1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * AMCC SoC PPC4xx Crypto Driver 4 * 5 * Copyright (c) 2008 Applied Micro Circuits Corporation. 6 * All rights reserved. James Hsiao <jhsiao@amcc.com> 7 * 8 * This file implements the Linux crypto algorithms. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/interrupt.h> 13 #include <linux/spinlock_types.h> 14 #include <linux/scatterlist.h> 15 #include <linux/crypto.h> 16 #include <linux/hash.h> 17 #include <crypto/internal/hash.h> 18 #include <linux/dma-mapping.h> 19 #include <crypto/algapi.h> 20 #include <crypto/aead.h> 21 #include <crypto/aes.h> 22 #include <crypto/gcm.h> 23 #include <crypto/sha1.h> 24 #include <crypto/ctr.h> 25 #include <crypto/skcipher.h> 26 #include "crypto4xx_reg_def.h" 27 #include "crypto4xx_core.h" 28 #include "crypto4xx_sa.h" 29 30 static void set_dynamic_sa_command_0(struct dynamic_sa_ctl *sa, u32 save_h, 31 u32 save_iv, u32 ld_h, u32 ld_iv, 32 u32 hdr_proc, u32 h, u32 c, u32 pad_type, 33 u32 op_grp, u32 op, u32 dir) 34 { 35 sa->sa_command_0.w = 0; 36 sa->sa_command_0.bf.save_hash_state = save_h; 37 sa->sa_command_0.bf.save_iv = save_iv; 38 sa->sa_command_0.bf.load_hash_state = ld_h; 39 sa->sa_command_0.bf.load_iv = ld_iv; 40 sa->sa_command_0.bf.hdr_proc = hdr_proc; 41 sa->sa_command_0.bf.hash_alg = h; 42 sa->sa_command_0.bf.cipher_alg = c; 43 sa->sa_command_0.bf.pad_type = pad_type & 3; 44 sa->sa_command_0.bf.extend_pad = pad_type >> 2; 45 sa->sa_command_0.bf.op_group = op_grp; 46 sa->sa_command_0.bf.opcode = op; 47 sa->sa_command_0.bf.dir = dir; 48 } 49 50 static void set_dynamic_sa_command_1(struct dynamic_sa_ctl *sa, u32 cm, 51 u32 hmac_mc, u32 cfb, u32 esn, 52 u32 sn_mask, u32 mute, u32 cp_pad, 53 u32 cp_pay, u32 cp_hdr) 54 { 55 sa->sa_command_1.w = 0; 56 sa->sa_command_1.bf.crypto_mode31 = (cm & 4) >> 2; 57 sa->sa_command_1.bf.crypto_mode9_8 = cm & 3; 58 sa->sa_command_1.bf.feedback_mode = cfb; 59 sa->sa_command_1.bf.sa_rev = 1; 60 sa->sa_command_1.bf.hmac_muting = hmac_mc; 61 sa->sa_command_1.bf.extended_seq_num = esn; 62 sa->sa_command_1.bf.seq_num_mask = sn_mask; 63 sa->sa_command_1.bf.mutable_bit_proc = mute; 64 sa->sa_command_1.bf.copy_pad = cp_pad; 65 sa->sa_command_1.bf.copy_payload = cp_pay; 66 sa->sa_command_1.bf.copy_hdr = cp_hdr; 67 } 68 69 static inline int crypto4xx_crypt(struct skcipher_request *req, 70 const unsigned int ivlen, bool decrypt, 71 bool check_blocksize) 72 { 73 struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req); 74 struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); 75 __le32 iv[AES_IV_SIZE]; 76 77 if (check_blocksize && !IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE)) 78 return -EINVAL; 79 80 if (ivlen) 81 crypto4xx_memcpy_to_le32(iv, req->iv, ivlen); 82 83 return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, 84 req->cryptlen, iv, ivlen, decrypt ? ctx->sa_in : ctx->sa_out, 85 ctx->sa_len, 0, NULL); 86 } 87 88 int crypto4xx_encrypt_noiv_block(struct skcipher_request *req) 89 { 90 return crypto4xx_crypt(req, 0, false, true); 91 } 92 93 int crypto4xx_encrypt_iv_stream(struct skcipher_request *req) 94 { 95 return crypto4xx_crypt(req, AES_IV_SIZE, false, false); 96 } 97 98 int crypto4xx_decrypt_noiv_block(struct skcipher_request *req) 99 { 100 return crypto4xx_crypt(req, 0, true, true); 101 } 102 103 int crypto4xx_decrypt_iv_stream(struct skcipher_request *req) 104 { 105 return crypto4xx_crypt(req, AES_IV_SIZE, true, false); 106 } 107 108 int crypto4xx_encrypt_iv_block(struct skcipher_request *req) 109 { 110 return crypto4xx_crypt(req, AES_IV_SIZE, false, true); 111 } 112 113 int crypto4xx_decrypt_iv_block(struct skcipher_request *req) 114 { 115 return crypto4xx_crypt(req, AES_IV_SIZE, true, true); 116 } 117 118 /* 119 * AES Functions 120 */ 121 static int crypto4xx_setkey_aes(struct crypto_skcipher *cipher, 122 const u8 *key, 123 unsigned int keylen, 124 unsigned char cm, 125 u8 fb) 126 { 127 struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); 128 struct dynamic_sa_ctl *sa; 129 int rc; 130 131 if (keylen != AES_KEYSIZE_256 && keylen != AES_KEYSIZE_192 && 132 keylen != AES_KEYSIZE_128) 133 return -EINVAL; 134 135 /* Create SA */ 136 if (ctx->sa_in || ctx->sa_out) 137 crypto4xx_free_sa(ctx); 138 139 rc = crypto4xx_alloc_sa(ctx, SA_AES128_LEN + (keylen-16) / 4); 140 if (rc) 141 return rc; 142 143 /* Setup SA */ 144 sa = ctx->sa_in; 145 146 set_dynamic_sa_command_0(sa, SA_NOT_SAVE_HASH, (cm == CRYPTO_MODE_ECB ? 147 SA_NOT_SAVE_IV : SA_SAVE_IV), 148 SA_NOT_LOAD_HASH, (cm == CRYPTO_MODE_ECB ? 149 SA_LOAD_IV_FROM_SA : SA_LOAD_IV_FROM_STATE), 150 SA_NO_HEADER_PROC, SA_HASH_ALG_NULL, 151 SA_CIPHER_ALG_AES, SA_PAD_TYPE_ZERO, 152 SA_OP_GROUP_BASIC, SA_OPCODE_DECRYPT, 153 DIR_INBOUND); 154 155 set_dynamic_sa_command_1(sa, cm, SA_HASH_MODE_HASH, 156 fb, SA_EXTENDED_SN_OFF, 157 SA_SEQ_MASK_OFF, SA_MC_ENABLE, 158 SA_NOT_COPY_PAD, SA_NOT_COPY_PAYLOAD, 159 SA_NOT_COPY_HDR); 160 crypto4xx_memcpy_to_le32(get_dynamic_sa_key_field(sa), 161 key, keylen); 162 sa->sa_contents.w = SA_AES_CONTENTS | (keylen << 2); 163 sa->sa_command_1.bf.key_len = keylen >> 3; 164 165 memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); 166 sa = ctx->sa_out; 167 sa->sa_command_0.bf.dir = DIR_OUTBOUND; 168 /* 169 * SA_OPCODE_ENCRYPT is the same value as SA_OPCODE_DECRYPT. 170 * it's the DIR_(IN|OUT)BOUND that matters 171 */ 172 sa->sa_command_0.bf.opcode = SA_OPCODE_ENCRYPT; 173 174 return 0; 175 } 176 177 int crypto4xx_setkey_aes_cbc(struct crypto_skcipher *cipher, 178 const u8 *key, unsigned int keylen) 179 { 180 return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_CBC, 181 CRYPTO_FEEDBACK_MODE_NO_FB); 182 } 183 184 int crypto4xx_setkey_aes_ecb(struct crypto_skcipher *cipher, 185 const u8 *key, unsigned int keylen) 186 { 187 return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_ECB, 188 CRYPTO_FEEDBACK_MODE_NO_FB); 189 } 190 191 int crypto4xx_setkey_rfc3686(struct crypto_skcipher *cipher, 192 const u8 *key, unsigned int keylen) 193 { 194 struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); 195 int rc; 196 197 rc = crypto4xx_setkey_aes(cipher, key, keylen - CTR_RFC3686_NONCE_SIZE, 198 CRYPTO_MODE_CTR, CRYPTO_FEEDBACK_MODE_NO_FB); 199 if (rc) 200 return rc; 201 202 ctx->iv_nonce = cpu_to_le32p((u32 *)&key[keylen - 203 CTR_RFC3686_NONCE_SIZE]); 204 205 return 0; 206 } 207 208 int crypto4xx_rfc3686_encrypt(struct skcipher_request *req) 209 { 210 struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req); 211 struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); 212 __le32 iv[AES_IV_SIZE / 4] = { 213 ctx->iv_nonce, 214 cpu_to_le32p((u32 *) req->iv), 215 cpu_to_le32p((u32 *) (req->iv + 4)), 216 cpu_to_le32(1) }; 217 218 return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, 219 req->cryptlen, iv, AES_IV_SIZE, 220 ctx->sa_out, ctx->sa_len, 0, NULL); 221 } 222 223 int crypto4xx_rfc3686_decrypt(struct skcipher_request *req) 224 { 225 struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req); 226 struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); 227 __le32 iv[AES_IV_SIZE / 4] = { 228 ctx->iv_nonce, 229 cpu_to_le32p((u32 *) req->iv), 230 cpu_to_le32p((u32 *) (req->iv + 4)), 231 cpu_to_le32(1) }; 232 233 return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, 234 req->cryptlen, iv, AES_IV_SIZE, 235 ctx->sa_out, ctx->sa_len, 0, NULL); 236 } 237 238 static int 239 crypto4xx_ctr_crypt(struct skcipher_request *req, bool encrypt) 240 { 241 struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req); 242 struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); 243 size_t iv_len = crypto_skcipher_ivsize(cipher); 244 unsigned int counter = be32_to_cpup((__be32 *)(req->iv + iv_len - 4)); 245 unsigned int nblks = ALIGN(req->cryptlen, AES_BLOCK_SIZE) / 246 AES_BLOCK_SIZE; 247 248 /* 249 * The hardware uses only the last 32-bits as the counter while the 250 * kernel tests (aes_ctr_enc_tv_template[4] for example) expect that 251 * the whole IV is a counter. So fallback if the counter is going to 252 * overlow. 253 */ 254 if (counter + nblks < counter) { 255 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->sw_cipher.cipher); 256 int ret; 257 258 skcipher_request_set_sync_tfm(subreq, ctx->sw_cipher.cipher); 259 skcipher_request_set_callback(subreq, req->base.flags, 260 NULL, NULL); 261 skcipher_request_set_crypt(subreq, req->src, req->dst, 262 req->cryptlen, req->iv); 263 ret = encrypt ? crypto_skcipher_encrypt(subreq) 264 : crypto_skcipher_decrypt(subreq); 265 skcipher_request_zero(subreq); 266 return ret; 267 } 268 269 return encrypt ? crypto4xx_encrypt_iv_stream(req) 270 : crypto4xx_decrypt_iv_stream(req); 271 } 272 273 static int crypto4xx_sk_setup_fallback(struct crypto4xx_ctx *ctx, 274 struct crypto_skcipher *cipher, 275 const u8 *key, 276 unsigned int keylen) 277 { 278 crypto_sync_skcipher_clear_flags(ctx->sw_cipher.cipher, 279 CRYPTO_TFM_REQ_MASK); 280 crypto_sync_skcipher_set_flags(ctx->sw_cipher.cipher, 281 crypto_skcipher_get_flags(cipher) & CRYPTO_TFM_REQ_MASK); 282 return crypto_sync_skcipher_setkey(ctx->sw_cipher.cipher, key, keylen); 283 } 284 285 int crypto4xx_setkey_aes_ctr(struct crypto_skcipher *cipher, 286 const u8 *key, unsigned int keylen) 287 { 288 struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); 289 int rc; 290 291 rc = crypto4xx_sk_setup_fallback(ctx, cipher, key, keylen); 292 if (rc) 293 return rc; 294 295 return crypto4xx_setkey_aes(cipher, key, keylen, 296 CRYPTO_MODE_CTR, CRYPTO_FEEDBACK_MODE_NO_FB); 297 } 298 299 int crypto4xx_encrypt_ctr(struct skcipher_request *req) 300 { 301 return crypto4xx_ctr_crypt(req, true); 302 } 303 304 int crypto4xx_decrypt_ctr(struct skcipher_request *req) 305 { 306 return crypto4xx_ctr_crypt(req, false); 307 } 308 309 static inline bool crypto4xx_aead_need_fallback(struct aead_request *req, 310 unsigned int len, 311 bool is_ccm, bool decrypt) 312 { 313 struct crypto_aead *aead = crypto_aead_reqtfm(req); 314 315 /* authsize has to be a multiple of 4 */ 316 if (aead->authsize & 3) 317 return true; 318 319 /* 320 * hardware does not handle cases where plaintext 321 * is less than a block. 322 */ 323 if (len < AES_BLOCK_SIZE) 324 return true; 325 326 /* assoc len needs to be a multiple of 4 and <= 1020 */ 327 if (req->assoclen & 0x3 || req->assoclen > 1020) 328 return true; 329 330 /* CCM supports only counter field length of 2 and 4 bytes */ 331 if (is_ccm && !(req->iv[0] == 1 || req->iv[0] == 3)) 332 return true; 333 334 return false; 335 } 336 337 static int crypto4xx_aead_fallback(struct aead_request *req, 338 struct crypto4xx_ctx *ctx, bool do_decrypt) 339 { 340 struct aead_request *subreq = aead_request_ctx(req); 341 342 aead_request_set_tfm(subreq, ctx->sw_cipher.aead); 343 aead_request_set_callback(subreq, req->base.flags, 344 req->base.complete, req->base.data); 345 aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, 346 req->iv); 347 aead_request_set_ad(subreq, req->assoclen); 348 return do_decrypt ? crypto_aead_decrypt(subreq) : 349 crypto_aead_encrypt(subreq); 350 } 351 352 static int crypto4xx_aead_setup_fallback(struct crypto4xx_ctx *ctx, 353 struct crypto_aead *cipher, 354 const u8 *key, 355 unsigned int keylen) 356 { 357 crypto_aead_clear_flags(ctx->sw_cipher.aead, CRYPTO_TFM_REQ_MASK); 358 crypto_aead_set_flags(ctx->sw_cipher.aead, 359 crypto_aead_get_flags(cipher) & CRYPTO_TFM_REQ_MASK); 360 return crypto_aead_setkey(ctx->sw_cipher.aead, key, keylen); 361 } 362 363 /* 364 * AES-CCM Functions 365 */ 366 367 int crypto4xx_setkey_aes_ccm(struct crypto_aead *cipher, const u8 *key, 368 unsigned int keylen) 369 { 370 struct crypto_tfm *tfm = crypto_aead_tfm(cipher); 371 struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); 372 struct dynamic_sa_ctl *sa; 373 int rc = 0; 374 375 rc = crypto4xx_aead_setup_fallback(ctx, cipher, key, keylen); 376 if (rc) 377 return rc; 378 379 if (ctx->sa_in || ctx->sa_out) 380 crypto4xx_free_sa(ctx); 381 382 rc = crypto4xx_alloc_sa(ctx, SA_AES128_CCM_LEN + (keylen - 16) / 4); 383 if (rc) 384 return rc; 385 386 /* Setup SA */ 387 sa = (struct dynamic_sa_ctl *) ctx->sa_in; 388 sa->sa_contents.w = SA_AES_CCM_CONTENTS | (keylen << 2); 389 390 set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV, 391 SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE, 392 SA_NO_HEADER_PROC, SA_HASH_ALG_CBC_MAC, 393 SA_CIPHER_ALG_AES, 394 SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, 395 SA_OPCODE_HASH_DECRYPT, DIR_INBOUND); 396 397 set_dynamic_sa_command_1(sa, CRYPTO_MODE_CTR, SA_HASH_MODE_HASH, 398 CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, 399 SA_SEQ_MASK_OFF, SA_MC_ENABLE, 400 SA_NOT_COPY_PAD, SA_COPY_PAYLOAD, 401 SA_NOT_COPY_HDR); 402 403 sa->sa_command_1.bf.key_len = keylen >> 3; 404 405 crypto4xx_memcpy_to_le32(get_dynamic_sa_key_field(sa), key, keylen); 406 407 memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); 408 sa = (struct dynamic_sa_ctl *) ctx->sa_out; 409 410 set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV, 411 SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE, 412 SA_NO_HEADER_PROC, SA_HASH_ALG_CBC_MAC, 413 SA_CIPHER_ALG_AES, 414 SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, 415 SA_OPCODE_ENCRYPT_HASH, DIR_OUTBOUND); 416 417 set_dynamic_sa_command_1(sa, CRYPTO_MODE_CTR, SA_HASH_MODE_HASH, 418 CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, 419 SA_SEQ_MASK_OFF, SA_MC_ENABLE, 420 SA_COPY_PAD, SA_COPY_PAYLOAD, 421 SA_NOT_COPY_HDR); 422 423 sa->sa_command_1.bf.key_len = keylen >> 3; 424 return 0; 425 } 426 427 static int crypto4xx_crypt_aes_ccm(struct aead_request *req, bool decrypt) 428 { 429 struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); 430 struct crypto4xx_aead_reqctx *rctx = aead_request_ctx(req); 431 struct crypto_aead *aead = crypto_aead_reqtfm(req); 432 __le32 iv[16]; 433 u32 tmp_sa[SA_AES128_CCM_LEN + 4]; 434 struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *)tmp_sa; 435 unsigned int len = req->cryptlen; 436 437 if (decrypt) 438 len -= crypto_aead_authsize(aead); 439 440 if (crypto4xx_aead_need_fallback(req, len, true, decrypt)) 441 return crypto4xx_aead_fallback(req, ctx, decrypt); 442 443 memcpy(tmp_sa, decrypt ? ctx->sa_in : ctx->sa_out, ctx->sa_len * 4); 444 sa->sa_command_0.bf.digest_len = crypto_aead_authsize(aead) >> 2; 445 446 if (req->iv[0] == 1) { 447 /* CRYPTO_MODE_AES_ICM */ 448 sa->sa_command_1.bf.crypto_mode9_8 = 1; 449 } 450 451 iv[3] = cpu_to_le32(0); 452 crypto4xx_memcpy_to_le32(iv, req->iv, 16 - (req->iv[0] + 1)); 453 454 return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, 455 len, iv, sizeof(iv), 456 sa, ctx->sa_len, req->assoclen, rctx->dst); 457 } 458 459 int crypto4xx_encrypt_aes_ccm(struct aead_request *req) 460 { 461 return crypto4xx_crypt_aes_ccm(req, false); 462 } 463 464 int crypto4xx_decrypt_aes_ccm(struct aead_request *req) 465 { 466 return crypto4xx_crypt_aes_ccm(req, true); 467 } 468 469 int crypto4xx_setauthsize_aead(struct crypto_aead *cipher, 470 unsigned int authsize) 471 { 472 struct crypto_tfm *tfm = crypto_aead_tfm(cipher); 473 struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); 474 475 return crypto_aead_setauthsize(ctx->sw_cipher.aead, authsize); 476 } 477 478 /* 479 * AES-GCM Functions 480 */ 481 482 static int crypto4xx_aes_gcm_validate_keylen(unsigned int keylen) 483 { 484 switch (keylen) { 485 case 16: 486 case 24: 487 case 32: 488 return 0; 489 default: 490 return -EINVAL; 491 } 492 } 493 494 static int crypto4xx_compute_gcm_hash_key_sw(__le32 *hash_start, const u8 *key, 495 unsigned int keylen) 496 { 497 struct crypto_aes_ctx ctx; 498 uint8_t src[16] = { 0 }; 499 int rc; 500 501 rc = aes_expandkey(&ctx, key, keylen); 502 if (rc) { 503 pr_err("aes_expandkey() failed: %d\n", rc); 504 return rc; 505 } 506 507 aes_encrypt(&ctx, src, src); 508 crypto4xx_memcpy_to_le32(hash_start, src, 16); 509 memzero_explicit(&ctx, sizeof(ctx)); 510 return 0; 511 } 512 513 int crypto4xx_setkey_aes_gcm(struct crypto_aead *cipher, 514 const u8 *key, unsigned int keylen) 515 { 516 struct crypto_tfm *tfm = crypto_aead_tfm(cipher); 517 struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); 518 struct dynamic_sa_ctl *sa; 519 int rc = 0; 520 521 if (crypto4xx_aes_gcm_validate_keylen(keylen) != 0) 522 return -EINVAL; 523 524 rc = crypto4xx_aead_setup_fallback(ctx, cipher, key, keylen); 525 if (rc) 526 return rc; 527 528 if (ctx->sa_in || ctx->sa_out) 529 crypto4xx_free_sa(ctx); 530 531 rc = crypto4xx_alloc_sa(ctx, SA_AES128_GCM_LEN + (keylen - 16) / 4); 532 if (rc) 533 return rc; 534 535 sa = (struct dynamic_sa_ctl *) ctx->sa_in; 536 537 sa->sa_contents.w = SA_AES_GCM_CONTENTS | (keylen << 2); 538 set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV, 539 SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE, 540 SA_NO_HEADER_PROC, SA_HASH_ALG_GHASH, 541 SA_CIPHER_ALG_AES, SA_PAD_TYPE_ZERO, 542 SA_OP_GROUP_BASIC, SA_OPCODE_HASH_DECRYPT, 543 DIR_INBOUND); 544 set_dynamic_sa_command_1(sa, CRYPTO_MODE_CTR, SA_HASH_MODE_HASH, 545 CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, 546 SA_SEQ_MASK_ON, SA_MC_DISABLE, 547 SA_NOT_COPY_PAD, SA_COPY_PAYLOAD, 548 SA_NOT_COPY_HDR); 549 550 sa->sa_command_1.bf.key_len = keylen >> 3; 551 552 crypto4xx_memcpy_to_le32(get_dynamic_sa_key_field(sa), 553 key, keylen); 554 555 rc = crypto4xx_compute_gcm_hash_key_sw(get_dynamic_sa_inner_digest(sa), 556 key, keylen); 557 if (rc) { 558 pr_err("GCM hash key setting failed = %d\n", rc); 559 goto err; 560 } 561 562 memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); 563 sa = (struct dynamic_sa_ctl *) ctx->sa_out; 564 sa->sa_command_0.bf.dir = DIR_OUTBOUND; 565 sa->sa_command_0.bf.opcode = SA_OPCODE_ENCRYPT_HASH; 566 567 return 0; 568 err: 569 crypto4xx_free_sa(ctx); 570 return rc; 571 } 572 573 static inline int crypto4xx_crypt_aes_gcm(struct aead_request *req, 574 bool decrypt) 575 { 576 struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); 577 struct crypto4xx_aead_reqctx *rctx = aead_request_ctx(req); 578 __le32 iv[4]; 579 unsigned int len = req->cryptlen; 580 581 if (decrypt) 582 len -= crypto_aead_authsize(crypto_aead_reqtfm(req)); 583 584 if (crypto4xx_aead_need_fallback(req, len, false, decrypt)) 585 return crypto4xx_aead_fallback(req, ctx, decrypt); 586 587 crypto4xx_memcpy_to_le32(iv, req->iv, GCM_AES_IV_SIZE); 588 iv[3] = cpu_to_le32(1); 589 590 return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, 591 len, iv, sizeof(iv), 592 decrypt ? ctx->sa_in : ctx->sa_out, 593 ctx->sa_len, req->assoclen, rctx->dst); 594 } 595 596 int crypto4xx_encrypt_aes_gcm(struct aead_request *req) 597 { 598 return crypto4xx_crypt_aes_gcm(req, false); 599 } 600 601 int crypto4xx_decrypt_aes_gcm(struct aead_request *req) 602 { 603 return crypto4xx_crypt_aes_gcm(req, true); 604 } 605 606 /* 607 * HASH SHA1 Functions 608 */ 609 static int crypto4xx_hash_alg_init(struct crypto_tfm *tfm, 610 unsigned int sa_len, 611 unsigned char ha, 612 unsigned char hm) 613 { 614 struct crypto_alg *alg = tfm->__crt_alg; 615 struct crypto4xx_alg *my_alg; 616 struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); 617 struct dynamic_sa_hash160 *sa; 618 int rc; 619 620 my_alg = container_of(__crypto_ahash_alg(alg), struct crypto4xx_alg, 621 alg.u.hash); 622 ctx->dev = my_alg->dev; 623 624 /* Create SA */ 625 if (ctx->sa_in || ctx->sa_out) 626 crypto4xx_free_sa(ctx); 627 628 rc = crypto4xx_alloc_sa(ctx, sa_len); 629 if (rc) 630 return rc; 631 632 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 633 sizeof(struct crypto4xx_ctx)); 634 sa = (struct dynamic_sa_hash160 *)ctx->sa_in; 635 set_dynamic_sa_command_0(&sa->ctrl, SA_SAVE_HASH, SA_NOT_SAVE_IV, 636 SA_NOT_LOAD_HASH, SA_LOAD_IV_FROM_SA, 637 SA_NO_HEADER_PROC, ha, SA_CIPHER_ALG_NULL, 638 SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, 639 SA_OPCODE_HASH, DIR_INBOUND); 640 set_dynamic_sa_command_1(&sa->ctrl, 0, SA_HASH_MODE_HASH, 641 CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, 642 SA_SEQ_MASK_OFF, SA_MC_ENABLE, 643 SA_NOT_COPY_PAD, SA_NOT_COPY_PAYLOAD, 644 SA_NOT_COPY_HDR); 645 /* Need to zero hash digest in SA */ 646 memset(sa->inner_digest, 0, sizeof(sa->inner_digest)); 647 memset(sa->outer_digest, 0, sizeof(sa->outer_digest)); 648 649 return 0; 650 } 651 652 int crypto4xx_hash_init(struct ahash_request *req) 653 { 654 struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); 655 int ds; 656 struct dynamic_sa_ctl *sa; 657 658 sa = ctx->sa_in; 659 ds = crypto_ahash_digestsize( 660 __crypto_ahash_cast(req->base.tfm)); 661 sa->sa_command_0.bf.digest_len = ds >> 2; 662 sa->sa_command_0.bf.load_hash_state = SA_LOAD_HASH_FROM_SA; 663 664 return 0; 665 } 666 667 int crypto4xx_hash_update(struct ahash_request *req) 668 { 669 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 670 struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); 671 struct scatterlist dst; 672 unsigned int ds = crypto_ahash_digestsize(ahash); 673 674 sg_init_one(&dst, req->result, ds); 675 676 return crypto4xx_build_pd(&req->base, ctx, req->src, &dst, 677 req->nbytes, NULL, 0, ctx->sa_in, 678 ctx->sa_len, 0, NULL); 679 } 680 681 int crypto4xx_hash_final(struct ahash_request *req) 682 { 683 return 0; 684 } 685 686 int crypto4xx_hash_digest(struct ahash_request *req) 687 { 688 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 689 struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); 690 struct scatterlist dst; 691 unsigned int ds = crypto_ahash_digestsize(ahash); 692 693 sg_init_one(&dst, req->result, ds); 694 695 return crypto4xx_build_pd(&req->base, ctx, req->src, &dst, 696 req->nbytes, NULL, 0, ctx->sa_in, 697 ctx->sa_len, 0, NULL); 698 } 699 700 /* 701 * SHA1 Algorithm 702 */ 703 int crypto4xx_sha1_alg_init(struct crypto_tfm *tfm) 704 { 705 return crypto4xx_hash_alg_init(tfm, SA_HASH160_LEN, SA_HASH_ALG_SHA1, 706 SA_HASH_MODE_HASH); 707 } 708