xref: /linux/drivers/cpuidle/governors/menu.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * menu.c - the menu idle governor
3  *
4  * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
5  * Copyright (C) 2009 Intel Corporation
6  * Author:
7  *        Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This code is licenced under the GPL version 2 as described
10  * in the COPYING file that acompanies the Linux Kernel.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/cpuidle.h>
15 #include <linux/pm_qos.h>
16 #include <linux/time.h>
17 #include <linux/ktime.h>
18 #include <linux/hrtimer.h>
19 #include <linux/tick.h>
20 #include <linux/sched.h>
21 #include <linux/sched/loadavg.h>
22 #include <linux/sched/stat.h>
23 #include <linux/math64.h>
24 #include <linux/cpu.h>
25 
26 /*
27  * Please note when changing the tuning values:
28  * If (MAX_INTERESTING-1) * RESOLUTION > UINT_MAX, the result of
29  * a scaling operation multiplication may overflow on 32 bit platforms.
30  * In that case, #define RESOLUTION as ULL to get 64 bit result:
31  * #define RESOLUTION 1024ULL
32  *
33  * The default values do not overflow.
34  */
35 #define BUCKETS 12
36 #define INTERVAL_SHIFT 3
37 #define INTERVALS (1UL << INTERVAL_SHIFT)
38 #define RESOLUTION 1024
39 #define DECAY 8
40 #define MAX_INTERESTING 50000
41 
42 
43 /*
44  * Concepts and ideas behind the menu governor
45  *
46  * For the menu governor, there are 3 decision factors for picking a C
47  * state:
48  * 1) Energy break even point
49  * 2) Performance impact
50  * 3) Latency tolerance (from pmqos infrastructure)
51  * These these three factors are treated independently.
52  *
53  * Energy break even point
54  * -----------------------
55  * C state entry and exit have an energy cost, and a certain amount of time in
56  * the  C state is required to actually break even on this cost. CPUIDLE
57  * provides us this duration in the "target_residency" field. So all that we
58  * need is a good prediction of how long we'll be idle. Like the traditional
59  * menu governor, we start with the actual known "next timer event" time.
60  *
61  * Since there are other source of wakeups (interrupts for example) than
62  * the next timer event, this estimation is rather optimistic. To get a
63  * more realistic estimate, a correction factor is applied to the estimate,
64  * that is based on historic behavior. For example, if in the past the actual
65  * duration always was 50% of the next timer tick, the correction factor will
66  * be 0.5.
67  *
68  * menu uses a running average for this correction factor, however it uses a
69  * set of factors, not just a single factor. This stems from the realization
70  * that the ratio is dependent on the order of magnitude of the expected
71  * duration; if we expect 500 milliseconds of idle time the likelihood of
72  * getting an interrupt very early is much higher than if we expect 50 micro
73  * seconds of idle time. A second independent factor that has big impact on
74  * the actual factor is if there is (disk) IO outstanding or not.
75  * (as a special twist, we consider every sleep longer than 50 milliseconds
76  * as perfect; there are no power gains for sleeping longer than this)
77  *
78  * For these two reasons we keep an array of 12 independent factors, that gets
79  * indexed based on the magnitude of the expected duration as well as the
80  * "is IO outstanding" property.
81  *
82  * Repeatable-interval-detector
83  * ----------------------------
84  * There are some cases where "next timer" is a completely unusable predictor:
85  * Those cases where the interval is fixed, for example due to hardware
86  * interrupt mitigation, but also due to fixed transfer rate devices such as
87  * mice.
88  * For this, we use a different predictor: We track the duration of the last 8
89  * intervals and if the stand deviation of these 8 intervals is below a
90  * threshold value, we use the average of these intervals as prediction.
91  *
92  * Limiting Performance Impact
93  * ---------------------------
94  * C states, especially those with large exit latencies, can have a real
95  * noticeable impact on workloads, which is not acceptable for most sysadmins,
96  * and in addition, less performance has a power price of its own.
97  *
98  * As a general rule of thumb, menu assumes that the following heuristic
99  * holds:
100  *     The busier the system, the less impact of C states is acceptable
101  *
102  * This rule-of-thumb is implemented using a performance-multiplier:
103  * If the exit latency times the performance multiplier is longer than
104  * the predicted duration, the C state is not considered a candidate
105  * for selection due to a too high performance impact. So the higher
106  * this multiplier is, the longer we need to be idle to pick a deep C
107  * state, and thus the less likely a busy CPU will hit such a deep
108  * C state.
109  *
110  * Two factors are used in determing this multiplier:
111  * a value of 10 is added for each point of "per cpu load average" we have.
112  * a value of 5 points is added for each process that is waiting for
113  * IO on this CPU.
114  * (these values are experimentally determined)
115  *
116  * The load average factor gives a longer term (few seconds) input to the
117  * decision, while the iowait value gives a cpu local instantanious input.
118  * The iowait factor may look low, but realize that this is also already
119  * represented in the system load average.
120  *
121  */
122 
123 struct menu_device {
124 	int		last_state_idx;
125 	int             needs_update;
126 
127 	unsigned int	next_timer_us;
128 	unsigned int	predicted_us;
129 	unsigned int	bucket;
130 	unsigned int	correction_factor[BUCKETS];
131 	unsigned int	intervals[INTERVALS];
132 	int		interval_ptr;
133 };
134 
135 
136 #define LOAD_INT(x) ((x) >> FSHIFT)
137 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
138 
139 static inline int get_loadavg(unsigned long load)
140 {
141 	return LOAD_INT(load) * 10 + LOAD_FRAC(load) / 10;
142 }
143 
144 static inline int which_bucket(unsigned int duration, unsigned long nr_iowaiters)
145 {
146 	int bucket = 0;
147 
148 	/*
149 	 * We keep two groups of stats; one with no
150 	 * IO pending, one without.
151 	 * This allows us to calculate
152 	 * E(duration)|iowait
153 	 */
154 	if (nr_iowaiters)
155 		bucket = BUCKETS/2;
156 
157 	if (duration < 10)
158 		return bucket;
159 	if (duration < 100)
160 		return bucket + 1;
161 	if (duration < 1000)
162 		return bucket + 2;
163 	if (duration < 10000)
164 		return bucket + 3;
165 	if (duration < 100000)
166 		return bucket + 4;
167 	return bucket + 5;
168 }
169 
170 /*
171  * Return a multiplier for the exit latency that is intended
172  * to take performance requirements into account.
173  * The more performance critical we estimate the system
174  * to be, the higher this multiplier, and thus the higher
175  * the barrier to go to an expensive C state.
176  */
177 static inline int performance_multiplier(unsigned long nr_iowaiters, unsigned long load)
178 {
179 	int mult = 1;
180 
181 	/* for higher loadavg, we are more reluctant */
182 
183 	mult += 2 * get_loadavg(load);
184 
185 	/* for IO wait tasks (per cpu!) we add 5x each */
186 	mult += 10 * nr_iowaiters;
187 
188 	return mult;
189 }
190 
191 static DEFINE_PER_CPU(struct menu_device, menu_devices);
192 
193 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
194 
195 /*
196  * Try detecting repeating patterns by keeping track of the last 8
197  * intervals, and checking if the standard deviation of that set
198  * of points is below a threshold. If it is... then use the
199  * average of these 8 points as the estimated value.
200  */
201 static unsigned int get_typical_interval(struct menu_device *data)
202 {
203 	int i, divisor;
204 	unsigned int max, thresh, avg;
205 	uint64_t sum, variance;
206 
207 	thresh = UINT_MAX; /* Discard outliers above this value */
208 
209 again:
210 
211 	/* First calculate the average of past intervals */
212 	max = 0;
213 	sum = 0;
214 	divisor = 0;
215 	for (i = 0; i < INTERVALS; i++) {
216 		unsigned int value = data->intervals[i];
217 		if (value <= thresh) {
218 			sum += value;
219 			divisor++;
220 			if (value > max)
221 				max = value;
222 		}
223 	}
224 	if (divisor == INTERVALS)
225 		avg = sum >> INTERVAL_SHIFT;
226 	else
227 		avg = div_u64(sum, divisor);
228 
229 	/* Then try to determine variance */
230 	variance = 0;
231 	for (i = 0; i < INTERVALS; i++) {
232 		unsigned int value = data->intervals[i];
233 		if (value <= thresh) {
234 			int64_t diff = (int64_t)value - avg;
235 			variance += diff * diff;
236 		}
237 	}
238 	if (divisor == INTERVALS)
239 		variance >>= INTERVAL_SHIFT;
240 	else
241 		do_div(variance, divisor);
242 
243 	/*
244 	 * The typical interval is obtained when standard deviation is
245 	 * small (stddev <= 20 us, variance <= 400 us^2) or standard
246 	 * deviation is small compared to the average interval (avg >
247 	 * 6*stddev, avg^2 > 36*variance). The average is smaller than
248 	 * UINT_MAX aka U32_MAX, so computing its square does not
249 	 * overflow a u64. We simply reject this candidate average if
250 	 * the standard deviation is greater than 715 s (which is
251 	 * rather unlikely).
252 	 *
253 	 * Use this result only if there is no timer to wake us up sooner.
254 	 */
255 	if (likely(variance <= U64_MAX/36)) {
256 		if ((((u64)avg*avg > variance*36) && (divisor * 4 >= INTERVALS * 3))
257 							|| variance <= 400) {
258 			return avg;
259 		}
260 	}
261 
262 	/*
263 	 * If we have outliers to the upside in our distribution, discard
264 	 * those by setting the threshold to exclude these outliers, then
265 	 * calculate the average and standard deviation again. Once we get
266 	 * down to the bottom 3/4 of our samples, stop excluding samples.
267 	 *
268 	 * This can deal with workloads that have long pauses interspersed
269 	 * with sporadic activity with a bunch of short pauses.
270 	 */
271 	if ((divisor * 4) <= INTERVALS * 3)
272 		return UINT_MAX;
273 
274 	thresh = max - 1;
275 	goto again;
276 }
277 
278 /**
279  * menu_select - selects the next idle state to enter
280  * @drv: cpuidle driver containing state data
281  * @dev: the CPU
282  */
283 static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
284 {
285 	struct menu_device *data = this_cpu_ptr(&menu_devices);
286 	struct device *device = get_cpu_device(dev->cpu);
287 	int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
288 	int i;
289 	int first_idx;
290 	int idx;
291 	unsigned int interactivity_req;
292 	unsigned int expected_interval;
293 	unsigned long nr_iowaiters, cpu_load;
294 	int resume_latency = dev_pm_qos_raw_read_value(device);
295 
296 	if (data->needs_update) {
297 		menu_update(drv, dev);
298 		data->needs_update = 0;
299 	}
300 
301 	if (resume_latency < latency_req &&
302 	    resume_latency != PM_QOS_RESUME_LATENCY_NO_CONSTRAINT)
303 		latency_req = resume_latency;
304 
305 	/* Special case when user has set very strict latency requirement */
306 	if (unlikely(latency_req == 0))
307 		return 0;
308 
309 	/* determine the expected residency time, round up */
310 	data->next_timer_us = ktime_to_us(tick_nohz_get_sleep_length());
311 
312 	get_iowait_load(&nr_iowaiters, &cpu_load);
313 	data->bucket = which_bucket(data->next_timer_us, nr_iowaiters);
314 
315 	/*
316 	 * Force the result of multiplication to be 64 bits even if both
317 	 * operands are 32 bits.
318 	 * Make sure to round up for half microseconds.
319 	 */
320 	data->predicted_us = DIV_ROUND_CLOSEST_ULL((uint64_t)data->next_timer_us *
321 					 data->correction_factor[data->bucket],
322 					 RESOLUTION * DECAY);
323 
324 	expected_interval = get_typical_interval(data);
325 	expected_interval = min(expected_interval, data->next_timer_us);
326 
327 	first_idx = 0;
328 	if (drv->states[0].flags & CPUIDLE_FLAG_POLLING) {
329 		struct cpuidle_state *s = &drv->states[1];
330 		unsigned int polling_threshold;
331 
332 		/*
333 		 * We want to default to C1 (hlt), not to busy polling
334 		 * unless the timer is happening really really soon, or
335 		 * C1's exit latency exceeds the user configured limit.
336 		 */
337 		polling_threshold = max_t(unsigned int, 20, s->target_residency);
338 		if (data->next_timer_us > polling_threshold &&
339 		    latency_req > s->exit_latency && !s->disabled &&
340 		    !dev->states_usage[1].disable)
341 			first_idx = 1;
342 	}
343 
344 	/*
345 	 * Use the lowest expected idle interval to pick the idle state.
346 	 */
347 	data->predicted_us = min(data->predicted_us, expected_interval);
348 
349 	/*
350 	 * Use the performance multiplier and the user-configurable
351 	 * latency_req to determine the maximum exit latency.
352 	 */
353 	interactivity_req = data->predicted_us / performance_multiplier(nr_iowaiters, cpu_load);
354 	if (latency_req > interactivity_req)
355 		latency_req = interactivity_req;
356 
357 	/*
358 	 * Find the idle state with the lowest power while satisfying
359 	 * our constraints.
360 	 */
361 	idx = -1;
362 	for (i = first_idx; i < drv->state_count; i++) {
363 		struct cpuidle_state *s = &drv->states[i];
364 		struct cpuidle_state_usage *su = &dev->states_usage[i];
365 
366 		if (s->disabled || su->disable)
367 			continue;
368 		if (idx == -1)
369 			idx = i; /* first enabled state */
370 		if (s->target_residency > data->predicted_us)
371 			break;
372 		if (s->exit_latency > latency_req)
373 			break;
374 
375 		idx = i;
376 	}
377 
378 	if (idx == -1)
379 		idx = 0; /* No states enabled. Must use 0. */
380 
381 	data->last_state_idx = idx;
382 
383 	return data->last_state_idx;
384 }
385 
386 /**
387  * menu_reflect - records that data structures need update
388  * @dev: the CPU
389  * @index: the index of actual entered state
390  *
391  * NOTE: it's important to be fast here because this operation will add to
392  *       the overall exit latency.
393  */
394 static void menu_reflect(struct cpuidle_device *dev, int index)
395 {
396 	struct menu_device *data = this_cpu_ptr(&menu_devices);
397 
398 	data->last_state_idx = index;
399 	data->needs_update = 1;
400 }
401 
402 /**
403  * menu_update - attempts to guess what happened after entry
404  * @drv: cpuidle driver containing state data
405  * @dev: the CPU
406  */
407 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
408 {
409 	struct menu_device *data = this_cpu_ptr(&menu_devices);
410 	int last_idx = data->last_state_idx;
411 	struct cpuidle_state *target = &drv->states[last_idx];
412 	unsigned int measured_us;
413 	unsigned int new_factor;
414 
415 	/*
416 	 * Try to figure out how much time passed between entry to low
417 	 * power state and occurrence of the wakeup event.
418 	 *
419 	 * If the entered idle state didn't support residency measurements,
420 	 * we use them anyway if they are short, and if long,
421 	 * truncate to the whole expected time.
422 	 *
423 	 * Any measured amount of time will include the exit latency.
424 	 * Since we are interested in when the wakeup begun, not when it
425 	 * was completed, we must subtract the exit latency. However, if
426 	 * the measured amount of time is less than the exit latency,
427 	 * assume the state was never reached and the exit latency is 0.
428 	 */
429 
430 	/* measured value */
431 	measured_us = cpuidle_get_last_residency(dev);
432 
433 	/* Deduct exit latency */
434 	if (measured_us > 2 * target->exit_latency)
435 		measured_us -= target->exit_latency;
436 	else
437 		measured_us /= 2;
438 
439 	/* Make sure our coefficients do not exceed unity */
440 	if (measured_us > data->next_timer_us)
441 		measured_us = data->next_timer_us;
442 
443 	/* Update our correction ratio */
444 	new_factor = data->correction_factor[data->bucket];
445 	new_factor -= new_factor / DECAY;
446 
447 	if (data->next_timer_us > 0 && measured_us < MAX_INTERESTING)
448 		new_factor += RESOLUTION * measured_us / data->next_timer_us;
449 	else
450 		/*
451 		 * we were idle so long that we count it as a perfect
452 		 * prediction
453 		 */
454 		new_factor += RESOLUTION;
455 
456 	/*
457 	 * We don't want 0 as factor; we always want at least
458 	 * a tiny bit of estimated time. Fortunately, due to rounding,
459 	 * new_factor will stay nonzero regardless of measured_us values
460 	 * and the compiler can eliminate this test as long as DECAY > 1.
461 	 */
462 	if (DECAY == 1 && unlikely(new_factor == 0))
463 		new_factor = 1;
464 
465 	data->correction_factor[data->bucket] = new_factor;
466 
467 	/* update the repeating-pattern data */
468 	data->intervals[data->interval_ptr++] = measured_us;
469 	if (data->interval_ptr >= INTERVALS)
470 		data->interval_ptr = 0;
471 }
472 
473 /**
474  * menu_enable_device - scans a CPU's states and does setup
475  * @drv: cpuidle driver
476  * @dev: the CPU
477  */
478 static int menu_enable_device(struct cpuidle_driver *drv,
479 				struct cpuidle_device *dev)
480 {
481 	struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
482 	int i;
483 
484 	memset(data, 0, sizeof(struct menu_device));
485 
486 	/*
487 	 * if the correction factor is 0 (eg first time init or cpu hotplug
488 	 * etc), we actually want to start out with a unity factor.
489 	 */
490 	for(i = 0; i < BUCKETS; i++)
491 		data->correction_factor[i] = RESOLUTION * DECAY;
492 
493 	return 0;
494 }
495 
496 static struct cpuidle_governor menu_governor = {
497 	.name =		"menu",
498 	.rating =	20,
499 	.enable =	menu_enable_device,
500 	.select =	menu_select,
501 	.reflect =	menu_reflect,
502 };
503 
504 /**
505  * init_menu - initializes the governor
506  */
507 static int __init init_menu(void)
508 {
509 	return cpuidle_register_governor(&menu_governor);
510 }
511 
512 postcore_initcall(init_menu);
513