xref: /linux/drivers/cpuidle/governors/menu.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * menu.c - the menu idle governor
3  *
4  * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
5  * Copyright (C) 2009 Intel Corporation
6  * Author:
7  *        Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This code is licenced under the GPL version 2 as described
10  * in the COPYING file that acompanies the Linux Kernel.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/cpuidle.h>
15 #include <linux/pm_qos.h>
16 #include <linux/time.h>
17 #include <linux/ktime.h>
18 #include <linux/hrtimer.h>
19 #include <linux/tick.h>
20 #include <linux/sched.h>
21 #include <linux/math64.h>
22 #include <linux/module.h>
23 
24 /*
25  * Please note when changing the tuning values:
26  * If (MAX_INTERESTING-1) * RESOLUTION > UINT_MAX, the result of
27  * a scaling operation multiplication may overflow on 32 bit platforms.
28  * In that case, #define RESOLUTION as ULL to get 64 bit result:
29  * #define RESOLUTION 1024ULL
30  *
31  * The default values do not overflow.
32  */
33 #define BUCKETS 12
34 #define INTERVAL_SHIFT 3
35 #define INTERVALS (1UL << INTERVAL_SHIFT)
36 #define RESOLUTION 1024
37 #define DECAY 8
38 #define MAX_INTERESTING 50000
39 
40 
41 /*
42  * Concepts and ideas behind the menu governor
43  *
44  * For the menu governor, there are 3 decision factors for picking a C
45  * state:
46  * 1) Energy break even point
47  * 2) Performance impact
48  * 3) Latency tolerance (from pmqos infrastructure)
49  * These these three factors are treated independently.
50  *
51  * Energy break even point
52  * -----------------------
53  * C state entry and exit have an energy cost, and a certain amount of time in
54  * the  C state is required to actually break even on this cost. CPUIDLE
55  * provides us this duration in the "target_residency" field. So all that we
56  * need is a good prediction of how long we'll be idle. Like the traditional
57  * menu governor, we start with the actual known "next timer event" time.
58  *
59  * Since there are other source of wakeups (interrupts for example) than
60  * the next timer event, this estimation is rather optimistic. To get a
61  * more realistic estimate, a correction factor is applied to the estimate,
62  * that is based on historic behavior. For example, if in the past the actual
63  * duration always was 50% of the next timer tick, the correction factor will
64  * be 0.5.
65  *
66  * menu uses a running average for this correction factor, however it uses a
67  * set of factors, not just a single factor. This stems from the realization
68  * that the ratio is dependent on the order of magnitude of the expected
69  * duration; if we expect 500 milliseconds of idle time the likelihood of
70  * getting an interrupt very early is much higher than if we expect 50 micro
71  * seconds of idle time. A second independent factor that has big impact on
72  * the actual factor is if there is (disk) IO outstanding or not.
73  * (as a special twist, we consider every sleep longer than 50 milliseconds
74  * as perfect; there are no power gains for sleeping longer than this)
75  *
76  * For these two reasons we keep an array of 12 independent factors, that gets
77  * indexed based on the magnitude of the expected duration as well as the
78  * "is IO outstanding" property.
79  *
80  * Repeatable-interval-detector
81  * ----------------------------
82  * There are some cases where "next timer" is a completely unusable predictor:
83  * Those cases where the interval is fixed, for example due to hardware
84  * interrupt mitigation, but also due to fixed transfer rate devices such as
85  * mice.
86  * For this, we use a different predictor: We track the duration of the last 8
87  * intervals and if the stand deviation of these 8 intervals is below a
88  * threshold value, we use the average of these intervals as prediction.
89  *
90  * Limiting Performance Impact
91  * ---------------------------
92  * C states, especially those with large exit latencies, can have a real
93  * noticeable impact on workloads, which is not acceptable for most sysadmins,
94  * and in addition, less performance has a power price of its own.
95  *
96  * As a general rule of thumb, menu assumes that the following heuristic
97  * holds:
98  *     The busier the system, the less impact of C states is acceptable
99  *
100  * This rule-of-thumb is implemented using a performance-multiplier:
101  * If the exit latency times the performance multiplier is longer than
102  * the predicted duration, the C state is not considered a candidate
103  * for selection due to a too high performance impact. So the higher
104  * this multiplier is, the longer we need to be idle to pick a deep C
105  * state, and thus the less likely a busy CPU will hit such a deep
106  * C state.
107  *
108  * Two factors are used in determing this multiplier:
109  * a value of 10 is added for each point of "per cpu load average" we have.
110  * a value of 5 points is added for each process that is waiting for
111  * IO on this CPU.
112  * (these values are experimentally determined)
113  *
114  * The load average factor gives a longer term (few seconds) input to the
115  * decision, while the iowait value gives a cpu local instantanious input.
116  * The iowait factor may look low, but realize that this is also already
117  * represented in the system load average.
118  *
119  */
120 
121 struct menu_device {
122 	int		last_state_idx;
123 	int             needs_update;
124 
125 	unsigned int	next_timer_us;
126 	unsigned int	predicted_us;
127 	unsigned int	bucket;
128 	unsigned int	correction_factor[BUCKETS];
129 	unsigned int	intervals[INTERVALS];
130 	int		interval_ptr;
131 };
132 
133 
134 #define LOAD_INT(x) ((x) >> FSHIFT)
135 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
136 
137 static inline int get_loadavg(unsigned long load)
138 {
139 	return LOAD_INT(load) * 10 + LOAD_FRAC(load) / 10;
140 }
141 
142 static inline int which_bucket(unsigned int duration, unsigned long nr_iowaiters)
143 {
144 	int bucket = 0;
145 
146 	/*
147 	 * We keep two groups of stats; one with no
148 	 * IO pending, one without.
149 	 * This allows us to calculate
150 	 * E(duration)|iowait
151 	 */
152 	if (nr_iowaiters)
153 		bucket = BUCKETS/2;
154 
155 	if (duration < 10)
156 		return bucket;
157 	if (duration < 100)
158 		return bucket + 1;
159 	if (duration < 1000)
160 		return bucket + 2;
161 	if (duration < 10000)
162 		return bucket + 3;
163 	if (duration < 100000)
164 		return bucket + 4;
165 	return bucket + 5;
166 }
167 
168 /*
169  * Return a multiplier for the exit latency that is intended
170  * to take performance requirements into account.
171  * The more performance critical we estimate the system
172  * to be, the higher this multiplier, and thus the higher
173  * the barrier to go to an expensive C state.
174  */
175 static inline int performance_multiplier(unsigned long nr_iowaiters, unsigned long load)
176 {
177 	int mult = 1;
178 
179 	/* for higher loadavg, we are more reluctant */
180 
181 	mult += 2 * get_loadavg(load);
182 
183 	/* for IO wait tasks (per cpu!) we add 5x each */
184 	mult += 10 * nr_iowaiters;
185 
186 	return mult;
187 }
188 
189 static DEFINE_PER_CPU(struct menu_device, menu_devices);
190 
191 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
192 
193 /*
194  * Try detecting repeating patterns by keeping track of the last 8
195  * intervals, and checking if the standard deviation of that set
196  * of points is below a threshold. If it is... then use the
197  * average of these 8 points as the estimated value.
198  */
199 static unsigned int get_typical_interval(struct menu_device *data)
200 {
201 	int i, divisor;
202 	unsigned int max, thresh, avg;
203 	uint64_t sum, variance;
204 
205 	thresh = UINT_MAX; /* Discard outliers above this value */
206 
207 again:
208 
209 	/* First calculate the average of past intervals */
210 	max = 0;
211 	sum = 0;
212 	divisor = 0;
213 	for (i = 0; i < INTERVALS; i++) {
214 		unsigned int value = data->intervals[i];
215 		if (value <= thresh) {
216 			sum += value;
217 			divisor++;
218 			if (value > max)
219 				max = value;
220 		}
221 	}
222 	if (divisor == INTERVALS)
223 		avg = sum >> INTERVAL_SHIFT;
224 	else
225 		avg = div_u64(sum, divisor);
226 
227 	/* Then try to determine variance */
228 	variance = 0;
229 	for (i = 0; i < INTERVALS; i++) {
230 		unsigned int value = data->intervals[i];
231 		if (value <= thresh) {
232 			int64_t diff = (int64_t)value - avg;
233 			variance += diff * diff;
234 		}
235 	}
236 	if (divisor == INTERVALS)
237 		variance >>= INTERVAL_SHIFT;
238 	else
239 		do_div(variance, divisor);
240 
241 	/*
242 	 * The typical interval is obtained when standard deviation is
243 	 * small (stddev <= 20 us, variance <= 400 us^2) or standard
244 	 * deviation is small compared to the average interval (avg >
245 	 * 6*stddev, avg^2 > 36*variance). The average is smaller than
246 	 * UINT_MAX aka U32_MAX, so computing its square does not
247 	 * overflow a u64. We simply reject this candidate average if
248 	 * the standard deviation is greater than 715 s (which is
249 	 * rather unlikely).
250 	 *
251 	 * Use this result only if there is no timer to wake us up sooner.
252 	 */
253 	if (likely(variance <= U64_MAX/36)) {
254 		if ((((u64)avg*avg > variance*36) && (divisor * 4 >= INTERVALS * 3))
255 							|| variance <= 400) {
256 			return avg;
257 		}
258 	}
259 
260 	/*
261 	 * If we have outliers to the upside in our distribution, discard
262 	 * those by setting the threshold to exclude these outliers, then
263 	 * calculate the average and standard deviation again. Once we get
264 	 * down to the bottom 3/4 of our samples, stop excluding samples.
265 	 *
266 	 * This can deal with workloads that have long pauses interspersed
267 	 * with sporadic activity with a bunch of short pauses.
268 	 */
269 	if ((divisor * 4) <= INTERVALS * 3)
270 		return UINT_MAX;
271 
272 	thresh = max - 1;
273 	goto again;
274 }
275 
276 /**
277  * menu_select - selects the next idle state to enter
278  * @drv: cpuidle driver containing state data
279  * @dev: the CPU
280  */
281 static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
282 {
283 	struct menu_device *data = this_cpu_ptr(&menu_devices);
284 	int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
285 	int i;
286 	unsigned int interactivity_req;
287 	unsigned int expected_interval;
288 	unsigned long nr_iowaiters, cpu_load;
289 
290 	if (data->needs_update) {
291 		menu_update(drv, dev);
292 		data->needs_update = 0;
293 	}
294 
295 	/* Special case when user has set very strict latency requirement */
296 	if (unlikely(latency_req == 0))
297 		return 0;
298 
299 	/* determine the expected residency time, round up */
300 	data->next_timer_us = ktime_to_us(tick_nohz_get_sleep_length());
301 
302 	get_iowait_load(&nr_iowaiters, &cpu_load);
303 	data->bucket = which_bucket(data->next_timer_us, nr_iowaiters);
304 
305 	/*
306 	 * Force the result of multiplication to be 64 bits even if both
307 	 * operands are 32 bits.
308 	 * Make sure to round up for half microseconds.
309 	 */
310 	data->predicted_us = DIV_ROUND_CLOSEST_ULL((uint64_t)data->next_timer_us *
311 					 data->correction_factor[data->bucket],
312 					 RESOLUTION * DECAY);
313 
314 	expected_interval = get_typical_interval(data);
315 	expected_interval = min(expected_interval, data->next_timer_us);
316 
317 	if (CPUIDLE_DRIVER_STATE_START > 0) {
318 		struct cpuidle_state *s = &drv->states[CPUIDLE_DRIVER_STATE_START];
319 		unsigned int polling_threshold;
320 
321 		/*
322 		 * We want to default to C1 (hlt), not to busy polling
323 		 * unless the timer is happening really really soon, or
324 		 * C1's exit latency exceeds the user configured limit.
325 		 */
326 		polling_threshold = max_t(unsigned int, 20, s->target_residency);
327 		if (data->next_timer_us > polling_threshold &&
328 		    latency_req > s->exit_latency && !s->disabled &&
329 		    !dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable)
330 			data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
331 		else
332 			data->last_state_idx = CPUIDLE_DRIVER_STATE_START - 1;
333 	} else {
334 		data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
335 	}
336 
337 	/*
338 	 * Use the lowest expected idle interval to pick the idle state.
339 	 */
340 	data->predicted_us = min(data->predicted_us, expected_interval);
341 
342 	/*
343 	 * Use the performance multiplier and the user-configurable
344 	 * latency_req to determine the maximum exit latency.
345 	 */
346 	interactivity_req = data->predicted_us / performance_multiplier(nr_iowaiters, cpu_load);
347 	if (latency_req > interactivity_req)
348 		latency_req = interactivity_req;
349 
350 	/*
351 	 * Find the idle state with the lowest power while satisfying
352 	 * our constraints.
353 	 */
354 	for (i = data->last_state_idx + 1; i < drv->state_count; i++) {
355 		struct cpuidle_state *s = &drv->states[i];
356 		struct cpuidle_state_usage *su = &dev->states_usage[i];
357 
358 		if (s->disabled || su->disable)
359 			continue;
360 		if (s->target_residency > data->predicted_us)
361 			continue;
362 		if (s->exit_latency > latency_req)
363 			continue;
364 
365 		data->last_state_idx = i;
366 	}
367 
368 	return data->last_state_idx;
369 }
370 
371 /**
372  * menu_reflect - records that data structures need update
373  * @dev: the CPU
374  * @index: the index of actual entered state
375  *
376  * NOTE: it's important to be fast here because this operation will add to
377  *       the overall exit latency.
378  */
379 static void menu_reflect(struct cpuidle_device *dev, int index)
380 {
381 	struct menu_device *data = this_cpu_ptr(&menu_devices);
382 
383 	data->last_state_idx = index;
384 	data->needs_update = 1;
385 }
386 
387 /**
388  * menu_update - attempts to guess what happened after entry
389  * @drv: cpuidle driver containing state data
390  * @dev: the CPU
391  */
392 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
393 {
394 	struct menu_device *data = this_cpu_ptr(&menu_devices);
395 	int last_idx = data->last_state_idx;
396 	struct cpuidle_state *target = &drv->states[last_idx];
397 	unsigned int measured_us;
398 	unsigned int new_factor;
399 
400 	/*
401 	 * Try to figure out how much time passed between entry to low
402 	 * power state and occurrence of the wakeup event.
403 	 *
404 	 * If the entered idle state didn't support residency measurements,
405 	 * we use them anyway if they are short, and if long,
406 	 * truncate to the whole expected time.
407 	 *
408 	 * Any measured amount of time will include the exit latency.
409 	 * Since we are interested in when the wakeup begun, not when it
410 	 * was completed, we must subtract the exit latency. However, if
411 	 * the measured amount of time is less than the exit latency,
412 	 * assume the state was never reached and the exit latency is 0.
413 	 */
414 
415 	/* measured value */
416 	measured_us = cpuidle_get_last_residency(dev);
417 
418 	/* Deduct exit latency */
419 	if (measured_us > 2 * target->exit_latency)
420 		measured_us -= target->exit_latency;
421 	else
422 		measured_us /= 2;
423 
424 	/* Make sure our coefficients do not exceed unity */
425 	if (measured_us > data->next_timer_us)
426 		measured_us = data->next_timer_us;
427 
428 	/* Update our correction ratio */
429 	new_factor = data->correction_factor[data->bucket];
430 	new_factor -= new_factor / DECAY;
431 
432 	if (data->next_timer_us > 0 && measured_us < MAX_INTERESTING)
433 		new_factor += RESOLUTION * measured_us / data->next_timer_us;
434 	else
435 		/*
436 		 * we were idle so long that we count it as a perfect
437 		 * prediction
438 		 */
439 		new_factor += RESOLUTION;
440 
441 	/*
442 	 * We don't want 0 as factor; we always want at least
443 	 * a tiny bit of estimated time. Fortunately, due to rounding,
444 	 * new_factor will stay nonzero regardless of measured_us values
445 	 * and the compiler can eliminate this test as long as DECAY > 1.
446 	 */
447 	if (DECAY == 1 && unlikely(new_factor == 0))
448 		new_factor = 1;
449 
450 	data->correction_factor[data->bucket] = new_factor;
451 
452 	/* update the repeating-pattern data */
453 	data->intervals[data->interval_ptr++] = measured_us;
454 	if (data->interval_ptr >= INTERVALS)
455 		data->interval_ptr = 0;
456 }
457 
458 /**
459  * menu_enable_device - scans a CPU's states and does setup
460  * @drv: cpuidle driver
461  * @dev: the CPU
462  */
463 static int menu_enable_device(struct cpuidle_driver *drv,
464 				struct cpuidle_device *dev)
465 {
466 	struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
467 	int i;
468 
469 	memset(data, 0, sizeof(struct menu_device));
470 
471 	/*
472 	 * if the correction factor is 0 (eg first time init or cpu hotplug
473 	 * etc), we actually want to start out with a unity factor.
474 	 */
475 	for(i = 0; i < BUCKETS; i++)
476 		data->correction_factor[i] = RESOLUTION * DECAY;
477 
478 	return 0;
479 }
480 
481 static struct cpuidle_governor menu_governor = {
482 	.name =		"menu",
483 	.rating =	20,
484 	.enable =	menu_enable_device,
485 	.select =	menu_select,
486 	.reflect =	menu_reflect,
487 	.owner =	THIS_MODULE,
488 };
489 
490 /**
491  * init_menu - initializes the governor
492  */
493 static int __init init_menu(void)
494 {
495 	return cpuidle_register_governor(&menu_governor);
496 }
497 
498 postcore_initcall(init_menu);
499