xref: /linux/drivers/cpuidle/governors/teo.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Timer events oriented CPU idle governor
4  *
5  * Copyright (C) 2018 - 2021 Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8 
9 /**
10  * DOC: teo-description
11  *
12  * The idea of this governor is based on the observation that on many systems
13  * timer interrupts are two or more orders of magnitude more frequent than any
14  * other interrupt types, so they are likely to dominate CPU wakeup patterns.
15  * Moreover, in principle, the time when the next timer event is going to occur
16  * can be determined at the idle state selection time, although doing that may
17  * be costly, so it can be regarded as the most reliable source of information
18  * for idle state selection.
19  *
20  * Of course, non-timer wakeup sources are more important in some use cases,
21  * but even then it is generally unnecessary to consider idle duration values
22  * greater than the time till the next timer event, referred as the sleep
23  * length in what follows, because the closest timer will ultimately wake up the
24  * CPU anyway unless it is woken up earlier.
25  *
26  * However, since obtaining the sleep length may be costly, the governor first
27  * checks if it can select a shallow idle state using wakeup pattern information
28  * from recent times, in which case it can do without knowing the sleep length
29  * at all.  For this purpose, it counts CPU wakeup events and looks for an idle
30  * state whose target residency has not exceeded the idle duration (measured
31  * after wakeup) in the majority of relevant recent cases.  If the target
32  * residency of that state is small enough, it may be used right away and the
33  * sleep length need not be determined.
34  *
35  * The computations carried out by this governor are based on using bins whose
36  * boundaries are aligned with the target residency parameter values of the CPU
37  * idle states provided by the %CPUIdle driver in the ascending order.  That is,
38  * the first bin spans from 0 up to, but not including, the target residency of
39  * the second idle state (idle state 1), the second bin spans from the target
40  * residency of idle state 1 up to, but not including, the target residency of
41  * idle state 2, the third bin spans from the target residency of idle state 2
42  * up to, but not including, the target residency of idle state 3 and so on.
43  * The last bin spans from the target residency of the deepest idle state
44  * supplied by the driver to infinity.
45  *
46  * Two metrics called "hits" and "intercepts" are associated with each bin.
47  * They are updated every time before selecting an idle state for the given CPU
48  * in accordance with what happened last time.
49  *
50  * The "hits" metric reflects the relative frequency of situations in which the
51  * sleep length and the idle duration measured after CPU wakeup fall into the
52  * same bin (that is, the CPU appears to wake up "on time" relative to the sleep
53  * length).  In turn, the "intercepts" metric reflects the relative frequency of
54  * non-timer wakeup events for which the measured idle duration falls into a bin
55  * that corresponds to an idle state shallower than the one whose bin is fallen
56  * into by the sleep length (these events are also referred to as "intercepts"
57  * below).
58  *
59  * The governor also counts "intercepts" with the measured idle duration below
60  * the tick period length and uses this information when deciding whether or not
61  * to stop the scheduler tick.
62  *
63  * In order to select an idle state for a CPU, the governor takes the following
64  * steps (modulo the possible latency constraint that must be taken into account
65  * too):
66  *
67  * 1. Find the deepest enabled CPU idle state (the candidate idle state) and
68  *    compute 2 sums as follows:
69  *
70  *    - The sum of the "hits" metric for all of the idle states shallower than
71  *      the candidate one (it represents the cases in which the CPU was likely
72  *      woken up by a timer).
73  *
74  *    - The sum of the "intercepts" metric for all of the idle states shallower
75  *      than the candidate one (it represents the cases in which the CPU was
76  *      likely woken up by a non-timer wakeup source).
77  *
78  * 2. If the second sum computed in step 1 is greater than a half of the sum of
79  *    both metrics for the candidate state bin and all subsequent bins (if any),
80  *    a shallower idle state is likely to be more suitable, so look for it.
81  *
82  *    - Traverse the enabled idle states shallower than the candidate one in the
83  *      descending order.
84  *
85  *    - For each of them compute the sum of the "intercepts" metrics over all
86  *      of the idle states between it and the candidate one (including the
87  *      former and excluding the latter).
88  *
89  *    - If this sum is greater than a half of the second sum computed in step 1,
90  *      use the given idle state as the new candidate one.
91  *
92  * 3. If the current candidate state is state 0 or its target residency is short
93  *    enough, return it and prevent the scheduler tick from being stopped.
94  *
95  * 4. Obtain the sleep length value and check if it is below the target
96  *    residency of the current candidate state, in which case a new shallower
97  *    candidate state needs to be found, so look for it.
98  */
99 
100 #include <linux/cpuidle.h>
101 #include <linux/jiffies.h>
102 #include <linux/kernel.h>
103 #include <linux/sched/clock.h>
104 #include <linux/tick.h>
105 
106 #include "gov.h"
107 
108 /*
109  * Idle state exit latency threshold used for deciding whether or not to check
110  * the time till the closest expected timer event.
111  */
112 #define LATENCY_THRESHOLD_NS	(RESIDENCY_THRESHOLD_NS / 2)
113 
114 /*
115  * The PULSE value is added to metrics when they grow and the DECAY_SHIFT value
116  * is used for decreasing metrics on a regular basis.
117  */
118 #define PULSE		1024
119 #define DECAY_SHIFT	3
120 
121 /**
122  * struct teo_bin - Metrics used by the TEO cpuidle governor.
123  * @intercepts: The "intercepts" metric.
124  * @hits: The "hits" metric.
125  */
126 struct teo_bin {
127 	unsigned int intercepts;
128 	unsigned int hits;
129 };
130 
131 /**
132  * struct teo_cpu - CPU data used by the TEO cpuidle governor.
133  * @sleep_length_ns: Time till the closest timer event (at the selection time).
134  * @state_bins: Idle state data bins for this CPU.
135  * @total: Grand total of the "intercepts" and "hits" metrics for all bins.
136  * @total_tick: Wakeups by the scheduler tick.
137  * @tick_intercepts: "Intercepts" before TICK_NSEC.
138  * @short_idles: Wakeups after short idle periods.
139  * @tick_wakeup: Set if the last wakeup was by the scheduler tick.
140  */
141 struct teo_cpu {
142 	s64 sleep_length_ns;
143 	struct teo_bin state_bins[CPUIDLE_STATE_MAX];
144 	unsigned int total;
145 	unsigned int total_tick;
146 	unsigned int tick_intercepts;
147 	unsigned int short_idles;
148 	bool tick_wakeup;
149 };
150 
151 static DEFINE_PER_CPU(struct teo_cpu, teo_cpus);
152 
153 static void teo_decay(unsigned int *metric)
154 {
155 	unsigned int delta = *metric >> DECAY_SHIFT;
156 
157 	if (delta)
158 		*metric -= delta;
159 	else
160 		*metric = 0;
161 }
162 
163 /**
164  * teo_update - Update CPU metrics after wakeup.
165  * @drv: cpuidle driver containing state data.
166  * @dev: Target CPU.
167  */
168 static void teo_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
169 {
170 	struct teo_cpu *cpu_data = this_cpu_ptr(&teo_cpus);
171 	int i, idx_timer = 0, idx_duration = 0;
172 	s64 target_residency_ns, measured_ns;
173 	unsigned int total = 0;
174 
175 	teo_decay(&cpu_data->short_idles);
176 
177 	if (dev->poll_time_limit) {
178 		dev->poll_time_limit = false;
179 		/*
180 		 * Polling state timeout has triggered, so assume that this
181 		 * might have been a long sleep.
182 		 */
183 		measured_ns = S64_MAX;
184 	} else {
185 		s64 lat_ns = drv->states[dev->last_state_idx].exit_latency_ns;
186 
187 		measured_ns = dev->last_residency_ns;
188 		/*
189 		 * The delay between the wakeup and the first instruction
190 		 * executed by the CPU is not likely to be worst-case every
191 		 * time, so take 1/2 of the exit latency as a very rough
192 		 * approximation of the average of it.
193 		 */
194 		if (measured_ns >= lat_ns) {
195 			measured_ns -= lat_ns / 2;
196 			if (measured_ns < RESIDENCY_THRESHOLD_NS)
197 				cpu_data->short_idles += PULSE;
198 		} else {
199 			measured_ns /= 2;
200 			cpu_data->short_idles += PULSE;
201 		}
202 	}
203 
204 	/*
205 	 * Decay the "hits" and "intercepts" metrics for all of the bins and
206 	 * find the bins that the sleep length and the measured idle duration
207 	 * fall into.
208 	 */
209 	for (i = 0; i < drv->state_count; i++) {
210 		struct teo_bin *bin = &cpu_data->state_bins[i];
211 
212 		teo_decay(&bin->hits);
213 		total += bin->hits;
214 		teo_decay(&bin->intercepts);
215 		total += bin->intercepts;
216 
217 		target_residency_ns = drv->states[i].target_residency_ns;
218 
219 		if (target_residency_ns <= cpu_data->sleep_length_ns) {
220 			idx_timer = i;
221 			if (target_residency_ns <= measured_ns)
222 				idx_duration = i;
223 		}
224 	}
225 
226 	cpu_data->total = total + PULSE;
227 
228 	teo_decay(&cpu_data->tick_intercepts);
229 
230 	teo_decay(&cpu_data->total_tick);
231 	if (cpu_data->tick_wakeup) {
232 		cpu_data->total_tick += PULSE;
233 		/*
234 		 * If tick wakeups dominate the wakeup pattern, count this one
235 		 * as a hit on the deepest available idle state to increase the
236 		 * likelihood of stopping the tick.
237 		 */
238 		if (3 * cpu_data->total_tick > 2 * cpu_data->total) {
239 			cpu_data->state_bins[drv->state_count-1].hits += PULSE;
240 			return;
241 		}
242 	}
243 
244 	/*
245 	 * If the measured idle duration falls into the same bin as the sleep
246 	 * length, this is a "hit", so update the "hits" metric for that bin.
247 	 * Otherwise, update the "intercepts" metric for the bin fallen into by
248 	 * the measured idle duration.
249 	 */
250 	if (idx_timer == idx_duration) {
251 		cpu_data->state_bins[idx_timer].hits += PULSE;
252 	} else {
253 		cpu_data->state_bins[idx_duration].intercepts += PULSE;
254 		if (measured_ns <= TICK_NSEC)
255 			cpu_data->tick_intercepts += PULSE;
256 	}
257 }
258 
259 /**
260  * teo_find_shallower_state - Find shallower idle state matching given duration.
261  * @drv: cpuidle driver containing state data.
262  * @dev: Target CPU.
263  * @state_idx: Index of the capping idle state.
264  * @duration_ns: Idle duration value to match.
265  */
266 static int teo_find_shallower_state(struct cpuidle_driver *drv,
267 				    struct cpuidle_device *dev, int state_idx,
268 				    s64 duration_ns)
269 {
270 	int i;
271 
272 	for (i = state_idx - 1; i >= 0; i--) {
273 		if (dev->states_usage[i].disable)
274 			continue;
275 
276 		state_idx = i;
277 		if (drv->states[i].target_residency_ns <= duration_ns)
278 			break;
279 	}
280 	return state_idx;
281 }
282 
283 /**
284  * teo_select - Selects the next idle state to enter.
285  * @drv: cpuidle driver containing state data.
286  * @dev: Target CPU.
287  * @stop_tick: Indication on whether or not to stop the scheduler tick.
288  */
289 static int teo_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
290 		      bool *stop_tick)
291 {
292 	struct teo_cpu *cpu_data = this_cpu_ptr(&teo_cpus);
293 	s64 latency_req = cpuidle_governor_latency_req(dev->cpu);
294 	ktime_t delta_tick = TICK_NSEC / 2;
295 	unsigned int idx_intercept_sum = 0;
296 	unsigned int intercept_sum = 0;
297 	unsigned int idx_hit_sum = 0;
298 	unsigned int hit_sum = 0;
299 	int constraint_idx = 0;
300 	int idx0 = 0, idx = -1;
301 	s64 duration_ns;
302 	int i;
303 
304 	if (dev->last_state_idx >= 0) {
305 		teo_update(drv, dev);
306 		dev->last_state_idx = -1;
307 	}
308 
309 	/*
310 	 * Set the sleep length to infinity in case the invocation of
311 	 * tick_nohz_get_sleep_length() below is skipped, in which case it won't
312 	 * be known whether or not the subsequent wakeup is caused by a timer.
313 	 * It is generally fine to count the wakeup as an intercept then, except
314 	 * for the cases when the CPU is mostly woken up by timers and there may
315 	 * be opportunities to ask for a deeper idle state when no imminent
316 	 * timers are scheduled which may be missed.
317 	 */
318 	cpu_data->sleep_length_ns = KTIME_MAX;
319 
320 	/* Check if there is any choice in the first place. */
321 	if (drv->state_count < 2) {
322 		idx = 0;
323 		goto out_tick;
324 	}
325 
326 	if (!dev->states_usage[0].disable)
327 		idx = 0;
328 
329 	/* Compute the sums of metrics for early wakeup pattern detection. */
330 	for (i = 1; i < drv->state_count; i++) {
331 		struct teo_bin *prev_bin = &cpu_data->state_bins[i-1];
332 		struct cpuidle_state *s = &drv->states[i];
333 
334 		/*
335 		 * Update the sums of idle state metrics for all of the states
336 		 * shallower than the current one.
337 		 */
338 		intercept_sum += prev_bin->intercepts;
339 		hit_sum += prev_bin->hits;
340 
341 		if (dev->states_usage[i].disable)
342 			continue;
343 
344 		if (idx < 0)
345 			idx0 = i; /* first enabled state */
346 
347 		idx = i;
348 
349 		if (s->exit_latency_ns <= latency_req)
350 			constraint_idx = i;
351 
352 		/* Save the sums for the current state. */
353 		idx_intercept_sum = intercept_sum;
354 		idx_hit_sum = hit_sum;
355 	}
356 
357 	/* Avoid unnecessary overhead. */
358 	if (idx < 0) {
359 		idx = 0; /* No states enabled, must use 0. */
360 		goto out_tick;
361 	}
362 
363 	if (idx == idx0) {
364 		/*
365 		 * Only one idle state is enabled, so use it, but do not
366 		 * allow the tick to be stopped it is shallow enough.
367 		 */
368 		duration_ns = drv->states[idx].target_residency_ns;
369 		goto end;
370 	}
371 
372 	/*
373 	 * If the sum of the intercepts metric for all of the idle states
374 	 * shallower than the current candidate one (idx) is greater than the
375 	 * sum of the intercepts and hits metrics for the candidate state and
376 	 * all of the deeper states, a shallower idle state is likely to be a
377 	 * better choice.
378 	 */
379 	if (2 * idx_intercept_sum > cpu_data->total - idx_hit_sum) {
380 		int min_idx = idx0;
381 
382 		if (tick_nohz_tick_stopped()) {
383 			/*
384 			 * Look for the shallowest idle state below the current
385 			 * candidate one whose target residency is at least
386 			 * equal to the tick period length.
387 			 */
388 			while (min_idx < idx &&
389 			       drv->states[min_idx].target_residency_ns < TICK_NSEC)
390 				min_idx++;
391 		}
392 
393 		/*
394 		 * Look for the deepest idle state whose target residency had
395 		 * not exceeded the idle duration in over a half of the relevant
396 		 * cases in the past.
397 		 *
398 		 * Take the possible duration limitation present if the tick
399 		 * has been stopped already into account.
400 		 */
401 		for (i = idx - 1, intercept_sum = 0; i >= min_idx; i--) {
402 			intercept_sum += cpu_data->state_bins[i].intercepts;
403 
404 			if (dev->states_usage[i].disable)
405 				continue;
406 
407 			idx = i;
408 			if (2 * intercept_sum > idx_intercept_sum)
409 				break;
410 		}
411 	}
412 
413 	/*
414 	 * If there is a latency constraint, it may be necessary to select an
415 	 * idle state shallower than the current candidate one.
416 	 */
417 	if (idx > constraint_idx)
418 		idx = constraint_idx;
419 
420 	/*
421 	 * If either the candidate state is state 0 or its target residency is
422 	 * low enough, there is basically nothing more to do, but if the sleep
423 	 * length is not updated, the subsequent wakeup will be counted as an
424 	 * "intercept" which may be problematic in the cases when timer wakeups
425 	 * are dominant.  Namely, it may effectively prevent deeper idle states
426 	 * from being selected at one point even if no imminent timers are
427 	 * scheduled.
428 	 *
429 	 * However, frequent timers in the RESIDENCY_THRESHOLD_NS range on one
430 	 * CPU are unlikely (user space has a default 50 us slack value for
431 	 * hrtimers and there are relatively few timers with a lower deadline
432 	 * value in the kernel), and even if they did happen, the potential
433 	 * benefit from using a deep idle state in that case would be
434 	 * questionable anyway for latency reasons.  Thus if the measured idle
435 	 * duration falls into that range in the majority of cases, assume
436 	 * non-timer wakeups to be dominant and skip updating the sleep length
437 	 * to reduce latency.
438 	 *
439 	 * Also, if the latency constraint is sufficiently low, it will force
440 	 * shallow idle states regardless of the wakeup type, so the sleep
441 	 * length need not be known in that case.
442 	 */
443 	if ((!idx || drv->states[idx].target_residency_ns < RESIDENCY_THRESHOLD_NS) &&
444 	    (2 * cpu_data->short_idles >= cpu_data->total ||
445 	     latency_req < LATENCY_THRESHOLD_NS))
446 		goto out_tick;
447 
448 	duration_ns = tick_nohz_get_sleep_length(&delta_tick);
449 	cpu_data->sleep_length_ns = duration_ns;
450 
451 	if (!idx)
452 		goto out_tick;
453 
454 	/*
455 	 * If the closest expected timer is before the target residency of the
456 	 * candidate state, a shallower one needs to be found.
457 	 */
458 	if (drv->states[idx].target_residency_ns > duration_ns)
459 		idx = teo_find_shallower_state(drv, dev, idx, duration_ns);
460 
461 	/*
462 	 * If the selected state's target residency is below the tick length
463 	 * and intercepts occurring before the tick length are the majority of
464 	 * total wakeup events, do not stop the tick.
465 	 */
466 	if (drv->states[idx].target_residency_ns < TICK_NSEC &&
467 	    cpu_data->tick_intercepts > cpu_data->total / 2 + cpu_data->total / 8)
468 		duration_ns = TICK_NSEC / 2;
469 
470 end:
471 	/*
472 	 * Allow the tick to be stopped unless the selected state is a polling
473 	 * one or the expected idle duration is shorter than the tick period
474 	 * length.
475 	 */
476 	if ((!(drv->states[idx].flags & CPUIDLE_FLAG_POLLING) &&
477 	    duration_ns >= TICK_NSEC) || tick_nohz_tick_stopped())
478 		return idx;
479 
480 	/*
481 	 * The tick is not going to be stopped, so if the target residency of
482 	 * the state to be returned is not within the time till the closest
483 	 * timer including the tick, try to correct that.
484 	 */
485 	if (idx > idx0 &&
486 	    drv->states[idx].target_residency_ns > delta_tick)
487 		idx = teo_find_shallower_state(drv, dev, idx, delta_tick);
488 
489 out_tick:
490 	*stop_tick = false;
491 	return idx;
492 }
493 
494 /**
495  * teo_reflect - Note that governor data for the CPU need to be updated.
496  * @dev: Target CPU.
497  * @state: Entered state.
498  */
499 static void teo_reflect(struct cpuidle_device *dev, int state)
500 {
501 	struct teo_cpu *cpu_data = this_cpu_ptr(&teo_cpus);
502 
503 	cpu_data->tick_wakeup = tick_nohz_idle_got_tick();
504 
505 	dev->last_state_idx = state;
506 }
507 
508 /**
509  * teo_enable_device - Initialize the governor's data for the target CPU.
510  * @drv: cpuidle driver (not used).
511  * @dev: Target CPU.
512  */
513 static int teo_enable_device(struct cpuidle_driver *drv,
514 			     struct cpuidle_device *dev)
515 {
516 	struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
517 
518 	memset(cpu_data, 0, sizeof(*cpu_data));
519 
520 	return 0;
521 }
522 
523 static struct cpuidle_governor teo_governor = {
524 	.name =		"teo",
525 	.rating =	19,
526 	.enable =	teo_enable_device,
527 	.select =	teo_select,
528 	.reflect =	teo_reflect,
529 };
530 
531 static int __init teo_governor_init(void)
532 {
533 	return cpuidle_register_governor(&teo_governor);
534 }
535 
536 postcore_initcall(teo_governor_init);
537