xref: /linux/drivers/cpuidle/cpuidle.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 /*
2  * cpuidle.c - core cpuidle infrastructure
3  *
4  * (C) 2006-2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5  *               Shaohua Li <shaohua.li@intel.com>
6  *               Adam Belay <abelay@novell.com>
7  *
8  * This code is licenced under the GPL.
9  */
10 
11 #include <linux/clockchips.h>
12 #include <linux/kernel.h>
13 #include <linux/mutex.h>
14 #include <linux/sched.h>
15 #include <linux/sched/clock.h>
16 #include <linux/notifier.h>
17 #include <linux/pm_qos.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuidle.h>
20 #include <linux/ktime.h>
21 #include <linux/hrtimer.h>
22 #include <linux/module.h>
23 #include <linux/suspend.h>
24 #include <linux/tick.h>
25 #include <linux/mmu_context.h>
26 #include <trace/events/power.h>
27 
28 #include "cpuidle.h"
29 
30 DEFINE_PER_CPU(struct cpuidle_device *, cpuidle_devices);
31 DEFINE_PER_CPU(struct cpuidle_device, cpuidle_dev);
32 
33 DEFINE_MUTEX(cpuidle_lock);
34 LIST_HEAD(cpuidle_detected_devices);
35 
36 static int enabled_devices;
37 static int off __read_mostly;
38 static int initialized __read_mostly;
39 
40 int cpuidle_disabled(void)
41 {
42 	return off;
43 }
44 void disable_cpuidle(void)
45 {
46 	off = 1;
47 }
48 
49 bool cpuidle_not_available(struct cpuidle_driver *drv,
50 			   struct cpuidle_device *dev)
51 {
52 	return off || !initialized || !drv || !dev || !dev->enabled;
53 }
54 
55 /**
56  * cpuidle_play_dead - cpu off-lining
57  *
58  * Returns in case of an error or no driver
59  */
60 int cpuidle_play_dead(void)
61 {
62 	struct cpuidle_device *dev = __this_cpu_read(cpuidle_devices);
63 	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
64 	int i;
65 
66 	if (!drv)
67 		return -ENODEV;
68 
69 	/* Find lowest-power state that supports long-term idle */
70 	for (i = drv->state_count - 1; i >= 0; i--)
71 		if (drv->states[i].enter_dead)
72 			return drv->states[i].enter_dead(dev, i);
73 
74 	return -ENODEV;
75 }
76 
77 static int find_deepest_state(struct cpuidle_driver *drv,
78 			      struct cpuidle_device *dev,
79 			      u64 max_latency_ns,
80 			      unsigned int forbidden_flags,
81 			      bool s2idle)
82 {
83 	u64 latency_req = 0;
84 	int i, ret = 0;
85 
86 	for (i = 1; i < drv->state_count; i++) {
87 		struct cpuidle_state *s = &drv->states[i];
88 
89 		if (dev->states_usage[i].disable ||
90 		    s->exit_latency_ns <= latency_req ||
91 		    s->exit_latency_ns > max_latency_ns ||
92 		    (s->flags & forbidden_flags) ||
93 		    (s2idle && !s->enter_s2idle))
94 			continue;
95 
96 		latency_req = s->exit_latency_ns;
97 		ret = i;
98 	}
99 	return ret;
100 }
101 
102 /**
103  * cpuidle_use_deepest_state - Set/unset governor override mode.
104  * @latency_limit_ns: Idle state exit latency limit (or no override if 0).
105  *
106  * If @latency_limit_ns is nonzero, set the current CPU to use the deepest idle
107  * state with exit latency within @latency_limit_ns (override governors going
108  * forward), or do not override governors if it is zero.
109  */
110 void cpuidle_use_deepest_state(u64 latency_limit_ns)
111 {
112 	struct cpuidle_device *dev;
113 
114 	preempt_disable();
115 	dev = cpuidle_get_device();
116 	if (dev)
117 		dev->forced_idle_latency_limit_ns = latency_limit_ns;
118 	preempt_enable();
119 }
120 
121 /**
122  * cpuidle_find_deepest_state - Find the deepest available idle state.
123  * @drv: cpuidle driver for the given CPU.
124  * @dev: cpuidle device for the given CPU.
125  * @latency_limit_ns: Idle state exit latency limit
126  *
127  * Return: the index of the deepest available idle state.
128  */
129 int cpuidle_find_deepest_state(struct cpuidle_driver *drv,
130 			       struct cpuidle_device *dev,
131 			       u64 latency_limit_ns)
132 {
133 	return find_deepest_state(drv, dev, latency_limit_ns, 0, false);
134 }
135 
136 #ifdef CONFIG_SUSPEND
137 static void enter_s2idle_proper(struct cpuidle_driver *drv,
138 				struct cpuidle_device *dev, int index)
139 {
140 	ktime_t time_start, time_end;
141 	struct cpuidle_state *target_state = &drv->states[index];
142 
143 	time_start = ns_to_ktime(local_clock());
144 
145 	tick_freeze();
146 	/*
147 	 * The state used here cannot be a "coupled" one, because the "coupled"
148 	 * cpuidle mechanism enables interrupts and doing that with timekeeping
149 	 * suspended is generally unsafe.
150 	 */
151 	stop_critical_timings();
152 	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE))
153 		rcu_idle_enter();
154 	target_state->enter_s2idle(dev, drv, index);
155 	if (WARN_ON_ONCE(!irqs_disabled()))
156 		local_irq_disable();
157 	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE))
158 		rcu_idle_exit();
159 	tick_unfreeze();
160 	start_critical_timings();
161 
162 	time_end = ns_to_ktime(local_clock());
163 
164 	dev->states_usage[index].s2idle_time += ktime_us_delta(time_end, time_start);
165 	dev->states_usage[index].s2idle_usage++;
166 }
167 
168 /**
169  * cpuidle_enter_s2idle - Enter an idle state suitable for suspend-to-idle.
170  * @drv: cpuidle driver for the given CPU.
171  * @dev: cpuidle device for the given CPU.
172  *
173  * If there are states with the ->enter_s2idle callback, find the deepest of
174  * them and enter it with frozen tick.
175  */
176 int cpuidle_enter_s2idle(struct cpuidle_driver *drv, struct cpuidle_device *dev)
177 {
178 	int index;
179 
180 	/*
181 	 * Find the deepest state with ->enter_s2idle present, which guarantees
182 	 * that interrupts won't be enabled when it exits and allows the tick to
183 	 * be frozen safely.
184 	 */
185 	index = find_deepest_state(drv, dev, U64_MAX, 0, true);
186 	if (index > 0) {
187 		enter_s2idle_proper(drv, dev, index);
188 		local_irq_enable();
189 	}
190 	return index;
191 }
192 #endif /* CONFIG_SUSPEND */
193 
194 /**
195  * cpuidle_enter_state - enter the state and update stats
196  * @dev: cpuidle device for this cpu
197  * @drv: cpuidle driver for this cpu
198  * @index: index into the states table in @drv of the state to enter
199  */
200 int cpuidle_enter_state(struct cpuidle_device *dev, struct cpuidle_driver *drv,
201 			int index)
202 {
203 	int entered_state;
204 
205 	struct cpuidle_state *target_state = &drv->states[index];
206 	bool broadcast = !!(target_state->flags & CPUIDLE_FLAG_TIMER_STOP);
207 	ktime_t time_start, time_end;
208 
209 	/*
210 	 * Tell the time framework to switch to a broadcast timer because our
211 	 * local timer will be shut down.  If a local timer is used from another
212 	 * CPU as a broadcast timer, this call may fail if it is not available.
213 	 */
214 	if (broadcast && tick_broadcast_enter()) {
215 		index = find_deepest_state(drv, dev, target_state->exit_latency_ns,
216 					   CPUIDLE_FLAG_TIMER_STOP, false);
217 		if (index < 0) {
218 			default_idle_call();
219 			return -EBUSY;
220 		}
221 		target_state = &drv->states[index];
222 		broadcast = false;
223 	}
224 
225 	if (target_state->flags & CPUIDLE_FLAG_TLB_FLUSHED)
226 		leave_mm(dev->cpu);
227 
228 	/* Take note of the planned idle state. */
229 	sched_idle_set_state(target_state);
230 
231 	trace_cpu_idle(index, dev->cpu);
232 	time_start = ns_to_ktime(local_clock());
233 
234 	stop_critical_timings();
235 	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE))
236 		rcu_idle_enter();
237 	entered_state = target_state->enter(dev, drv, index);
238 	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE))
239 		rcu_idle_exit();
240 	start_critical_timings();
241 
242 	sched_clock_idle_wakeup_event();
243 	time_end = ns_to_ktime(local_clock());
244 	trace_cpu_idle(PWR_EVENT_EXIT, dev->cpu);
245 
246 	/* The cpu is no longer idle or about to enter idle. */
247 	sched_idle_set_state(NULL);
248 
249 	if (broadcast) {
250 		if (WARN_ON_ONCE(!irqs_disabled()))
251 			local_irq_disable();
252 
253 		tick_broadcast_exit();
254 	}
255 
256 	if (!cpuidle_state_is_coupled(drv, index))
257 		local_irq_enable();
258 
259 	if (entered_state >= 0) {
260 		s64 diff, delay = drv->states[entered_state].exit_latency_ns;
261 		int i;
262 
263 		/*
264 		 * Update cpuidle counters
265 		 * This can be moved to within driver enter routine,
266 		 * but that results in multiple copies of same code.
267 		 */
268 		diff = ktime_sub(time_end, time_start);
269 
270 		dev->last_residency_ns = diff;
271 		dev->states_usage[entered_state].time_ns += diff;
272 		dev->states_usage[entered_state].usage++;
273 
274 		if (diff < drv->states[entered_state].target_residency_ns) {
275 			for (i = entered_state - 1; i >= 0; i--) {
276 				if (dev->states_usage[i].disable)
277 					continue;
278 
279 				/* Shallower states are enabled, so update. */
280 				dev->states_usage[entered_state].above++;
281 				break;
282 			}
283 		} else if (diff > delay) {
284 			for (i = entered_state + 1; i < drv->state_count; i++) {
285 				if (dev->states_usage[i].disable)
286 					continue;
287 
288 				/*
289 				 * Update if a deeper state would have been a
290 				 * better match for the observed idle duration.
291 				 */
292 				if (diff - delay >= drv->states[i].target_residency_ns)
293 					dev->states_usage[entered_state].below++;
294 
295 				break;
296 			}
297 		}
298 	} else {
299 		dev->last_residency_ns = 0;
300 		dev->states_usage[index].rejected++;
301 	}
302 
303 	return entered_state;
304 }
305 
306 /**
307  * cpuidle_select - ask the cpuidle framework to choose an idle state
308  *
309  * @drv: the cpuidle driver
310  * @dev: the cpuidle device
311  * @stop_tick: indication on whether or not to stop the tick
312  *
313  * Returns the index of the idle state.  The return value must not be negative.
314  *
315  * The memory location pointed to by @stop_tick is expected to be written the
316  * 'false' boolean value if the scheduler tick should not be stopped before
317  * entering the returned state.
318  */
319 int cpuidle_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
320 		   bool *stop_tick)
321 {
322 	return cpuidle_curr_governor->select(drv, dev, stop_tick);
323 }
324 
325 /**
326  * cpuidle_enter - enter into the specified idle state
327  *
328  * @drv:   the cpuidle driver tied with the cpu
329  * @dev:   the cpuidle device
330  * @index: the index in the idle state table
331  *
332  * Returns the index in the idle state, < 0 in case of error.
333  * The error code depends on the backend driver
334  */
335 int cpuidle_enter(struct cpuidle_driver *drv, struct cpuidle_device *dev,
336 		  int index)
337 {
338 	int ret = 0;
339 
340 	/*
341 	 * Store the next hrtimer, which becomes either next tick or the next
342 	 * timer event, whatever expires first. Additionally, to make this data
343 	 * useful for consumers outside cpuidle, we rely on that the governor's
344 	 * ->select() callback have decided, whether to stop the tick or not.
345 	 */
346 	WRITE_ONCE(dev->next_hrtimer, tick_nohz_get_next_hrtimer());
347 
348 	if (cpuidle_state_is_coupled(drv, index))
349 		ret = cpuidle_enter_state_coupled(dev, drv, index);
350 	else
351 		ret = cpuidle_enter_state(dev, drv, index);
352 
353 	WRITE_ONCE(dev->next_hrtimer, 0);
354 	return ret;
355 }
356 
357 /**
358  * cpuidle_reflect - tell the underlying governor what was the state
359  * we were in
360  *
361  * @dev  : the cpuidle device
362  * @index: the index in the idle state table
363  *
364  */
365 void cpuidle_reflect(struct cpuidle_device *dev, int index)
366 {
367 	if (cpuidle_curr_governor->reflect && index >= 0)
368 		cpuidle_curr_governor->reflect(dev, index);
369 }
370 
371 /*
372  * Min polling interval of 10usec is a guess. It is assuming that
373  * for most users, the time for a single ping-pong workload like
374  * perf bench pipe would generally complete within 10usec but
375  * this is hardware dependant. Actual time can be estimated with
376  *
377  * perf bench sched pipe -l 10000
378  *
379  * Run multiple times to avoid cpufreq effects.
380  */
381 #define CPUIDLE_POLL_MIN 10000
382 #define CPUIDLE_POLL_MAX (TICK_NSEC / 16)
383 
384 /**
385  * cpuidle_poll_time - return amount of time to poll for,
386  * governors can override dev->poll_limit_ns if necessary
387  *
388  * @drv:   the cpuidle driver tied with the cpu
389  * @dev:   the cpuidle device
390  *
391  */
392 u64 cpuidle_poll_time(struct cpuidle_driver *drv,
393 		      struct cpuidle_device *dev)
394 {
395 	int i;
396 	u64 limit_ns;
397 
398 	BUILD_BUG_ON(CPUIDLE_POLL_MIN > CPUIDLE_POLL_MAX);
399 
400 	if (dev->poll_limit_ns)
401 		return dev->poll_limit_ns;
402 
403 	limit_ns = CPUIDLE_POLL_MAX;
404 	for (i = 1; i < drv->state_count; i++) {
405 		u64 state_limit;
406 
407 		if (dev->states_usage[i].disable)
408 			continue;
409 
410 		state_limit = drv->states[i].target_residency_ns;
411 		if (state_limit < CPUIDLE_POLL_MIN)
412 			continue;
413 
414 		limit_ns = min_t(u64, state_limit, CPUIDLE_POLL_MAX);
415 		break;
416 	}
417 
418 	dev->poll_limit_ns = limit_ns;
419 
420 	return dev->poll_limit_ns;
421 }
422 
423 /**
424  * cpuidle_install_idle_handler - installs the cpuidle idle loop handler
425  */
426 void cpuidle_install_idle_handler(void)
427 {
428 	if (enabled_devices) {
429 		/* Make sure all changes finished before we switch to new idle */
430 		smp_wmb();
431 		initialized = 1;
432 	}
433 }
434 
435 /**
436  * cpuidle_uninstall_idle_handler - uninstalls the cpuidle idle loop handler
437  */
438 void cpuidle_uninstall_idle_handler(void)
439 {
440 	if (enabled_devices) {
441 		initialized = 0;
442 		wake_up_all_idle_cpus();
443 	}
444 
445 	/*
446 	 * Make sure external observers (such as the scheduler)
447 	 * are done looking at pointed idle states.
448 	 */
449 	synchronize_rcu();
450 }
451 
452 /**
453  * cpuidle_pause_and_lock - temporarily disables CPUIDLE
454  */
455 void cpuidle_pause_and_lock(void)
456 {
457 	mutex_lock(&cpuidle_lock);
458 	cpuidle_uninstall_idle_handler();
459 }
460 
461 EXPORT_SYMBOL_GPL(cpuidle_pause_and_lock);
462 
463 /**
464  * cpuidle_resume_and_unlock - resumes CPUIDLE operation
465  */
466 void cpuidle_resume_and_unlock(void)
467 {
468 	cpuidle_install_idle_handler();
469 	mutex_unlock(&cpuidle_lock);
470 }
471 
472 EXPORT_SYMBOL_GPL(cpuidle_resume_and_unlock);
473 
474 /* Currently used in suspend/resume path to suspend cpuidle */
475 void cpuidle_pause(void)
476 {
477 	mutex_lock(&cpuidle_lock);
478 	cpuidle_uninstall_idle_handler();
479 	mutex_unlock(&cpuidle_lock);
480 }
481 
482 /* Currently used in suspend/resume path to resume cpuidle */
483 void cpuidle_resume(void)
484 {
485 	mutex_lock(&cpuidle_lock);
486 	cpuidle_install_idle_handler();
487 	mutex_unlock(&cpuidle_lock);
488 }
489 
490 /**
491  * cpuidle_enable_device - enables idle PM for a CPU
492  * @dev: the CPU
493  *
494  * This function must be called between cpuidle_pause_and_lock and
495  * cpuidle_resume_and_unlock when used externally.
496  */
497 int cpuidle_enable_device(struct cpuidle_device *dev)
498 {
499 	int ret;
500 	struct cpuidle_driver *drv;
501 
502 	if (!dev)
503 		return -EINVAL;
504 
505 	if (dev->enabled)
506 		return 0;
507 
508 	if (!cpuidle_curr_governor)
509 		return -EIO;
510 
511 	drv = cpuidle_get_cpu_driver(dev);
512 
513 	if (!drv)
514 		return -EIO;
515 
516 	if (!dev->registered)
517 		return -EINVAL;
518 
519 	ret = cpuidle_add_device_sysfs(dev);
520 	if (ret)
521 		return ret;
522 
523 	if (cpuidle_curr_governor->enable) {
524 		ret = cpuidle_curr_governor->enable(drv, dev);
525 		if (ret)
526 			goto fail_sysfs;
527 	}
528 
529 	smp_wmb();
530 
531 	dev->enabled = 1;
532 
533 	enabled_devices++;
534 	return 0;
535 
536 fail_sysfs:
537 	cpuidle_remove_device_sysfs(dev);
538 
539 	return ret;
540 }
541 
542 EXPORT_SYMBOL_GPL(cpuidle_enable_device);
543 
544 /**
545  * cpuidle_disable_device - disables idle PM for a CPU
546  * @dev: the CPU
547  *
548  * This function must be called between cpuidle_pause_and_lock and
549  * cpuidle_resume_and_unlock when used externally.
550  */
551 void cpuidle_disable_device(struct cpuidle_device *dev)
552 {
553 	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
554 
555 	if (!dev || !dev->enabled)
556 		return;
557 
558 	if (!drv || !cpuidle_curr_governor)
559 		return;
560 
561 	dev->enabled = 0;
562 
563 	if (cpuidle_curr_governor->disable)
564 		cpuidle_curr_governor->disable(drv, dev);
565 
566 	cpuidle_remove_device_sysfs(dev);
567 	enabled_devices--;
568 }
569 
570 EXPORT_SYMBOL_GPL(cpuidle_disable_device);
571 
572 static void __cpuidle_unregister_device(struct cpuidle_device *dev)
573 {
574 	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
575 
576 	list_del(&dev->device_list);
577 	per_cpu(cpuidle_devices, dev->cpu) = NULL;
578 	module_put(drv->owner);
579 
580 	dev->registered = 0;
581 }
582 
583 static void __cpuidle_device_init(struct cpuidle_device *dev)
584 {
585 	memset(dev->states_usage, 0, sizeof(dev->states_usage));
586 	dev->last_residency_ns = 0;
587 	dev->next_hrtimer = 0;
588 }
589 
590 /**
591  * __cpuidle_register_device - internal register function called before register
592  * and enable routines
593  * @dev: the cpu
594  *
595  * cpuidle_lock mutex must be held before this is called
596  */
597 static int __cpuidle_register_device(struct cpuidle_device *dev)
598 {
599 	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
600 	int i, ret;
601 
602 	if (!try_module_get(drv->owner))
603 		return -EINVAL;
604 
605 	for (i = 0; i < drv->state_count; i++) {
606 		if (drv->states[i].flags & CPUIDLE_FLAG_UNUSABLE)
607 			dev->states_usage[i].disable |= CPUIDLE_STATE_DISABLED_BY_DRIVER;
608 
609 		if (drv->states[i].flags & CPUIDLE_FLAG_OFF)
610 			dev->states_usage[i].disable |= CPUIDLE_STATE_DISABLED_BY_USER;
611 	}
612 
613 	per_cpu(cpuidle_devices, dev->cpu) = dev;
614 	list_add(&dev->device_list, &cpuidle_detected_devices);
615 
616 	ret = cpuidle_coupled_register_device(dev);
617 	if (ret)
618 		__cpuidle_unregister_device(dev);
619 	else
620 		dev->registered = 1;
621 
622 	return ret;
623 }
624 
625 /**
626  * cpuidle_register_device - registers a CPU's idle PM feature
627  * @dev: the cpu
628  */
629 int cpuidle_register_device(struct cpuidle_device *dev)
630 {
631 	int ret = -EBUSY;
632 
633 	if (!dev)
634 		return -EINVAL;
635 
636 	mutex_lock(&cpuidle_lock);
637 
638 	if (dev->registered)
639 		goto out_unlock;
640 
641 	__cpuidle_device_init(dev);
642 
643 	ret = __cpuidle_register_device(dev);
644 	if (ret)
645 		goto out_unlock;
646 
647 	ret = cpuidle_add_sysfs(dev);
648 	if (ret)
649 		goto out_unregister;
650 
651 	ret = cpuidle_enable_device(dev);
652 	if (ret)
653 		goto out_sysfs;
654 
655 	cpuidle_install_idle_handler();
656 
657 out_unlock:
658 	mutex_unlock(&cpuidle_lock);
659 
660 	return ret;
661 
662 out_sysfs:
663 	cpuidle_remove_sysfs(dev);
664 out_unregister:
665 	__cpuidle_unregister_device(dev);
666 	goto out_unlock;
667 }
668 
669 EXPORT_SYMBOL_GPL(cpuidle_register_device);
670 
671 /**
672  * cpuidle_unregister_device - unregisters a CPU's idle PM feature
673  * @dev: the cpu
674  */
675 void cpuidle_unregister_device(struct cpuidle_device *dev)
676 {
677 	if (!dev || dev->registered == 0)
678 		return;
679 
680 	cpuidle_pause_and_lock();
681 
682 	cpuidle_disable_device(dev);
683 
684 	cpuidle_remove_sysfs(dev);
685 
686 	__cpuidle_unregister_device(dev);
687 
688 	cpuidle_coupled_unregister_device(dev);
689 
690 	cpuidle_resume_and_unlock();
691 }
692 
693 EXPORT_SYMBOL_GPL(cpuidle_unregister_device);
694 
695 /**
696  * cpuidle_unregister: unregister a driver and the devices. This function
697  * can be used only if the driver has been previously registered through
698  * the cpuidle_register function.
699  *
700  * @drv: a valid pointer to a struct cpuidle_driver
701  */
702 void cpuidle_unregister(struct cpuidle_driver *drv)
703 {
704 	int cpu;
705 	struct cpuidle_device *device;
706 
707 	for_each_cpu(cpu, drv->cpumask) {
708 		device = &per_cpu(cpuidle_dev, cpu);
709 		cpuidle_unregister_device(device);
710 	}
711 
712 	cpuidle_unregister_driver(drv);
713 }
714 EXPORT_SYMBOL_GPL(cpuidle_unregister);
715 
716 /**
717  * cpuidle_register: registers the driver and the cpu devices with the
718  * coupled_cpus passed as parameter. This function is used for all common
719  * initialization pattern there are in the arch specific drivers. The
720  * devices is globally defined in this file.
721  *
722  * @drv         : a valid pointer to a struct cpuidle_driver
723  * @coupled_cpus: a cpumask for the coupled states
724  *
725  * Returns 0 on success, < 0 otherwise
726  */
727 int cpuidle_register(struct cpuidle_driver *drv,
728 		     const struct cpumask *const coupled_cpus)
729 {
730 	int ret, cpu;
731 	struct cpuidle_device *device;
732 
733 	ret = cpuidle_register_driver(drv);
734 	if (ret) {
735 		pr_err("failed to register cpuidle driver\n");
736 		return ret;
737 	}
738 
739 	for_each_cpu(cpu, drv->cpumask) {
740 		device = &per_cpu(cpuidle_dev, cpu);
741 		device->cpu = cpu;
742 
743 #ifdef CONFIG_ARCH_NEEDS_CPU_IDLE_COUPLED
744 		/*
745 		 * On multiplatform for ARM, the coupled idle states could be
746 		 * enabled in the kernel even if the cpuidle driver does not
747 		 * use it. Note, coupled_cpus is a struct copy.
748 		 */
749 		if (coupled_cpus)
750 			device->coupled_cpus = *coupled_cpus;
751 #endif
752 		ret = cpuidle_register_device(device);
753 		if (!ret)
754 			continue;
755 
756 		pr_err("Failed to register cpuidle device for cpu%d\n", cpu);
757 
758 		cpuidle_unregister(drv);
759 		break;
760 	}
761 
762 	return ret;
763 }
764 EXPORT_SYMBOL_GPL(cpuidle_register);
765 
766 /**
767  * cpuidle_init - core initializer
768  */
769 static int __init cpuidle_init(void)
770 {
771 	if (cpuidle_disabled())
772 		return -ENODEV;
773 
774 	return cpuidle_add_interface(cpu_subsys.dev_root);
775 }
776 
777 module_param(off, int, 0444);
778 module_param_string(governor, param_governor, CPUIDLE_NAME_LEN, 0444);
779 core_initcall(cpuidle_init);
780