1 /* 2 * cpuidle.c - core cpuidle infrastructure 3 * 4 * (C) 2006-2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 5 * Shaohua Li <shaohua.li@intel.com> 6 * Adam Belay <abelay@novell.com> 7 * 8 * This code is licenced under the GPL. 9 */ 10 11 #include "linux/percpu-defs.h" 12 #include <linux/clockchips.h> 13 #include <linux/kernel.h> 14 #include <linux/mutex.h> 15 #include <linux/sched.h> 16 #include <linux/sched/clock.h> 17 #include <linux/sched/idle.h> 18 #include <linux/notifier.h> 19 #include <linux/pm_qos.h> 20 #include <linux/cpu.h> 21 #include <linux/cpuidle.h> 22 #include <linux/ktime.h> 23 #include <linux/hrtimer.h> 24 #include <linux/module.h> 25 #include <linux/suspend.h> 26 #include <linux/tick.h> 27 #include <linux/mmu_context.h> 28 #include <linux/context_tracking.h> 29 #include <trace/events/power.h> 30 31 #include "cpuidle.h" 32 33 DEFINE_PER_CPU(struct cpuidle_device *, cpuidle_devices); 34 DEFINE_PER_CPU(struct cpuidle_device, cpuidle_dev); 35 36 DEFINE_MUTEX(cpuidle_lock); 37 LIST_HEAD(cpuidle_detected_devices); 38 39 static int enabled_devices; 40 static int off __read_mostly; 41 static int initialized __read_mostly; 42 43 int cpuidle_disabled(void) 44 { 45 return off; 46 } 47 void disable_cpuidle(void) 48 { 49 off = 1; 50 } 51 52 bool cpuidle_not_available(struct cpuidle_driver *drv, 53 struct cpuidle_device *dev) 54 { 55 return off || !initialized || !drv || !dev || !dev->enabled; 56 } 57 58 /** 59 * cpuidle_play_dead - cpu off-lining 60 * 61 * Returns in case of an error or no driver 62 */ 63 int cpuidle_play_dead(void) 64 { 65 struct cpuidle_device *dev = __this_cpu_read(cpuidle_devices); 66 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); 67 int i; 68 69 if (!drv) 70 return -ENODEV; 71 72 for (i = drv->state_count - 1; i >= 0; i--) { 73 if (drv->states[i].enter_dead) 74 drv->states[i].enter_dead(dev, i); 75 } 76 77 /* 78 * If :enter_dead() is successful, it will never return, so reaching 79 * here means that all of them failed above or were not present. 80 */ 81 return -ENODEV; 82 } 83 84 static int find_deepest_state(struct cpuidle_driver *drv, 85 struct cpuidle_device *dev, 86 u64 max_latency_ns, 87 unsigned int forbidden_flags, 88 bool s2idle) 89 { 90 u64 latency_req = 0; 91 int i, ret = 0; 92 93 for (i = 1; i < drv->state_count; i++) { 94 struct cpuidle_state *s = &drv->states[i]; 95 96 if (dev->states_usage[i].disable || 97 s->exit_latency_ns <= latency_req || 98 s->exit_latency_ns > max_latency_ns || 99 (s->flags & forbidden_flags) || 100 (s2idle && !s->enter_s2idle)) 101 continue; 102 103 latency_req = s->exit_latency_ns; 104 ret = i; 105 } 106 return ret; 107 } 108 109 /** 110 * cpuidle_use_deepest_state - Set/unset governor override mode. 111 * @latency_limit_ns: Idle state exit latency limit (or no override if 0). 112 * 113 * If @latency_limit_ns is nonzero, set the current CPU to use the deepest idle 114 * state with exit latency within @latency_limit_ns (override governors going 115 * forward), or do not override governors if it is zero. 116 */ 117 void cpuidle_use_deepest_state(u64 latency_limit_ns) 118 { 119 struct cpuidle_device *dev; 120 121 preempt_disable(); 122 dev = cpuidle_get_device(); 123 if (dev) 124 dev->forced_idle_latency_limit_ns = latency_limit_ns; 125 preempt_enable(); 126 } 127 128 /** 129 * cpuidle_find_deepest_state - Find the deepest available idle state. 130 * @drv: cpuidle driver for the given CPU. 131 * @dev: cpuidle device for the given CPU. 132 * @latency_limit_ns: Idle state exit latency limit 133 * 134 * Return: the index of the deepest available idle state. 135 */ 136 int cpuidle_find_deepest_state(struct cpuidle_driver *drv, 137 struct cpuidle_device *dev, 138 u64 latency_limit_ns) 139 { 140 return find_deepest_state(drv, dev, latency_limit_ns, 0, false); 141 } 142 143 #ifdef CONFIG_SUSPEND 144 static noinstr void enter_s2idle_proper(struct cpuidle_driver *drv, 145 struct cpuidle_device *dev, int index) 146 { 147 struct cpuidle_state *target_state = &drv->states[index]; 148 ktime_t time_start, time_end; 149 150 instrumentation_begin(); 151 152 time_start = ns_to_ktime(local_clock_noinstr()); 153 154 tick_freeze(); 155 /* 156 * The state used here cannot be a "coupled" one, because the "coupled" 157 * cpuidle mechanism enables interrupts and doing that with timekeeping 158 * suspended is generally unsafe. 159 */ 160 stop_critical_timings(); 161 if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) { 162 ct_cpuidle_enter(); 163 /* Annotate away the indirect call */ 164 instrumentation_begin(); 165 } 166 target_state->enter_s2idle(dev, drv, index); 167 if (WARN_ON_ONCE(!irqs_disabled())) 168 raw_local_irq_disable(); 169 if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) { 170 instrumentation_end(); 171 ct_cpuidle_exit(); 172 } 173 tick_unfreeze(); 174 start_critical_timings(); 175 176 time_end = ns_to_ktime(local_clock_noinstr()); 177 178 dev->states_usage[index].s2idle_time += ktime_us_delta(time_end, time_start); 179 dev->states_usage[index].s2idle_usage++; 180 instrumentation_end(); 181 } 182 183 /** 184 * cpuidle_enter_s2idle - Enter an idle state suitable for suspend-to-idle. 185 * @drv: cpuidle driver for the given CPU. 186 * @dev: cpuidle device for the given CPU. 187 * @latency_limit_ns: Idle state exit latency limit 188 * 189 * If there are states with the ->enter_s2idle callback, find the deepest of 190 * them and enter it with frozen tick. 191 */ 192 int cpuidle_enter_s2idle(struct cpuidle_driver *drv, struct cpuidle_device *dev, 193 u64 latency_limit_ns) 194 { 195 int index; 196 197 /* 198 * Find the deepest state with ->enter_s2idle present that meets the 199 * specified latency limit, which guarantees that interrupts won't be 200 * enabled when it exits and allows the tick to be frozen safely. 201 */ 202 index = find_deepest_state(drv, dev, latency_limit_ns, 0, true); 203 if (index > 0) { 204 enter_s2idle_proper(drv, dev, index); 205 local_irq_enable(); 206 } 207 return index; 208 } 209 #endif /* CONFIG_SUSPEND */ 210 211 /** 212 * cpuidle_enter_state - enter the state and update stats 213 * @dev: cpuidle device for this cpu 214 * @drv: cpuidle driver for this cpu 215 * @index: index into the states table in @drv of the state to enter 216 */ 217 noinstr int cpuidle_enter_state(struct cpuidle_device *dev, 218 struct cpuidle_driver *drv, 219 int index) 220 { 221 int entered_state; 222 223 struct cpuidle_state *target_state = &drv->states[index]; 224 bool broadcast = !!(target_state->flags & CPUIDLE_FLAG_TIMER_STOP); 225 ktime_t time_start, time_end; 226 227 instrumentation_begin(); 228 229 /* 230 * Tell the time framework to switch to a broadcast timer because our 231 * local timer will be shut down. If a local timer is used from another 232 * CPU as a broadcast timer, this call may fail if it is not available. 233 */ 234 if (broadcast && tick_broadcast_enter()) { 235 index = find_deepest_state(drv, dev, target_state->exit_latency_ns, 236 CPUIDLE_FLAG_TIMER_STOP, false); 237 238 target_state = &drv->states[index]; 239 broadcast = false; 240 } 241 242 if (target_state->flags & CPUIDLE_FLAG_TLB_FLUSHED) 243 leave_mm(); 244 245 /* Take note of the planned idle state. */ 246 sched_idle_set_state(target_state); 247 248 trace_cpu_idle(index, dev->cpu); 249 time_start = ns_to_ktime(local_clock_noinstr()); 250 251 stop_critical_timings(); 252 if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) { 253 ct_cpuidle_enter(); 254 /* Annotate away the indirect call */ 255 instrumentation_begin(); 256 } 257 258 /* 259 * NOTE!! 260 * 261 * For cpuidle_state::enter() methods that do *NOT* set 262 * CPUIDLE_FLAG_RCU_IDLE RCU will be disabled here and these functions 263 * must be marked either noinstr or __cpuidle. 264 * 265 * For cpuidle_state::enter() methods that *DO* set 266 * CPUIDLE_FLAG_RCU_IDLE this isn't required, but they must mark the 267 * function calling ct_cpuidle_enter() as noinstr/__cpuidle and all 268 * functions called within the RCU-idle region. 269 */ 270 entered_state = target_state->enter(dev, drv, index); 271 272 if (WARN_ONCE(!irqs_disabled(), "%ps leaked IRQ state", target_state->enter)) 273 raw_local_irq_disable(); 274 275 if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) { 276 instrumentation_end(); 277 ct_cpuidle_exit(); 278 } 279 start_critical_timings(); 280 281 sched_clock_idle_wakeup_event(); 282 time_end = ns_to_ktime(local_clock_noinstr()); 283 trace_cpu_idle(PWR_EVENT_EXIT, dev->cpu); 284 285 /* The cpu is no longer idle or about to enter idle. */ 286 sched_idle_set_state(NULL); 287 288 if (broadcast) 289 tick_broadcast_exit(); 290 291 if (!cpuidle_state_is_coupled(drv, index)) 292 local_irq_enable(); 293 294 if (entered_state >= 0) { 295 s64 diff, delay = drv->states[entered_state].exit_latency_ns; 296 int i; 297 298 /* 299 * Update cpuidle counters 300 * This can be moved to within driver enter routine, 301 * but that results in multiple copies of same code. 302 */ 303 diff = ktime_sub(time_end, time_start); 304 305 dev->last_residency_ns = diff; 306 dev->states_usage[entered_state].time_ns += diff; 307 dev->states_usage[entered_state].usage++; 308 309 if (diff < drv->states[entered_state].target_residency_ns) { 310 for (i = entered_state - 1; i >= 0; i--) { 311 if (dev->states_usage[i].disable) 312 continue; 313 314 /* Shallower states are enabled, so update. */ 315 dev->states_usage[entered_state].above++; 316 trace_cpu_idle_miss(dev->cpu, entered_state, false); 317 break; 318 } 319 } else if (diff > delay) { 320 for (i = entered_state + 1; i < drv->state_count; i++) { 321 if (dev->states_usage[i].disable) 322 continue; 323 324 /* 325 * Update if a deeper state would have been a 326 * better match for the observed idle duration. 327 */ 328 if (diff - delay >= drv->states[i].target_residency_ns) { 329 dev->states_usage[entered_state].below++; 330 trace_cpu_idle_miss(dev->cpu, entered_state, true); 331 } 332 333 break; 334 } 335 } 336 } else { 337 dev->last_residency_ns = 0; 338 dev->states_usage[index].rejected++; 339 } 340 341 instrumentation_end(); 342 343 return entered_state; 344 } 345 346 /** 347 * cpuidle_select - ask the cpuidle framework to choose an idle state 348 * 349 * @drv: the cpuidle driver 350 * @dev: the cpuidle device 351 * @stop_tick: indication on whether or not to stop the tick 352 * 353 * Returns the index of the idle state. The return value must not be negative. 354 * 355 * The memory location pointed to by @stop_tick is expected to be written the 356 * 'false' boolean value if the scheduler tick should not be stopped before 357 * entering the returned state. 358 */ 359 int cpuidle_select(struct cpuidle_driver *drv, struct cpuidle_device *dev, 360 bool *stop_tick) 361 { 362 return cpuidle_curr_governor->select(drv, dev, stop_tick); 363 } 364 365 /** 366 * cpuidle_enter - enter into the specified idle state 367 * 368 * @drv: the cpuidle driver tied with the cpu 369 * @dev: the cpuidle device 370 * @index: the index in the idle state table 371 * 372 * Returns the index in the idle state, < 0 in case of error. 373 * The error code depends on the backend driver 374 */ 375 int cpuidle_enter(struct cpuidle_driver *drv, struct cpuidle_device *dev, 376 int index) 377 { 378 int ret = 0; 379 380 /* 381 * Store the next hrtimer, which becomes either next tick or the next 382 * timer event, whatever expires first. Additionally, to make this data 383 * useful for consumers outside cpuidle, we rely on that the governor's 384 * ->select() callback have decided, whether to stop the tick or not. 385 */ 386 WRITE_ONCE(dev->next_hrtimer, tick_nohz_get_next_hrtimer()); 387 388 if (cpuidle_state_is_coupled(drv, index)) 389 ret = cpuidle_enter_state_coupled(dev, drv, index); 390 else 391 ret = cpuidle_enter_state(dev, drv, index); 392 393 WRITE_ONCE(dev->next_hrtimer, 0); 394 return ret; 395 } 396 397 /** 398 * cpuidle_reflect - tell the underlying governor what was the state 399 * we were in 400 * 401 * @dev : the cpuidle device 402 * @index: the index in the idle state table 403 * 404 */ 405 void cpuidle_reflect(struct cpuidle_device *dev, int index) 406 { 407 if (cpuidle_curr_governor->reflect && index >= 0) 408 cpuidle_curr_governor->reflect(dev, index); 409 } 410 411 /* 412 * Min polling interval of 10usec is a guess. It is assuming that 413 * for most users, the time for a single ping-pong workload like 414 * perf bench pipe would generally complete within 10usec but 415 * this is hardware dependent. Actual time can be estimated with 416 * 417 * perf bench sched pipe -l 10000 418 * 419 * Run multiple times to avoid cpufreq effects. 420 */ 421 #define CPUIDLE_POLL_MIN 10000 422 #define CPUIDLE_POLL_MAX (TICK_NSEC / 16) 423 424 /** 425 * cpuidle_poll_time - return amount of time to poll for, 426 * governors can override dev->poll_limit_ns if necessary 427 * 428 * @drv: the cpuidle driver tied with the cpu 429 * @dev: the cpuidle device 430 * 431 */ 432 __cpuidle u64 cpuidle_poll_time(struct cpuidle_driver *drv, 433 struct cpuidle_device *dev) 434 { 435 int i; 436 u64 limit_ns; 437 438 BUILD_BUG_ON(CPUIDLE_POLL_MIN > CPUIDLE_POLL_MAX); 439 440 if (dev->poll_limit_ns) 441 return dev->poll_limit_ns; 442 443 limit_ns = CPUIDLE_POLL_MAX; 444 for (i = 1; i < drv->state_count; i++) { 445 u64 state_limit; 446 447 if (dev->states_usage[i].disable) 448 continue; 449 450 state_limit = drv->states[i].target_residency_ns; 451 if (state_limit < CPUIDLE_POLL_MIN) 452 continue; 453 454 limit_ns = min_t(u64, state_limit, CPUIDLE_POLL_MAX); 455 break; 456 } 457 458 dev->poll_limit_ns = limit_ns; 459 460 return dev->poll_limit_ns; 461 } 462 463 /** 464 * cpuidle_install_idle_handler - installs the cpuidle idle loop handler 465 */ 466 void cpuidle_install_idle_handler(void) 467 { 468 if (enabled_devices) { 469 /* Make sure all changes finished before we switch to new idle */ 470 smp_wmb(); 471 initialized = 1; 472 } 473 } 474 475 /** 476 * cpuidle_uninstall_idle_handler - uninstalls the cpuidle idle loop handler 477 */ 478 void cpuidle_uninstall_idle_handler(void) 479 { 480 if (enabled_devices) { 481 initialized = 0; 482 wake_up_all_idle_cpus(); 483 } 484 485 /* 486 * Make sure external observers (such as the scheduler) 487 * are done looking at pointed idle states. 488 */ 489 synchronize_rcu(); 490 } 491 492 /** 493 * cpuidle_pause_and_lock - temporarily disables CPUIDLE 494 */ 495 void cpuidle_pause_and_lock(void) 496 { 497 mutex_lock(&cpuidle_lock); 498 cpuidle_uninstall_idle_handler(); 499 } 500 501 EXPORT_SYMBOL_GPL(cpuidle_pause_and_lock); 502 503 /** 504 * cpuidle_resume_and_unlock - resumes CPUIDLE operation 505 */ 506 void cpuidle_resume_and_unlock(void) 507 { 508 cpuidle_install_idle_handler(); 509 mutex_unlock(&cpuidle_lock); 510 } 511 512 EXPORT_SYMBOL_GPL(cpuidle_resume_and_unlock); 513 514 /* Currently used in suspend/resume path to suspend cpuidle */ 515 void cpuidle_pause(void) 516 { 517 mutex_lock(&cpuidle_lock); 518 cpuidle_uninstall_idle_handler(); 519 mutex_unlock(&cpuidle_lock); 520 } 521 522 /* Currently used in suspend/resume path to resume cpuidle */ 523 void cpuidle_resume(void) 524 { 525 mutex_lock(&cpuidle_lock); 526 cpuidle_install_idle_handler(); 527 mutex_unlock(&cpuidle_lock); 528 } 529 530 /** 531 * cpuidle_enable_device - enables idle PM for a CPU 532 * @dev: the CPU 533 * 534 * This function must be called between cpuidle_pause_and_lock and 535 * cpuidle_resume_and_unlock when used externally. 536 */ 537 int cpuidle_enable_device(struct cpuidle_device *dev) 538 { 539 int ret; 540 struct cpuidle_driver *drv; 541 542 if (!dev) 543 return -EINVAL; 544 545 if (dev->enabled) 546 return 0; 547 548 if (!cpuidle_curr_governor) 549 return -EIO; 550 551 drv = cpuidle_get_cpu_driver(dev); 552 553 if (!drv) 554 return -EIO; 555 556 if (!dev->registered) 557 return -EINVAL; 558 559 ret = cpuidle_add_device_sysfs(dev); 560 if (ret) 561 return ret; 562 563 if (cpuidle_curr_governor->enable) { 564 ret = cpuidle_curr_governor->enable(drv, dev); 565 if (ret) 566 goto fail_sysfs; 567 } 568 569 smp_wmb(); 570 571 dev->enabled = 1; 572 573 enabled_devices++; 574 return 0; 575 576 fail_sysfs: 577 cpuidle_remove_device_sysfs(dev); 578 579 return ret; 580 } 581 582 EXPORT_SYMBOL_GPL(cpuidle_enable_device); 583 584 /** 585 * cpuidle_disable_device - disables idle PM for a CPU 586 * @dev: the CPU 587 * 588 * This function must be called between cpuidle_pause_and_lock and 589 * cpuidle_resume_and_unlock when used externally. 590 */ 591 void cpuidle_disable_device(struct cpuidle_device *dev) 592 { 593 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); 594 595 if (!dev || !dev->enabled) 596 return; 597 598 if (!drv || !cpuidle_curr_governor) 599 return; 600 601 dev->enabled = 0; 602 603 if (cpuidle_curr_governor->disable) 604 cpuidle_curr_governor->disable(drv, dev); 605 606 cpuidle_remove_device_sysfs(dev); 607 enabled_devices--; 608 } 609 610 EXPORT_SYMBOL_GPL(cpuidle_disable_device); 611 612 static void __cpuidle_unregister_device(struct cpuidle_device *dev) 613 { 614 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); 615 616 list_del(&dev->device_list); 617 per_cpu(cpuidle_devices, dev->cpu) = NULL; 618 module_put(drv->owner); 619 620 dev->registered = 0; 621 } 622 623 static void __cpuidle_device_init(struct cpuidle_device *dev) 624 { 625 memset(dev->states_usage, 0, sizeof(dev->states_usage)); 626 dev->last_residency_ns = 0; 627 dev->next_hrtimer = 0; 628 } 629 630 /** 631 * __cpuidle_register_device - internal register function called before register 632 * and enable routines 633 * @dev: the cpu 634 * 635 * cpuidle_lock mutex must be held before this is called 636 */ 637 static int __cpuidle_register_device(struct cpuidle_device *dev) 638 { 639 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); 640 unsigned int cpu = dev->cpu; 641 int i, ret; 642 643 if (per_cpu(cpuidle_devices, cpu)) { 644 pr_info("CPU%d: cpuidle device already registered\n", cpu); 645 return -EEXIST; 646 } 647 648 if (!try_module_get(drv->owner)) 649 return -EINVAL; 650 651 for (i = 0; i < drv->state_count; i++) { 652 if (drv->states[i].flags & CPUIDLE_FLAG_UNUSABLE) 653 dev->states_usage[i].disable |= CPUIDLE_STATE_DISABLED_BY_DRIVER; 654 655 if (drv->states[i].flags & CPUIDLE_FLAG_OFF) 656 dev->states_usage[i].disable |= CPUIDLE_STATE_DISABLED_BY_USER; 657 } 658 659 per_cpu(cpuidle_devices, cpu) = dev; 660 list_add(&dev->device_list, &cpuidle_detected_devices); 661 662 ret = cpuidle_coupled_register_device(dev); 663 if (ret) 664 __cpuidle_unregister_device(dev); 665 else 666 dev->registered = 1; 667 668 return ret; 669 } 670 671 /** 672 * cpuidle_register_device - registers a CPU's idle PM feature 673 * @dev: the cpu 674 */ 675 int cpuidle_register_device(struct cpuidle_device *dev) 676 { 677 int ret = -EBUSY; 678 679 if (!dev) 680 return -EINVAL; 681 682 mutex_lock(&cpuidle_lock); 683 684 if (dev->registered) 685 goto out_unlock; 686 687 __cpuidle_device_init(dev); 688 689 ret = __cpuidle_register_device(dev); 690 if (ret) 691 goto out_unlock; 692 693 ret = cpuidle_add_sysfs(dev); 694 if (ret) 695 goto out_unregister; 696 697 ret = cpuidle_enable_device(dev); 698 if (ret) 699 goto out_sysfs; 700 701 cpuidle_install_idle_handler(); 702 703 out_unlock: 704 mutex_unlock(&cpuidle_lock); 705 706 return ret; 707 708 out_sysfs: 709 cpuidle_remove_sysfs(dev); 710 out_unregister: 711 __cpuidle_unregister_device(dev); 712 goto out_unlock; 713 } 714 715 EXPORT_SYMBOL_GPL(cpuidle_register_device); 716 717 /** 718 * cpuidle_unregister_device - unregisters a CPU's idle PM feature 719 * @dev: the cpu 720 */ 721 void cpuidle_unregister_device(struct cpuidle_device *dev) 722 { 723 if (!dev || dev->registered == 0) 724 return; 725 726 cpuidle_pause_and_lock(); 727 728 cpuidle_disable_device(dev); 729 730 cpuidle_remove_sysfs(dev); 731 732 __cpuidle_unregister_device(dev); 733 734 cpuidle_coupled_unregister_device(dev); 735 736 cpuidle_resume_and_unlock(); 737 } 738 739 EXPORT_SYMBOL_GPL(cpuidle_unregister_device); 740 741 /** 742 * cpuidle_unregister: unregister a driver and the devices. This function 743 * can be used only if the driver has been previously registered through 744 * the cpuidle_register function. 745 * 746 * @drv: a valid pointer to a struct cpuidle_driver 747 */ 748 void cpuidle_unregister(struct cpuidle_driver *drv) 749 { 750 int cpu; 751 struct cpuidle_device *device; 752 753 for_each_cpu(cpu, drv->cpumask) { 754 device = &per_cpu(cpuidle_dev, cpu); 755 cpuidle_unregister_device(device); 756 } 757 758 cpuidle_unregister_driver(drv); 759 } 760 EXPORT_SYMBOL_GPL(cpuidle_unregister); 761 762 /** 763 * cpuidle_register: registers the driver and the cpu devices with the 764 * coupled_cpus passed as parameter. This function is used for all common 765 * initialization pattern there are in the arch specific drivers. The 766 * devices is globally defined in this file. 767 * 768 * @drv : a valid pointer to a struct cpuidle_driver 769 * @coupled_cpus: a cpumask for the coupled states 770 * 771 * Returns 0 on success, < 0 otherwise 772 */ 773 int cpuidle_register(struct cpuidle_driver *drv, 774 const struct cpumask *const coupled_cpus) 775 { 776 int ret, cpu; 777 struct cpuidle_device *device; 778 779 ret = cpuidle_register_driver(drv); 780 if (ret) { 781 pr_err("failed to register cpuidle driver\n"); 782 return ret; 783 } 784 785 for_each_cpu(cpu, drv->cpumask) { 786 device = &per_cpu(cpuidle_dev, cpu); 787 device->cpu = cpu; 788 789 #ifdef CONFIG_ARCH_NEEDS_CPU_IDLE_COUPLED 790 /* 791 * On multiplatform for ARM, the coupled idle states could be 792 * enabled in the kernel even if the cpuidle driver does not 793 * use it. Note, coupled_cpus is a struct copy. 794 */ 795 if (coupled_cpus) 796 device->coupled_cpus = *coupled_cpus; 797 #endif 798 ret = cpuidle_register_device(device); 799 if (!ret) 800 continue; 801 802 pr_err("Failed to register cpuidle device for cpu%d\n", cpu); 803 804 cpuidle_unregister(drv); 805 break; 806 } 807 808 return ret; 809 } 810 EXPORT_SYMBOL_GPL(cpuidle_register); 811 812 /** 813 * cpuidle_init - core initializer 814 */ 815 static int __init cpuidle_init(void) 816 { 817 if (cpuidle_disabled()) 818 return -ENODEV; 819 820 return cpuidle_add_interface(); 821 } 822 823 module_param(off, int, 0444); 824 module_param_string(governor, param_governor, CPUIDLE_NAME_LEN, 0444); 825 core_initcall(cpuidle_init); 826