS_FULL) {
822 			if (num_gd)
823 				dev->gdr_head = fst_gd;
824 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
825 			return -EAGAIN;
826 		}
827 	}
828 	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
829 	if (pd_entry == ERING_WAS_FULL) {
830 		if (num_gd)
831 			dev->gdr_head = fst_gd;
832 		if (num_sd)
833 			dev->sdr_head = fst_sd;
834 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
835 		return -EAGAIN;
836 	}
837 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
838 
839 	pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
840 				       sizeof(struct pd_uinfo) * pd_entry);
841 	pd = crypto4xx_get_pdp(dev, &pd_dma, pd_entry);
842 	pd_uinfo->async_req = req;
843 	pd_uinfo->num_gd = num_gd;
844 	pd_uinfo->num_sd = num_sd;
845 
846 	if (iv_len || ctx->is_hash) {
847 		ivlen = iv_len;
848 		pd->sa = pd_uinfo->sa_pa;
849 		sa = (struct dynamic_sa_ctl *) pd_uinfo->sa_va;
850 		if (ctx->direction == DIR_INBOUND)
851 			memcpy(sa, ctx->sa_in, ctx->sa_len * 4);
852 		else
853 			memcpy(sa, ctx->sa_out, ctx->sa_len * 4);
854 
855 		memcpy((void *) sa + ctx->offset_to_sr_ptr,
856 			&pd_uinfo->sr_pa, 4);
857 
858 		if (iv_len)
859 			crypto4xx_memcpy_le(pd_uinfo->sr_va, iv, iv_len);
860 	} else {
861 		if (ctx->direction == DIR_INBOUND) {
862 			pd->sa = ctx->sa_in_dma_addr;
863 			sa = (struct dynamic_sa_ctl *) ctx->sa_in;
864 		} else {
865 			pd->sa = ctx->sa_out_dma_addr;
866 			sa = (struct dynamic_sa_ctl *) ctx->sa_out;
867 		}
868 	}
869 	pd->sa_len = ctx->sa_len;
870 	if (num_gd) {
871 		/* get first gd we are going to use */
872 		gd_idx = fst_gd;
873 		pd_uinfo->first_gd = fst_gd;
874 		pd_uinfo->num_gd = num_gd;
875 		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
876 		pd->src = gd_dma;
877 		/* enable gather */
878 		sa->sa_command_0.bf.gather = 1;
879 		idx = 0;
880 		src = &src[0];
881 		/* walk the sg, and setup gather array */
882 		while (nbytes) {
883 			sg = &src[idx];
884 			addr = dma_map_page(dev->core_dev->device, sg_page(sg),
885 				    sg->offset, sg->length, DMA_TO_DEVICE);
886 			gd->ptr = addr;
887 			gd->ctl_len.len = sg->length;
888 			gd->ctl_len.done = 0;
889 			gd->ctl_len.ready = 1;
890 			if (sg->length >= nbytes)
891 				break;
892 			nbytes -= sg->length;
893 			gd_idx = get_next_gd(gd_idx);
894 			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
895 			idx++;
896 		}
897 	} else {
898 		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
899 				src->offset, src->length, DMA_TO_DEVICE);
900 		/*
901 		 * Disable gather in sa command
902 		 */
903 		sa->sa_command_0.bf.gather = 0;
904 		/*
905 		 * Indicate gather array is not used
906 		 */
907 		pd_uinfo->first_gd = 0xffffffff;
908 		pd_uinfo->num_gd = 0;
909 	}
910 	if (ctx->is_hash || sg_is_last(dst)) {
911 		/*
912 		 * we know application give us dst a whole piece of memory
913 		 * no need to use scatter ring.
914 		 * In case of is_hash, the icv is always at end of src data.
915 		 */
916 		pd_uinfo->using_sd = 0;
917 		pd_uinfo->first_sd = 0xffffffff;
918 		pd_uinfo->num_sd = 0;
919 		pd_uinfo->dest_va = dst;
920 		sa->sa_command_0.bf.scatter = 0;
921 		if (ctx->is_hash)
922 			pd->dest = virt_to_phys((void *)dst);
923 		else
924 			pd->dest = (u32)dma_map_page(dev->core_dev->device,
925 					sg_page(dst), dst->offset,
926 					dst->length, DMA_TO_DEVICE);
927 	} else {
928 		struct ce_sd *sd = NULL;
929 		u32 sd_idx = fst_sd;
930 		nbytes = datalen;
931 		sa->sa_command_0.bf.scatter = 1;
932 		pd_uinfo->using_sd = 1;
933 		pd_uinfo->dest_va = dst;
934 		pd_uinfo->first_sd = fst_sd;
935 		pd_uinfo->num_sd = num_sd;
936 		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
937 		pd->dest = sd_dma;
938 		/* setup scatter descriptor */
939 		sd->ctl.done = 0;
940 		sd->ctl.rdy = 1;
941 		/* sd->ptr should be setup by sd_init routine*/
942 		idx = 0;
943 		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
944 			nbytes -= PPC4XX_SD_BUFFER_SIZE;
945 		else
946 			nbytes = 0;
947 		while (nbytes) {
948 			sd_idx = get_next_sd(sd_idx);
949 			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
950 			/* setup scatter descriptor */
951 			sd->ctl.done = 0;
952 			sd->ctl.rdy = 1;
953 			if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
954 				nbytes -= PPC4XX_SD_BUFFER_SIZE;
955 			else
956 				/*
957 				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
958 				 * which is more than nbytes, so done.
959 				 */
960 				nbytes = 0;
961 		}
962 	}
963 
964 	sa->sa_command_1.bf.hash_crypto_offset = 0;
965 	pd->pd_ctl.w = ctx->pd_ctl;
966 	pd->pd_ctl_len.w = 0x00400000 | (ctx->bypass << 24) | datalen;
967 	pd_uinfo->state = PD_ENTRY_INUSE;
968 	wmb();
969 	/* write any value to push engine to read a pd */
970 	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
971 	return -EINPROGRESS;
972 }
973 
974 /**
975  * Algorithm Registration Functions
976  */
977 static int crypto4xx_alg_init(struct crypto_tfm *tfm)
978 {
979 	struct crypto_alg *alg = tfm->__crt_alg;
980 	struct crypto4xx_alg *amcc_alg = crypto_alg_to_crypto4xx_alg(alg);
981 	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
982 
983 	ctx->dev = amcc_alg->dev;
984 	ctx->sa_in = NULL;
985 	ctx->sa_out = NULL;
986 	ctx->sa_in_dma_addr = 0;
987 	ctx->sa_out_dma_addr = 0;
988 	ctx->sa_len = 0;
989 
990 	switch (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) {
991 	default:
992 		tfm->crt_ablkcipher.reqsize = sizeof(struct crypto4xx_ctx);
993 		break;
994 	case CRYPTO_ALG_TYPE_AHASH:
995 		crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
996 					 sizeof(struct crypto4xx_ctx));
997 		break;
998 	}
999 
1000 	return 0;
1001 }
1002 
1003 static void crypto4xx_alg_exit(struct crypto_tfm *tfm)
1004 {
1005 	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
1006 
1007 	crypto4xx_free_sa(ctx);
1008 	crypto4xx_free_state_record(ctx);
1009 }
1010 
1011 int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1012 			   struct crypto4xx_alg_common *crypto_alg,
1013 			   int array_size)
1014 {
1015 	struct crypto4xx_alg *alg;
1016 	int i;
1017 	int rc = 0;
1018 
1019 	for (i = 0; i < array_size; i++) {
1020 		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1021 		if (!alg)
1022 			return -ENOMEM;
1023 
1024 		alg->alg = crypto_alg[i];
1025 		alg->dev = sec_dev;
1026 
1027 		switch (alg->alg.type) {
1028 		case CRYPTO_ALG_TYPE_AHASH:
1029 			rc = crypto_register_ahash(&alg->alg.u.hash);
1030 			break;
1031 
1032 		default:
1033 			rc = crypto_register_alg(&alg->alg.u.cipher);
1034 			break;
1035 		}
1036 
1037 		if (rc) {
1038 			list_del(&alg->entry);
1039 			kfree(alg);
1040 		} else {
1041 			list_add_tail(&alg->entry, &sec_dev->alg_list);
1042 		}
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1049 {
1050 	struct crypto4xx_alg *alg, *tmp;
1051 
1052 	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1053 		list_del(&alg->entry);
1054 		switch (alg->alg.type) {
1055 		case CRYPTO_ALG_TYPE_AHASH:
1056 			crypto_unregister_ahash(&alg->alg.u.hash);
1057 			break;
1058 
1059 		default:
1060 			crypto_unregister_alg(&alg->alg.u.cipher);
1061 		}
1062 		kfree(alg);
1063 	}
1064 }
1065 
1066 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1067 {
1068 	struct device *dev = (struct device *)data;
1069 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1070 	struct pd_uinfo *pd_uinfo;
1071 	struct ce_pd *pd;
1072 	u32 tail;
1073 
1074 	while (core_dev->dev->pdr_head != core_dev->dev->pdr_tail) {
1075 		tail = core_dev->dev->pdr_tail;
1076 		pd_uinfo = core_dev->dev->pdr_uinfo +
1077 			sizeof(struct pd_uinfo)*tail;
1078 		pd =  core_dev->dev->pdr + sizeof(struct ce_pd) * tail;
1079 		if ((pd_uinfo->state == PD_ENTRY_INUSE) &&
1080 				   pd->pd_ctl.bf.pe_done &&
1081 				   !pd->pd_ctl.bf.host_ready) {
1082 			pd->pd_ctl.bf.pe_done = 0;
1083 			crypto4xx_pd_done(core_dev->dev, tail);
1084 			crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1085 			pd_uinfo->state = PD_ENTRY_FREE;
1086 		} else {
1087 			/* if tail not done, break */
1088 			break;
1089 		}
1090 	}
1091 }
1092 
1093 /**
1094  * Top Half of isr.
1095  */
1096 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1097 {
1098 	struct device *dev = (struct device *)data;
1099 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1100 
1101 	if (!core_dev->dev->ce_base)
1102 		return 0;
1103 
1104 	writel(PPC4XX_INTERRUPT_CLR,
1105 	       core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1106 	tasklet_schedule(&core_dev->tasklet);
1107 
1108 	return IRQ_HANDLED;
1109 }
1110 
1111 /**
1112  * Supported Crypto Algorithms
1113  */
1114 struct crypto4xx_alg_common crypto4xx_alg[] = {
1115 	/* Crypto AES modes */
1116 	{ .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = {
1117 		.cra_name 	= "cbc(aes)",
1118 		.cra_driver_name = "cbc-aes-ppc4xx",
1119 		.cra_priority 	= CRYPTO4XX_CRYPTO_PRIORITY,
1120 		.cra_flags 	= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1121 		.cra_blocksize 	= AES_BLOCK_SIZE,
1122 		.cra_ctxsize 	= sizeof(struct crypto4xx_ctx),
1123 		.cra_type 	= &crypto_ablkcipher_type,
1124 		.cra_init	= crypto4xx_alg_init,
1125 		.cra_exit	= crypto4xx_alg_exit,
1126 		.cra_module 	= THIS_MODULE,
1127 		.cra_u 		= {
1128 			.ablkcipher = {
1129 				.min_keysize 	= AES_MIN_KEY_SIZE,
1130 				.max_keysize 	= AES_MAX_KEY_SIZE,
1131 				.ivsize		= AES_IV_SIZE,
1132 				.setkey 	= crypto4xx_setkey_aes_cbc,
1133 				.encrypt 	= crypto4xx_encrypt,
1134 				.decrypt 	= crypto4xx_decrypt,
1135 			}
1136 		}
1137 	}},
1138 };
1139 
1140 /**
1141  * Module Initialization Routine
1142  */
1143 static int crypto4xx_probe(struct platform_device *ofdev)
1144 {
1145 	int rc;
1146 	struct resource res;
1147 	struct device *dev = &ofdev->dev;
1148 	struct crypto4xx_core_device *core_dev;
1149 
1150 	rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1151 	if (rc)
1152 		return -ENODEV;
1153 
1154 	if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1155 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1156 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1157 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1158 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1159 	} else if (of_find_compatible_node(NULL, NULL,
1160 			"amcc,ppc405ex-crypto")) {
1161 		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1162 		       mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1163 		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1164 		       mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1165 	} else if (of_find_compatible_node(NULL, NULL,
1166 			"amcc,ppc460sx-crypto")) {
1167 		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1168 		       mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1169 		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1170 		       mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1171 	} else {
1172 		printk(KERN_ERR "Crypto Function Not supported!\n");
1173 		return -EINVAL;
1174 	}
1175 
1176 	core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1177 	if (!core_dev)
1178 		return -ENOMEM;
1179 
1180 	dev_set_drvdata(dev, core_dev);
1181 	core_dev->ofdev = ofdev;
1182 	core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1183 	if (!core_dev->dev)
1184 		goto err_alloc_dev;
1185 
1186 	core_dev->dev->core_dev = core_dev;
1187 	core_dev->device = dev;
1188 	spin_lock_init(&core_dev->lock);
1189 	INIT_LIST_HEAD(&core_dev->dev->alg_list);
1190 	rc = crypto4xx_build_pdr(core_dev->dev);
1191 	if (rc)
1192 		goto err_build_pdr;
1193 
1194 	rc = crypto4xx_build_gdr(core_dev->dev);
1195 	if (rc)
1196 		goto err_build_gdr;
1197 
1198 	rc = crypto4xx_build_sdr(core_dev->dev);
1199 	if (rc)
1200 		goto err_build_sdr;
1201 
1202 	/* Init tasklet for bottom half processing */
1203 	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1204 		     (unsigned long) dev);
1205 
1206 	/* Register for Crypto isr, Crypto Engine IRQ */
1207 	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1208 	rc = request_irq(core_dev->irq, crypto4xx_ce_interrupt_handler, 0,
1209 			 core_dev->dev->name, dev);
1210 	if (rc)
1211 		goto err_request_irq;
1212 
1213 	core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1214 	if (!core_dev->dev->ce_base) {
1215 		dev_err(dev, "failed to of_iomap\n");
1216 		rc = -ENOMEM;
1217 		goto err_iomap;
1218 	}
1219 
1220 	/* need to setup pdr, rdr, gdr and sdr before this */
1221 	crypto4xx_hw_init(core_dev->dev);
1222 
1223 	/* Register security algorithms with Linux CryptoAPI */
1224 	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1225 			       ARRAY_SIZE(crypto4xx_alg));
1226 	if (rc)
1227 		goto err_start_dev;
1228 
1229 	ppc4xx_trng_probe(core_dev);
1230 	return 0;
1231 
1232 err_start_dev:
1233 	iounmap(core_dev->dev->ce_base);
1234 err_iomap:
1235 	free_irq(core_dev->irq, dev);
1236 err_request_irq:
1237 	irq_dispose_mapping(core_dev->irq);
1238 	tasklet_kill(&core_dev->tasklet);
1239 	crypto4xx_destroy_sdr(core_dev->dev);
1240 err_build_sdr:
1241 	crypto4xx_destroy_gdr(core_dev->dev);
1242 err_build_gdr:
1243 	crypto4xx_destroy_pdr(core_dev->dev);
1244 err_build_pdr:
1245 	kfree(core_dev->dev);
1246 err_alloc_dev:
1247 	kfree(core_dev);
1248 
1249 	return rc;
1250 }
1251 
1252 static int crypto4xx_remove(struct platform_device *ofdev)
1253 {
1254 	struct device *dev = &ofdev->dev;
1255 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1256 
1257 	ppc4xx_trng_remove(core_dev);
1258 
1259 	free_irq(core_dev->irq, dev);
1260 	irq_dispose_mapping(core_dev->irq);
1261 
1262 	tasklet_kill(&core_dev->tasklet);
1263 	/* Un-register with Linux CryptoAPI */
1264 	crypto4xx_unregister_alg(core_dev->dev);
1265 	/* Free all allocated memory */
1266 	crypto4xx_stop_all(core_dev);
1267 
1268 	return 0;
1269 }
1270 
1271 static const struct of_device_id crypto4xx_match[] = {
1272 	{ .compatible      = "amcc,ppc4xx-crypto",},
1273 	{ },
1274 };
1275 MODULE_DEVICE_TABLE(of, crypto4xx_match);
1276 
1277 static struct platform_driver crypto4xx_driver = {
1278 	.driver = {
1279 		.name = MODULE_NAME,
1280 		.of_match_table = crypto4xx_match,
1281 	},
1282 	.probe		= crypto4xx_probe,
1283 	.remove		= crypto4xx_remove,
1284 };
1285 
1286 module_platform_driver(crypto4xx_driver);
1287 
1288 MODULE_LICENSE("GPL");
1289 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1290 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1291